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We study the application of the rules of thermofield dynamics (TFD) to the covariant formulation

of open-string field theory. We extend the states space and fields according to the duplication rules

of TFD and construct the corresponding classical action. The result is interpreted as a theory whose

fields would encode the statistical information of open strings. The physical spectrum of the free

theory is studied through the cohomology of the extended Becchi, Rouet, Stora and Tyutin (BRST)

charge, and, as a result, we get new fields in the spectrum emerging by virtue of the quantum

entanglement, and, noticeably, it presents degrees of freedom that could be identified as those of

closed strings. We also show, however, that their appearing in the action is directly related to the

choice of the inner product in the extended algebra, so that different sectors of fields could be

eliminated from the theory by choosing that product conveniently. Finally, we study the extension of

the three-vertex interaction and provide a simple prescription for it of which the results at tree level

agree with those of the conventional theory.
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I. INTRODUCTION

Open string field theory (OSFT) is deemed to be the right

arena in which to study nonperturbative aspects of string

theory and, possibly, even a way to define it nonperturba-

tively [1–8]. A lot of progress has been made since its

appearing in the covariant formulation [1], and it has been

proven to be the right way to address some important issues

such as, for example, the condensation of the tachyon field

[9–16]. In past years, a lot of progress has been made

concerning the finding of classical solutions of OSFT,

showing its capability to study the vacua of string theory

and their physical interpretation. Particularly, some of these

are to be associated with D-branes and/or their decaying

[17–32].

On the other hand, thermofield dynamics (TFD), devel-

oped by Takahashi and Umezawa [33–39], is a real time

approach to quantum field theory at finite temperature

[40,41] where an identical but fictitious copy of the system

is properly introduced. The state space is the tensor

product of two copies of the original Hilbert space, and

the thermodynamical information of a quantum system is

encoded in a fundamental state in this space instead of the

density matrix. More generally, the statistical average of an

operator O can be defined as its expectation value in a

certain (ground) state in the extended Hilbert space,

Tr½Oρ� ¼ hΩjOjΩi; ð1Þ

for any density matrix ρ. In particular, at thermal equilib-

rium, the density matrix ρβ ¼ e−βH=Z corresponds to the

thermal ground state

jΩðβÞi ¼ Z−1=2
X

n

e−βEn=2jnij ~ni ∈ H ⊗ ~H; ð2Þ

where jn; ~ni denotes the nth energy eigenvalue of the

two systems. In this way, one could describe any mixed

state by a pure (but entangled) state in the extended

Hilbert space.

The purpose of this paper is to study in depth how this

extension can be constructed in the context of OSFT. In this

sense, our construction here is nothing but a theory for

the general mixed/entangled states of open strings

[Eq. (1)], rather than for thermal states. In fact, this is

the necessary step, previous to introducing thermal equi-

librium and temperature, which shall be realized in a

forthcoming work.

The specific goal of describing thermal OSFT using TFD

was first achieved by Leblanc [42] shortly after the

appearance of Witten’s formulation of OSFT [1]. It was

done by decomposing the open-string field in an infinity of

ordinary pointlike quantum fields and using the standard

rules of TFD to compute the thermal correlation functions.

Because of this, the application of the TFD rules to

nonlocal objects as the string field has been lacking, and

the duplication TFD principles have not yet been incorpo-

rated to the axiomatic structure of OSFT. In fact, the main

motivation of this work is to study the implications of the
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TFD extension on the modern formulation of OSFT, in

view of these unexplored aspects.
1

The other aspect to have in mind, apparently unrelated

to the discussion above, is the connection with closed

strings. It has been suggested by Sen that open-string

theory might be able to describe some (if not all) of the

closed-string physics, at least in a background of D-branes

[51,52]. In this sense, open-string field theory should be a

privileged ground to check this idea. Open string field

theory is of course formulated in terms of open-strings

degrees of freedom, but there is ample evidence that

tachyon condensation leads to a new vacuum and that this

new vacuum is the closed-string one. If, as expected, the

gravitational interaction can be described as emerging

from OSFT, considered fundamental, then backgrounds

containing black objects that have thermal properties

should can be described within a theory of open strings

in some way. Thus, a study of the thermal/statistical

properties of OSFT is required. We are going to show that

a TFD extension of OSFT indeed captures some features

of the gravitational interaction and closed strings.

This article is organized as follows. In Sec. II, we

briefly review the OSFT and present some standard

formulas. In Sec. III, we introduce the basic rules of

the TFD formalism, and, in order to construct the

extended string fields, we extend the open-string vacuum

accordingly. In Sec. IV, we study how the TFD extension

of the free OSFT can be implemented, and, in order to

define the kinetic term, we discuss the issue of how to

define an appropriate inner product in the extended space

of fields. In Sec. V, we construct the more general ground

states of the theory that would encode the statistical

information [as Eq. (1)] and show that their field content

is coincident with the low energy spectrum of closed

strings. Moreover, it is argued that, for the proper choice

of the inner product, the present theory agrees with the

free action of closed-string field theory. In Sec. VI, we

investigate the spectrum of physical fields (for the lower

levels) by studying the cohomology of the extended

Becchi, Rouet, Stora and Tyutin (BRST) charge operator

on the extended space. The extended OSFT action is

written down in Sec. VII, and it is argued that the explicit

dependence on the more general inner product provides a

mechanism to eliminate many sectors of fields. In

Sec. VIII, we propose the simplest prescription for the

extended vertex (star product) in order to reproduce the

conventional OSFT dynamics at tree level. Concluding

remarks are collected in Sec. IX where we stress that this

theory is equipped with a natural definition of entropy.

II. OPEN STRING FIELD THEORY:

PRELIMINARIES

The main object in this theory is the string field jΦi,
which is an element of a graded algebraA. In this algebra, a

star product is defined ⋆∶A ⊗ A → A. This product is

additive with respect to the degree. There are also a BRST

operator Q of degree 1 and an integral operation which

takes the string field to a complex number. These elements

are required to satisfy a set of axioms:

iÞ Q2jΦi ¼ 0; ∀ jΦi ∈ A

iiÞ
Z

QjΦi ¼ 0; ∀ jΦi ∈ A

iiiÞ QðjΦi⋆jΨiÞ ¼ ðQjΦiÞ⋆jΨi þ ð−1ÞΦjΦi⋆ðQjΨiÞ;
∀ jΦi; jΨi ∈ A

ivÞ
R
jΦi⋆jΨi ¼ ð−1ÞΦΨ

R
jΨi⋆jΦi; ∀ jΦi; jΨi ∈ A

vÞ ðjΦi⋆jΨiÞ⋆jΞi ¼ jΦi⋆ðjΨi⋆jΞiÞ;
∀ jΦi; jΨi; jΞi ∈ A: ð3Þ

An action is then postulated,

S ¼ 1

2
hΦ; QΦi þ g

3
hΦ;Φ⋆Φi; ð4Þ

where g is the open-string coupling constant. Once the

axioms (3) are satisfied, this action is invariant under the

gauge transformation

δjΦi ¼ QjΛi þ jΦi⋆jΛi − jΛi⋆jΦi; ð5Þ

where jΛi ∈ A is a gauge parameter with degree zero.

If we take the string field as a functional of the matter and

ghost fields that describe a string in a 26-dimensional

space-time, the BRST operator Q to be the BRST operator

QB of the open string, and the degree of the algebra to be

associated with the ghost number of the string field,
2
it has

been shown that all these axioms and structure are satisfied.

The string field can then be expanded in terms of the Fock

space states of the open string with their coefficients being

space-time fields,

jΦi ¼
Z

d26k

ð2πÞ26 ½tðkÞ þ AμðkÞαμ−1 þ � � ��jΩi; ð6Þ

where jΩi ¼ c1j0; ki is the Fock space vacuum. The star

product is naturally defined as the gluing of the right half of

one string to the left half of the other producing a third

string, defining in this way how strings interact. Finally, the

1
In another context, properties of first quantized strings and

D-branes at finite temperature have already been studied [43], and
the idea of using TFD to study D-branes at finite temperature
came up in Refs. [44–50].

