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Thermoelectric radiation detector based on a superconductor-ferromagnet
junction: Calorimetric regime
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Department of Physics and Nanoscience Center, University of Jyväskylä, P.O. Box 35 (YFL), FI-40014
Jyväskylä, Finland

(Received 24 April 2018; accepted 2 September 2018; published online 25 September 2018)

We study the use of a thermoelectric junction as a thermal radiation detector in the calorimetric

regime, where single radiation bursts can be separated in time domain. We focus especially on the

case of a large thermoelectric figure of merit ZT affecting significantly, for example, the relevant

thermal time scales. This work is motivated by the use of hybrid superconductor/ferromagnet

systems in creating an unprecedentedly high low-temperature ZT even exceeding unity. Besides con-

structing a very general noise model which takes into account cross correlations between charge and

heat noise, we show how the detector signal can be efficiently multiplexed by the use of resonant

LC circuits giving a fingerprint to each pixel. We show that for realistic detectors operating at tem-

peratures around 100 to 200 mK, the energy resolution can be as low as 1 meV. This allows for a

broadband single-photon resolution at photon frequencies of the order of or below 1 THz. Published

by AIP Publishing. https://doi.org/10.1063/1.5037405

I. INTRODUCTION

Some of the most sensitive sensors of electromagnetic

radiation are based on using superconducting films absorbing

the radiation and measurement systems converting this

process into detectable electronic signal. The best-studied

example of such sensors is the superconducting transition

edge sensor (TES),1 which has already been used for many

types of applications, such as in security imaging,2 materials

analysis,3,4 and cosmic microwave background radiation

detection.5,6 In TES sensors, the absorbed radiation heats the

electrons above the critical temperature Tc of superconduct-

ing films and results in measurable changes in the film resis-

tance. This resistance is often read out by utilizing an applied

bias voltage or current,7 fixing the operating point close to

Tc, and allowing for additional read-out features such as elec-

trothermal feedback and bias-based multiplexing strategies.3

However, the presence of bias-induced dissipation also

leads to an overall heating of the system and increases the

thermal noise, thus reducing the sensitivity. In addition, in

multi-pixel systems, fabricating bias lines for each pixel

becomes a technological challenge. Another important

sensor in this context is the kinetic inductance detector

(KID)8–12 based on the read-out of the kinetic inductance

signal in superconducting microwave resonators. Also,

KIDs require probe signals for read-out, resulting

in increased dissipation within the pixels. As the desire in

many applications is to further increase the number of

detector pixels,13 such probe-based sensors become increas-

ingly difficult to operate.

In general, one would prefer to only have the effect of

the coupling between radiation and the detector in the

measured signal and therefore to get rid of the probe signal.

This desire can be achieved with a thermoelectric detector

(TED),14–18 where the absorption of radiation leads to a tem-

perature difference, which creates a measurable thermoelec-

tric current or voltage. In this work, we consider such

thermoelectric detectors. They have indeed the advantage of

the lack of probe signals. However, for most systems, the

thermoelectric effects are very weak, and therefore sensitivi-

ties close to those of TES and KID cannot be expected. This

changed with the discovery of the giant thermoelectric effect

in superconductor-ferromagnet hybrids,19–21 which can in

principle be utilized to create sub-Kelvin thermoelectric heat

engines with figures of merit ZT exceeding even those of the

best thermoelectric devices. Hence, such systems may offer

sensitivities rivaling those of TES and KID sensors, but

without the need of probe signals.18

Compared to probe-based sensors, there are also issues

with the proper read-out of the signal, as many existing mul-

tiplexing strategies are based on modulating the probe signal.

