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Abstract

The anisotropic thermoelectric transport properties of bulk silicon strained in the [111]-direction

were studied by detailed first-principles calculations focusing on a possible enhancement of the

power factor. Electron and hole doping were examined in a broad doping and temperature

range. At low temperature and low doping an enhancement of the power factor was obtained for

compressive and tensile strain in the electron-doped case and for compressive strain in the

hole-doped case. For the thermoelectrically more important high-temperature and high-doping

regime a slight enhancement of the power factor was only found under small compressive strain

with the power factor overall being robust against applied strain. To extend our findings the

anisotropic thermoelectric transport of a [111]-oriented Si/Ge superlattice was investigated.

Here, the cross-plane power factor under hole doping was drastically suppressed due to

quantum-well effects, while under electron doping an enhanced power factor was found. For

this, we state figures of merit of ZT = 0.2 and 1.4 at T = 300 and 900 K for the electron-doped

[111]-oriented Si/Ge superlattice. All results are discussed in terms of band structure features.

(Some figures may appear in colour only in the online journal)

1. Introduction

Thermoelectric phenomena were first described for metals

by Seebeck at the beginning of the 19th century and

revived by Ioffe in the late 1950s by the introduction of

semiconductors to thermoelectric devices [1, 2]. However,

since then thermoelectrics have been restricted to a scientific

and economic niche mainly due to their poor conversion

efficiency [3, 4]. Nowadays the emerging global need for

energy production and conservation has intensified interest

and research in more effective alternative energy technologies

to reduce our dependence on fossil fuels. Contributing to this,

thermoelectric devices could partially convert wasted heat

into electricity by their ability to transform heat directly into

electric current, and vice versa [5].

The thermoelectric conversion efficiency can be stated by

the figure of merit (FOM)

ZT =
σS2

κel + κph
T, (1)

where σ is the electrical conductivity, S is the thermopower,

κel and κph are the electronic and phononic contributions

to the thermal conductivity, respectively. The numerator

of equation (1) is called the power factor PF = σS2 and

characterizes the electric power output.

While thermoelectric devices are extremely facile,

have no moving parts, and do not produce greenhouse

gases [6], two obstacles limit their applicability. The first,

a low efficiency, could be challenged by the nanostructured

thermoelectrics of today enabling large values of ZT ≫
1 [7–9]. As a second drawback, the materials are based

on environmentally hazardous or rare lead, tellurium or

selenium compounds and are therefore hard to integrate in

semiconductor electronics.

However, current research has achieved tremendous

progress in enabling silicon for thermoelectrics. Silicon is

non-toxic, readily available, cheap and well integrated in

the present electronics infrastructure, so this might be a

considerable leap forward. While silicon has been stated as

an inefficient thermoelectric in the past due to its enormous

10953-8984/12/275501+14$33.00 c© 2012 IOP Publishing Ltd Printed in the UK & the USA

http://dx.doi.org/10.1088/0953-8984/24/27/275501
mailto:nicki.hinsche@physik.uni-halle.de
http://stacks.iop.org/JPhysCM/24/275501
goffin
Schreibmaschinentext
MPF-2012-04

goffin
Schreibmaschinentext

goffin
Schreibmaschinentext



J. Phys.: Condens. Matter 24 (2012) 275501 N F Hinsche et al

thermal conductivity [10], recent experimental and theoretical

attempts have revealed that nanostructuring could lead

to thermoelectric efficiencies comparable to state-of-the-art

commercial thermoelectric materials [11–14].
Besides the reduction of thermal conductivity, that is

the denominator in equation (1), Koga et al showed in a

seminal work [15, 16] that it should be possible to enhance

the power factor, that is the numerator in equation (1). This

concept of carrier pocket engineering uses the influence of

strain to optimize the band structure of silicon and germanium

based superlattices (SLs) regarding their electronic transport.

As a main result it was found that the effect of the

lattice strain at the Si/Ge interfaces is more relevant for

strain in the [111]-direction than in the [001]-direction with

respect to a possible enhancement of the power factor. In

fact, ZT = 1.25 and ZT = 0.98 at room temperature were

predicted for strain-non-symmetrized and strain-symmetrized

[111]-oriented Si/Ge-SLs, respectively, and the ZT values are

shown to increase significantly at elevated temperatures [17].
While in a previous study we have already concentrated

on the influence of biaxial in-plane strain in the [001]-

direction on the thermoelectric properties of silicon [18],

we will focus here on the influence of strain along the

[111]-direction. For this purpose the paper is organized

as follows. In section 2 we introduce our approach based

on first principle electronic structure calculations within

density functional theory and transport calculations based on

the solution of the linearized Boltzmann equation. By this

means we start the discussion of the thermoelectric transport

properties of bulk silicon strained along the [111]-direction

in dependence on the strain and doping to gain insight

into the physical mechanisms, which clearly differ from the

[001]-strain case. A discussion is given for electron as well as

for hole doping in sections 3.1 and 3.2, respectively.
To extend the findings for strained bulk silicon, in

section 3.3 results for an exemplary Si/Ge-SL grown on Si

in the [111]-direction are presented. Here the influence of

tensile strain in the [111]-direction, induced by the lattice

mismatch at the Si/Ge interface, is investigated with respect

to the thermoelectric transport in-plane and cross-plane in the

SL. Again, the temperature and doping dependences of the

thermoelectric properties are discussed for electron and hole

doping regarding a possible enhancement of the power factor.

A further aspect will be the influence of structural relaxation

and chemical composition on the transport properties. At

the end of the paper, in section 3.4 insights into the FOM

will be presented along with the electronic part of the

thermal conductivity, to give a clue on optimal charge carrier

concentrations to obtain the best FOM.
While focusing our interest on the high-temperature

thermoelectric application of strained silicon, our results in

the room-temperature regime could be of importance for the

metal–oxide–semiconductor device community. Knowledge

of the thermoelectric properties of silicon under strain could

help in understanding parasitic effects on the electronic

transport in those structures. In this low-temperature and

low-doping regime we confirm a remarkable influence of

externally applied strain on the electrical transport under

electron and hole doping.

