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We investigate three classes of constraints in a thermoelastic body: (i) a deformation-

temperature constraint, (ii) a deformation-entropy constraint, and (iii) a deformation-

energy constraint. These constraints are obtained as limits of unconstrained thermoelas-

tic materials and we show that constraints (ii) and (iii) are equivalent. By using a limiting

procedure, we show that for the constraint (i), the entropy plays the role of a Lagrange

multiplier while for (ii) and (iii), the absolute temperature plays the role of Lagrange

multiplier. We further demonstrate that the governing equations for materials subject to

constraint (i) are identical to those of an unconstrained material whose internal energy is

an affine function of the entropy, while those for materials subject to constraints (ii) and

(iii) are identical to those of an unstrained material whose Helmholtz potential is affine

in the absolute temperature. Finally, we model the thermoelastic response of a peroxide-

cured vulcanizate of natural rubber and show that imposing the constraint in which the

volume change depends only on the internal energy leads to very good predictions (com-

pared to experimental results) of the stress and temperature response under isothermal

and isentropic conditions.

1. Introduction

A purely mechanical constraint such as incompressibility or inextensibility is character-

ized by a restriction on the class of possible motions. It is typically assumed that the stress

arising from the constraints is workless (Truesdell and Noll [13, page 70]). Green et al. [5]

considered a thermoelastic constraint in the form of a function linking the deformation

and temperature and showed that, in general, the energy equation is also affected by such

constraints. They assumed that the constraint stress is workless for isothermal processes.

However, Chadwick and Scott [4] found that the deformation-temperature constraints

result in instabilities in wave propagation in a thermoelastic solid and Scott suggested

in [10] that the constraints linking the entropy and deformation result in stable solu-

tions. Scott, in his subsequent work [11, 12], investigated the deformation-temperature

and deformation-entropy constraints as limits of unconstrained thermoelastic solids. He
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showed that the linear form of a constraint connecting the deformation gradient and

temperature results in a negative heat capacity which corresponds to a loss of stability.

Scott [12] recognized that the limit of the specific heat at constant deformation being

zero is equivalent to the limit of a deformation-entropy constraint.

In this paper, we investigate thermoelastic constraints as limits of unconstrained mate-

rials, using the procedure outlined by the authors in [1]. In order to do this, we introduce

three different but equivalent formulations of thermoelasticity; namely, the {F,θ} formu-

lation, the {F,η} formulation, and the {F, ε} formulation. Three cases of constraints are

considered: (i) θ = θ̂(F), (ii) η = η̂(F), and (iii) ε = ε̂(F).

The principal results in this paper are the following ones.

(1) The constraint θ = θ̂(F) leads to either the specific heat or the bulk modulus tend-

ing to−∞which implies unstable behavior—a well known result—see Scott [10, 12], and

Knops and Wilkes [8].

(2) The constraints η = η̂(F) and ε= ε̂(F) are equivalent.

(3) In the above cases, the temperature plays the role of the Lagrange multiplier.

(4) The constitutive equations for materials subject to the constraint θ = θ̂(F) are the

same as those for an unconstrained material whose internal energy is given by

ε = ψ̂(F) +ηθ̂(F). (1.1)

(5) The constitutive equations for materials subject to the constraints η = η̂(F) or ε =
ε̂(F) are the same as those for an unconstrained material whose Helmholtz potential is

given by

ψ = ε̂(F)− θη̂(F). (1.2)

(6) The assumption ε = ε̂(J) leads to good agreement with experimental data for

peroxide-cured vulcanizate of rubber (see Chadwick [3]).

In order to help in understanding the behavior of the material and in interpreting the

constraint response, we follow [1] and consider constraints as limits of unconstrained

materials. This procedure also avoids certain difficulties in specifying the properties of

constraint responses (such as worklessness, etc.). This limiting process is similar to that

suggested by Scott [12] but the derived quantities are obtained at the limit without aug-

menting the various potentials as done by Scott [12].

In Section 4, we choose a specific form for the Helmholtz free energy, which is equiva-

lent to the imposition of a deformation-energy constraint, study the response of the ma-

terial for homogeneous deformations, and compare the stress and temperature response

with unconstrained cases and experimental data.

