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Thermoelectric properties of atomically thin silicene and germanene nanostructures
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The thermoelectric properties in one- and two-dimensional silicon and germanium structures have been

investigated using first-principles density functional techniques and linear response for the thermal and electrical

transport. We have considered here the two-dimensional silicene and germanene, together with nanoribbons of

different widths. For the nano ribbons, we have also investigated the possibility of nano structuring these systems

by mixing silicon and germanium. We found that the figure of merit at room temperature of these systems is

remarkably high, up to 2.5.
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I. INTRODUCTION

Thermoelectric energy conversion is the ability of a device
to convert a steady temperature gradient into an electrical
current, and was first discovered by Seebeck in 1821 [1–3].
In a reverse mode operation, a thermoelectric device can be
used as a cooler by maintaining a steady current in the device
(Peltier effect) [1–3]. Recently, the quest for a highly efficient
thermoelectric device has attracted tremendous interest due
to significant potential industrial applications [1–5]. The
efficiency of the thermoelectric conversion is characterized
by a dimensionless parameter, called figure of merit

ZT =
σS2T

κ
, (1)

where σ is the electric conductance, S is the Seebeck coeffi-
cient, T is the absolute temperature, and κ = κe + κp is the
total thermal conductance that is usually split into electron and
phonon contributions, respectively [1–3]. Generally speaking,
materials with ZT ≈ 1 are regarded as good thermoelectric
components, while devices with a ZT approaching or larger
than 3 could efficiently compete with conventional energy
conversion techniques. State of the art values for the figure
of merit are about 1, while higher values have been reported
in the literature for particular materials which, however, have
presently proven difficult to integrate into our technologies
or to produce industrially in a reliable way, or whose cost
makes them unaffordable at large scale [6]. Admittedly, the
optimization of the figure of merit is a difficult problem.
Indeed, an ideal thermoelectric material should hold the
electric conductance and the Seebeck coefficient as high as
possible, while keeping the thermal conductance as low as
possible. Unfortunately, because of the Wiedemann-Franz law
κe/σ = (kBπ )2T/3e2 (valid in a great extent for metals),
where kB and e are, respectively, the Boltzmann constant and
carrier charge [7], the two conductances are locked together
and increasing the first leads to an increase in the second. It
therefore looked natural to attempt to decrease the phonon
thermal conductance since this will hopefully not (greatly)
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affect the electronic properties, although the maximum ZT

achieved so far makes these devices not commercially viable.
After the seminal work by Hicks and Dresselhaus [8], strong

research activity has been focused on nanostructured materials
for thermoelectric applications. This boost can easily be
explained as an attempt to escape from the Wiedemann-Franz
law while dramatically increasing the electronic density of
states [9,10]. With the discovery of graphene [11], and the
subsequent investigation of its properties, it became apparent
that graphene is not an efficient thermoelectric material since
its thermal conductance is extremely high [12–14]. On the
other hand, it has been shown that nanostructuring graphene
with boron nitride in a nanoribbon increased the overall
figure of merit by a factor of 20 [15]. Notwithstanding its
phenomenal properties, the integration of graphene with actual
silicon-based technologies has proven a quite challenging
task, whose solution would probably require the complete
redesign of electronics devices. As our present technology
is based on silicon (Si) and germanium (Ge) semiconductors;
it thus appears natural to look at the thermoelectric properties
of these materials, since the integration of a thermoelectric
device based on them would be simpler than the integration
of carbon-based devices. For example, in silicon nanowires,
the thermal conductance can be reduced in a factor of 100
due to the quenching of phonon transport and they exhibit
a high thermoelectric conversion ratio [16]. This suggests a
prospective avenue to improve the thermoelectric performance
through decreasing the characteristic size of materials, and
various nanostructures such as nanotubes and nanomembranes
can be proposed.

Silicene resembles graphene [17–21] in the atomic single
layer arrangements, i.e., it forms a honeycomb lattice and
shares with the carbon system similar electronic properties. In
particular, it is viewed as a new type of atomic-layered material
with outstanding properties such as the zero effective mass at
the Dirac point and infrared absorbance optical spectra [22–
24]. Experimentally, single layer silicene (buckled) [25–36]
and silicene nanoribbons (SiNRs) [25,27] have been synthe-
sized on Ag substrate. In particular, SiNRs up to a narrow
width of 1.6 nm have been produced, aligned parallel to each
other in a well-distributed way [25]. From the experience
gained with the current microelectronics, we know that Ge
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is a good partner for Si since they share similar electronic
properties and form bulk crystal with comparable lattice
constant (aSi = 0.5431 nm, while aGe = 0.5658 nm, with a
lattice mismatch of 4%). The elastic limit is around 7%. In the
case of InAs, for instance, only one monolayer can be grown
on GaAs [37]. A single layer hexagonal lattice of Ge, called
germanene, has been predicted from ab initio calculations
[22]. Theoretically, germanene presents a Dirac point, and the
electronic and structural properties of this material would be
very similar to those of silicene. We will discuss some of
them in more detail in the following. In particular, we will
consider germanene nanoribbons (GeNRs) of different widths
and the possibility of forming Si-Ge single atomic layered
nanoribbons by alternating stripes of Si with stripes of Ge.

In this paper, we investigate with an ab initio technique
combined with a linear response approach the thermoelectric
properties of both two-dimensional (2D) silicene and ger-
manene nanosheets and one-dimensional (1D) nanoribbons.
We find that some of these systems will show a figure of merit
larger than 1 at room temperature (with a maximum value of
2.18). Our results are consistent with those obtained by Pan
et al. [38], although they are based on different techniques,
especially for the calculations of the phonon thermal conduc-
tance. We believe that this agreement is partially fortuitous, as
we will discuss in the following.

The paper is organized as follows. In Sec. II we will
discuss in detail the numerical and theoretical methods we
used to investigate the Si and Ge systems. In Sec. III, we
introduce the 2D systems, silicene and germanene, study
their stability, and investigate their transport properties. In
Sec. IV, we investigate the 1D nanoribbons. In this section
we focus mostly on the Ge system, since the SiNRs have
been investigated elsewhere, and from our calculations, Si
and Ge nanoribbons do share essentially some of the same
properties. We find that the nanoribbons can have a quite large
figure of merit. This is due to the fact that both Si and Ge
nanoribbons have a finite electronic gap that dramatically
enhances the Seebeck coefficient. In Sec. V, we consider
nanoribbons created by alternating stripes of Si and Ge. By
nanostructuring the nanoribbons we would like to confine
the phonons and therefore decrease the thermal conductance.
However, we report that the SiGeNRs do show some the same
transport properties of the pure Si or pure Ge nanoribbons. This
is due to the limitations of our method of choice, namely, a full
ab initio study for the phonon energy transport. Indeed, within
this technique we are limited to fairly small nanoribbons and
therefore the long-wavelength phonons are not quenched by
the regular pattern of the structured nanoribbons. On the other
hand, a classical technique, based on molecular dynamics,
would allow us to calculate the thermal conductance of larger
devices. However, this technique does not recover the correct
quantum limit of these one-dimensional systems, and therefore
we do expect that the molecular dynamics results to give
the incorrect thermal conductance at a temperature below
the Debye temperature, which for Si and Ge systems can
be estimated to be about 640 and 374 K, respectively. We
check the idea that nanostructuring would decrease the phonon
thermal conductance by using a tight-binding approximation,
which allows us to consider a larger supercell than a purely ab

initio method. We indeed show that the thermal conductance

greatly decreases when we consider a heterostructure of Si and
Ge. Finally, in Sec. VI we draw our conclusions and give some
outlooks of this work.