2. Methodology

Our approach is based on two constituents: first-principles

density functional theory calculations (DFT), as implemented

in the QuantumEspresso package [19] and an in-house

developed Boltzmann transport code [18, 20–22] to calculate

the thermoelectric properties.
First, the band structure of the strained and unstrained

Si was calculated using the general gradient approximation

(GGA) with the Perdew–Burke–Ernzerhof (PBE) flavour of

exchange correlation functional [23]. Fully relativistic and

norm-conserving pseudopotentials [24] were used to treat the

spin–orbit splitting of the Si valence bands appropriately.

The calculations for the bulk Si were performed with the

rhombohedral experimental lattice constant a0 = 5.434 Å/
√

2

for a rhombohedral two atom unit cell, which is sketched

in the inset of figure 1(c). The strain in the [111]-direction

under constant volume is simulated by changing the lattice

constant a and the angle αr. Throughout the paper the biaxial

strain will be given in units of the relative change of the

in-plane lattice constant, that is the nearest neighbour distance

in the [111]-plane as 1a = a[111] or a‖/a0 following the

notation of previous works [18, 21, 25, 26]. The angle αr is

given by cos αr = 1 − 3(1+1a/a0)
6

4+2(1+1a/a0)
6 . That means that tensile

in-plane strain considers changes 1a/a0 > 0 and αr > 60◦,

while compressive in-plane strain means 1a/a0 < 0 and αr <

60◦. As used previously in the literature, tensile strain along

the [111]-direction coincides with compressive in-plane strain

as denoted here.
By this trigonal deformation an atomic relaxation of

the atomic positions inside the unit cell is possible, as the

displacement of the two sublattices along the [111]-direction

is no longer given by symmetry. To obtain the atomic positions

of the strained silicon we performed structural relaxations

using VASP [27]. The atomic positions were optimized such

that the Hellmann–Feynman forces on them were below

0.1 meV Å
−1

. At the same time the given deformed lattice

parameters were not allowed to relax and conservation of the

unit cell volume was assumed. A volume relaxation at the

maximum strain 1a/a0 ± 1% resulted in a volume reduction

by 0.2% which corresponds to a lattice constant change by

less than 0.1%.
As expected, our DFT calculations underestimate the size

of the bandgap at zero temperature and do not reproduce

the temperature dependence of the gap. For this purpose we

implemented a temperature-dependent scissor operator [28],

so that the strain- and temperature-dependent energy gap Eg

becomes

Eg

(

T,
1a

a0

)

= Eg

(

T = 0,
1a

a0

)

+ UGGA −
αT2

T + β
, (2)

where Eg(T = 0, 1a
a0

) is the zero temperature gap obtained

by our self-consistent DFT calculations, UGGA = 0.57 eV

is a static correction to reproduce the experimental low-

temperature gap and the third part of equation (2) is the

correction of the temperature dependence of the bandgap in a

wide temperature range [29], with α = 4.73×10−4 eV K−1, T

the absolute temperature and β = 636 K for bulk silicon.

2
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Figure 1. The band structure of bulk silicon in the rhombohedral unit cell. In the unstrained case, the F point coincides with the X point of
the fcc Brillouin zone. (a) The bands for the unstrained case (black solid line), under 1% compressive strain (blue dotted line) and under 1%
tensile strain (red dashed line) are shown. In (b) a zoom near the conduction band minimum elucidates the nonparabolicity of the bands
under applied strain. (c) Directional effective conduction band masses for silicon under [111]-strain. The insets show in detail the response
of the averaged effective mass M̄ on the applied strain, as well as the rhombohedral unit cell [41] (red lines). More details are given in the
text.

Converged results from the first step are the basis to

obtain the thermoelectric transport properties by solving

the linearized Boltzmann equation in the relaxation time

approximation (RTA) [20]. Boltzmann transport calculations

for thermoelectrics have been carried out for quite a long

time and show reliable results for metals [30, 31] as well as

for wide- and narrow-gap semiconductors [18, 21, 32, 33]

in the diffusive limit of transport. Here the relaxation time

is assumed to be constant with respect to the wavevector

k and energy on the scale of kBT . The constant relaxation

time allows for the calculation of the thermopower S without

any free parameters. To reproduce experimental findings we

parametrized the doping-dependent relaxation times from mo-

bility measurements on unstrained silicon according to [34] by

τ(N) = ((−c/π arctan[a lg(N/N0)] + c/2)

+ 2 lg(N/N1)
2)d, (3)

with a = 1.8, N0 = 1017 cm−3, N1 = 1017.5 cm−3, c =
1500, d = 0.15 fs (a = 1.3, N0 = 1016.8 cm−3, N1 =
1017.5 cm−3, c = 550, d = 0.13 fs) for electron (hole) doping

and charge carrier concentrations of N between 1014 and

1022 cm−3. Nevertheless, we state that our relaxation time

is not strain-dependent, while it is known that under strain

the dominant scattering process alters: for unstrained Si,

the room-temperature scattering is dominated by optical

phonons, i.e., intervalley scattering, whereas for strained Si,

the scattering by optical phonons is reduced [35, 36].