We address this here by analyzing in detail the use of the

thermoelectric detector in the calorimetric regime, where

radiation arrives at bursts separated by long times compared

to the relevant time scales of the detector. This is opposite to

the bolometric regime analyzed in earlier work.18 In contrast

to many recent works15,16 utilizing an ad hoc noise model,

we derive the energy resolution of such a thermoelectric calo-

rimeter by taking into account all the relevant noise terms,

including the cross correlation of heat and current noises in

the thermoelectric junction, as required by the linear response

theory. As a result, we obtain the energy resolution and the

relevant thermal time scales of the calorimeter modified by

the large ZT, especially at low temperature, where the heat

conduction of the detector is mostly governed by the elec-

tronic degrees of freedom. We also analyze the resulting

time-dependent thermoelectrically generated current profile

in various parameter regimes.
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In this work, we consider a single pixel of the thermoelec-

tric detector based on a superconducting film and the ferro-

magnetic junction,18 as depicted in Fig. 1. The single pixel of

the proposed detector is built with an element made of a thin

film of a superconductor-ferromagnetic insulator (S-FI) bilayer

coupled to superconducting antennas via a clean (Andreev)

contact. Next, the S-FI bilayer is further coupled with a non-

superconducting electrode via a spin filter such as a ferromag-

netic metal (F). The current injected into the ferromagnetic

electrode or the voltage between the superconductor-

ferromagnet (SF) tunnel junction due to the incident radiation

power can be detected by a SQUID current amplifier or a field

effect transistor such as HEMT, respectively. The ferromag-

netic insulator (FI) which is in contact with the superconductor

exerts a spin-splitting exchange field, h, into the superconduc-

tor. Below a certain critical value, this exchange field does not

have a large effect on the superconducting gap, Δ,22,23 but it

has a major effect on the spin-dependent density of states.

Another alternative hybrid structure of the detector in this

context can be thought of as superconductor-ferromagnetic

insulator-normal metal (S/FI/N). In that case, the FI plays a

dual role of providing both the spin-splitting field via the

magnetic proximity effect and the spin-polarized tunneling

required for the thermoelectric effect.21 However, the tunnel-

ing resistance in such junctions is often larger than in native

oxide junctions, leading to somewhat smaller thermoelectric

currents.24,25 To prevent heat leaking to the antenna, it must

be fabricated from a material with the superconducting gap ΔA

far exceeding the gap Δ of the absorber film.

In what follows, we first study the generic thermoelectric

detectors in the calorimetric regime within the linear response

regime. Then we analyze the energy resolution of the detec-

tor in the frequency domain with the idea of optimal filtering.

After this, we concentrate on the superconductor-ferromagnet

detector and study the energy resolution vs. bath temperature

and the exchange field induced into the superconductor.

Finally, we estimate the practically feasible energy resolution

in such detectors.

II. THEORY

Here, we study the thermoelectric detector in the calori-

metric regime, where the process of relaxation of the detector

is much faster than the arrival of the consecutive incident

pulses of energies to the detector. In what follows, we first con-

sider the heat balance equation of a generalized thermoelectric

detector within linear response assumption given by18

Ch

dΔT(t)

dt
¼ Pγ(t)� Gtot

th ΔT(t)� αVth(t), (1)

where Pγ(t) is the power of the incident radiation, Vth(t) is the

time dependent voltage between the ferromagnetic electrode

and the superconductor, Ch is the heat capacity of the absorber,

and α is the response coefficient for the Peltier heat current. In

Eq. (1), Gtot
th ¼ Gq�ph þ Gth represents the total heat conduc-

tance of the superconducting film to the heat bath, and Gq�ph

and Gth stand for the heat conductance of the quasiparticles in

the superconductor to the phonons and to the ferromagnetic

electrode, respectively. Another possible (spurious) heat conduc-

tion channel could be due to quasiparticle-magnon scattering,

but we disregard it below as it depends on the microscopic

details of the magnets. The quantity ΔT(t) ¼ TS(t)� T is the

change of electronic temperature in the superconductor due to

the incident power, where TS(t) is the time dependent tempera-

ture of the superconductor and T is the bath temperature. Often

in room-temperature thermoelectric devices, the bottleneck of

heat transport lies in the heat conductance of the phonons to

their bath. At low temperatures, however, this heat conductance

is typically much larger than that related to electron-phonon

coupling.7 As a result, we may assume T ph ¼ TF ¼ T so that

phonons already reside at the bath temperature. The mechanism

of the heat conduction is thus dominated by the heat flow by the

electronic degrees of freedom of the superconductor with

the electronic degrees of freedom of the ferromagnetic

electrode and the phonons of the superconductor at low temper-

ature as represented at bottom portion of the Fig. 1 by wiggly

lines. Equation (1) in the frequency (ω) space gives the

following solution for the change of temperature,

ΔT(ω) ¼ Pγ(ω)� αVth(ω)
� �

= Gtot
th þ iωCh

� �

.26 Next, within

linear response assumption, we consider the thermoelectric

current from the superconductor to the ferromagnetic electrode,18

Ith(t) ¼ � α

T
ΔT(t)� GVth(t), (2)