2
In this paper, we denote the ghost number of a string field as

ghðΦÞ, and it is computed by the usual rule: the number of ghosts
(c) minus the number of antighosts (b).
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integration operation is performed by gluing the left and

right halves of the string.

The brackets in (4) are defined by

hΦjΨi≡ hbpzðΦÞjΨi; ð7Þ

where bpz operation is defined as follows. For a primary

field ϕðzÞ, taking the bpz means transforming this field by

IðzÞ ¼ −1=z. In terms of the modes
3
of the primary field,

the bpz operation means

bpzðϕnÞ ¼ ð−1Þnþhϕ−n: ð8Þ

The bracket (7) is also written, in terms of the world sheet

conformal field theory, as an amplitude to be computed on

the unitary disk in the complex plane, that is

hΦjΨi≡ hI∘Φð0ÞΨð0ÞiDisk: ð9Þ

The interaction term in (4) represents the gluing of three

strings and is defined in terms of an amplitude as

hΦ;Ψ⋆Ξi≡ hf1∘Φð0Þf2∘Ψð0Þf3∘Ξð0ÞiDisk; ð10Þ

where fi are the functions that map each of the upper-half

disks of each string, given by coordinates ξi, to the unit disk

in the w complex plane:

f1ðξ1Þ ¼ e
2πi
3

�
1þ iξ1

1 − iξ1

�2
3

;

f2ðξ2Þ ¼
�
1þ iξ2

1 − iξ2

�2
3

;

f3ðξ3Þ ¼ e−
2πi
3

�
1þ iξ3

1 − iξ3

�2
3

: ð11Þ

One object that will be useful in the following is the

reflector state. It is a state that lives in H� ⊗ H� and is

defined, in connection to the kinetic term of the action, as

hΦjΨi ¼ hR12∥Φi1jΨi2; ð12Þ

where the subscripts 1 and 2 refer to the Hilbert spaces of

the first and second strings, respectively. One can then

obtain an expression for the reflector in terms of the

oscillator modes of the matter and ghost fields [2,3],

hR12j

¼
Z

d26k

ð2πÞ26 ð1h0; kjc−1 ⊗ 2h0;−kjc−1Þðc
ð1Þ
0 þ c

ð2Þ
0 Þ

× exp

�
−
X∞

n¼1

ð−1Þn½aμð1Þn a
ð2Þ
μ;n þ c

ð1Þ
n b

ð2Þ
n þ c

ð2Þ
n b

ð1Þ
n �

�
;

ð13Þ

where the oscillator modes a
μ
n (matter) and cn, bn (ghosts)

obey the known algebras

½aμn; aν†m � ¼ δm;nη
μν; fcn; bmg ¼ δmþn; ð14Þ

where a
μ
n ¼ α

μ
n=

ffiffiffi
n

p
for n > 0.

Also, the interaction term of the action can be written in

terms of a state called the three-string vertex. The three-

string vertex is defined as a state hV123j ∈ H� ⊗ H� ⊗ H�

such that

hΦ;Ψ⋆Ξi≡ hV123∥Φi1jΨi2jΞi3; ð15Þ

where the subscripts 1, 2, and 3 refer to the Hilbert spaces

of the first, second, and third string, respectively. It was

shown that this vertex can be written (as a ket) as

jV123i ¼ N

Z
d26kð1Þ

ð2πÞ26
d26kð2Þ

ð2πÞ26
d26kð3Þ

ð2πÞ26

× exp

�X3

r;s¼1

X

m;n

−
1

2
a
ðrÞ
m Vrs

mna
ðsÞ
n − a

ðrÞ
m Vrs

m0k
ðsÞ

−
1

2
kðrÞNrs

00k
ðsÞ − c

ðrÞ
m Xrs

mnb
ðsÞ
n

�

× δðkð1Þ þ kð2Þ þ kð3ÞÞcð1Þ0 c
ð2Þ
0 c

ð3Þ
0 ðjΩi1

⊗ jΩi2 ⊗ jΩi3Þ; ð16Þ

where the constant coefficients Vrs
mn, V

rs
m0, V

rs
00, and X

rs
mn are

calculated in [2,3,7,8,53,54] and N ¼ 39=2=26. For com-

pleteness, it is worth mentioning that this vertex is also used

to make the star product between two string fields,

jΦ⋆Ψi3 ¼ 1hΦj2hΨ∥V123i: ð17Þ

III. TFD DUPLICATION RULES AND THE

GROUND STATE

The formalism of thermal field dynamics [33,36] is a

natural extension of general quantum field theories built up

in order to describe the thermal effects and statistical

properties of a system as an entanglement of its degrees

of freedom with a noninteracting identical copy of itself.

According to this formalism, one considers the direct

product of both Hilbert spaces, and the time evolution

is generated by a decoupled Hamiltonian operator

3
A primary field of conformal weight h has an expansion in

terms of its modes as ϕðzÞ ¼
P

∞
n¼−∞

ϕn

znþh.
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Ĥ ≡H − ~H, where the tilde refers to the copy of the

system. The operators of the gQFT are constructed from

the QFT ones by the tilde conjugation rules, or simply

TFD rules [55], defined for all the operators X; Y; :… of the

QFT by

ðXYÞ~ ¼ ~X ~Y

ðcX þ YÞ~ ¼ c� ~X þ ~Y

ðX†Þ~ ¼ ð ~XÞ†

½ ~X; Y� ¼ 0

ð ~XÞ~ ¼ ϵX: ð18Þ

In the last line, ϵ ¼ þ1ð−1Þ for commuting (anticommut-

ing) fields [56]. This structure is related to a c⋆-algebra,
and the rules (18) may be identified with the modular

conjugation of the standard representation [57].

In TFD, an extra condition on entangled/thermal ground

states is demanded,

ðiÞ jΩθ⟫ ¼ gjΩθ⟫; ð19Þ

where θ denotes the label on the vacua. Furthermore,

all these states are defined to be annihilated by the

combination

ðiiÞ Ĥ ≡H − ~H; ð20Þ

which is considered to be the generator of time evolution of

the duplicated system. In particular, using the rules (18),

one can observe that the canonical open-string vacuum

jΩi ¼ c1j0; ki should be extended a priori as jΩ⟫≡
jΩi ⊗ j ~Ωi ¼ c1j0; ki ⊗ ~c1j~0; ~ki, and we will see below

which specific form this state must have in order to satisfy

axioms i and ii.

The last axiom of TFD is the so-called Kubo-Martin-

Schwinger (KMS) condition that is often expressed as

ðiiiÞ OðxμÞjΩðβÞ⟫ ¼ ~O
†ðxμ − iβμ=2ÞjΩðβÞ⟫

⟪ΩðβÞjOðxμÞ ¼ ⟪ΩðβÞj ~O†ðxμ þ iβμ=2Þϵ

for a space-time point-dependent operator O, where βμ is a

timelike vector and β≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−βμβμ

p
is the temperature

inverse. This is what defines the thermal ground state.

In this first paper, we are not going to implement the

KMS condition iii that breaks the relativistic symmetry

and restricts the general mixed states to the equilibrium

(thermal) ones. Hence, the resulting theory can be viewed

as a generalization of TFD, which can be interpreted as a

theory for mixed states and addresses the more general

possibility of describing dynamics for states out of thermal

equilibrium.