II. METHOD

In linear response theory, by using Onsager’s relations
and the Landauer theory of quantum transport, the electrical
conductance σ , the Seebeck coefficient S, and the electron
contributed thermal conductance κe, can be written as [2,3,39]

σαβ(μ,T ) = e2L00(μ,T ), (2)

Sαβ(μ,T ) =
1

eT

L01(μ,T )

L00(μ,T )
, (3)

κe,αβ(μ,T ) =
1

T

[

L11(μ,T ) +
L01(μ,T )2

L00(μ,T )

]

, (4)

where

Lmn(μ,T ) = −
1

A

∫ ∞

−∞

dǫ Te,αβ (ǫ)(ǫ − μ)m+n ∂f (ǫ,μ,T )

∂ǫ

(5)

is the Lorenz integral. In these equations, μ is the chemical
potential, A is the area of the considered system, α and β are
the indices of the spatial components x, y, and z, f (ǫ,μ,T ) is
the Fermi distribution function at a given temperature T , and
Te is a transmission function which is related to the probability
of electrons to cross the system [40,41]. Similarly, the phonon
thermal conductance is given by [42]

κp,αβ(T ) =
1

A

∫ ∞

0

dω Tp,αβ (ω)�ω
∂n(ω,T )

∂T
, (6)

where ω is the phonon-vibrational frequency, � is the reduced
Planck constant, and n(ω,T ) is the Bose-Einstein distribution
function. Again, Tp is a transmission function for phonons. A
common expression of the electron and phonon transmission
functions can be given in terms of the electron and phonon
band structures, respectively,

Te/p,αβ (E) =
1

N

∑

i,k

τe/p,i,kυα(i,k)υβ(i,k)De/p(Ei,k), (7)

where N is the number of sampled k points in the first
Brillouin zone, i is the band index, τe/p is the relaxation time of
electrons/phonons, υ is the velocity calculated from the band
dispersion, and De/p(Ei,k) is the electron/phonon density of
states associated with band i.

To obtain the energy band structure, we perform first-
principles calculations within the local density approxima-
tion by using the projector-augmented wave potentials as
implemented in VASP [43]. The exchange-correlation energy
is chosen in the form of Ceperley-Alder which has been
parametrized by Perdew and Zunger [44,45]. For the self-
consistent potential and the total energy calculations, the k
points of the Brillouin zone in the reciprocal space are sampled
by a (25 × 1 × 1) Monkhorst-Pack grid. The kinetic energy
cutoff is set to 500 eV. After ionic relaxation, the Hellmann-
Feynman forces acting on each atom are less than 0.01 eV/Å.
We obtain the force-constant matrix for the calculation of the
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phonon dispersion, through the small displacement method
[46]. We use a supercell technique with 15 Å of vacuum. In
these calculations we have neglected both the phonon-phonon
and the electron-phonon interactions. We expect that for
the low-energy phonons, mostly responsible for the thermal
transport, the correction due to these interactions will be small,
especially for the Seebeck coefficient.

In the following, we will consider both the figure of merit
of Eq. (1) and the electronic figure of merit ZTe, defined as

ZTe =
S2σ

κe

T . (8)

Then Eq. (1) can be rewritten as

ZT =
S2σ

κp + κe

T =
S2σ

κe

T

(

1

1 + κp/κe

)

=
ZTe

1 + κp/κe

.

(9)

Although ZTe is not a physical measurable quantity, it is
useful because it provides an upper bound to the total figure
of merit, and since it does not include the phonon thermal
contribution is easier to calculate. A small ZTe will therefore
imply a small figure of merit ZT .

III. SILICON AND GERMANIUM MONOLAYERS

We first investigate the electronic properties of a single
layer of silicon, i.e., silicene. In trying to closely reproduce
the experimental setup [29,32,33], we put one layer of 3 × 3
silicene on top of five layers of 4 × 4 Ag(111): According
to experimental evidence, the two lattices should match, thus
decreasing the total stress at the boundary and creating an ideal
supercell for our calculations. The geometrical structure for
silicene obtained after the full relaxation is shown in Fig. 1(a)
and corresponds to the structure discussed in Ref. [36]. We
have superimposed the Ag(111) layer to show the excellent
structural matching, as highlighted by the boundary continuous
(red) line. Figure 1(b) shows the silicene obtained by removing
the silver substrate in Fig. 1(a). Contrary to graphene, silicene
is not a strict two-dimensional system, in the sense that the
atoms in silicene are arranged on two atomic layers with a
fairly small buckling distance, which depends on the presence
of the substrate. Indeed, it is found that the atomic arrangement
is further distorted by the metallic substrate [36]. Starting from
a single layer of silicon, arranged in a plane on a hexagonal
lattice without the Ag substrate, we would have obtained a
system with a different buckling, where the atoms would
divide equally between the upper and lower planes. In our
optimized structure however, we observe that the silicene
presents buckling forming two atomic layers with six atoms
on top of the other 12 atoms which are therefore closer to the
Ag surface. The buckling distance between these two layers is
about 0.79 Å. In Fig. 1(c) the electronic energy band for the
distorted silicene is plotted along the high-symmetry points
of the first Brillouin zone, where the dotted line indicates the
Fermi energy that we set for convenience at 0. It can be seen
that a band gap of about 0.3 eV crosses the Fermi energy,
indicating semiconducting properties of the system. This must
be compared with the flat silicene (unoptimized structure) and
the silicene optimized without the Ag substrate, which both

FIG. 1. (Color online) Geometrical structures of one-layer 3 × 3

(a) silicene and (d) germanene on top of five-layer 4 × 4 Ag(111).

(b), (e) Distorted silicene and germanene obtained by removing the

silver substrate from (a) and (d), respectively. (c), (f) Electronic energy

bands corresponding to the distorted silicene and germanene grown

on Ag(111), respectively, where the dotted line denotes the Fermi

energy.

present a Dirac point at the K point of the first Brillouin
zone, therefore both showing metallic properties (see Fig. 3).
A detailed discussion of the electronic structure of supported
silicene can be found in Ref. [36].