where G is the conductance of the thermoelectric junction. This

thermoelectric current through the thermoelectric junction ulti-

mately reaches an amplifier. Disregarding the back-action noise

from the amplifier and considering the amplifier as a capacitor

or an inductor, the thermal current through the amplifier due to

the thermoelectric voltage, Vth, in frequency (ω) space is

Ith(ω) ¼ Vth(ω) iωC þ 1=(iωL)½ �, where C and L are the

FIG. 1. Schematic of the thermoelectric detector based on superconductor

(S) and ferromagnetic (F) electrode a spin-filter junction. S is also coupled

with ferromagnetic insulator (FI) which provides a spin splitting exchange

field to S. I is an insulating layer and Pγ (t) is the time dependent power of

incident radiation which needs to be detected. TS, TF , and T ph are the elec-

tronic temperature of the superconducting film, the electronic temperature of

the ferromagnetic electrode, and phonon temperature of the superconducting

film, respectively.
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capacitance and inductance of the detection circuit, respectively.

Here L and C can represent elements that have been designed

on purpose for identifying the pixel (see below). Next, using

Eqs. (1) and (2), along with the expression of the current

through the amplifier, we obtain the voltage across the ther-

moelectric junction Vth(ω) ¼ λV (ω)Pγ(ω), where λV (ω) ¼ α=
α2 � Y tot

th (ω)Ytot(ω)T
� �

, Y tot
th (ω) ¼ Gtot

th þ iωCh, and Ytot(ω) ¼
Gþ iωC þ 1=(iωL). The current through the inductor is

IL(ω) ¼ Vth(ω)=(iωL) ¼ λI (ω)Pγ(ω), where λI(ω) ¼ λV (ω)=
(iωL). Finally, we obtain the expressions of Vth(t) and IL(t),

Vth(t) ¼
1

2π

ð

1

�1
dω λV (ω)Pγ(ω)e

iωt, (3)

IL(t) ¼
1

2π

ð

1

�1
dω λI (ω)Pγ(ω)e

iωt: (4)

The integrals in Eqs. (3) and (4) can easily be solved through

the Cauchy residue theorem, but the general expressions are

too long to be presented here. Rather, below we present

some limiting cases.

Next, for the analyses of the various fluctuation pro-

cesses present in the system, relevant for predicting the

energy resolution of detection, we consider a Langevin noise

circuit model. We denote δT , δV , and δIL as the temperature

fluctuation on the absorber, voltage noise across the capaci-

tor, and the current noise across the inductor. These noises

are governed by the charge current noise δI and heat current

noise δ _QJ across the thermoelectric junction and the heat

current noise δ _Qq�ph due to quasiparticle-phonon scattering.

These noise terms satisfy the heat balance equation and the

Kirchoff law for the noise terms in ω space27 as

Y tot
th (ω)δT(ω) ¼ δ _QJ(ω)þ δ _Qq�ph(ω)� αδV(ω), (5)

Ytot(ω)δV(ω) ¼ δI(ω)� α

T
δT(ω): (6)

Solving Eqs. (5) and (6), we can obtain the voltage noise

δV(ω) through the capacitor and the current noise through

the inductor as δIL(ω) ¼ δV(ω)=(iωL). We obtain the expres-

sions of the noise correlations kδV(t)δV(t0)l and

kδIL(t)δIL(t
0)l in time domain through 4π2kδV(t)δV(t0)l ¼

Ð

1

�1
Ð

1

�1 dω dω0kδV(ω)δV(ω0)l eiωteiω
0t0 and 4π2kδIL(t)