A. TFD double string vacuum

As an application of the TFD rules, let us first construct

the ground state of the doubled open string. We start with a

physical one-string ground state and another (independent)

one for the tilde copy of the state space:

jΩi ≔ c1j0; ki ¼ eik·X0c1j0; 0i;
j ~Ωi ≔ ~c1j~0; ~ki ¼ ei

~k· ~X0 ~c1j~0; ~0i: ð21Þ

The operator X0 denotes Xðz ¼ z̄ ¼ 0Þ in the complex

plane. Then, the vacuum of the doubled theory shall be

defined in general as

jΩ⟫≡ jΩi ⊗ j ~Ωi ¼ c1j0; ki ⊗ ~c1j~0; ~ki: ð22Þ

However, notice that not all of these states are vacua of the

extended theory; indeed, according to axiom ii, the ground

states must satisfy the condition jΩ⟫ ¼ gjΩ⟫, i.e.,

c1j0; ki ⊗ ~c1j~0; ~ki ¼ −~c1
gðj0; kiÞ ⊗ c1

gðj~0; ~kiÞ: ð23Þ

Taking the tilde of both equations in (21) and using the

rules (18), we obtain

gðjΩiÞ ≔ ~c1
gðj0; kiÞ ¼ e−ik·

~X0 ~c1
gj0; 0i;

gðj ~ΩiÞ ≔ −c1
gðj~0; ~k⟫Þ ¼ −e−i

~k·X0c1
gðj~0; ~0⟫Þ: ð24Þ

Then, Eq. (23) is written as

eik·X0c1j0; 0i ⊗ ei
~k· ~X0 ~c1j~0; ~0i ¼ e−ik·

~X0 ~c1
gj0; 0i

⊗ −e−i
~k·X0c1

gðj~0; ~0⟫Þ ð25Þ

that can be rewritten as

eik·X0ei
~k· ~X0c1 ~c1j0; 0i ⊗ j~0; ~0i ¼ e−ik·

~X0e−i
~k·X0c1 ~c1

gj0; 0i

⊗
gðj~0; ~0⟫Þ; ð26Þ

thus, using that ½X0; ~X0� ¼ 0,

eiðkþ~kÞ·X0eiðkþ~kÞ· ~X0c1 ~c1j0; 0i ⊗ j~0; ~0i ¼ c1 ~c1
gj0; 0i

⊗
gðj~0; ~0⟫Þ; ð27Þ

which is nothing but

c1 ~c1j0; kþ ~ki ⊗ j~0; kþ ~ki ¼ c1 ~c1
gj0; 0i ⊗ gðj~0; ~0⟫Þ: ð28Þ

Finally, since the states gj0; 0i; gðj~0; ~0⟫Þ do not depend on the
momenta k or ~k, we we conclude both
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kþ ~k ¼ 0 ð29Þ

and

gj0; 0i ¼ j~0; ~0i: ð30Þ

The conclusion, then, is that the ground state of the

(TFD) doubled open-string theory (22) reads

jΩ⟫≡ jΩi ⊗ j ~Ωi ¼ c1j0; ki ⊗ ~c1j~0;−ki; ð31Þ

and, furthermore, by virtue of (21), (24), and (30), we have

that fjΩi ¼ j ~Ωi.
Therefore, axiom ii is automatically satisfied by the

string Hamiltonian operator L0. In fact, L̂0 ≡ L0 −
~L0

annihilates the state (31) since j~kj2 ¼ j − kj2 ¼ jkj2.

IV. EXTENDING OSFT

The first ingredient of TFD is the duplication of the space

of states of a quantum theory. This allows us to describe all

the states of the system, including density matrices, as pure

states. The effects of the statistical mixing are encoded in

the entanglement between both parts of the extended

theory.

Based on this approach, we are going to duplicate the

string Fock space toward a future formulation of a finite

temperature string field theory. Our string field will then be

constructed as an expansion on a doubled Fock space. The

usual string field is an element of an algebra A, which can

be interpreted as a set of (wave) functionals of a string

configuration in space-time Φ½XðσÞ�. Its extension will be a
space A ⊗ ~A, the elements of which can now be described

as functionals of two string configurations Φ̂½XðσÞ; ~Xð ~σÞ�.
We will interpret this new object as encoding the informa-

tion on general (pure or mixed) string states, often

described by density matrices [see Eq. (1)].

This viewpoint constitutes a radical difference with

regard to previous TFD formulations leblanc,leb1, where

the string field is described as its decomposition in terms of

conventional pointwise fields, and thus the TFD rules

simply duplicate them. Here, the duplication is viewed

on the string field itself, and one might expect different

consequences on the field spectrum.

As just said, the extension of the string field is immediate

by considering the tensor product of both bases. Taking into

account (29), we can represent this as

jΦ⟫ ¼
Z

d26k

ð2πÞ26 ½tðkÞ þ AμðkÞαμ−1 þ BμðkÞ ~αμ−1

þ CμνðkÞαμ−1 ~αν−1 þ…�jΩ⟫: ð32Þ

According to conventional TFD, one shall also consider

a tilde copy of this string field constructed from it by the

tilde conjugation rules,

j ~Φ⟫ ¼
Z

d26k

ð2πÞ26 ½
~tðkÞ þ ~AμðkÞ ~αμ−1 þ ~BμðkÞαμ−1

þ ~CμνðkÞ ~αμ−1αν−1 � � ��jΩ⟫; ð33Þ

where we have implicitly assumed that the component

fields shall be canonically quantized afterward, so the fields

t; Aμ; Cμν;… must be considered independent from their

tilde partners.

Following the TFD construction, the theory is defined by

the difference between two (noninteracting) string field

theories,

Ŝ½Φ; ~Φ� ¼ S½Φ� − ~S½ ~Φ�; ð34Þ

where the first term is the usual (open) string field theory

action properly extended to the space of configurations

A ⊗ ~A
4
and the second one is derived from this by using

the tilde conjugation rules.

Formally, this is

Ŝ ¼ 1

2
⟪ΦjQBjΦ⟫ext −

1

2
⟪ ~Φj ~QBj ~Φ⟫ext þ

g

3
⟪Φ;Φ⋆Φ⟫ext

−
g

3
⟪ ~Φ; ~Φ⋆ ~Φ⟫ext: ð35Þ

From now on, we omit ext to denote the extension of the

scalar product to the spaceA ⊗ ~A, and we simply denote it

by the double bracket. Although (35) describes the correct

structure of the extended action, computationally, one shall

give a prescription to extend the scalar product to act on

Â≡A ⊗ ~A, and its tensor products⊗i Âi, so as to extend

the product ⋆ on two doubled string spaces Â1 ⊗ Â2.

We take the reflector state for this space simply as

⟪R12j≡ hR12j ⊗ h ~R12j, where h ~R12j≡ hR~1 ~2
j, and, using

the rules above, it can be verified that

g⟪R12j ¼ ⟪R12j: ð36Þ

By minimizing (35) with respect to the fields Φ and ~Φ,

we obtain two decoupled equations of motion,

QBjΦ⟫ ¼ gjΦ⋆Φ⟫ ð37Þ

and

~QBj ~Φ⟫ ¼ gj ~Φ⋆ ~Φ⟫; ð38Þ

the classical solutions of which would describe the states of

the theory. From now on, we will focus on the free OSFT,

which describes the asymptotic states or the weak coupling

limit of the above theory, so the rhs of these two equations

4
The String Field Theory (SFT) action must be extended to be

a well-defined functional of fields (32).
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should be interpreted only as formal expressions. In the last

section, we shall discuss the possible form of the inter-

action term.

A. Free theory

Let us write the kinetic term of the extended free OSFT

in the following way,

S½Φ� ¼ 1

2
⟪ΦjQBjΦ⟫; ð39Þ

so the full TFD action is

Ŝ ¼ S½Φ� − ~S½ ~Φ�: ð40Þ

We must then give a prescription for the internal product

⟪Φ1jΨ2⟫ on Â, in order to have the correct ghost number in

the kinetic term. For instance, let us consider some generic

operator O acting on one copy of the usual space A; then,

the Riemann-Roch theorem implies that the product

hΦ1jOΨ2i is nontrivial iff the ghost number in this product

is 3, since it is to be evaluated on the disk. So, for instance,

if jΦ1i and jΨ2i are ordinary open-string fields ghðjΦiÞ ¼
ghðjΨiÞ ¼ 1, then one shall have ghðOÞ ¼ 1. Now, let us

consider an operator Ô on the doubled open-string space Â.