Germanene is an analog of silicene, where the silicon
atoms are replaced by germanium. Although, to the best of
our knowledge, up to now there is no direct experimental
observation of these structures, here we study the electronic
properties of two-dimensional germanene. Figure 1(d) shows
the atomic structure of one-layer 3 × 3 germanene on top of
five-layer 4 × 4 Ag(111), and Fig. 1(e) shows the unsupported
single-layer germanene by removing the silver substrate. The
structure has been fully relaxed. It is found from Fig. 1(e) that
similar to silicene, two layers are formed with six Ge atoms
on the top layer and the other 12 Ge atoms on the bottom layer
closer to the Ag surface. The buckling distance between the
two layers is about 1.42 Å. Figure 1(f) shows the band structure
of the distorted germanene without the Ag substrate. It is
found that there is no gap through the Fermi energy, indicating
metallic properties. The zero gap observed in germanene
originates from the high-buckling distance between the two
atomic layers.

Based on the energy bands, we have calculated the
thermoelectric coefficients of the two-dimensional silicene and
germanene structures at room temperature, T = 300 K. We
have used the BOLTZTRAP code [47] to perform the integration
over the points in momentum space in the first Brillouin
zone obtained from the VASP calculations. To calculate the
electronic figure of merit we have evaluated the transport
coefficients given in Eqs. (2)–(4) in the constant relaxation
time approximation and by assuming 1/τe to be proportional
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FIG. 2. (Color online) (a), (b) Dimensionless electronic figure of

merit ZTe at room temperature as a function of chemical potential μ

corresponding to the unsupported distorted silicene and germanene,

respectively, evaluated in the constant relaxation time approximation

(black continuous line) and for 1/τe ∝ E (red dashed line).

to the energy [20,48]. We found that both approximations give
essentially the same results, as we show in Figs. 2 and 4.
There the continuous black line represents the result in the
constant relaxation time, and the dashed red line the result in
the inverse energy dependence. The observation that the figure
of merit is independent from the relaxation time stems from the
form of the Lorentz integral, where the derivative of the Fermi
function is a strongly localized function around the Fermi
energy. Therefore, the relaxation time is always evaluated only
around the Fermi energy and can be replaced with its value at
that point. As we discussed in the Introduction, we provide an
upper bound to ZT , in the form of the electronic figure of merit
ZTe. Figures 2(a) and 2(b) show the dimensionless electronic
figure of merit ZTe as a function of the chemical potential μ

for the distorted silicene and germanene, respectively. It can
be seen that the figure of merit for silicene exhibits two peaks
in the left- and right-hand sides of μ = 0, which separately
correspond to hole and electron transport. The maximum of
the peak is ZTe ≃ 0.81, while for the unsupported germanene,
it can be seen from Fig. 2(b) that the peak of ZTe is very
small at μ = 0, although some peaks appear at ∼±0.3 eV.
The reason is that the unsupported germanene has a metallic
character which leads to a very small Seebeck coefficient.

In Fig. 3 we show the electronic properties of freestanding
silicene and germanene. After the full relaxation, it is found
that the buckling distance for silicene is about 0.43 Å, and
for germanene 0.65 Å. For both the freestanding silicene and
germanene, from Figs. 3(a) and 3(b) it can be seen that there is

FIG. 3. Electron energy bands of freestanding (a) silicene and

(b) germanene, respectively, where the dotted line denotes the Fermi

energy.

FIG. 4. (Color online) (a), (b) Dimensionless electronic figure of

merit ZTe at room temperature as a function of chemical potential μ

for the freestanding silicene and germanene, respectively, evaluated

in the constant relaxation time approximation (black continuous line)

and for 1/τe ∝ E (red dashed line).

no gap at the Fermi energy. Indeed, at the high-symmetry point
K , a linear energy dispersion is shown in the band structures,
indicating the existence of the massless Dirac fermions in these
low-dimensional Si structures [22] similar to the graphene
[17].

Through the energy band structure calculations, in Fig. 4
we investigate the dimensionless electronic figure of merit
ZTe for both freestanding silicene and germanene. It is found
that the figure of merit for silicene and germanene shows two
peaks near μ = 0. The maximum value of ZTe is 0.36 [see
Fig. 4(a)], while the maximum of the peak for germanene is
0.41 [see Fig. 4(b)].

We have shown that silicene and germanene, crystal
structures similar to graphene where carbon is replaced by
either silicon or germanium, might possibly have a figure of
merit of the order of 1. Our calculations provide an upper limit
to the theoretical figure of merit since in these calculations we
are not including the phonon thermal conductance and suggest
that silicene might have better thermoelectric properties in
this 2D system since it presents a gap in the electronic energy
spectrum which corresponds to a large Seebeck coefficient.

IV. QUASI-ONE-DIMENSIONAL NANOSTRUCTURES

We now consider quasi-one-dimensional systems, i.e.,
nanoribbons, made of stripes of germanene or silicene of
finite width. We assume that it is possible to “cut” those
stripes from the respective crystal by removing the excess
material. It has been reported that SiNRs can have a quite
large figure of merit, up to 5 at 600 K [38]. Motivated by these
results, and by the expectation that germanene nanoribbons
might perform better since their Debye temperature is lower,
we have investigated the thermoelectric efficiency of GeNRs
and, in the next session, nanoribbons obtained by alternating
Si and Ge nanostructures or by randomizing the Si and Ge
arrangements. As standard with nanoribbons, there are two
ways to terminate the edges of the ribbons (see Fig. 5),
forming either zigzag or armchair edges. We identify the
quantities associated with the zigzag with a Z and those of the
armchair with an A. As to these one-dimensional systems, the
electrical conductance σ , Seebeck coefficient S, and thermal
conductance could be contracted into a scalar instead of a
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FIG. 5. (Color online) (a), (b) Optimized geometrical structures

of Z-GeNRs and A-GeNRs and their lateral views. For the atoms at

the edges, we passivate the unsaturated bonds with hydrogen atoms.

WZ and WA denote the width of the nanoribbons for the zigzag- and

armchair-terminated nanoribbons, respectively. (c) Electron energy

band for Z-GeNRs with WZ = 6 for the AFM state. Notice the

presence of a small electronic gap. (d) Electron energy band for

Z-GeNRs with WZ = 6 for the FM state. (e) Electron energy band of

A-GeNRs with WA = 6 corresponding to the NM state. In (c)–(e) the

Fermi energy is chosen as the reference energy and set to 0. (f), (g)

Phonon energy dispersions for Z-GeNRs with WZ = 6 and A-GeNRs

with WA = 6, respectively.

tensor, and the α and β are fixed in the x direction (see details in
Ref. [15]). Therefore in this case we can calculate the electron
and phonon transmissions Te/p by counting the number of
transport modes from the energy bands. This gives the same
results by comparing them with the constant relaxation time
approximation in Eq. (7) except by a factor difference, that is
immaterial for the evaluation of the figure of merit.