δIL(t
0)l ¼

Ð

1

�1
Ð

1

�1 dω dω0kδIL(ω)δIL(ω0)leiωteiω
0t0 . To obtain

the second order correlations of these noise terms, we con-

sider the intrinsic correlations of the detector as

kδI(ω)δI(ω0)l ¼ 4πkBTGδ(ωþ ω0),

kδ _QJ(ω)δ _QJ(ω
0)l ¼ 4πkBT

2Gthδ(ωþ ω0),

kδI(ω)δ _QJ (ω
0)l ¼ �4πkBTαδ(ωþ ω0),

kδ _Qq�ph(ω)δ _Qq�ph(ω
0)l ¼ 4πkBT

2Gq�phδ(ωþ ω0),

kδ _QJ(ω)δ _Qq�ph(ω
0)l ¼ 0,

kδI(ω)δ _Qq�ph(ω
0l ¼ 0:

Vanishing intrinsic correlations signify that the noises of the

corresponding processes are independent. Finally, we obtain

the following simplified expressions for the second order

noise correlations as

kδV(t)δV(t0)l ¼ 1

2π

4kBT
2Gtot

th

ZT

� �
ð

1

�1
dω λV (ω)j j2

� 1þ (1þ ZT)τ2thω
2

� �

eiω(t�t0),

(7)

kδIL(t)δIL(t
0)l ¼ 1

2π

4kBT
2Gtot

th

ZT

� �
ð

1

�1
dω λI(ω)j j2

� 1þ (1þ ZT)τ2thω
2

� �

eiω(t�t0):

(8)

In Eqs. (7) and (8), ZT ¼ α2=(Gtot
th GT � α2) is the thermo-

electric figure of merit and τ th ¼ Ch=G
tot
th is the thermal relax-

ation time. Our theoretical formalism for the current through

the inductor and the second order noise correlation help us to

analyze the optimum energy resolution of the thermoelectric

detector in the calorimetric regime. As a result, we can find

the condition for single photon detection in the far-infrared

regime as shown below.

III. RESULTS

In this section, we discuss the results obtained from the

formalism in Sec. II. First, we evaluate IL(t). Next, we obtain

the optimal energy resolution in the calorimetric regime, with

the idea of optimal filtering. This approach helps us analyz-

ing a scheme for multiplexing the read-out. Finally, we

predict the energy resolution in a SF based TED.

A. Current through the inductor in the calorimetric
regime

Here, we analyze the behavior of the current through the

inductor with respect to time at various circumstances in the

calorimetric regime, that is, when Pγ(t) ¼ Eδ(t). Instead of

the current, one could measure the voltage across the capaci-

tor. The results are qualitatively similar, and the intrinsic

energy resolution is the same in both cases.

In what follows, we denote the charge relaxation time

τRC ¼ C=G and LC time τLC ¼
ffiffiffiffiffiffi

LC
p

. For simplicity, we

also define the corresponding frequencies by ωth ¼ 1=τ th,
ωRC ¼ 1=τRC, and ωLC ¼ 1=τLC. Using Eq. (4), first, we

obtain IL(t) for finite t � τRC, when the charge relaxation

process is fastest, that is, for τRC � τ th, τLC, as

IL(t) ¼
Eα

ChT(1þ ZT)
ω2
LCωRCωthf(t), (9a)

f(t) ¼ exp
�ωtht

1þ ZT

	 


� exp
�ω2

LC(1þ ZT)t

ωRC

	 


: (9b)

Thus, in the case of fast charge relaxation, IL(t) tends to zero

for t * ωRL=(ωRC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ZT
p

)2 ¼ LG=(1þ ZT), but the initial

decay is governed by the time scale (ZT þ 1)τ th. Next, we

obtain the expression of IL(t) for finite non-zero t � τ th,
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when the thermal relaxation time is the fastest one, that is,

τ th � τRC, τLC. It is

IL(t) ¼
4EαωthY

1þ ZT
exp � ωRCt

2(1þ ZT)

	 


sin
Yt

1þ ZT

� �

, (10)