The ghost numbers are ghðjΦ⟫Þ ¼ fghðjΦ⟫Þ ¼ ghðjΨ⟫Þ ¼
fghðjΨ⟫Þ ¼ 1, and the cited theorem implies that the pro-

duct ⟪ΦjÔΨ⟫ is nontrivial only if ghðÔÞ ¼ fghðÔÞ ¼ 1.

This is essentially the situation of defining the kinetic

term (39), ⟪ΦjQBjΦ⟫, where ghðQBÞ ¼ 1. The extended

reflection map ⟪R12j∶ Â1 → Â
�
2 can be thought of as a

metric ⟪R12j∶Â1 ⊗ Â2 → ℜ defining the internal product.

The kinetic term (39) would then be expressed as

ð⟪R12jΦð1Þ⟫ÞjQð2Þ
B jΦð2Þ⟫; ð41Þ

where the indices 1; 2;… stand for different (doubled)

string space copies Â1;2;…. Notice that the ghost number is

not saturated unless we insert some operator Gð2Þ such that

the unique nonvanishing ghost number is fgh2G ¼ 1. An

obvious candidate to this is, of course, the operator ~c
ð2Þ
0 .

Therefore, we see that the correct formula to define

this is
5

S½Φ�≡ 1

2
ð⟪R12∥Φð1Þ⟫ÞGð2ÞQð2Þ

B jΦð2Þ⟫: ð42Þ

So our proposal is to extend the internal product to the

doubled Hilbert space by means of

⟪Φ1jΨ2⟫≡ ⟪R12∥Φ1⟫G
ð2ÞjΨ2⟫; ð43Þ

where ⟪Φ1j has gh ¼ fgh ¼ 1, whereas the object jΨ2⟫ has

gh ¼ 2 and fgh ¼ 1. In order to capture a more general

prescription, but also for simplicity, we take this to be a

generic linear combination of ghost operators

G ¼ lc0 þ ~l~c0; l; ~l ∈ ℜ: ð44Þ

Notice that all internal products of this family, parametrized

by the real numbers l; ~l, are indeed nondegenerate.

Within this prescription, the action (39) reads

S½Φ� ¼ 1

2
ð⟪R12jΦ⟫ÞGQBjΦ⟫: ð45Þ

Then, using R12 ¼ ~R12 and the TFD rules, the tilde action is

simply

~S½ ~Φ� ¼ 1

2
ð⟪R12j ~Φ⟫Þ ~G ~QBj ~Φ⟫; ð46Þ

where, interestingly, the tilde action involves a different

(tilde) internal product. Therefore, the equations of motion

derived by varying the action Ŝ½Φ; ~Φ� with respect to the

kets jΦ⟫ and j ~Φ⟫, respectively, are

QBjΦ⟫ ¼ 0 & ~QBj ~Φ⟫ ¼ 0: ð47Þ

Let us remark that these equations of motion are the same

and are independent on the choice of the internal product.

However, let us end this section by mentioning that there is

a particularly symmetric choice of the operator Gc ≡ lĉ0 ¼
lðc0 − ~c0Þ, which is in line with the TFD extension of the

operators. Then, ~Gc ¼ −Gc is verified, and so the tilde

corresponding product is the same with an inverted signal.

This choice is referred to as the canonical product. So the

extended OSFT defined with the canonical product results

Ŝcanonical ¼
l

2
ð⟪R12jΦ⟫Þĉ0QBjΦ⟫

þ l

2
ð⟪R12j ~Φ⟫Þĉ0 ~QBj ~Φ⟫: ð48Þ

Later, we will see that this encodes an interesting property.

V. GROUND STATES

In this section, we will study the theory that describes the

generally entangled ground states of the doubled-OSFT

(or simplyΩ-states). By tracing out the tilde copy degrees of

freedom, these (mixed) states can be equivalently described

by density matrices encoding the statistical properties of the

open-string field. In the present approach, one can restrict the

theory to these states by only imposing the axioms (i and ii)

of TFD. Then, in a following step, by imposing the KMS

condition (axiom iii), one would obtain the specific OSFT

thermal vacuum. Thus, here we will investigate the space of

Ω-states, which satisfy axioms i and ii.

5
A study on how this insertion should be, for general ghost

numbers, will be presented in a forthcoming work.
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As seen in Sec. III, the extended canonical string vacuum

is jΩ⟫ ¼ jΩ; ~Ω⟫ ¼ jΩi ⊗ j ~Ωi ¼ c1j0; ki ⊗ ~c1j~0;−ki, and
it satisfies both

ðL0 − 1ÞjΩ⟫ ¼ 0; ð ~L0 − 1ÞjΩ⟫ ¼ 0: ð49Þ

It then automatically satisfies L0 −
~L0jΩ⟫ ¼ 0. Since L̂0 ≡

L0 −
~L0 is the total Hamiltonian in a TFD formulation, one

then demands that this property characterize the most

general entangled ground states (axiom ii):

L̂0jΩðθÞ⟫ ¼ L0 −
~L0jΩðθÞ⟫ ¼ 0: ð50Þ

Because there is an infinite-dimensional space of solutions

for this equation, we have labeled these by parameters θ’s

which will be interpreted below.

In addition, as required by the TFD axiom i, we also

demand the invariance

jΩðθÞ⟫ ¼ gjΩðθÞ⟫: ð51Þ

These two axioms are what we could minimally require to

define generally entangled ground states of the extended

(free) OSFT (40)

Ŝ ¼ 1

2
⟪ΦjQBjΦ⟫ −

1

2
⟪ ~Φj ~QBj ~Φ⟫: ð52Þ

The equations of motion (47)

QBjΦ⟫ ¼ 0 & ~QBj ~Φ⟫ ¼ 0 ð53Þ

are satisfied for all string fields jΦ⟫, j ~Φ⟫. In particular, they
hold for ground states defined according to (50) and (51).

Then, using (51), we obtain

QB � ~QBjΩðθÞ⟫ ¼ 0; ð54Þ

which, on the other hand, can be derived from another

equivalent free (effective) action for Ω-fields,

S�½ΩðθÞ� ¼
1

2
ð⟪R12∥ΩðθÞ⟫ÞG�Q�jΩðθÞ⟫; ð55Þ

where Q� ≡QB � ~QB and G� ≡ ~G� G.

Therefore, by virtue of i and ii, these fields can be written

at the leading energy level as

jΩðθÞ⟫ ¼
Z

d26k

ð2πÞ26 ½tðkÞ þ CμνðkÞαμ−1 ~αν−1 þ…�jΩ⟫;

ð56Þ

with tðkÞ ¼ ~tðkÞ and CμνðkÞ ¼ ~CνμðkÞ. The vacua can thus

be characterized by ðt; Cμν;…Þ, and, hence, this collection of
fields can be identified with the parameters θ’s themselves.

Notice that these fields associated with the Ω-states

appear without their tilde partners. In other words, the TFD

duplication will only produce a tilde correspondent of the

ordinary open-string fields, but not for the background

fields such as Cμν. Therefore, if we decompose this field in

its irreducible components Cμν ¼ gμν þ Bμν þ ϕημν, we

can conjecture that the field gμν precisely describes grav-

itons and that thermal (open) string fields might describe

the gravitational field and, more hopefully, closed strings.

The main result of this section is the observation that,

upon the appropriate identifications of the string degrees of

freedom, this effective theory can be identified with a certain

formulation of (free) closed-string field theory (CSFT) [58].