2. Thermomechanical formulation for unconstrained thermoelasticity

We consider a thermoelastic solid � occupying a reference configuration κ0(�) at time

t = 0 and a configuration κt(�) at time t. Let the position of a material particle be X

and x in these two configuration, respectively. The motion measured from a reference
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configuration κ0 and deformation gradient are given, respectively, as

x = χκ0 (X, t), F= ∂χκ0

∂X
, (2.1)

with determinant J = detF. The densities ρ0 in κ0(�) and ρ in κt(�) are related by

ρ0 = Jρ, (2.2)

expressing the conservation of mass.

In order to elucidate the precise nature of various constraints in thermoelasticity, we

will begin with various equivalent formulations of the constitutive equations for such

variables. These formulations differ in the set of independent variables used in the con-

stitutive theory.

Our first formulation will be based on the familiar Helmholtz potential. Here, the in-

dependent variables are the deformation gradient F and the temperature θ. The equation

of state, from which the stress T response and the entropy η are obtained, is given as

ψ = ψ̂(F,θ), (2.3)

where ψ is the specific Helmholtz potential. The Cauchy stress T and the entropy per unit

mass η are obtained from ψ as

T= ρ
∂ψ̂

∂F
FT , (2.4)

η =−∂ψ̂

∂θ
, (2.5)

where η is assumed to be a monotonically increasing function with respect to θ. We will

refer to (2.3), (2.4), and (2.5) as the Helmholtz potential form of the equations of state or

simply the {F,θ} formulation. The constitutive expression can be rewritten in the ener-

getic form ({F,η} formulation) using the Legendre transformation

ε = ψ− θ
∂ψ

∂θ
. (2.6)

Solving (2.5) for θ in terms of η and F and substituting the result into (2.6), we obtain

ε= ε̂(F,η). (2.7)

Now using (2.7) as the equation of state with F and η as independent state variables, the

stress and the absolute temperature are obtained as

T= ρ
∂ε̂

∂F
, (2.8)

θ = ∂ε̂

∂η
> 0. (2.9)
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Now (2.9) implies that (2.7) is invertible for η as a function of F and ε, so that the

constitutive expression can be rewritten in the entropic form ({F, ε} formulation) and

the equation of state can be written as

η = η̂(F, ε). (2.10)

In this formulation, the Cauchy stress T and the temperature θ are determined by

T=−ρ
(

∂η̂

∂ε

)−1 ∂η̂

∂F
FT , (2.11)

θ =
(

∂η̂

∂ε

)−1

> 0. (2.12)

Equations (2.10), (2.11), and (2.12) are referred to as the entropic form of the equations

of state or the {F, ε} formulation, where F and ε are independent variables.

In thermoelasticity, the positive definitions of certain material parameters obtained

from the second derivatives of the potential function are considered as a mark of stability

(see Scott [9]). It is generally assumed that the specific heat at constant deformation and

the bulk modulus must be positive for stability (see Scott [9] and Gunton and Saunders

[6]). The specific heat at constant deformation Cv and at constant stress Cp is defined as

(see, e.g., Scott [12])

Cv = θ

(

∂η

∂θ

)

fixedF
, Cp = θ

(

∂η

∂θ

)

fixedT
, (2.13)

and, through mathematical manipulation (see Callen [2, Chapter 7]), Cv is derived from

constitutive expressions in the three different formulations as

Cv =−θ
∂2ψ̂

∂θ2
= ∂ε̂

∂η

(

∂2ε̂

∂η2

)−1

=−
(

∂η̂

∂ε

)2(∂2η̂

∂ε2

)−1

. (2.14)

Using Maxwell relations (see Callen [2, Chapter 7] and Scott [12]), the bulk modulus at

constant temperature Kθ can be obtained as

Kθ = ρ0
∂2ψ̂

∂J2
= ρ0

∂2ε̂

∂J2
− ρ0

(

∂2ε̂

∂J∂η

)2( ∂2ε̂

∂η2

)−1

=−ρ0

(

∂η̂

∂ε

)−1 ∂2η̂

∂J2
+ ρ0

(

∂η̂

∂ε

)−1( ∂2η̂

∂ε∂J

)2(∂2η̂

∂ε2

)−1

.

(2.15)

These results are tabulated in Table 2.1 for convenience.
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Table 2.1. Summary of constitutive relationship for unconstrained case.