A. Germanene nanoribbons

Figures 5(a) and 5(b) show the optimized structures
of zigzag- and armchair-edged GeNRs (Z-GeNRs and A-
GeNRs), respectively. To see the buckling more clearly, we
report here a side view of these structures. Hydrogen atoms
are used to passivate the unsaturated bonds of the Ge atoms
at the edges. WZ and WA identify the ribbon width. It can be

seen from the top view that GeNRs form hexagonal rings as
the union of two sublattices, but, at odds with what happens
for graphene nanoribbons, atoms in these two sublattices
do not belong to the same plane: In the vertical direction
there is some buckling, which is almost uniform for the
atoms at the edge or in the center. Our calculations give
for the Z-GeNRs a buckling distance of 0.62 Å, while for
A-GeNRs they give 0.66 Å. For these nanoribbons, our total
energy calculations show that the antiferromagnetic (AFM)
state of Z-GeNRs is more stable than the ferromagnetic
(FM) and nonmagnetic (NM) state counterparts. This is in
agreement with other calculations performed for SiNRs [38]
and theoretical predictions originally derived for graphene,
which we expect to be valid for these systems [49]. However,
the energy difference between the different magnetic phases is
small. This might be important for device stability, especially
at temperatures higher than 300 K. The bands of AFM and
FM states are shown in Figs. 5(c) and 5(d), respectively, where
the dotted line corresponds to the Fermi energy. We can see
that the AFM state exhibits a finite small gap: The bands
for spin up and down are degenerate and the gap is about
0.1 eV, while for the FM state, it is found that spin up and
down are nondegenerate, producing metallic properties, and
similar properties are valid for the NM state (not shown).
In the case of A-GeNR, our calculations indicate that the
NM state is stable, indicating semiconducting properties as
shown in Fig. 5(e). Because the metallic system produces bad
thermoelectric properties (generally the ZT is smaller than
0.1), in the rest of this work, we will focus our attention on the
AFM state in the zigzag-edged nanoribbons and the NM state
in the armchair-edged nanoribbons. To confirm the structural
stability of GeNRs, we have calculated the phonon dispersion
relations. In Figs. 5(f) and 5(g) we report the phonon dispersion
relation for the nanoribbons with width 6 for both Z-GeNR
and A-GeNR, i.e., WZ = WA = 6, respectively. It can be seen
that in the limit of ω → 0, there are four acoustic phonon
modes in the spectrum stemming from the lattice symmetry.
In particular, no negative phonon mode is observed, which
confirms that both the Z-GeNRs and A-GeNRs passivated by
hydrogen are structurally stable.

To calculate the figure of merit ZT , we begin with the
electron transport properties. Figures 6(a) and 6(b) show the
transmission coefficient Te as a function of the electron energy
E for both Z-GeNRs and A-GeNRs, respectively. It can be
seen that Te exhibits a clear quantum stepwise structure,
due to opening and closing of elastic transmission channels:
Notice that the jumps are quantized and equal to 2 due to the
electron spin. More interesting, a monotonously decreasing
band gap is observed in the Z-GeNRs with the increasing
of the ribbon width [see Fig. 6(c)]. This must be compared
with the oscillatory behavior we observe for the A-GeNRs
[see Fig. 6(d)]. For the A-GeNRs, for the ribbon widths
WA = 3p and 3p + 1 (where p is positive integer), the gap
is larger than that of the ribbon width WA = 3p + 2. By
making use of the transmission probability, using Eqs. (2) and
(3), we can calculate the electrical conductance σ , Seebeck
coefficient S, and electron contributed thermal conductance
κe. In Figs. 6(e) and 6(f), the electrical conductance as a
function of chemical potential is plotted for both Z-GeNRs
and A-GeNRs, respectively. It can be seen that the electrical
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FIG. 6. (Color online) (a), (b) Electron transmission coefficient as a function of energy for Z-GeNRs and A-GeNRs with various ribbon

width, respectively. (c), (d) Band gap of Z-GeNRs and A-GeNRs as a function of the ribbon widths WZ and WA, respectively. (e), (f) Electrical

conductance. (g), (h) Seebeck coefficient. (i), (j) Electron and phonon thermal conductances for Z-GeNRs and A-GeNRs versus chemical

potential μ, where the temperature is set at 300 K.

conductance for zigzag nanoribbons gradually increases with
the ribbon width, and there is a peak corresponding to the
transmission step at E ≈ 0.5 eV. Around the Fermi energy, the
conductance vanishes due to the finite gap. For the A-GeNRs,
we find that the electrical conductance for the ribbon with
width 3p or 3p + 1 vanishes, while for the ribbon with width
3p + 2, a nonzero dip is found. Interestingly, the conductance
for all the curves of A-GeNRs exhibits quantized plateaulike
characteristics.

In Figs. 6(g) and 6(h) we report the Seebeck coefficient as
a function of the chemical potential μ. It can be seen from
Fig. 6(g) that S presents two peaks around the position of
the chemical potential needed to overcome the gap. Moreover
the two peaks show different signs with positive and negative
values. This behavior indicates the different carrier transport:
The positive sign in the region of μ < 0 corresponds to hole
transport, while the negative sign at μ > 0 corresponds to
electron transport. In addition the absolute value of the peak
of the Seebeck coefficient decreases with increasing WZ . In
the case of A-GeNRs, it is found [see Fig. 6(h)] that for the
nanoribbons with widths 3p and 3p + 1, the two Seebeck
coefficient peaks with opposite sign can also be found centered
around zero value of the chemical potential. We note that for
the nanoribbons with width 3p + 2, the Seebeck coefficient
is very small due to the small electronic gap. In Figs. 6(i)
and 6(j) the total thermal conductance for Z-GeNRs and
A-GeNRs is depicted, respectively. It can be seen that the
thermal conductance for Z-GeNRs increases with increasing
the width of the nanoribbon. By checking the variation of the
electrical and thermal conductances σ and κ , it is found that
corresponding to the dip position of the electrical conductance,
the electric thermal conductance (and therefore the total
thermal conductance) shows a peak which becomes sharper
with increasing WA. Moreover, a similar effect can also be
found in the A-GeNRs with width 3p + 2 as shown in Fig. 6(j).