In fact, if we identify the holomorphic/antiholomorphic

part (a.h.) of the closed-string degrees of freedom with the

tilde/nontilde open strings, respectively, one obtains that

both theories are coincident.

In particular, the extended reflector ⟪R12j≡ hR12jhR~1 ~2
j

results in being suggestively similar to the CSFT one [58],

hRc
12j ¼

Z
d26k

ð2πÞ26 ð1h0;
~0; kjc−1c̄−1 ⊗ 2h0; ~0;−kjc−1c̄−1Þ

× ðc−ð1Þ0 þ c
−ð2Þ
0 Þðcþð1Þ

0 þ c
þð2Þ
0 Þ

× exp

�X∞

n¼1

½að1Þn a
ð2Þ
n þ c

ð1Þ
n b

ð2Þ
n þ c

ð2Þ
n b

ð1Þ
n þ a:h:�

�
;

ð57Þ

with a.h. denoting the antiholomorphic part and where

c�0 ¼ ðc0 � c̄0Þ=2: ð58Þ

We see that both definitions of the reflector coincide up to a

twist on the string “(2)” given by,

ðað2Þn ; b
ð2Þ
n ; c

ð2Þ
n Þ → ðð−1Þnað2Þn ; ð−1Þnbð2Þn ; ð−1Þncð2Þn Þ; ð59Þ

which is a canonical transformation.

Furthermore, the equation of motion (54), with Qþ,
coincides with that of (free) CSFT [58], and (50) can be

identified with the level matching condition, so that both

theories are (on-shell) equivalent.Moreover, suchequivalence

becomes off shell if, and only if, the inner product (43) is the

canonical one, i.e, theTFD-extended action is (48). In fact, for

states satisfying the constraint (ii), Eq. (48) is expressed as

Ŝcanonical½Ω� ¼
1

2
ð⟪R12∥Ω⟫Þĉ0ðQB þ ~QBÞjΩ⟫; ð60Þ

which is nothing but the free-CSFT action.

So, the result found here is that the Ω-states can be

identified with the asymptotic states of (free) CSFT. In the

following section, we are going to study the field spectrum

of double-OSFT and explicitly verify that.
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VI. SPECTRUM ANALYSIS OF THE

FREE THEORY

In the first quantized theory of strings, one way to get the

spectrum of the free theory is to use the BRST cohomology

so that physical states are those in the cohomology of the

QB operator. Here, we will pursue the same path.

The open-string BRST operator is

QB ¼
X∞

n¼−∞

cnL
ðMÞ
−n þ

X∞

m;n¼−∞

ðm − nÞ
2

∶cmcnb−m−n∶ − c0;

ð61Þ

where M stands for the matter part and ∶ � � � ∶ means

normal ordering with respect to the jΩi vacuum. The TFD

rules give us then

~QB ¼
X∞

n¼−∞

~cn ~L
ðMÞ
−n þ

X∞

m;n¼−∞

ðm − nÞ
2

∶~cm ~cn ~b−m−n∶ − ~c0:

ð62Þ

Let us then analyze what happens when we apply the

extended BRST charge to the doubled field. For that, we

define the level of the field by the pair of numbers ðN; ~NÞ,
where N is the eigenvalue of the basis state with respect to

the number operator present in L0, and analogously for the

tilde operator. We will do the analysis for the first few levels.

A. Cohomology of QB and ~QB

In SFT, we build the string field as a linear combination

of the physical states of the first quantized string. These are

obtained by various ways; one of them is by the cohomol-

ogy of the BRST operator. In this section, we are going to

study the cohomology of the extended BRSToperators and

see what the physical states are.

Let us start by the cohomology of the QB operator.

1. Level (0,0)

In this level, a general state is written as

jΦð0;0Þ⟫ ¼ tðkÞjΩ⟫ ð63Þ

so that

QBjΦð0;0Þ⟫ ¼ tðkÞQBjΩ⟫ ¼ tðkÞðα0k2 − 1Þc0jΩ⟫: ð64Þ

For this state to be closed, it is clear that k2 ¼ 1=α0. It can
also be seen that this state cannot be written as the BRST

operator acting on another state. Hence, it is never exact.

The conclusion is then that the physical state at this level is

a tachyon state.

2. Level (1,0)

At this level, the general state is

jΦð1;0Þ⟫ ¼ ½AμðkÞαμ−1 þ βðkÞc−1 þ γðkÞb−1�jΩ⟫: ð65Þ

Acting with the QB operator, we get

QBjΦð1;0Þ⟫ ¼
� ffiffiffiffi

α0

2

r
kμAμðkÞc−1 þ ðα0k2ÞAμðkÞαμ−1c0

þ
ffiffiffiffi
α0

2

r
γðkÞkμαμ−1 þ ðα0k2ÞγðkÞc0b−1

− ðα0k2ÞβðkÞc−1c0
�
jΩ⟫: ð66Þ

This state is closed if k2 ¼ kμAμ ¼ γ ¼ 0 and β is free. An

exact state should satisfy jΨð1;0Þi ¼ QBjΦð1;0Þi. We get then

jΨð1;0Þ⟫

¼ ½A0
μðkÞαμ−1 þ β0ðkÞc−1 þ γ0ðkÞb−1�jΩii ¼ QBjΦð1;0Þii

¼
� ffiffiffiffi

α0

2

r
kμAμðkÞc−1 þ ðα0k2ÞAμðkÞαμ−1c0 þ

ffiffiffiffi
α0

2

r
γðkÞkμαμ−1

þ ðα0k2ÞγðkÞc0b−1 − ðα0k2ÞβðkÞc−1c0
�
jΩ⟫: ð67Þ

Since kμAμ ≠ 0, otherwise jΦð1;0Þi would be closed, we get
that for a state to be exact we must then have k2 ¼ 0,

γ0 ¼ 0, and

A0
μðkÞ ¼

ffiffiffiffi
α0

2

r
γðkÞkμ; β0ðkÞ ¼

ffiffiffiffi
α0

2

r
kμAμðkÞ ð68Þ

It means that for a state to be closed and not exact

we should have k2 ¼ 0, γ ¼ 0, kμAμ ¼ 0, and

β ≠
ffiffiffiffiffiffiffiffiffi
α0=2

p
ðkμAμÞ ¼ 0. So c−1jΩ⟫ is an exact state for it

can be written as

c−1jΩ⟫ ¼ 1

β
QBðAμα

μ
−1jΩ⟫Þ: ð69Þ

We also get a gauge invariance A0
μ ≃ Aμ þ

ffiffiffiffiffiffiffiffiffi
α0=2

p
γkμ.

The physical state at this level is then

jΦð1;0Þ⟫ ¼ Aμðk; ~kÞαμ−1jΩ⟫ ð70Þ

with k2 ¼ 0 and the aforementioned gauge invariance, that

is, a Uð1Þ gauge field.

3. Level (0,1)

Now, we have

jΦð0;1Þ⟫ ¼ ½BμðkÞ ~αμ−1 þ ζðkÞ~c−1 þ ξðkÞ ~b−1�jΩ⟫ ð71Þ

so that
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QBjΦð0;1Þ⟫

¼ ðα0k2 − 1Þ½BμðkÞ ~αμ−1 þ ζðkÞ~c−1 þ ξðkÞ ~b−1�c0jΩ⟫:
ð72Þ

The state is closed only if k2 ¼ 1=α0. If k2 ≠ 1=α0, we see
that

jΦð0;1Þ⟫ ¼ 1

α0k2 − 1
QBjΦð0;1Þ⟫; ð73Þ

that is, it is an exact state. Hence, every state in this level is

physical as long as k2 ¼ 1=α0.