{F,θ}
formulation

{F,η}
formulation

{F, ε}
formulation

Equation

of state
ψ = ψ̂(F,θ) ε = ε̂(F,η) η = η̂(F, ε)

Dependent

variables

T= ρ
∂ψ̂

∂F
FT

η =−∂ψ̂

∂θ

T= ρ
∂ε̂

∂F
FT

θ = ∂ε̂

∂η

T=−ρ
(

∂η̂

∂ε

)−1 ∂η̂

∂F
FT

θ =
(

∂η̂

∂ε

)−1

Specific heat Cv =−θ
∂2ψ

∂θ2
Cv =

∂ε

∂η

(

∂2ε

∂η2

)−1

Cv =−
(

∂η

∂ε

)2(∂2η

∂ε2

)−1

Bulk modulus Kθ = ρ0

∂2ψ̂

∂J2

Kθ = ρ0
∂2ε̂

∂J2

−ρ0

(

∂2ε̂

∂J∂η

)2(∂2ε̂

∂η2

)−1

Kθ =−ρ0

(

∂η̂

∂ε

)−1 ∂2η̂

∂J2

+ρ0

(

∂η̂

∂ε

)−1( ∂2η̂

∂ε∂J

)2(∂2η̂

∂ε2

)−1

3. Thermoelasticity with constraints

In a general elastic material, it is clear that the entropy η given by (2.5) is a function of

both deformation gradient and temperature. Many polymeric materials are characterized

by the assumption that the entropy η is given by

η = η̃(F). (3.1)

Usually, in the {F,θ} formulation, this is treated as a constitutive assumption in the sense

that (2.5) and (3.1) imply that ψ must be affine in θ. However, in the {F,η} formulation,

such as that used here and by Scott [11, 12], F and η are the independent variables so that

(3.1) may be considered as a specific case of a general deformation-entropy constraint of

the form

f (F,η)= 0. (3.2)

In other words, the relationship (3.1) can be viewed in two different ways: (i) as special

constitutive assumption obtained from a Helmholtz potential in the classical {F,θ} for-

mulation where η is a derived quantity, or (ii) as a special case of an entropy-deformation

constraint (3.2) in the {F,η} formulation. In the former case, there is no need for the

introduction of a constraint response whereas the same equation (3.1) would require a

constraint response in the {F,η} formulation. It is clear that final differential equations

must be the same, no matter which formulation is used. We will explore this issue in more

detail.

In order to investigate the effect of constraints in a thermoelastic body, we will consider

three classes of constraints: (a) deformation-temperature constraints, (b) deformation-

entropy constraints, and (c) deformation-energy constraints. The different formulations
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of the basic constitutive relations are specifically suited to investigate specific classes of

constraints.

3.1. Deformation-temperature constraint as a limit of an unconstrained body. We

first consider the {F,θ} formulation and consider a constraint relating the deformation

gradient and temperature in the form

θ =�(F). (3.3)

Such a constraint was originally proposed as a generalization of a purely mechanical con-

straint, such as incompressibility, to allow for thermal expansion but retain incompress-

ibility under isothermal conditions.

As Scott [11] in the context of thermoelasticity and the authors [1] in the context of

diffusion showed, rather than imposing the constraints directly via Lagrange multipliers,

considering these constraints as limiting cases helps to understand the behavior of the

material and to provide a physical meaning to the constraint response.

Thus, consider an unconstrained thermoelastic material and introduce an auxiliary

variable φ as

φ = θ−�(F). (3.4)

Instead of augmenting the Helmholtz potential energy for the constrained material (e.g.,

Scott [12] used the form ψ∗ = ψ + (1/2)χφ2), we can choose F and φ as independent vari-

ables instead of F and θ for the Helmholtz potential function. Using (3.4), the equation

of state (2.3) for an unconstrained material can be written in the form

ψ = ψ̂(F,θ)= ψ̂
(

F,φ+ �(F)
)

= ψ̃(F,φ). (3.5)

Using the chain rule, the entropy η becomes

η =−∂ψ

∂θ
=−∂ψ̃

∂φ
(3.6)

and the Cauchy stress T is given by

T= ρ
∂ψ̃

∂F
FT + ρη

∂�

∂F
FT . (3.7)

We now consider the limit when φ tends to zero. Expanding η as a Taylor series around

φ = 0,

η(φ)=−
(

∂ψ̃

∂φ

)∣

∣

∣

∣

φ=0
−
(

∂2ψ̃

∂φ2

)∣

∣

∣

∣

φ=0
φ−··· , (3.8)

where ∂ψ̃/∂φ is a finite value at φ = 0. In the limit, we assume that ∂2ψ̃/∂φ2|φ=0 →±∞ and