With the transport distribution function (TDF) as termed

by Mahan and Sofo [37]

L
(n)
⊥,‖(µ, T) =

τ

(2π)3

∑

ν

∫

d3k (vν
k,(⊥,‖))

2

× (Eν
k − µ)n

(

−
∂f(µ,T)

∂E

)

E=Eν
k

(4)

3
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the temperature- and doping-dependent electrical conductivity

σ and thermopower S are defined as

σ⊥,‖ = e2
L

(0)
⊥,‖(µ, T), S⊥,‖ =

1

eT

L
(1)
⊥,‖(µ, T)

L
(0)
⊥,‖(µ, T)

. (5)

Here ‖ denotes the in-plane direction parallel to the a-axis and

⊥ the cross-plane direction. The electronic part of the total

thermal conductivity amounts to

κel⊥,‖ =
1

T

(

L
(2)
⊥,‖(µ, T) −

(L
(1)
⊥,‖(µ, T))2

L
(0)
⊥,‖(µ, T)

)

. (6)

Eν
k denotes the band structure of band ν, vν

k the group

velocity and f(µ,T) the Fermi–Dirac-distribution with chemical

potential µ. The chemical potential µ at temperature T

and extrinsic carrier concentration N is determined by an

integration over the density of states n(E),

N =
∫ VBM

µ−1E

dE n(E)[f(µ,T) − 1] +
∫ µ+1E

CBM

dE n(E)f(µ,T), (7)

where CBM is the conduction band minimum and VBM is

the valence band maximum. The necessary size of 1E will be

discussed below.

In a recent work we showed that the determination of

surface integrals in anisotropic Brillouin zones is demanding

with respect to convergence of the transport property

anisotropy [22]. Therefore the constant energy-surface

integrations, which are required in equation (4), are performed

within an extended tetrahedron method [38–40] interpolating

the calculated eigenvalues Eν
k on an adaptive k-mesh

corresponding to a density of at least 44 000 k points in the

irreducible part of the Brillouin zone. L
(0)
⊥,‖(E, T = 0) was

determined on a dense energy mesh with a step width of

1 meV. At vanishing strain 1a/a0 = 0 the numerical errors of

σ‖/σ⊥ and S‖/S⊥ were constantly below 0.1%. In the limit of

low carrier concentrations N ≤ 1 × 1014 cm−3 and for larger

carrier concentrations in the bipolar conduction regimes at

high temperatures, convergence of the integrals (4) and (7)

was achieved with an adaptive integration method for 1E of

at least 10kBT .

3. Thermoelectric transport

3.1. [111]-strained silicon: electron doping

In figure 1(a) the uncorrected band structure of bulk silicon

in the rhombohedral unit cell is shown for the unstrained

case (black solid line), under 1% tensile strain (red dashed

line) and for −1% compressive strain (blue-dotted line)

on relevant high symmetry lines. Unstrained silicon has an

indirect bandgap with conduction band minimum (CBM) near

the F high symmetry point. The CBM consists of sixfold

degenerate (16) prolate spheroidal isoenergetic surfaces

along six equivalent Ŵ–F directions. Due to symmetry of the

lattice distortion in the [111]-direction this degeneracy holds

under applied strain in contrast to strain applied along the

[001]-direction [18].

In the unstrained case, for each 16-valley the effective

masses along the major and the minor axis are M1 =
0.91m0 and M2 = 0.19m0, respectively. As can be seen from

figure 1(b) the idea of an effective mass determined by a

second order polynomial fit (dashed lines in figure 1(b))

is valid for the unstrained case, but band warping leads to

deviations for silicon under strain already for small band

occupations. Here, a fifth order polynomial fit (solid lines in

figure 1(b)) is necessary to reproduce the band dispersion,

which occurs under applied biaxial [111]-strain. It is therefore

advisable to go beyond a simplified effective mass model.

In contrast to the conduction bands, the [111]-strain leads to

a splitting of the degenerate valence bands, the heavy-hole

(HH) and light-hole (LH) bands, similarly to the case of

[001]-strain [18, 42]. While the spin–orbit-split-off band

is 40 meV away from the band edge, the HH band lifts

up energetically under tensile strain, while the LH band

lowers in energy. This picture reverses under opposite strain

conditions [43]. While the indirect gap closes linearly under

tensile in-plane strain from 0.58 eV in equilibrium to about

0.45 eV at 1a/a0 = 1%, the gap size is almost constant

within 0.01 eV under compressive strain within the considered

range [26, 44, 45] (cf figure 1(b)). The direct gap at Ŵ

decreases slightly under applied strain, in a more pronounced

way under compressive in-plane strain.

The influence of biaxial in-plane strain on the fitted

effective masses is summarized in figure 1(c). The change

of the effective mass M1 along the major axis is almost

symmetric to the applied strain and increases up to 130%

of the unstrained value. In contrast, the transverse effective

masses behave drastically differently. While the transverse

effective mass M2 increases under tensile strain, the effective

mass M3 perpendicular to M2 decreases. This behaviour is

reversed under applied compressive strain. These results are

in good agreement with other findings [44, 45], but add up

to GW calculations where only one transverse mass with an

almost constant value was found [26]. The strain-dependent

averaged effective mass M̄ =
∏3

i=1(Mi)
1/3, often referred to

as the density-of-states effective mass, is shown additionally

as an inset in figure 1(c).

In the following the influence of trigonal distortion on

the thermoelectric transport of Si under electron doping will

be discussed. For this purpose two doping and temperature

regimes are considered. The first, at a low temperature of

T = 100 K and low charge carrier concentration of N =
1 × 1015 cm−3, is suitable for metal–oxide–semiconductor

device applications. The results for the electrical conductivity,

thermopower and power factor in dependence on the

in-plane strain are shown in figures 2(a)–(c), respectively.