2Y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ω2
LC(1þ ZT)2 � ω2

RC

q

: (11)

In this case, IL(t) is a decaying oscillatory function with a

decaying time scale 2(ZT þ 1)τRC if Y is real. On the other

hand, IL(t) simply decays, if Y is imaginary. Finally, we

analyze IL(t) for t � τLC for a high resonator frequency ωLC,

that is, when τLC � τ th, τRC. In this case,

IL(t) ¼
Eαω2

LC

CChLT

� �

4e�ωRC t=2 cos (ωLCt)� e�ωtht
h i

: (12)

Here IL(t) oscillates with the frequency ωLC. The oscillations

decay within the charge relaxation time. These oscillations

are visible especially when the first term dominates, i.e.,

τRC � τ th. Example time-dependent currents corresponding

to these three regimes are shown in Fig. 2.

B. Energy resolution in frequency domain with
optimal filtering

In what follows, we first optimize the energy resolution

using the optimal filtering technique.28 From Eqs. (3) and (4),

we obtain expressions for the thermoelectric voltage and

current through the inductor as

Vth(t) ¼
1

2π

ð

1

�1
dωEλV (ω)e

iωtp(ω), (13)

IL(t) ¼
1

2π

ð

1

�1
dωEλI(ω)e

iωtp(ω), (14)

where we have considered Pγ(ω) ¼ Ep(ω) in Eqs. (3) and (4).

Next, following Eqs. (7) and (8), we have the noise correla-

tions for the thermoelectric voltage and current through the

inductor as

kδV(t)δV(t0)l ¼ 1

2π

ð

1

�1
dω e2V (ω)e

iω(t�t0), (15)

kδIL(t)δIL(t
0)l ¼ 1

2π

ð

1

�1
dω e2I (ω)e

iω(t�t0), (16)

where

e2V (ω) ¼
4kBT

2Gtot
th

ZT

� �

λV (ω)j j2 1þ (1þ ZT)ω2τ2th
� �

, (17)

e2I (ω) ¼
4kBT

2Gtot
th

ZT

� �

λI(ω)j j2 1þ (1þ ZT)ω2τ2th
� �

: (18)

From Fig. 2, we can see that when τRC is not the shortest time

scale, IL(t) decays with oscillation as t increases. Here our aim

is to find the best estimate of E in the presence of signal noise

terms as Eqs. (15) and (16). Equations (15) and (16) indicate

that the noise terms are correlated at different times and uncor-

related in frequency space, therefore, it is easier to make an

analysis in frequency domain. Now, let us choose a weight

function W(ω) in the frequency domain and therefore define

the expected values for the signal and the corresponding

noise terms as kVthl ¼ 1
2π

Ð

1

�1 dωW(ω)EλV (ω)p(ω), kILl ¼
1
2π

Ð

1

�1 dωW(ω)EλI(ω)p(ω), kδV2l ¼ 1
2π

Ð

1

�1 dω W(ω)j j2e2V (ω),
and kδI2Ll ¼ 1

2π

Ð

1

�1 dω W(ω)j j2e2I (ω). Next, we can define the

energy resolution of a generalized thermoelectric detector in

terms of noise fluctuations and expected signals as

ΔE ¼ E
ffiffiffiffiffiffiffiffiffiffiffi

kδV2l
p

=kVthl ¼ E
ffiffiffiffiffiffiffiffiffiffi

kδI2Ll
p

=kILl.
28 At this point, as

we desire to have the maximum value of signal to noise

ratio, and hence the minimum energy resolution, we need

to search for an optimal filter, that is, an optimal W(ω).

The desired optimal filter can be found out by finding a zero

of the functional derivative of ΔE with respect to W(ω).28

The optimal filter is W(ω) ¼ EλV (� ω)p(ω)=e2V (ω) ¼
EλI (� ω)p(ω)=e2I (ω). Using this weight function, we obtain

an expression of the optimum energy resolution through such

an optimal filter in the calorimetric regime, that is, when

Pγ(t) ¼ Eδ(t) or equivalently p(ω) ¼ 1, given by

ΔE(Fil)
opt ¼ NEP

ffiffiffiffiffiffiffi

τeff
p

, (19)

where NEP2 ¼ 4kBT
2Gtot

th =ZT and τeff ¼ τ th
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ZT
p

. In Eq.