To study the lattice thermal transport properties, the
supercell approach is utilized to calculate the phonon force
constant and then the dispersion relation is obtained by
diagonalizing the corresponding dynamical matrix [46]. In

Figs. 7(a) and 7(b), the phonon thermal conductance κp as a
function of temperature T for both Z-GeNRs and A-GeNRs
is plotted, respectively. It can be seen that the phonon thermal
conductance increases with increasing the temperature, and
finally reaches a constant value corresponding to the classical
limit when T > 400 K. Moreover the thermal conductance
for wide nanoribbons exhibits a higher value than that of the
narrow nanoribbons. This can simply be explained by counting
the number of phonon channels, because the wide nanoribbons
should have more phonon channels contributing to the thermal
transport. To show the behavior at low temperatures of
the phonon thermal conductance, in Fig. 7(c), we plot the
logarithm of κp versus the logarithm of T . It can be seen
that κp shows a linear dependence on the temperature at low
T , T < 20 K. At low temperature, for the one-dimensional
systems, the lattice thermal conductance is dominated by the
low-frequency acoustic phonons, and Eq. (4) can be recast as

κp(T ) =
4k2

BT

h

∫ ∞

0

dξ ξ 2 eξ

(eξ − 1)2
=

2πk2
BT

3�
, (10)

where ξ = �ω
kBT

and we have approximated the transmission

probability Tp(ω) = 4 because of the sum rule. According to
this approximation, it can be seen that the phonon thermal
conductance exhibits a linear dependence on T in quasi-one-
dimensional systems [42].

By combining the results of the electron and phonon
calculations, we can finally investigate the thermoelectric
efficiency of the GeNRs. Figures 8(a) and 8(b) report the
thermoelectric figure of merit ZT as a function of the ribbon
width for both Z-GeNRs and A-GeNRs, respectively. Here
ZT is the maximum value of the figure of merit with respect
to the chemical potential near the Fermi energy. It can be
seen from Fig. 8(a) that at narrow Z-GeNRs, ZT for electron
and hole is about 0.35 and 0.61, and then it decreases with
increasing the ribbon width. This effect can be explained
by the lessening of the Seebeck coefficient and growing of
the thermal conductance outweighing the increasing electrical
conductance. Moreover, we observe from Fig. 8(b) for the
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FIG. 7. (Color online) Phonon thermal conductance κp of (a) Z-

GeNRs and (b) A-GeNRs with different ribbon widths as a function

of temperature. (c) The logarithm of κp for A-GeNRs as a function of

the logarithm of T , where the linear behavior is shown as we expect

according to Eq. (10). Each curve corresponding to a specified ribbon

width has the same meaning as in Fig. 6.

A-GeNRs, that the ZT for both electron and hole transport
coefficients show an oscillatory behavior. In the case of the
nanoribbons with widths WA = 3p and 3p + 1, ZT is larger
than 1 for narrow nanoribbons. In particular, for the ribbon
width WA = 4, the ZT reaches up to 1.63, indicating a high
thermoelectric conversion efficiency in these nanostructures.
We have calculated the carrier density at the chemical potential
that gives the maximum efficiency for the SiNRs and the
GeNRs. To do that we used the formulas valid for the electron
carrier density in an intrinsic semiconductor

ne =

∫ ∞

Ec

dǫ f (ǫ,μ,T )D(ǫ), (11)

where f (ǫ,μ,T ) is the Fermi distribution, D(ǫ) is the density
of states, and Ec is the bottom energy of the conduction band.

FIG. 8. (Color online) Figure of merit ZT at room temperature

for (a) Z-GeNRs and (b) A-GeNRs as a function of ribbon widths

WZ and WA, respectively. In black (square hollow points) we report

the peak value of ZT at negative values of the chemical potential μ

associated with the hole transport, and in red (square full points) the

peak value of ZT associated with the electron transport (positive μ).

To calculate the hole carrier density we used

np =

∫ Ev

−∞

dǫ[1 − f (ǫ,μ,T )]D(ǫ), (12)

where Ev is the top of the valence band. We report our results
for the electron and hole carrier densities for the zigzag GeNRs
in Table I, where μM is the chemical potential of the maximum
figure of merit.

Similarly, we report our results for the electron and hole
carrier densities in Table II for the armchair GeNRs.

Our results are consistent with what has been found for
SiNRs [38]. However, we would like to point out that from
our calculations the phonon thermal conductance of the small
GeNR is never negligible with respect to the electron thermal
conductance, as instead has been argued for the SiNRs in
Ref. [38]. We believe this is an artifact of the classical methods
used in Ref. [38]. Unlike our quantum simulations, in these
quasi-one-dimensional systems that are in the ballistic thermal
transport regime, classical methods would not recover the
linear dependence of phonon thermal conductance at low
temperatures. Moreover, the classical calculations should be
valid only for temperatures higher than the Debye temperature,
which for these systems can be estimated to be about 600 K for
the silicene nanoribbons. In Ref. [38] the classical calculations
are instead used to evaluate the phonon thermal conductance
also below the Debye temperature, an assumption that would
need an explanation. At the same time, the quantum technique
does not include any inelastic effect and it is greatly limited

TABLE I. Electron carrier density for the zigzag nanoribbons as

a function of the width calculated at the chemical potential that gives

the maximum figure of merit, at T = 300 K. The e and h subscripts

refer to the electrons and holes transport, respectively.

Wz 3 4 5 6 7 8

μM,e (meV) 32.5 32 32 31.5 31 31.5

ne (1012 cm−2) 6.74 6.85 7.05 6.57 6.18 6.24

μM,p (meV) −24 −22 −20 −19.5 −18 −16

np (1012 cm−2) 4.15 3.65 3.13 3.42 2.65 2.71
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TABLE II. Hole carrier density for the armchair nanoribbons as

a function of the width calculated at the chemical potential that gives

the maximum figure of merit, at T = 300 K. The e and h subscripts

refer to the electron or hole transport, respectively.

WA 3 4 5 6 7 8

μM,e (meV) 231 337 22.5 90 131 20

ne (1012 cm−2) 0.60 3.53 2.24 0.797 0.75 1.97

μM,p (meV) −120 −91 −22 −102 −113 −20

np (1012 cm−2) 1.12 2.26 2.37 0.937 0.875 1.88

in size, i.e., we cannot consider a large supercell as instead is
possible with classical methods [38].

B. Silicene nanoribbons

For completeness, and to have a direct comparison with
the results available in the literature [38], we have calculated
the figure of merit of SiNRs similar to the GeNRs we have
investigated in the previous section. Here we report only
the phonon thermal conductance and the figure of merit.
The electron transport coefficients σ , S, and κe have shapes
similar to those in Fig. 6 and we do not show them again. We
plot in Figs. 9(a) and 9(b), the phonon thermal conductance
κp for both zigzag- and armchair-edged SiNRs (Z-SiNRs
and A-SiNRs) as a function of temperature T , respectively.
These plots should be compared to the results of Table 1
of Ref. [38]. We could see that we obtain a larger thermal
conductance at 300 K. As to the armchair nanoribbons, the
thermal conductance is also increased except for the ribbon
widths WA = 3 and 4 whose values are indeed close [see
Fig. 9(b)].