Under tensile strain the in-plane electrical conductivity σ‖
increases almost linearly, while the cross-plane component

σ⊥ decreases almost comparably. For compressive strain

the behaviour reverses, with the cross-plane conductivity

being enhanced up to 23% at 1% compressive strain, while

the in-plane conductivity decreases to nearly 23% of the

unstrained value under 1% tensile strain. In the limit of

a degenerate semiconductor at low temperatures and small

charge carrier concentrations these results can be completely

4
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Figure 2. The anisotropic thermoelectric transport properties of Si for fixed temperature and electron doping concentrations in dependence
on the compressive and tensile strain in the [111]-direction. The left panels ((a)–(c)) correspond to an electron doping of 2 × 10−8 e/atom

(N = 1 × 1015 cm−3) at a temperature of 100 K, while the right panels ((d)–(f)) refer to an electron doping of 0.04 e/atom

(N = 2 × 1021 cm−3) at a temperature of 900 K. On the left axis of each figure the relative value compared to the unstrained case is shown,
while on the right axis the absolute values are given.

understood within an effective mass calculation [22]. With

noticeable variation of the electrical conductivity under

applied strain, the thermopower is almost unaffected. At

low temperatures only a small energy window near the

band edges plays an important role for the determination

of the thermopower. As the functional change of the

coefficients L
(0,1)
⊥,‖ (µ, T) is determined by parabolic bands

and a strain-dependent shift of the chemical potential, a

strong change in the thermopower cannot be expected.

However, a slight upward tendency for the thermopower

under compressive and tensile strain can be stated. As S ∝
(ECBM/VBM − µ)−1 ∝ M̄, this can be directly linked to the

strain dependence of M̄ (cf figure 1(c)). For tensile strain an

anisotropy of the thermopower is apparent, which seems to

be suppressed for compressive strain. This could be linked

to stronger deviations from the isotropic effective mass for

tensile strain as shown in figure 1(b).

The strain dependence of the resulting power factor

PF is shown in figure 2(c). Due to the weak impact of

the thermopower, the behaviour of the power factor is

dominated by the electrical conductivity dependence on

the applied strain. At low temperatures and small charge

carrier concentrations, such a behaviour has already been

observed for biaxially strained silicon [18]. However, the

additional power output described by the power factor is

enhanced by 30% under 1% applied compressive strain for

PF⊥ and by 25% under 1% applied tensile strain for PF‖ .

We note that this low temperature and small doping case is

not feasible for thermoelectric power generation, but could

give insight into the parasitic effects which play a role in

metal–oxide–semiconductor devices.

The usual conditions for silicon-based thermoelectric

applications, such as a high temperature of 900 K and

large charge carrier concentrations N = 2 × 1021 cm−3

are assumed in figures 2(d)–(f). At a temperature of

900 K the electronic band structure on a width ±1E =
±800 meV around the position of the chemical potential has

to be considered, which makes a simplified description of

the electronic transport properties within a spherical band

picture inaccurate. However, the dependence of the electrical

conductivity (cf figure 2(d)) on the applied [111]-strain is

almost preserved, even if accidentally. This is in contrast

to biaxial strain in the [001]-direction, where the strain

dependence induced by reoccupation of bands is suppressed

under higher temperatures and dopings [18, 35].

In figure 2(e) the anisotropic thermopower under trigonal

distortion is shown. The cross-plane thermopower shows a

monotonic increase from 85% to 110% of the unstrained

5
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Figure 3. The anisotropic thermoelectric transport properties of Si for fixed temperature and hole doping concentrations in dependence on
the compressive and tensile strain in the [111]-direction. The left panels ((a)–(c)) correspond to a hole doping of

2 × 10−8 e/atom (N = 1 × 1015 cm−3) at a temperature of 100 K, while the right panels ((d)–(f)) refer to a hole doping of

0.04 e/atom (N = 2 × 1021 cm−3) at a temperature of 900 K. On the left axis of each figure the relative value compared to the unstrained
case is shown, while on the right axis the absolute values are given.

thermopower value of S⊥ = 115 µV K−1 varying from

compressive to tensile strain. The in-plane component S‖

decreases to 85% of the unstrained thermopower value under

1% tensile strain. A very similar behaviour was found for

the thermopower of biaxially strained silicon in the [001]-

direction [18]. The compensation effects of the enhanced

thermopower and decreased electrical conductivity, and vice

versa, are well known for thermoelectrics under strain [18,

21, 46]. This scenario holds for [111]-strained silicon, too. In

figure 2(f) the anisotropic power factor shown in the in-plane

and cross-plane directions is always smaller than the power

factor of the undistorted system, with PF⊥ being at least stable

under small values of compressive strain. We mention that

the absolute values (cf the right scales in figures 2(a) and

(d)) of the electrical conductivity are increased remarkably

compared to the low-doping case as expected. Due to

this, the absolute value of the power factor increases

its absolute value, but unfortunately does not show an

enhancement due to mechanical strain in the [111]-direction.

Furthermore, compared to the low-doping/low-temperature

regime (figure 2(c)) the power factor does not show noticeable

anisotropy between the in-plane and cross-plane components.

3.2. [111]-strained silicon: hole doping

As is well known, thermoelectric devices use two types

of semiconductor, namely n-type and p-type, which are

connected in series [6]. Therefore, the influence of biaxial

[111]-strain on hole-doped silicon is presented in figure 3

in the same way as was done for the electron-doped

case. In the low-doping/low-temperature regime an enormous

enhancement for the cross-plane electrical conductivity σ⊥
under sufficient tensile strain can be found (cf figure 3(a)),

while the in-plane component σ‖ decreases more slightly

under the same strain conditions. This behaviour can be linked

to a changed subband structure. As mentioned before, strain

lifts the degeneracy of the LH and HH bands around the Ŵ

point and alters the curvature, that is the effective mass, of

both bands. Under applied strain, the valence bands become

highly anisotropic and a crossover between bands occurs so

that they even lose their original LH and HH meanings [18,

25]. Extended discussions on this can be found in [43, 47].

The thermopower of p-type silicon is shown in

figure 3(b). The thermopower in-plane and cross-plane

decreases slightly under tensile as well as under compressive

strain. The anisotropy of the thermopower is moderate.