φ→ 0 in such a way that their product remains finite. It is also assumed that higher-order

terms in (3.8) are successively of smaller orders of magnitude and give no contribution to

η in the limit. So the sum of the terms in (3.8) yields an arbitrary but finite value for η.
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Thus in the limit, the entropy becomes an independent variable and plays the role of

a Lagrange multiplier whereas the temperature is given by (3.3), although for the un-

constrained situation, the temperature is the independent variable and the entropy is

a derived quantity. This limiting procedure also implies that in the limit as φ→ 0, the

Helmholtz potential becomes a function of the deformation gradient F alone, that is,

lim
φ→0

ψ̃(F,φ)= ψ̃(F,0)=�(F). (3.9)

Thus, the stress reduces to

T= ρ
∂�(F)

∂F
FT + ρη

∂�(F)

∂F
FT , (3.10)

where η is arbitrary and finite.

As we mentioned before, the positiveness of Cv and Kθ is desirable for the stability

of the body and the sign of ∂2ψ̃/∂φ2|φ=0 is critical in deciding the sign of the second

derivatives of the Helmholtz potential. First, let ∂2ψ̃/∂φ2|φ=0 →−∞. Then, the specific

heat Cv defined by (2.14) becomes positive infinity in the limit, as seen by expanding

(2.14):

Cv =−�(F)

(

∂2ψ̃

∂φ2

)∣

∣

∣

∣

φ=0
−�(F)

(

∂3ψ̃

∂φ3

)∣

∣

∣

∣

φ=0
φ··· −→∞. (3.11)

Using the chain rule, the bulk modulus at the constant temperature Kθ defined in (2.15)

is expanded as

Kθ = ρ0
∂2ψ̂

∂J2
= ρ0

{

∂2ψ̃

∂J2
− 2

∂2ψ̃

∂J∂φ

∂�

∂J
− ∂ψ̃

∂φ

∂2�

∂J2
+
∂2ψ̃

∂φ2

(

∂�

∂J

)2
}∣

∣

∣

∣

∣

φ=0

+ ··· . (3.12)

In the limit as φ→ 0 and ∂2ψ̃/∂φ2|φ=0 →−∞, assuming that the first derivative of ψ̃ with

respect to φ and the derivatives of � in (3.12) are finite, the bulk modulus Kθ goes to

negative infinity. Thus, the assumption ∂2ψ̃/∂φ2|φ=0 →−∞ implies that the specific heat

at constant deformation tends to +∞ but isothermal bulk modulus tends to −∞, which

implies the loss of the stability of the body.

Next, if we assume that ∂2ψ̃/∂φ2|φ=0 →∞ in the limit as φ→ 0, the isothermal bulk

modulus goes to positive infinity, but the specific heat at constant deformation becomes

negative infinity. This is again physically unacceptable.

Thus the limiting process reveals that, although the deformation temperature con-

straint appears to be a straight forward generalization of a constraint such as incompress-

ibility, it results in the material becoming unstable.

It is instructive to note that the same constitutive equations may be obtained without

the use of a limiting process in the {F,η} formulation. In this case, condition (3.3) can be

simply inferred by using the constitutive form

ε = ε̂(F,η)=�(F) +η�(F). (3.13)



160 Thermoelasticity with constraints

Using (2.9), the energy function (3.13) immediately gives (3.3). But now, (3.3) is viewed

as a constitutive equation. Furthermore, the stress results in (3.10). Also, substituting

(3.13) into the energetic formulation in (2.14) and (2.15), we can easily see that Cv =∞
and Kθ =−∞.

3.2. Deformation-entropy constraint as a limit of an unconstrained body. We consider

the {F,η} formulation and a different generalization of the purely mechanical constraint

in the form f (F,η)= 0. Under the assumption that f is monotonically increasing func-

tion for η, that is,

∂ f

∂η
> 0, (3.14)

the constraint can be rewritten in the form

η =�(F). (3.15)

Scott [11] has introduced a linearized form of (3.15) connecting the deformation and

the entropy as an alternative to the temperature-deformation constraint (3.3).