In Fig. 10 the figure of merit for SiNRs as a function of
ribbon width is shown. It can be seen that the figure of merit
for Z-SiNRs decreases with the increase of the ribbon width.
Moreover the ZT for the hole transport is larger than that
contributed from the electron transport. The reason is due
to the increased phonon thermal conductance and decreased
electronic band gap. For the armchair nanoribbons, it is found
from Fig. 10(b) that the figure of merit at the narrow ribbon is
quite large, about 1.04. With the increase of the ribbon width,
the ZT decreases in magnitude and exhibits an oscillatory
behavior. We notice that, due to the larger thermal conductance

FIG. 9. (Color online) Phonon thermal conductance κp of (a) Z-

SiNRs and (b) A-SiNRs as a function of temperature, respectively,

where each curve corresponds to a specified ribbon width as shown

in Fig. 6.

FIG. 10. (Color online) Figure of merit ZT at room temperature

for (a) Z-SiNRs and (b) A-SiNRs as a function of ribbon widths WZ

and WA, where the black square hollow points and the red square full

points correspond to the hole and electron transport, respectively.

we obtain a figure of merit of the SiNRs that is smaller than
the one reported in Ref. [38].

V. SILICON-GERMANIUM HETEROSTRUCTURES

We have shown that the Si and Ge nanoribbons can have
a substantial figure of merit, which is slightly above 1. On
the other hand, we would like to explore the possibility of
improving on this result by nanostructuring these nanoribbons.
Since Si and Ge nanoribbons do share similar electronic
properties, our first attempt is to investigate a nanoribbon
created by alternating stripes of Si and Ge in the direction of
the growth of the nanoribbon. Hopefully, their different masses
would create a trap for the phonon modes thus reducing the
thermal conductance of the device and improving the overall
figure of merit ZT . We will show in the following section
that this idea is working partially and we do have a modest
increasing of ZT . This is a limitation of our quantum method
of calculating the thermal conductance, since we are restricted
in the size of the supercell we can consider for our calculations.
Indeed, the low-energy phonons responsible primarily for the
thermal transport have a wavelength that spans many supercells
thus making the chemical modulation ineffective as a phonon
trap. To improve on this result, we have therefore investigated
the case where we randomly substituted some Si atoms with
Ge in the nanoribbon crystal. After fully relaxing the structure,
we have, however, observed that also this nanoribbon with
randomly distributed Si and Ge atoms does not work too
well as a phonon trap, for essentially the same reason as
the perfect modulation: The Si and Ge randomly distributed
supercell is not large enough to confine the low-energy phonon
modes. We checked this observation by using a tight-binding
approximation to calculate the phonon spectrum. This allows
us to reach a larger supercell and thus shows that the phonon
thermal conductance decreases due to the phonon confinement
in these random structures.

A. Thermoelectric properties of the silicene-germanene

nanoribbons

In this section, we investigate the thermoelectric properties
of orderly distributed heterostructured silicene-germanene
nanoribbons (SiGeNRs). After forming the structure, we
have relaxed the atomic positions, without taking into
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FIG. 11. (Color online) Geometrical structures of (a) Z-

SiGeNRs and (b) A-SiGeNRs, where the line encloses a supercell

along the ribbon axis and LSi and LGe are the lengths of silicene and

germanene stripes in the supercell, respectively. Here we have chosen

LSi = LGe = 3 and used the hydrogen to passivate the ribbon edges.

account any substrate. Figure 11 shows the optimized
geometrical structures of zigzag- and armchair-edged
SiGeNRs (Z-SiGeNRs and A-SiGeNRs) passivated by
hydrogen atoms, where the line encloses a supercell along
the ribbon axis. LSi and LGe are the length of silicene and
germanene stripes in the supercell, respectively.

We begin with the case LSi = LGe = 1. In Figs. 12(a) and
12(b) we report the transmission coefficient as a function of

electron energy for different widths of the Z-SiGeNRs and
A-SiGeNRs, respectively. It can be seen that the transmission
probability exhibits characteristic quantized steps and a band
gap is shown around the Fermi energy. Increasing the ribbon
width, the band gap for Z-SiGeNRs shows an oscillatory
behavior of decreasing amplitude from WZ = 4 to 7 [see
Fig. 12(c)], while the gap for A-SiGeNRs shows a strongly
oscillatory behavior as shown in Fig. 12(d). When the ribbon
width WA satisfies either 3p or 3p + 1, a larger gap appears
than that of the nanoribbons with width 3p + 2. This width
dependence of the band gap is similar to that of the A-GeNRs
and A-SiNRs as we have discussed in Sec. IV. Starting from
this transmission function we can now easily evaluate Eqs. (2)–
(4) to obtain the transport coefficients. In Figs. 12(e) and 12(f)
we plot the electrical conductance as a function of the chemical
potential μ in the linear response. It is found that the electric
conductance for Z-SiGeNRs exhibits a peak and a dip around
μ = 0. As for the A-SiGeNRs, we show that the electrical
conductance is zero for the nanoribbon with widths WA = 3p

and 3p + 1 due to the presence of the larger band gap, while
the conductance for the ribbon with width WA = 3p + 2 has a
dip at μ = 0 where the conductance assumes a finite value. In
Figs. 12(g) and 12(h), the Seebeck coefficient versus chemical
potential is depicted. It is found that in the Seebeck coefficient,
around μ = 0 two peaks appear for both Z-SiGeNRs and
A-SiGeNRs with widths WA = 3p and 3p + 1. The absolute
value of the peak for A-SiGeNRs is 1.4 mV/K, which is
quite a bit larger than the value of the Z-SiGeNRs, indicating
a quite high thermoelectric effect in this armchair-edged
nanoribbon. On the other hand, for the armchair nanoribbons
with width 3p + 2, the Seebeck coefficient is very small due
to the very small gap present in these systems. In Figs. 12(i)
and 12(j) the total thermal conductance κe + κp including
electron and phonon contributions is plotted. It can be seen
that κ = κe + κp for the Z-SiGeNRs exhibits a peak, while
for the A-SiGeNRs with widths 3p and 3p + 1, it has a
plateau in the energy region around μ = 0, mostly due to the

FIG. 12. (Color online) (a), (b) Electron transmission coefficient as a function of energy for Z-SiGeNRs and A-SiGeNRs, respectively.