As previously reported [18, 48], the thermopower depends

6
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Figure 4. In-plane and cross-plane power factor of Si at a fixed temperature of 900 K under electron ((a), (b)) and hole doping ((c), (d)) for
varying charge carrier concentration and applied [111]-strain. The black circles emphasize the position of optimal doping at a certain strain
state to maximize the power factor. Note the different scales for electron and hole doping.

strongly on the number of occupied carrier pockets. A higher

valley degeneracy at a fixed charge carrier concentration

leads to an increased thermopower. As already mentioned,

the formerly degenerate HH and LH bands split under tensile

and compressive strain. At low hole concentrations and low

temperatures only the former HH (LH) band is occupied. This

leads directly to a reduction of S‖ and S⊥ . Consequently, the

accompanied power factor (cf figure 3(c)) is also reduced in

its maximal possible enhancement, but follows in principle the

behaviour given by the electrical conductivity.

For high temperatures and high hole concentrations

the results are shown in figures 3(d)–(f). As the carrier

concentration is raised by nearly six orders of magnitude

with respect to the low-doping case, the absolute value

of the electrical conductivity increases in the same order

(note the right scale of figure 3(d)). Unfortunately, due to

the higher band occupation and the broader smearing of

the Fermi–Dirac-distribution, the effects of redistribution in

strain-split bands do not play a role any more. Moreover, the

effects of reduced and increased effective masses cancel each

other leading to negligible change, in absolute values as well

as in anisotropy, of the hole electrical conductivity.

For the hole thermopower shown in figure 3(e) this

behaviour is still valid. For the in-plane thermopower S‖ no

significant influence of either compressive or tensile strain

could be found. A minor dependence on applied [111]-strain

is observed for S⊥ . Here, the cross-plane thermopower

decreases from 100 to 91 µV K−1 for strain values varying

from 1% compressive to 1% tensile strain.

Comprising the results for the electrical conductivity and

thermopower, the resulting power factor under hole doping

is shown in figure 3(f). No evident influence of [111]-strain

on the power factor could be found in the thermoelectrically

relevant temperature and hole doping regime. Furthermore,

the absolute value of the power factor is about 3–4 times

smaller than in the comparable electron-doped case, which is

mainly caused by the higher hole scattering rate as assumed

in equation (3). At varying strain not only do the absolute

values of the thermoelectric properties change, but also

the optimal charge carrier concentrations to obtain these

maximized values. For biaxially [001]-strained silicon it was

found that the optimal doping range can change by a factor

of two, while reducing the power factor by up to 20% if not

adapting the charge carrier concentration [18]. Therefore, the

in-plane and cross-plane power factor under varying electron

and hole doping, as well as varying [111]-strain is shown

in figure 4. The maximized power factor at optimal charge

carrier concentration at a given strain state is emphasized by a

7
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Figure 5. Maximized in-plane and cross-plane power factors of
[111]-strained Si at a fixed temperature of 900 K under optimal
electron doping. The figure highlights the path of the black circles in
figures 4(a) and (b). N = 0.01 e/atom corresponds to

N = 5 × 1020 cm−3.

black-dotted line in figures 4(a)–(d). Comparing silicon under

electron doping (cf figures 4(a) and (b)) and hole doping

(cf figures 4(c) and (d)), it is obvious that electron-doped

silicon shows a much stronger variation of the optimal doping

range. For the in-plane component PF‖ and electron doping

the optimal carrier concentration decreases by about a factor

of 5, from N = 5 × 1021 to 1 × 1021 cm−3, with the strain

changing from 1% compressive to 1% tensile strain. For

the corresponding cross-plane power factor PF⊥ the optimal

carrier concentration is about N = 1 × 1021 cm−3 at 1%

compressive strain and increases by about a factor of 5 under

the same strain conditions. For hole doping no evident change

of the optimal doping could be found for varying strain, while

the absolute value depends only weakly on the applied strain

(cf figure 3(f)).

To summarize our findings, sections along the path of

optimal electron doping are shown in figure 5. With this, it

is obvious that even with optimized doping no enhancement

by tensile or compressive [111]-strain can be obtained for

the in-plane power factor PF‖ . For the cross-plane component

PF⊥ , which is more relevant for possible SLs, an increase of

the power factor of about 4% at 1% compressive strain was

found. To obtain this rather small enhancement the electron

charge carrier concentration has to be reduced by about a

factor of 2.5 compared to the unstrained case.

3.3. Strained Si/Ge-SL on Si[111]

By introducing the concepts of carrier pocket engineer-

ing [15–17] and phonon–glass/electron–crystal [49, 50] to

semiconducting SLs an enormous leap forward to maximize

the thermoelectric FOM was proposed. Indeed, several

proofs-of-principle showed a remarkable enhancement of the

FOM for thermoelectric semiconducting heterostructures [7,

8, 17, 51]. With the thermal conductivity of SLs far below

their alloy limit [52–55] and their constituents’ bulk values,

a main task in optimizing the FOM is to enhance or at

least to retain advantageous electronic properties of the bulk

materials, that is the power factor. For silicon-based SLs,

carrier pocket engineering can be triggered by lattice strain.

Using Si1−x/Gex substrates in [111] and [100] orientations

ZT values of 0.96 and 0.24, respectively, were predicted

for strain-symmetrized4 Si(20 Å)Ge(20 Å) SLs at room

temperature. The latter case was experimentally confirmed

with ZT = 0.1 at N ≈ 1 × 1019 cm−3 [17], which is

nevertheless about a sevenfold enhancement relative to bulk

Si [13, 18]. These experimental findings encourage further

research for strain-non-symmetrized Si(20 Å)/Ge(20 Å)

SLs in [001]-orientation and Si(15 Å)/Ge(40 Å) SLs in

[111]-orientation, with ZT = 0.78 and 1.25, respectively,

predicted at T = 300 K [15].

While being in principle possible for very thin films [58,

59], to the best of our knowledge state-of-the-art thin

film technology has not enabled strain-non-symmetrized

SLs with satisfactory structural qualities and thicknesses

for thermoelectric applications so far [56, 57, 60, 61].

Nevertheless, in the following the thermoelectric transport

properties of a strain-non-symmetrized Si(5 Å)/Ge(5 Å)

SL in [111]-orientation will be discussed, as the largest

enhancement of the FOM is expected here [15].