(19), the effective time constant, τeff is affected by ZT. This

is the generalization of the energy resolution obtained earlier

for a thermoelectric detector in the calorimetric regime with a

non-zero ZT .16

In the above analysis about energy resolution with the

idea of optimal filtering, we have not considered the added

FIG. 2. Current IL(t) through the inductor in three parameter regimes: fast

charge relaxation τRC � τ th, τLC (blue), fast thermal relaxation τ th �
τRC , τLC (orange), and high resonator frequency τLC � τ th, τRC (green). In

all curves, ZT ¼ 1. M is a scaling factor which takes different values for

blue, orange, and green curves as 108, 102, and 1, respectively. The time

scale τ�th has the values 200 τ th, 50 τ th, and 5� 10�4 τ th for blue, orange, and

green curves, respectively.
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noise in amplification, described by the low-frequency power

spectral density SA. Now, in the measured signal, we consider

an effect due to noise term δIA(t) of a current amplifier,

where amplifier noise term is uncorrelated with other intrin-

sic noise terms of the detector. We assume the amplifier

current noise fluctuation in the calorimetric regime as

kδIA(t)δIA(t
0)l ¼ 1

2π

Ð

1

�1 dω SA e
iω t�t0ð Þ. Therefore, in order to

obtain the optimal energy resolution, we design the optimal

filter by including the effect due to amplifier current noise

term. As a result, we get the optimal energy resolution

ΔE
(Fil)
opt ¼ NEPtot

ffiffiffiffiffiffiffi

τ toteff
p

, where NEP2
tot ¼ 4kBT

2Gtot
th =ZTtot and

τ toteff ¼ τ th
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ZTtot
p

. Here ZT�1
tot ¼ ZT�1 þ ZT�1

A , where

1=ZTA ¼ SAG
tot
th =(2kBα

2). The effect of the amplifier can

hence be disregarded if ZT=ZTA ¼ SA(1þ ZT)=(2GkBT) � 1.

C. Comment about multiplexing

In this section, we consider a practical multiplexing

case by doing a numerical experiment. For this, we define

the filtered signal in the calorimetric regime from Sec. III B

as

I
(Fil)
L (t) ¼ E

2π

ð

1

�1
dωW(ω)λI (ω)e

iωt: (20)

Now, in Eq. (20), if we consider W(ω) to be the optimal filter

as obtained in Sec. III B, then we have

I
(Fil)
L (t) ¼ A exp �t= τ th

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ZTtot
p

� �h i

,

A ¼ E2ZTtot

8kBT2Gtot
th

1þ ZTtotð Þ�1=2:

Therefore, for the optimal filter, the plot of � ln I
(Fil)
L (t) vs

t is simply a straight line with the slope τ th
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ZTtot
p

.

On the other hand, for any random filter, I
(Fil)
L (t) does not

have simple decaying form but further oscillates in time.

As a result, the time-averaged current becomes very small.

From this feature of I
(Fil)
L (t), we can identify the pixel for

which the designed filter is approximately optimal. In

Fig. 3, we represent I
(Fil)
L (t) when the filter is optimal

(blue curve) and when the filter is not optimal (orange

curve).

D. Energy resolution of the SF based TED

Above discussion is valid for a generic TED. In what

follows, we evaluate the energy resolution ΔE
(Fil)
opt of an

SF based TED, disregarding the effect of amplifier noise

in the measured signal. In the tunneling limit, where

higher-order processes such as Andreev reflection can be

disregarded, the coefficients of the thermoelectric detector

are18,19

G ¼ GT

ð

1

�1
dE

N0(E)

4kBT cosh2
E

2kBT

� � , (21)

Gth ¼
GT

e2

ð

1

�1
dE

E2N0(E)

4kBT2 cosh2
E

2kBT

� � , (22)

α ¼ PGT

2e

ð

1

�1
dE

ENz(E)

4kBT cosh2
E

2kBT

� � : (23)