(c), (d) Band gap as a function of ribbon widths WZ and WA, respectively. (e), (f) Electrical conductance. (g), (h) Seebeck coefficient. (i), (j)

Electron and phonon thermal conductances as a function of chemical potential μ for Z-SiGeNRs and A-SiGeNRs, respectively, where we have

set the temperature T = 300 K. Each curve in (a), (b), and (e)–(j) corresponding to a specified ribbon width endows the same meaning as in

Fig. 6.
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FIG. 13. (Color online) Figure of merit ZT at room temperature

for (a) Z-SiGeNRs and (b) A-SiGeNRs as a function of nanoribbons

with widths WZ and WA, where the hollow and full points correspond

to the hole and electron transport, respectively.

phonon thermal transport. As for the nanoribbon with width
3p + 2, the thermal conductance reaches a local maximum on
account of a local maximum of the electron heat contribution
at μ = 0.

We find that the thermal conductance of SiGeNRs is
between the value of GeNRs and SiNRs, i.e., the thermal
conductance of SiGeNRs is larger than that of GeNRs,
while smaller than that of SiNRs. Similar to the case of
GeNRs or SiNRs, at low temperature region, the linear
dependence of the thermal conductance on the temperature is
still observed, in agreement with Eq. (10). The behavior at large
temperatures is similar to the thermal conductances of GeNRs
and SiNRs, therefore we do not report here the complete
picture.

In Figs. 13(a) and 13(b), we report the figure of merit ZT

of both Z-SiGeNRs and A-SiGeNRs as a function of ribbon
widths WZ and WA, respectively. It is found that maximum
value of the figure of merit for Z-SiGeNRs appears in the
narrowest nanoribbon, which is about 0.59 corresponding

to the hole transport, while for the electron transport, the
corresponding ZT is about 0.38. As to the armchair-edged
nanoribbon with width WA = 3, the ZT is found to be 1.46
for both the hole and electron transport [see Fig. 13(b)]. With
the increase of the ribbon width, the figure of merit shows an
oscillatory behavior reminiscent of the different properties of
the nanoribbons with different widths. The amplitude of the
oscillation, however, decreases quite rapidly with increasing
the ribbon width. This is mostly due to the rapid increasing
of the phonon thermal conductance with WA. In particular,
the ZT is very small in the case of the nanoribbon with
width 3p + 2 due to the small Seebeck coefficient as shown
in Fig. 12(h).

B. Component modulation of the thermoelectrics in the

silicene-germanene nanoribbons

In Fig. 14, we investigate the thermoelectric properties of
SiGeNRs by modulating the component lengths of silicene
and germanene stripes in the supercell. In the following, the
total length of the supercell is given by LS = LGe + LSi.
Figures 14(a)–14(f) show the figure of merit ZT at room
temperature for the Z-SiGeNRs and A-SiGeNRs as a function
of ribbon width for LSi = LGe = 2, 3, and 4, respectively. It is
found that the maximum ZT for hole and electron transport in
the case of the Z-SiGeNRs is 0.85 and 0.42 for LSi = LGe = 2,
0.87 and 0.53 for LSi = LGe = 3, and 1.06 and 0.54 for
LSi = LGe = 4, respectively. For armchair nanoribbons, the
maximum of ZT for LSi = LGe = 2 is about 1.93, while the
maximum ZT for LSi = LGe = 3 or 4 is about 2.18 and 2.06,
respectively. With the increase of the ribbon width, the overall
figure of merit decreases for both Z-SiGeNRs and A-SiGeNRs
with widths WA = 3p and 3p + 1. As to the nanoribbon with
width 3p + 2, the figure of merit is quite small compared
to the ribbons with width 3p or 3p + 1. We found that the

FIG. 14. (Color online) Figure of merit ZT at T = 300 K for Z-SiGeNRs and A-SiGeNRs as a function of ribbon widths WZ and WA under

different component lengths of silicene and germanene stripes: [(a), (b)] LSi = LGe = 2, [(c), (d)] LSi = LGe = 3, and [(e), (f)] LSi = LGe = 4,

respectively. (g), (h) Figure of merit as a function of temperature for Z-SiGeNRs and A-SiGeNRs with the corresponding ribbon widths 3 and

4, where the lengths of the silicene and germanene stripes in the supercell are LSi = LGe = 3. The hollow and full points correspond to the

hole and electron transport, respectively
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Seebeck coefficient for the nanoribbon with width 3p + 2 is
very small due to the small band gap, in agreement with our
analysis of the system with LSi = LGe = 1. Figures 14(g) and
14(h) show the figure of merit as a function of temperature for
the Z-SiGeNRs with widths WZ = 3,4 and the A-SiGeNRs
with widths WA = 3,4, respectively. It can be seen that the
figure of merit increases and then decreases with increasing
the temperature. The maximum ZT for Z-SiGeNRs is about
1.05 at T ≈ 200 K, and the maximum ZT for A-SiGeNRs is
about 3.91 at T ≈ 1000 K.

We wish to point out that the ZT of these systems is larger
than that for the pure A-GeNRs or A-SiNRs. This means that
nanostructuring can improve the overall energy conversion
efficiency. On the other hand, the modest increase in ZT

for these nanoribbons shows how this nanostructuring is not
effective in blocking the phonon modes. We should reach larger
LSi and LGe, in order to achieve an efficient trapping of the
low-energy phonon modes, as we will discuss briefly at the
end of next section.

C. Disorder effect on the thermoelectrics

of silicene-germanene nanoribbons

In the above discussions, the Si and Ge atoms in the
nanoribbons are orderly distributed along the growth direction.
Here we consider the case in which Si and Ge atoms randomly
occupy with equal probability the sites of the lattice in Fig. 11.
The length of the supercell is LS = 6 and the number of Si
and Ge atoms in the supercell are taken the same. Since the
armchair nanoribbons show the most promising values of the
figure of merit, in Figs. 15(a) and 15(b) we report the figure
of merit ZT as a function of the chemical potential μ for
disordered A-SiGeNRs with the ribbon widths WA = 3 and
4, respectively. As a comparison, we have also plotted the
figure of merit for A-GeNRs, A-SiGRs, and A-SiGeNRs. It
can be seen that the maximum figure of merit for disordered
A-SiGeNRs and ordered A-SiGeNRs is nearly twice the value
of clean A-GeNRs and A-SiGRs. The maximum ZT for
disordered and ordered A-SiGeNRs with width WA = 3 is
about 2 for both electron and hole transport corresponding
to the positive and negative chemical potentials, while the
maximum ZT for the ribbon width WA = 4 is 2.18 and 2.56 for
electron and 1.5 and 1.8 for hole transport, respectively. The

FIG. 15. (Color online) Figure of merit ZT at T = 300 K for

A-GeNRs, A-SiNRs, A-SiGeNRs, and disordered A-SiGeNRs with

ribbon widths (a) WA = 3 and (b) WA = 4 as a function of chemical

potential μ, where we have taken the supercell length LS = LGe +

LSi = 6, respectively.

principal reason for the enhanced thermoelectric efficiency
comes from the reduced phonon thermal conductance, since
the electronic properties are slightly affected by the random-
ness of the atomic positions. Again, due to the small size
of the supercell we can consider with ab initio techniques,
phonon confinement is not efficient, and therefore the thermal
conductance of the disordered and ordered A-SiGeNRs is
only slightly reduced with respect to the clean Si or Ge
system as shown in comparing Figs. 14 and 15. For the
same reason, the thermal conductance of the random structure
is similar to that of the silicene-germanene heterostructures
as expected.