The Si(5 Å)/Ge(5 Å) SL used is represented by a

hexagonal six-atom unit cell (see the inset in figure 7(a))

with point group symmetry C3v and a fixed in-plane

lattice constant of a = 5.434 Å was used to simulate the

bulk silicon substrate. Structural optimization of the atomic

positions and the c-axis elongation of the unit cell was

obtained using VASP [27]. The distinct interlayer distances

δ in the [111]-direction were determined as δSi1−Si2 =
2.359 Å, δSi2−Si3 = 0.784 Å, δSi3−Ge4 = 2.409 Å, δGe4−Ge5 =
0.929 Å, δGe5−Ge6 = 2.470 Å, δGe6−Si1 = 0.851 Å and are

in good agreement with previous calculations [62]. The ratio
c/a = 2.551 shows an increase of the lattice constant in the

c-direction by about 4% compared to bulk Si. This is clearly

dictated by the fixed in-plane Si lattice constant and the larger

volume of Ge. Due to this, the Ge layer can be seen as

compressively strained in the [111]-direction.

As has already been mentioned in the literature [62, 63],

the face centred cubic (fcc) L high symmetry point in the [111]

direction folds onto the hexagonal A high symmetry point at

a c/a -ratio of 2.449. In addition, the fcc X point is equivalent

to the hexagonal M point, while the symmetry directions fcc

ŴX and hexagonal ŴM are inequivalent. This is due the fcc

X point lying in an adjoining Brillouin zone. Under biaxial

[111]-strain two inequivalent sets of the eight L points occur.

There are two points along the c-axis in the [111] direction

of growth which fold onto the A point and those in the six

directions equivalent to [111̄] hereafter denoted as L.

In figure 6 the band structure for the fully relaxed

Si/Ge-SL in the hexagonal unit cell is shown. While in

figure 6(a) the site-resolved bands for the Si/Ge-SL are

depicted, in figure 6(b) the bands for pure Si on the fully

relaxed Si/Ge positions are shown (blue dashed lines), as

well as all sites occupied by Ge (red dotted lines) and the

bands referring to the original Si/Ge-SL bands as shown in

4 For an introduction to strain-symmetrized and strain-non-symmetrized

Si/Ge superlattices we refer to the publications of Kasper et al [56, 57].
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Figure 6. (a) The band structure of the Si/Ge-SL. The colour code
of the bands refers to the atomic character of the bands. The red dots
refer to the wavefunction character of pure germanium, while the
blue dots refer to pure silicon like character. (b) The band structures
of silicon (blue dashed lines), germanium (red dotted lines) and
Si/Ge (black solid line). All three configurations are calculated in
the lattice of Si/Ge. To allow comparison with (a), the bands are
energetically matched at the CBM. The figure has not been
corrected for the bandgap error.

figure 6(a) (black solid lines). Two main insights can be

drawn. First, the VBM is located around the Ŵ point and

has an almost pure Ge character, given by the red dots in

figure 6(a). This is mainly due to the smaller bandgap of

Ge and the accompanied band offset between Ge and Si.

Furthermore, the compressive biaxial strain in the Ge layers

decreases the gap size and favours a direct bandgap at Ŵ

instead of an indirect one between Ŵ and L [64, 45, 65].

Valence bands of mixed Si/Ge character come into play

around 0.65 eV below the CBM and suggest the local indirect

Si bandgap between Ŵ and M to be almost retained bulk like.

Second, the CBM is located at the M point and shows a strong

mixing of Si and Ge character. Furthermore a strain-induced

lifting of degeneracy occurs at the M point lowering a band

of mixed character to the band edge and lifting a Si like

band upwards in energy. As only the Ge layers in the SL

are compressively strained while the Si layers are nearly

unstrained, the Ge L-point CBM valleys split into A valleys

located higher in energy and L valleys lower in energy [15,

Figure 7. (a) The densities of states for bulk silicon (green
dashed–dotted line) and the Si/Ge-SL (black solid line). As an inset
the hexagonal unit cell of the Si/Ge-SL is shown [41]. Furthermore
the interlayer distances are labelled, as referred to in the text.
(b) The electrical conductivity in dependence on the position of the
chemical potential µ at zero temperature, shown for bulk silicon
(green dashed–dotted line) and the Si/Ge-SL in the in-plane (red
solid line) and cross-plane (blue solid line) directions. The
conductivity anisotropy (black dashed line referring to the right
axis) is stated for the Si/Ge-SL. The cross at the CBM is the value
obtained from an analytical effective mass approach.

65, 66]. These findings on the CBM and VBM characteristics

are in agreement with experimental studies [59]. With this the

uncorrected bandgap decreases to around 178 meV, which is

about 30% of the uncorrected GGA gap for unstrained bulk

Si. Furthermore, the effective masses at the CBM decrease to

M1 = 0.125m0, M2 = 0.026m0 and M3 = 0.010m0.5Applying

an effective mass approach [22] we find the conductivity

anisotropy for energies near the CBM to be σ‖/σ⊥ = 0.6,

which clearly prefers cross-plane transport under electron

doping.

The energy-dependent transport distribution functions

in the in-plane and cross-plane directions and their ratio

are displayed in figure 7(b) for the Si/Ge-SL and isotropic

unstrained bulk Si. For the same systems the densities of states

are shown in figure 7(a). As can be seen from figure 7(b)

unfortunately the conductivity anisotropy near the valence

band edge strongly increases to a value of 8 around 0.58 eV

below the CBM, clearly suppressing cross-plane electronic

transport under p-type doping. This behaviour is largely due

to the localization of the Ge like VBM states, in space as well

as energy. As can be deduced from figure 6(a) bands in the

cross-plane direction (here ŴA) show pure Ge band character

in an energy range of 0.18–0.74 eV below the CBM. Clearly,

in this energy range cross-plane conduction is suppressed by

states localized in the Ge layers and almost vanishing in the Si

layers leading to a strongly increased conductivity anisotropy.