4. Level (1,1)

The general state is now

jΦð1;1Þ⟫ ¼ ½CμνðkÞαμ−1 ~αν−1 þ vμðkÞαμ−1 ~b−1 þ wμðkÞαμ−1 ~c−1
þ uνðkÞb−1 ~αν−1 þ zνðkÞc−1 ~αν−1 þDðkÞb−1 ~b−1
þ FðkÞc−1 ~b−1 þHðkÞb−1 ~c−1

þMðkÞc−1 ~c−1�jΩ⟫: ð74Þ

Now,

QBjΦð1;1Þ⟫ ¼
�
ðα0k2ÞCμνα

μ
−1 ~α

ν
−1c0 þ

ffiffiffiffi
α0

2

r
kμCμνc−1 ~α

ν
−1 þ ðα0k2Þvμαμ−1c0 ~b−1

þ
ffiffiffiffi
α0

2

r
kμvμc−1 ~b−1 þ ðα0k2Þwμα

μ
−1c0 ~c−1 þ

ffiffiffiffi
α0

2

r
kμwμc−1 ~c−1

þ
ffiffiffiffi
α0

2

r
kμuνα

μ
−1 ~α

ν
−1 þ ðα0k2Þuν ~αν−1c0b−1 þ

ffiffiffiffi
α0

2

r
Dkμα

μ
−1
~b−1

þ ðα0k2ÞDc0b−1 ~b−1 þ
ffiffiffiffi
α0

2

r
Hkμα

μ
−1 ~c−1 þ ðα0k2ÞHc0b−1 ~c−1

− ðα0k2Þzν ~αν−1c−1c0 − ðα0k2ÞFc−1c0 ~b−1 − ðα0k2ÞMc−1c0 ~c−1

�
jΩ⟫: ð75Þ

For this state to be closed, we should have

k2 ¼ 0; kμCμν ¼ 0; kμvμ ¼ 0; kμwμ ¼ 0;

uν ¼ 0; D ¼ 0; H ¼ 0 ð76Þ

and zν, F, and M all free.

Now, we should look at the exact states. Using the

same procedure we used above and comparing (74) and

(75), we see that an exact state should satisfy k2 ¼ 0,

u0ν ¼ D0 ¼ H0 ¼ 0, and

C0
μν ¼

ffiffiffiffi
α0

2

r
kμuν; v0μ ¼

ffiffiffiffi
α0

2

r
Dkμ;

w0
μ ¼

ffiffiffiffi
α0

2

r
Hkμ z0ν ¼

ffiffiffiffi
α0

2

r
kμCμν;

F0 ¼
ffiffiffiffi
α0

2

r
kμvμ; M0 ¼

ffiffiffiffi
α0

2

r
kμwμ: ð77Þ

To get a state that is closed but not exact, we should then

have

k2 ¼ 0; kμCμν ¼ 0 ; kμvμ ¼ 0; kμwμ ¼ 0

uν ¼ 0; D ¼ 0; H ¼ 0; zν ≠

ffiffiffi
α0

2

q
kμCμν ¼ 0

F ≠

ffiffiffiffi
α0

2

r
kμvμ ¼ 0; M ≠

ffiffiffiffi
α0

2

r
kμwμ ¼ 0: ð78Þ

We come to the conclusion that the physical state at this

level is

jΦð1;1Þ⟫

¼ ½CμνðkÞαμ−1 ~αν−1 þ vμðkÞαμ−1 ~b−1 þ wμðkÞαμ−1 ~c−1�jΩ⟫
ð79Þ

with the following gauge invariances:

C0
μν ≃ Cμν þ

ffiffiffiffi
α0

2

r
kμuν

v0μ ≃ vμ þ
ffiffiffiffi
α0

2

r
Dkμ

w0
μ ≃ wμ þ

ffiffiffiffi
α0

2

r
Hkμ: ð80Þ
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We can decompose the tensor Cμν in its irreducible parts

so that Cμν ¼ gμν þ Bμν þ ϕημν, that is the direct sum of

its symmetric, antisymmetric, and traceless parts. We

see then that the gauge invariances become

g0μν ≃ gμν þ
ffiffiffiffi
α0

2

r
ðkμuν þ kνuμÞ

B0
μν ≃ Bμν þ

ffiffiffiffi
α0

2

r
ðkμuν − kνuμÞ

ϕ0 ≃ ϕþ
ffiffiffiffi
α0

2

r
kμuμ

v0μ ≃ vμ þ
ffiffiffiffi
α0

2

r
Dkμ

w0
μ ≃ wμ þ

ffiffiffiffi
α0

2

r
Hkμ: ð81Þ

As one can see, we obtain at this level two Uð1Þ gauge

fields and what seems to be the fields of the graviton,

the Kalb-Ramond field, and the dilaton with their

respective gauge invariances.

Hence, up to level (1,1), the extended string

field is

jΦ⟫ ¼
Z

d26k

ð2πÞ26 ½tðkÞ þ AμðkÞαμ−1 þ BμðkÞ ~αμ−1

þ ζðkÞ~c−1 þ ξðkÞ ~b−1 þ CμνðkÞαμ−1 ~αν−1
þ vμðkÞαμ−1 ~b−1 þ wμðkÞαμ−1 ~c−1�jΩ⟫: ð82Þ

The study of the cohomology of the ~QB operator is very

similar, and we get for the tilde string field

j ~Φ⟫ ¼
Z

d26k

ð2πÞ26 ½
~tðkÞ þ ~BμðkÞαμ−1 − ~ζðkÞc−1

− ~ξðkÞb−1 þ ~AμðkÞ ~αμ−1 þ ~CνμðkÞαμ−1 ~αν−1
− ~vμðkÞb−1 ~αμ−1 − ~wμðkÞc−1 ~αμ−1�jΩ⟫: ð83Þ

VII. COMPUTING THE ACTION

Our extended string field up to the level (1,1) is

then

jΦ⟫ ¼
Z

d26k

ð2πÞ26 ½tðkÞ þ AμðkÞαμ−1 þ BμðkÞ ~αμ−1

þ ζðkÞ~c−1 þ ξðkÞ ~b−1 þ CμνðkÞαμ−1 ~αν−1
þ vμðkÞαμ−1 ~b−1 þ wμðkÞαμ−1 ~c−1�jΩ⟫: ð84Þ

To compute the action, we need the bpz of the field ⟪Φj
and QBjΦ⟫,

⟪Φj ¼
Z

d26k

ð2πÞ26 ⟪Ωj½tð−kÞ þ Aμð−kÞαμ1 þ Bμð−kÞ ~αμ1

þ ζð−kÞ~c1 − ξð−kÞ ~b1 þ Cμνð−kÞαμ1 ~αν1
− vμð−kÞαμ1 ~b1 þ wμð−kÞαμ1 ~c1� ð85Þ

and

QBjΦ⟫ ¼
Z

d26k

ð2πÞ26
�
tðkÞðα0k2 − 1Þc0 þ

ffiffiffiffi
α0

2

r
kμAμðkÞc−1 þ ðα0k2ÞAμðkÞαμ−1c0 þ ðα0k2 − 1ÞBμðkÞ ~αμ−1c0

þ ðα0k2 − 1ÞζðkÞc0 ~c−1 þ ðα0k2 − 1ÞξðkÞc0 ~b−1 þ ðα0k2ÞCμνðkÞαμ−1 ~αν−1c0

þ
ffiffiffiffi
α0

2

r
kμCμνðkÞ ~αν−1c−1 þ ðα0k2ÞvμðkÞαμ−1c0 ~b−1

þ
ffiffiffiffi
α0

2

r
kμvμðkÞc−1 ~b−1 þ ðα0k2ÞwμðkÞαμ−1c0 ~c−1 þ

ffiffiffiffi
α0

2

r
kμwμðkÞc−1 ~c−1

�
jΩ⟫ ð86Þ

Plugging these in (39), we get
6

S ¼ α0

2

Z
d26x

�
∂μtðxÞ∂μtðxÞ −

1

α0
t2ðxÞ þ ∂νAμðxÞ∂νA

μðxÞ þ ∂νBμðxÞ∂νB
μðxÞ − 1

α0
BμðxÞBμðxÞ þ ∂ρCμνðxÞ∂ρC

μνðxÞ
�
:

ð87Þ

6
Where we have used the following prescription:

⟪Ω0jc0 ~c0jΩ⟫ ¼ h~0;−k0jh0; k0jc−1c0c1 ~c−1 ~c0 ~c1j0; kij~0;−ki≡ ð2πÞ26δ26ðk − k0Þ:
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Using the decomposition of Cμν,

S¼ α0

2

Z
d26x

�
∂μtðxÞ∂μtðxÞ−

1

α0
t2ðxÞþ∂νAμðxÞ∂νA

μðxÞ

þ∂νBμðxÞ∂νB
μðxÞ− 1

α0
BμðxÞBμðxÞþ∂ρgμνðxÞ∂ρg

μνðxÞ

þ∂ρBμνðxÞ∂ρB
μνðxÞþ∂ρϕðxÞ∂ρϕðxÞ

�
: ð88Þ

Notice that the fields vμ; wμ; ζ; ξ do not appear in the

action, even though they are not ruled out by the cohomol-

ogy analysis. The reason is that the inner product (43) that

we have chosen so as to define the free action is the

simplest but not the most general one. In fact, by defining

the product through the more general insertion

G ¼ lc0 þ ~l~c0 þmc−1c0c1 þ ~m~c−1 ~c0 ~c1 þ nb−1c0b1

þ ~n ~b−1 ~c0 ~b1 þ � � � ; ð89Þ

for l; ~l; m; ~m; n; ~n ∈ ℜ, then all the fields present in the

cohomology are kept in the kinetic term of the action

S¼ α0

2

Z
d26x~l

�
∂μtðxÞ∂μtðxÞ−

1

α0
t2ðxÞþ∂νAμðxÞ∂νA

μðxÞ

þ∂νBμðxÞ∂νB
μðxÞ− 1

α0
BμðxÞBμðxÞþ∂ρgμνðxÞ∂ρg

μνðxÞ

þ∂ρBμνðxÞ∂ρB
μνðxÞþ∂ρϕðxÞ∂ρϕðxÞ

�

þ ~m

�
∂νvμðxÞ∂νv

μðxÞþ∂μξðxÞ∂μξðxÞ−
1

α0
ξ2ðxÞ

�

þ ~n

�
−∂νwμðxÞ∂νw

μðxÞ−∂μζðxÞ∂μζðxÞþ
1

α0
ζ2ðxÞ

�
:

ð90Þ

Therefore, at this point, we can stress three important

remarks:

(a) These extra fields can be eliminated from the theory

just by taking the appropriate inner product

(m ¼ ~m ¼ n… ¼ 0), and so one recovers the

action (88).

(b) Although the product (43) could have some degree

of arbitrariness, the insertion (89) is the most general

one since it allows one to capture in the action all the

fields physically admissible.

(c) Notice that we need ~l; ~m ≥ 0 and ~n ≤ 0 in order to

have a positive definite action.

VIII. INTERACTION TERMS

It is not straightforward to give a prescription for the

interacting term involving the double string field. However,

we would like to finish this paper by suggesting how it

could be done and leave the checks of detailed S-matrix

calculations for a forthcoming paper. The minimal require-

ment we can do is that the extended three-vertex, contracted

with extended fields, should give terms containing the

conventional open-string interaction terms.

So, first, let us observe that the physical field (82) has the

following structure,

jΦ⟫ ¼ jϕi ⊗ j ~Ωi þ jρ⟫; ð91Þ

where

jϕi ¼
Z

d26k

ð2πÞ26 ½tðkÞ þ AμðkÞαμ−1 þ � � ��jΩi ð92Þ

is the conventional open-string field and

jρ⟫≡

Z
d26k

ð2πÞ26 ½CμνðkÞαμ−1 ~αν−1 þ BμðkÞ ~αμ−1 þ ζðkÞ~c−1

þ ξðkÞ ~b−1 þ vμðkÞαμ−1 ~b−1 þ wμðkÞαμ−1 ~c−1�jΩ⟫;
ð93Þ

whereas the tilde string field has a similar expression:

j ~Φ⟫ ¼ jΩi ⊗ j ~ϕi þ j~ρ⟫: ð94Þ

Therefore, in order to satisfy the requirement above, we

propose the vertex to be linearly expressible in terms of the

conventional one as

jV 1̂ 2̂ 3̂⟫≡ jV123i ⊗ jK ~1 ~2 ~3
i þ jW1̂ 2̂ 3̂⟫; ð95Þ

where

fghi½K� ¼ 2 ∀ i ¼ 1; 2; 3; ð96Þ

so, as for the kinetic term, one shall insert the appropriate

G’s to have a consistent inner product. We have, then, that

the extended interaction term in the action (35) would

read as

Sint ¼
g

3
⟪Φ;Φ⋆Φ⟫ext ¼

g

3
⟪V 1̂ 2̂ 3̂jΦ1⟫jΦ2⟫jΦ3⟫

¼ g

3
hV123jϕ1ijϕ2ijϕ3iðhK ~1 ~2 ~3

j ~Ω~1 ~2 ~3
iÞ þ � � � ; ð97Þ

where … stands for terms involving jW 1̂ 2̂ 3̂⟫ or jρ⟫, and

j ~Ω~1 ~2 ~3
i≡ j ~Ω~1

ij ~Ω~2
ij ~Ω~3

i: ð98Þ

Thus, the tensor K must have a nonvanishing projection

onto this state, and any choice of the other components and

W satisfies the requirement of containing the conventional

interaction terms. At this point of the present construction,
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however, there are no additional reasons or properties to

give some specific form to these contributions. We can,

then, give here the simplest prescription for the vertex

extension,

jV 1̂ 2̂ 3̂⟫≡ jV123i ⊗ G3j ~Ω~1 ~2 ~3
i; ð99Þ

where jW 1̂ 2̂ 3̂⟫ is not present and jK ~1 ~2 ~3
i≡ G3j ~Ω~1 ~2 ~3

i. The
operator G3 ≡ G~1

G~2
G~3

∼ ~l1~l2~l3 ~c
ð~1Þ
0 ~c

ð~2Þ
0 ~c

ð~3Þ
0 þ � � � is neces-

sary for ghost counting in order to have hK ~1 ~2 ~3
j ~Ω~1 ~2 ~3

i ≠
0 in (97). Notice that the vertex defined according to (99)

satisfies the known properties of the usual three-string

vertex such as cyclicity and BRST-charge conservation.

Finally, by taking the tilde of this object, the complete

interaction term of (35) is defined as

Ŝint ≡ Sint − ~Sint; ð100Þ

where

j ~V 1̂ 2̂ 3̂⟫≡ j ~V ~1 ~2 ~3
i ⊗ j ~K123i þ j ~W1̂ 2̂ 3̂⟫: ð101Þ

According to the prescription (99), we have j ~W 1̂ 2̂ 3̂⟫ ¼ 0.

One first check of our prescription is, for instance,

the computation of transition amplitudes involving one

graviton state (e.g., decaying into fotons/taquions, etc.).

To do this, one shall compute (97) where jΦ1⟫≡
Cμνα

μ
−1 ~α

ν
−1jΩ1⟫, using (99),

g

3
⟪V 1̂ 2̂ 3̂jðCμνα

μ
−1 ~α

ν
−1jΩ⟫ÞjΦ2⟫jΦ3⟫

¼ g

3
hV123jh ~Ω~1 ~2 ~3

jGbpz
3 jðCμνα

μ
−1 ~α

ν
−1jΩ1⟫ÞjΦ2iijΦ3⟫

¼ g

3
hV123jh ~Ω~2 ~3

jðh ~Ω~1
jGbpz

3 Cμνα
μ
−1 ~α

ν
−1jΩ1⟫ÞjΦ2⟫jΦ3⟫

¼ 0; ð102Þ

which shows that these amplitudes vanish identically at

order g, so the first nontrivial contribution for these types of
processes is order g2, as one should expect from compu-

tations of amplitudes with first quantized closed strings.