Here P ¼ G" � G#
� �

= G" þ G#
� �

is the spin polarization, Gσ

is the normal-state conductance for spin σ,

N0(E) ¼ (N" þ N#)=2, and Nz(E) ¼ N" � N# are the

spin-averaged and spin-difference density of states of

the superconductor, normalized to the normal-state density

of states, νF , at the Fermi level. Here N"=# ¼ NS(E+ h)

with NS(E) ¼ Re jEþ iΓj=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(Eþ iΓ)2 � Δ
2

p

h i

, h is the

spin splitting exchange field and Γ � Δ describes pair-

breaking inside the superconductor. The heat capacity of

the absorber with the volume Ω of the superconductor is

Ch ¼ νFΩe
2Gth=GT .

18 Finally, the electron-phonon heat

conductance is obtained from18,21

Gq�ph ¼
ΣΩ

96ζ(5)k6BT
2

ð

1

�1
dE E

ð

1

�1
dωω2jωj

� LE,EþωFE,ω, (24a)

LE,E0 ¼ 1

2

X

σ¼",#
Nσ(E)Nσ (E

0)

� 1� Δ
2=[(E þ σh)(E0 þ σh)]

� �

, (24b)

FE,ω ¼ � 1

2
sinh

ω

2kBT

� �

cosh
E

2kBT

� �	

� cosh
E þ ω

2kBT

� �
�1

: (24c)

FIG. 3. Filtered current I
(Fil)
L (t) through the inductor. In all curves, τRC=τ th ¼

10�3 and ZTtot ¼ 1. In the blue curve W(ω), we choose the optimal filter.

On the other hand, for the orange curve, we consider the W(ω) is equal to

the optimal filter of the blue curve.
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In Eq. (24a), Σ is the material dependent electron-phonon

coupling constant and ζ(5) is the Riemann zeta function. For

kBT � Δ� h, the thermoelectric coefficients have the analyt-

ical estimates18,19

G � GT

ffiffiffiffiffiffiffiffi

2π~Δ
p

cosh (~h)e�
~Δ, (25)

Gth �
kBGTΔ

e2

ffiffiffiffiffiffi

π

2~Δ

r

e�
~Δ e

~h(~Δ� ~h)2
h

þe�
~h(~Δþ ~h)2

i

, (26)

α � PGT

e

ffiffiffiffiffiffiffiffi

2π~Δ
p

e�
~Δ
Δ sinh (~h)� h cosh (~h)
� �

, (27)

Gq�ph �
ΣΩ

96ζ(5)
T4 cosh (~h)e�

~Δf1(~Δ)
h

þπ~Δ
5
e�2~Δf2(~Δ)

i

, (28)

where ~h ¼ h=kBT and ~Δ ¼ Δ=kBT . In Eq. (28), the terms f1
and f2 represent the scattering and recombination processes.

The functions f1(x) ¼
P3

n¼0 Cn=x
n and f2(x) ¼

P2
n¼0 Bn=x

n,

where C0 ¼ 440, C1 ¼ �500, C2 ¼ 1400, C3 ¼ �4700,

B0 ¼ 64, B1 ¼ 144, and B2 ¼ 258. The analytical estimate of

the ΔE
(Fil)
opt can now be obtained by substituting Eqs.

(25)–(28) in Eq. (19). As at low temperatures, the scattering

contribution dominates over recombination in the

quasiparticle-phonon heat conductance, we neglect the

recombination process and assume f1(x) � 400 for kBT &

0:1Δ to obtain a simplified analytical estimate of the energy

resolution ΔE
(Fil)
opt of the SF based TED.