At an energy of 0.38 eV below the CBM at Ŵ a light band with

5 The corresponding eigenvectors were determined as e1 =
(0.8, 0, 0.6), e2 = (0, 1, 0) and e3 = (0.6, 0, −0.8).
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strong Si/Ge mixed character appears (cf the black solid line
in figure 6(b)) leading to cross-plane transport through the Si
and Ge layer forcing σ‖/σ⊥ to decrease, while saturating for
values above 1, still indicating a preferred in-plane transport
under hole doping.

In figures 8(a), (b) the doping-dependent thermopower
and power factor for the Si/Ge-SL are shown, respectively. As
a comparison the reference values for bulk silicon are stated
as black dashed–dotted lines. We note that a temperature
dependence of the energy gap was introduced by applying
equation (2). For the Si/Ge-SL the6 parameters are chosen as
UGGA = 0.78 eV, α = 4.76 × 10−4 eV K−1 and β = 395 K.
However, in the highly degenerate limit (N > 1 × 1020 cm−3)
the temperature dependence of the gap plays a negligible role
even for temperatures above 900 K.

From figure 8(a) it can be seen that the thermopower in
the Si/Ge-SL under electron doping (blue lines in the lower
panel) is comparable to that of bulk silicon and follows a
Pisarenko relation [68]. Under hole doping (red lines in the
upper panel) the thermopower is suppressed compared to
bulk silicon by about 80 µV K−1 for S‖ and S⊥ in the
relevant doping regime, which might be linked to a changed

functional behaviour of the TDF L
(0,1)
⊥,‖ (µ, T). The latter can

be deduced from figure 7(b) where apparent differences in
the functional behaviour of σ⊥,‖ , which is proportional to

L
(0)
⊥,‖(µ, T), are visible especially in the valence bands of

bulk Si and the Si/Ge-SL. The clear deviation of S⊥ from
the Pisarenko relation in the vicinity of N ≈ 3 × 1021 cm−3

is related to the strongly increased conductivity anisotropy
0.58 eV below the VBM as shown in figure 7(b). Here, the
strong suppression of σ⊥ causes a larger S⊥ . Nevertheless, this
slight enhancement of S⊥ is not reflected in the power factor
of the p-type Si/Ge-SL. As shown in figure 8(b) S‖ and S⊥ are
always smaller than the values for bulk Si under hole doping
(red lines). Obviously, the suppressed electrical conductivity,
especially in the cross-plane direction, is responsible for this
result. A power factor of about 9 µW cm−1 K−2 is found
for PF‖ at N ≈ 3 × 1020 cm−3, while in the cross-plane
direction the same value can be stated at huge values of
N ≈ 3 × 1021 cm−3, clearly evoked by the anomaly in the
thermopower. More interesting is the case of electron doping
(blue lines in figure 8(a)). With the thermopower’s behaviour
almost bulk like and conductivity anisotropies σ‖/σ⊥ below 1
an enhanced power factor in the required cross-plane direction
is found. Compared to bulk silicon the PF⊥ is enhanced by
10% and reaches a value of 60 µW cm−1 K−2 at an electron
concentration of N ≈ 7 × 1020 cm−3. With that the optimal
charge carrier concentration is four times smaller compared to
bulk Si. For the in-plane component PF‖ almost no reduction

can be seen, while the maximal value of 53 µW cm−1 K−2 is
shifted to slightly larger charge carrier concentrations.

3.4. Towards the figure of merit

In figure 9(a) the FOM in the cross-plane direction for
the Si/Ge-SL (blue lines) and the more promising electron-
doped case is shown. Different temperatures are chosen to

6 Here we adapted experimental data for Si0.5Ge0.5 alloys from [67].

Figure 8. (a) The in-plane (solid lines) and cross-plane (dashed
lines) doping-dependent thermopowers at 900 K for the Si/Ge-SL
under electron (thick blue lines) and hole doping (thin red lines).
For comparison the values for bulk silicon are given (black
dashed–dotted lines). (b) The in-plane (solid lines) and cross-plane
(dashed lines) doping-dependent power factors at 900 K for the
Si/Ge-SL under electron (thick blue lines) and hole doping (thin red
lines). Again, for comparison the values for bulk silicon are given
(black dashed–dotted lines).

demonstrate the evaluation of maximal ZT and the range

of optimal charge carrier concentration. As a comparison

the FOM for bulk Si is shown as a black dashed–dotted
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Figure 9. (a) The doping-dependent cross-plane figures of merit
ZT⊥ of the Si/Ge-SL (blue lines) and bulk Si (black lines) under
electron doping at different temperatures. (b) The total thermal
conductivities κ⊥ in the cross-plane direction for the Si/Ge-SL (blue
lines) and bulk Si (black lines) under electron doping at different
temperatures. While the electronic part κel⊥ was calculated, the
lattice part κph⊥ was estimated from experiments [13, 55] and is
constant for varying charge carrier concentration. (c) The calculated
cross-plane Lorenz function L⊥ = κel⊥(σ⊥T)−1 is related to the
metallic limit L0 = 2.44 × 10−8 W � K−2.

line too. To present results for the FOM, knowledge of

the thermal conductivity is relevant. For this purpose, the

electronic part of the thermal conductivity κel⊥ was calculated

applying equation (6), while the lattice part κph⊥ was taken

from experiment. Here, κph⊥ = 36 W m−1 K−1 [13] was

used for bulk Si at 900 K, while κph⊥ = 1.9 W m−1 K−1

was used for the Si/Ge-SL [55], with the latter being rather

optimistic, since it is smaller than the expected nano-alloy

limit of 2.5 W m−1 K−1 [69], but achievable in Si/Ge-SL [53,

55, 70]. However, from figure 9(b) one can deduce that for

thermoelectric reliable charge carrier concentrations above

4 × 1020 cm−3 the electronic contribution to the total

thermal conductivity dominates over its lattice part. At 900 K

for N ≈ 1.5 × 1020 cm−3 the electronic part amounts to

0.73 W m−1 K−1, clearly smaller than the lattice part. This

contribution increases significantly at higher temperatures and

charge carrier concentrations omitting higher absolute values

of the FOM. However, ZT⊥ above unity can be reached for

operating temperatures higher than 750 K and electron-doping

N ≈ 1.5–3 × 1020 cm−3.