To present a proof that a large supercell can effectively
further reduce the phonon thermal conductance in the SiGe
heterostructures, we use a semiclassical tight-binding method
to investigate the lattice thermal transport properties. To obtain
the atomic force constant of the system, the Keating potential
is used [50–52], which is given by

U =
1

2
kr

∑

i,j

(

R2
i,j − r2

i,j

)2

+
1

2
kθ

∑

i,j,k �=j

(Ri,j · Ri,k − ri,j · ri,k)2, (13)

where Ri,j and Ri,k are the equilibrium position vectors
connecting atom i with j and k, and ri,j and ri,k are the
corresponding position vectors after deformation, respectively.
The bond stretching and bending force parameters kr and
kθ for silicene in Eq. (13) are 7.2186 × 1020 N/m3 and
1.5225 × 1020 N/m3. These constants can be obtained from
the force constants of graphene [52,53]. In our case we
have used

kr =
2χ

d
, kθ =

ϕ

d
, (14)

where χ = 81 N/m2 and ϕ = 34 N/m2 for silicene [52,53]
and d is the equilibrium distance of the Si atoms in the silicene
structure, which we have calculated as d = 2.244 Å. We have
then fine tuned the values of kr and kθ to improve the agreement
between the phonon spectrum (not shown) calculated via
ab initio and the one calculated within the tight-binding
approximation. For the parameters of germanene, we roughly
estimate kr = 5.3469 × 1020 N/m3 and kθ = 1.2516 ×

1020 N/m3 through comparing the force-constant ratio of this
2D system with the bulk silicon and germanium crystals [50].
We have again fine tuned these values to improve the agreement
between the ab initio and tight-binding phonon spectra. For
the force parameters between Si and Ge atoms in the hybrid
structures, we take their average value. As to the Si-H and Ge-H
interactions, we take 10% of the corresponding Si-Si and Ge-
Ge interactions, accordingly. Based on this Keating model and
combined with the nonequilibrium Green’s function technique,
we can calculate the phonon transmission probability and
thus the thermal transport properties (see details in Ref. [15]).
Figures 16(a) and 16(b) show the phonon thermal conductance
calculated from tight binding (gray lines) for A-GeNRs,
A-SiNRs, A-SiGeNRs, and disordered A-SiGeNRs, where the
ribbon width WA = 3. To check how reliable the tight-binding
calculation are, we report together the thermal conductance
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FIG. 16. (Color online) Phonon thermal conductance of various

armchair nanoribbons with the ribbon width WA = 3, where the

supercell length LS for A-SiGeNRs and disordered A-SiGeNRs is

(a) LS = 6 and (b) LS = 20, respectively. The curves in color are

calculated from ab initio and the other curves in gray are calculated

from tight binding. The different curves share the same meaning as

those in Fig. 15.

calculated from ab initio [color lines in Fig. 16(a)]. It can be
seen that the thermal conductance obtained from tight binding
and ab initio are quite close, especially in the low temperature
region. In addition, it is found that the phonon thermal conduc-
tance in the case of A-SiGeNRs and disordered A-SiGeNRs
is drastically decreased compared to the pure A-SiNRs and
A-GeNRs. With further increasing the length of the supercell,
the phonon thermal conductance is decreasing as shown in
Fig. 16(b).

In Fig. 17, the phonon thermal conductance at T =

300 K for both A-SiGeNRs and disordered A-SiGeNRs as
a function of supercell length LS is investigated, where
LS is defined as the sum of the length of silicene and
germanene stripes. It can be seen that the phonon thermal
conductance decreases with increasing the length of the
supercell, and the κp for both A-SiGeNRs and disordered
A-SiGeNRs are close to each other. This indicates that the
larger supercell in the silicene-germanene heterostructures
can effectively constrain the phonon transport and that the
disordered heterostructure becomes more efficient in confining
phonons only at large unit cell lengths. Through check-
ing the transmission probability (not shown), it is found
that the weight of the transmission probability is gradually
moved to the low-frequency region thus decreasing the total
energy flow.

FIG. 17. Phonon thermal conductance κp at T = 300 K cal-

culated from tight binding as a function of supercell length LS

corresponding to the ribbon widths (a) WA = 3 and (b) WA = 4,

respectively.

VI. CONCLUSIONS

In summary, we have performed first-principles
calculations of the thermoelectric coefficients of both
two-dimensional silicene and germanene as well as for Si and
Ge nanoribbons. We have also considered heterostructures
of Si and Ge stripes to form a nanoribbon, in an attempt to
quench the phonon dynamics and thus increase the figure of
merit. These systems can be good thermoelectric materials if
they can be reliably produced. Also, being based on Si and
Ge, we expect these devices to be easily interfaced with the
modern electronic systems, a distinct advantage with respect
to other materials which have shown poor integrability with
the actual technology.

The figure of merit for thermoelectric energy conversion
of Si and Ge low-dimensional systems is quite high, in the
range of 1 to 2 at room temperature, considering that we have
investigated pristine systems where phonons are not confined.
For the silicene and germanene systems we have considered
both distorted silicene/germanene grown on a silver surface
and freestanding silicene/germanene. In these cases we have
found the highest figure of merit is about 0.81 for the distorted
silicene. It is important to point out that Si/Ge nanosheets
grown on a Ag surface show different electrical properties
according to the lattice matching: We have considered a 3 × 3
Si lattice on a 4 × 4 Ag substrate since this induces no stress
at the supercell edges and when the Ag substrate is removed,
the distorted silicene has a finite band gap. It is indeed clear
from our calculations that in order to increase the figure of
merit, we need to have a small gap semiconductor since this
maximizes the Seebeck coefficient.

Our attempts to quench the phonon dynamics have been
hindered by the small scale of the supercell we can calculate
with our ab initio techniques. We could in principle go
beyond these limitations by using other classical tools such
as, e.g., molecular dynamics. However, especially for the
nanoribbons, in our tests (not reported here) these tools have
proven unable to recover the quantum of thermal conductance
at small temperatures. We have therefore chosen to test the
phonon confinement with semiempirical techniques, e.g., a
tight-binding calculation of the phonon thermal transport for
large supercell. We report that the thermal conductance is
effectively reduced by about 50% in going from a supercell
made of six units to a supercell made of 20 units.
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