ΔE(Fil)
opt �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4νFΩk3BT
3χ=ZT

q

	 


1þ ZTð Þ1=4, (29)

χ ¼ 2π~Δ
� �1=2

e�
~Δ ~Δ

2 þ ~h
2

� �

cosh ~h
� �

h

�2~Δ~h sinh ~h
� ��

, (30)

ZT � P2

1� P2 þ
~Δ
2 þ Zspur cosh

2 ~h
� �

~h cosh ~h
� �

� ~Δ sinh ~h
� �� �2

, (31)

Zspur ¼
e2ΣΩΔ

3

GTk
5
B

~Δ
�4 220

96ζ(5)
: (32)

In the following, we use the formulas of Eqs. (19)–(24c) to

find ΔE
(Fil)
opt as a function of the exchange field and the bath

temperature of the SF based TED. We also compare the

numerical results with the analytical estimate in Eq. (29). We

consider an Al absorber of volume Ω ¼ 10�19 m3 and the

superconducting critical temperature at zero exchange

field Tc ¼ 1:2 K,29 νF ¼ 1047 J�1m�3, and GT ¼ 5� 10�4

e2ΣΩΔ
3=k5B ≏ 25 μS.18 With these choices, we get an overall

scaling factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4νFΩΔ
3

p

¼ 20 meV. This factor is used in

Figs. 4 and 5 as the unit energy resolution. We thus find that

the optimal energy resolution at kBT ¼ 0:1Δ, corresponding
to T ¼200 mK for Al, can be below 1 meV. This corresponds

to single-photon resolution at frequencies f ¼ ΔEFil
opt=(2πh

� )
above 240 GHz. Figure 5 shows the corresponding tempera-

ture dependence of the optimal energy resolution (solid

lines). The analytical estimate in Eq. (29) fits the numerics

up to kBT & 0:1Δ. Above this, the quasiparticle-phonon

recombination process starts affecting the results. Note that

for this range of energy resolution ZT need not be extremely

high. For example, the largest ZT in the cases P ¼ 0:6 and

P ¼ 0:9 in Fig. 4 are 0.52 and 3.45, respectively.

Let us again discuss the added noise in current

amplification. A good cryogenic SQUID amplifier can reach

FIG. 4. Energy resolution after optimal filtering as a function of exchange

field for Γ ¼ 10�4
Δ, kBT ¼ 0:1Δ, and GT ¼ 5� 10�4 e2ΣΩΔ3=k5B, where

red, blue, and magenta lines, respectively, represent the plots for P ¼ 0:2,
P ¼ 0:6, and P ¼ 0:9. The solid lines are obtained numerically, whereas the

dashed lines are the analytical estimates from Eq. (29) for the corresponding

situations.

FIG. 5. Energy resolution after optimal filtering as a function of temperature

for Γ ¼ 10�4
Δ, h ¼ 0:4Δ, and GT ¼ 5� 10�4 e2ΣΩΔ

3=k5B, where red, blue,

and magenta lines, respectively, represent the plots for P ¼ 0:2, P ¼ 0:6,
and P ¼ 0:9. The solid lines are obtained numerically, whereas the dashed

lines are the analytical estimates from Eq. (29) for the corresponding

situations.
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SA ≏ 0:3 (fA)2/Hz.30 With the above-chosen tunnel conduc-

tance and superconducting gap Δ, this would translate into

ZT=ZTA � 2� 10�4 � (1þ ZT)GTΔ=(GkBT). This becomes

of the order of unity or larger for kBT & 0:1Δ. Below that

temperature, it would be advantageous to either measure the

voltage instead of the current or use higher-conductance

junctions. Contrary to the noise equivalent power in bolome-

ters,18 this does not deteriorate the energy resolution.

However, increasing the contact transparency may be chal-

lenging especially with Al/EuS based spin-filter junctions.

Outside the linear response regime, where ΔT becomes

large, another noise mechanism related to shot noise31 starts to

play a role. This mechanism becomes relevant in the nonlinear

regime of the detector, and its analysis is left for further work.

IV. CONCLUSIONS

In this work, we present the first full noise analysis of a

generic thermoelectric detector TED, especially including the

possibility of a high thermoelectric figure of merit. In

particular, we show that TEDs based on superconductor-

ferromagnet systems may rival the best transition edge sensor

(TES)-type calorimeters, reaching wide-band energy resolution

below 1 meV (with unit quantum efficiency). Hence, such SF

TEDs present a viable alternative for TES devices, especially in

the case of large arrays where the lack of required probe power

leads to reduced heating and simplified design of the detectors.
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