At room temperature a ZT⊥ ≈ 0.2 is achieved in a

broad doping range of N ≈ 5–25 × 1019 cm−3. Although

this value is an order of magnitude higher than the bulk

Si value of ZT ≈ 0.01 [13, 15, 18], it is still less than the

postulated values of ZT⊥ = 0.96 and ZT⊥ = 1.25 by Koga

et al [15] for strain-symmetrized and strain-non-symmetrized

Si/Ge-SL, respectively. With these values, and using a rather

conservative value of κph⊥ = 7.3 W m−1 K−1 for their

estimations, they expect enormous power factors of PF⊥ ≈
250 µW cm−1 K−2 and PF⊥ ≈ 340 µW cm−1 K−2 for the

strain-optimized Si/Ge-SL in the [111]-direction. We found

PF⊥ ≈ 15 µW cm−1 K−2 at 300 K and N ≈ 1×1020 cm−3 for

the Si/Ge-SL. Even though a convergence of carrier pockets

is not fully achieved in our superlattice, power factors beyond

200 µW cm−1 K−2 seem to be very high, as state-of-the-art

power factors near or above room temperature are well below

100 µW cm−1 K−2 [7, 71, 72]. A benefit from thermionic

emission even at moderate temperatures cannot be expected

in Si/Ge-SL [73–75]. We note that at very low temperatures

below 10 K huge PFs of about 100–1000 µW cm−1 K−2 were

reported for bulk Fe2Sb2 and ZnO1−xSex [76, 77].

As an addition, in figure 9(c) the doping-dependent

Lorenz function L⊥ = κel⊥(σ⊥T)−1 as defined via equa-

tions (5) and (6) is presented. From figure 9(c) it is obvious

that the Lorenz number L⊥ can be substantially different

from the metallic limit L0. Nevertheless, for very large charge

carrier concentrations and the chemical potential located deep

inside the conduction band, L⊥ almost coincides with L0.

At intermediate and thermoelectrically relevant charge carrier

concentrations of N ≈ 5–50 × 1019 cm−3 L⊥ can be much

smaller than L0. For 900 K and N ≈ 1.25 × 1020 cm−3

we find a minimal value of L⊥ ≈ 0.7L0. At smaller charge

carrier concentrations L⊥ rapidly increases and reaches L⊥ ≈
7L0 for electron charge carrier concentrations of N < 1 ×
1018 cm−3 in the intrinsic doping regime. At decreasing

temperatures minimal values of the Lorenz function are

obtained at much smaller charge carrier concentrations.

Furthermore, the maximal values of L shift to smaller charge

carrier concentrations too, and can reach huge values of L

at very low temperatures and charge carrier concentrations.

The effect, which is responsible for the suppression of

the Lorenz function to values below the metallic limit L0,

is termed the bipolar thermodiffusion effect [78–80] and

is maximized for positions of the chemical potential near

the band edges. However, a Lorenz function L 6= L0 can

have consequences for the determination of the thermal

conductivity. The Lorenz factor is generally used to separate

κel and κph. At thermoelectrically advisable charge carrier

concentrations applying the metallic value L0 to determine the

lattice thermal conductivity could lead to an overestimation of

the electronic thermal conductivity, and consequently to an

underestimation of the lattice contribution.
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4. Conclusions and outlook

With the presented results we have shown, that strain

in the [111]-direction is not sufficient to significantly

enhance the thermoelectric transport properties in bulk Si

for energy harvesting applications. In the low-temperature

and low-doping case large enhancements were found under

tensile strain for PF‖ (electron doping) and PF⊥ (hole doping)

and under compressive strain for PF⊥ (electron doping). This

could have a negative impact for metal–oxide–semiconductor

devices involving [111]-strained Si. Here, in the low-

temperature and low-doping regime, small temperature

gradients in the devices could lead to an additional parasitic

electrical power, which could be far larger than expected from

unstrained bulk.

The enhancements found in the high-temperature and

high-doping regime were distinctly smaller. Here slight

enhancements of 5% for PF⊥ were found under compressive

strain. It is more interesting that the power factor is

robust against [111]-strain, especially under hole doping.

Thus, thermoelectric SLs based on [111]-strained Si could

provide an enhanced FOM, as κph is most likely reduced

in SLs. We note that due to the high bulk thermal

conductivity and the only modest gain in the power factor by

[111]-strain engineering, bulk silicon remains an unfavourable

thermoelectric, even if the electronic transport properties are

strain optimized. However, from comparison with earlier

studies on biaxially [001]-strained silicon [18], we confirm

that strain in the [111]-direction, e.g. in silicon-based SLs,

should be preferred, as the carrier pocket degeneracy is

retained and therefore the thermopower and power factor can

be maximized.

To deal with this, we investigated the anisotropic ther-

moelectric transport of a [111]-oriented Si/Ge superlattice.

At a first glance we have shown that no degradation of the

electronic transport by the heterostructure is expected for

electron doping, while even showing an enhancement of 10%

in PF⊥ compared to bulk Si. Assuming a decrease in lattice

thermal conductivity large enhancements in ZT to 0.2 and

1.4 are achieved at 300 K and 900 K, respectively. Under

hole doping the electronic transport in the Si/Ge-SL is heavily

suppressed due to quantum-well effects. Here the cross-plane

power factor PF⊥ is expected to show only around 50% of the

bulk maximal value, leading to small ZT values.
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