More detailed consequences of this recipe on computations

will be exhaustively explored elsewhere.

A. Conventional OSFT

The extended action constructed here reproduces the

conventional OSFT states and dynamics at zero temper-

ature. Let us briefly show how it is recovered.

As often pointed out along the work, the interpretation of

the extended field is statistical, and many fields are

interpreted as degrees of freedom that emerge from

entanglement. Observe that the decomposition of a general

state (at zero temperature) (91) is unique, so clearly, if this

state is disentangled (pure), then the rest jρii must be

expressed as jρ0i ⊗ j ~Ωi in which case ρ0 would be absorbed
into jϕi. Therefore, by demanding the purity of the states,

7

we have ρ ¼ 0.

The field content of this sector is the conventional open-

string field one, and, remarkably, by virtue of our pre-

scription for the extended vertex (99), this condition is

dynamically preserved. One can see this straightforwardly

by computing the S-matrix at tree level, using (99), for

initial states with ρ1 ¼ ρ2 ¼ 0, and see that it always gives

out states such that ρ3 ¼ 0. The usual TFD-double sector

(at zero temperature) is given by ~ρ ¼ 0 in Eq. (94).

IX. CONCLUSIONS AND FINAL REMARKS

In the present work, the application of the TFD rules to

OSFT was revisited, owing to the more current covariant

formulation.

We must stress that the present approach differs radically

from Leblanc’s study where the TFD duplication is realized

conventionally on the component fields of the string field

and the final results are not substantially different from

TFD on conventional quantum field theory, giving the

thermal Green functions for an infinite collection of

interacting fields. In contrast, the present formulation is

based on the TFD duplication of the algebras (even at

classical level) and then of the basis for the string wave

functionals. The immediate result is the new structure and

spectrum of fields, different from the conventional OSFT

one. It also brought some technical issues that were solved

in the paper, namely, to extend the inner product and the

star product to the new algebra in order to write down the

extended string field action.

In addition, the more general form for that inner product

in the extended star algebra was found, since it has also

been shown that such extension controls which fields of the

physical spectrum could appear in the action. The resulting

physical spectrum consists of the standard component

fields of OSFT and their corresponding TFD doubles,

and, for instance, in the lower energy levels, there are

spin-1 taquions, scalars, and gauge bosons; and the

presence of particles/fields of the spectrum of a closed

string has been also noticed. And, as mentioned before,

many sectors can be eliminated from the theory by

conveniently choosing the inner product.

We have seen that the theory that results from the

application of the TFD rules, updated to string fields (wave

functionals of two-strings), contains all the following

sectors in its spectrum (at zero temperature): (i) the conven-

tional open-string field [first term, Eq (8.1)]; (ii) its conven-

tional TFD copy [42] [first term of Eq. (8.4)]; (iii) closed-

strings modes (described in Sec. V as the ground states of

the theory), given by levels ð0; 0Þ; ð1; 1Þ; ð2; 2Þ…; and

(iv) many other fields that in fact do not belong to any

7
In the final discussion, we will propose a suitable definition of

entropy that vanishes for pure (disentangled) ones.
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of the above sectors such as those appearing in the sectors

ð1; 2Þ; ð2; 3Þ;…. Our interpretation of the nonconventional

sectors iii and iv is, as said before, as emerging effects

arising from the entanglement of two open-string fields.

This, in fact, should be expected and is a suggestive

result in the sense that the entanglement between the usual

open string and its tilde copy produce emergent effects

which cannot be seen in the usual theory. This is the central

core of emergent phenomena, where new degrees of

freedom might appear due to collective/entanglement

behavior. There exist examples in the literature where

the TFD double is not merely a fictitious system, princi-

pally in contexts that involve gravitational degrees of

freedom. The most sound work in this sense is due to

Israel [59], where the thermal properties of a black hole are

described by TFD and the TFD-copy degrees of freedom

are identified with the field living behind the event horizon

in a black hole. Precisely, these degrees of freedom are

causally disconnected from the original system, but they

“collaborate” with it at quantum level through entangle-

ment (see also Ref. [60]). More recent references on these

points of view are in the context of AdS/CFT (e.g.,

Ref. [61]), where gravitational degrees of freedom are

believed to emerge from ordinary quantum fields (CFT)

and quantum entanglement. As a specific example or result

on it, in Ref. [62], Van Raamsdonk showed that a space-

time geometry is classically connected due precisely to the

quantum entanglement of two conventional quantum

mechanical systems (CFT and, precisely, its TFD copy).

The present results suggest a novel possibility in the

context of string field theory: that closed-string states could

be viewed as nonfundamental or, more technically, that

certain mixed states (backgrounds) of free open strings can

be seen as fields of closed-string theory. This unifying

interpretation is in line with the spirit of the gravity/gauge

duality [63,64] and the recent ideas on the space-time

emergence [62,65], but from a different perspective.

Furthermore, the statistical/thermal ingredient of our

approach addresses the belief that, at a string field level,

the gravitational field should be intimately related to

thermodynamical effects [66,67].

Although the fact that a closed string can be described in

terms of the Hilbert space of two open strings is known, the

remarkable result here is that the closed-string states can

naturally emerge when the TFD rules are properly applied

to axiomatic OSFT. On the other hand, the simple need to

describe nonpure states of the open string correctly justifies

us to formulate this paradigm.

Finally, let us remark that the entropy can be defined

straightforwardly in the present framework. We have

claimed that the fields of this theory generically represent

nonpure states of open strings, so one is able to canonically

define the reduced density matrix and the associated

entropy. Given a state jΩðθÞ⟫, the reduced density matrix

is defined as

ρ≡ eTrjΩðθÞ⟫⟪ΩðθÞj; ð103Þ

where eTr denotes the trace on the tilde basis elements. So

the TFD entropy operator [33], or modular Hamiltonian

[68], can be defined as K ≡ − log ρ, and so the entropy of

the state is nothing but S≡ TrρK ¼ −Trρ log ρ, which is

not easy to compute for generic states. Observe that,

although, in principle, this can be defined for any string

field jψ⟫, only for ground states, ρðΩÞ ¼ ~ρðΩÞ and then

S ¼ ~S, as usual for entanglement entropy. Moreover, it is

also noticeable that the simplest states with nonvanishing

entropy are such that they contain gravitonlike fields, since

the contributions to K come from algebraic combinations

as α
μ
−1 ~α

ν
−1 (so as the higher level ones α

μ
−n ~α

ν
−n).

This article is an initial study devoted to set the basic

structure of the theory, and the thermal effects shall even be

introduced through the KMS condition (axiom iii) or by

minimizing some consistent definition of free energy

[34,36]. In forthcoming works, we shall investigate this

and the notion of Bogoliubov transformations G connect-

ing different thermal vacua, which should preserve the

algebra of constraints of first quantized strings, namely,

½QB; G� ¼ 0 [56,57]. In summary, the present approach can

be seen as an extension of OSFT, à la TFD in the way

described above, independent of the fact that thermal

equilibrium and temperature have not been introduced yet.

Another issue that needs to be addressed in the future is

the study of the solitonic solutions of the equations of

motion of the extended theory (Sec. VIII). Trivial exten-

sions can be built from the unextended theory as

jϕsoli ⊗ j ~Ωi, where jϕsoli refers to the known solutions

of the conventional OSFT [15,16,19,24–28,30–32]. There

could be, however, more solutions of the extended theory,

which probably involve excitations of the gravita-

tional field.
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