In this case, the variable φ introduced in (3.4) is replaced by

φ= η−�(F). (3.16)

Using (3.16), the constitutive equation (2.7) for the internal energy of an unconstrained

material can be rewritten in the form

ε = ε̂(F,η)= ε̃(F,φ). (3.17)

Using the chain rule, it can be shown that ∂ε̃/∂φ is the absolute temperature, that is,

θ = ∂ε

∂η
= ∂ε̃

∂φ
, (3.18)

and the Cauchy stress T now becomes

T= ρ
∂ε̃

∂F
FT − ρθ

∂�

∂F
FT , (3.19)

where θ plays the role of the Lagrange multiplier.

We assume that, in the limit as φ→ 0, (∂ε̃/∂φ)|φ=0 is a finite value, and the product of

∂2ε̃/∂φ2|φ=0 →∞ and φ is arbitrary and finite. Under these conditions, the function θ in

(3.18) can be expanded as a Taylor series around φ = 0 as

θ(φ)= ∂ε̃

∂φ

∣

∣

∣

∣

φ=0
+
∂2ε̃

∂φ2

∣

∣

∣

∣

φ=0
φ+ ··· . (3.20)

Higher-order terms in (3.20) are smaller orders of magnitude so that the sum of the terms

in (3.20) yields an arbitrary but finite value. In the limit, (3.17) reduces to

lim
φ→0

ε̃(F,φ)=�(F). (3.21)
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Thus, the constraint η =�(F) implies that ε=�(F) and the stress is rewritten as

T= ρ
∂�(F)

∂F
FT − ρθ

∂�(F)

∂F
FT . (3.22)

We observe from (3.22) that the stress response is linear with respect to the temperature θ.

From the conditions for the limit as φ→ 0 and ∂2ε̃/∂φ2|φ=0 →±∞, the specific heat Cv

goes to zero by expanding (2.14) as a Taylor series around φ= 0 as

Cv =
∂ε̃

∂φ

(

∂2ε̃

∂φ2

)−1∣
∣

∣

∣

φ=0
+

(

1− ∂ε̃

∂φ

∂3ε̃

∂φ3

(

∂2ε̃

∂φ2

)−2
)∣

∣

∣

∣

∣

φ=0

φ+ ··· −→ 0. (3.23)

Using the chain rule, the bulk modulus at constant temperature Kθ given in (2.15) can be

rewritten as

Kθ = ρ0

(

∂2ε̃

∂J2
− 2

∂2ε̃

∂J∂φ

∂�

∂J
− ∂ε̃

∂φ

∂2�

∂J2
+
∂2ε̃

∂φ2

(

∂�

∂J

)2
)

− ρ0

(

∂2ε̃

∂φ∂J
− ∂2ε̃

∂φ2

∂�

∂J

)2(

∂2ε̃

∂φ2

)

=ρ0







∂2ε̃

∂J2
− ∂ε̃

∂φ

∂2�

∂J2
−
(

∂ε̃

∂φ∂J

)2(

∂2ε̃

∂φ2

)−1






.

(3.24)

In the limit as φ→ 0, the value of ∂2ε̃/∂φ2|φ=0 goes to ±∞ so that the last term of the

right-hand side of (3.24) vanishes. Finally, in the limit, Kθ is reduced to

Kθ = ρ0

(

∂2ε̃

∂J2
− θ

∂2�

∂J2

)∣

∣

∣

∣

φ=0
+ ··· , (3.25)

where θ is arbitrary and finite.

Thus, in the limit as φ→ 0 and ∂2ε̃/∂φ2|φ=0 →±∞, Cv goes to zero and the condition

for the positive Kθ becomes

∂2ε̃

∂J2
− θ

∂2�

∂J2
> 0. (3.26)

Similar to the case of the deformation-temperature constraint, (3.15), which is given

as the deformation-entropy constraint in the {F,η} formulation, can be obtained as a

constitutive relation derived from the Helmholtz potential form of the equation of state

of the form

ψ(F,θ)=�(F)− θ�(F). (3.27)
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Substituting (3.27) into (2.4), the stress T is derived the same as (3.22). Also, substituting

(3.27) into the formulations for the Helmh potential in (2.14) and (2.15), the specific

heat Cv and the bulk modulus Kθ are derived as

Cv = 0,

Kθ = ρ0
∂2�

∂J2
− ρ0θ

∂2�

∂J2
.

(3.28)

In this formulation, the temperature is the independent variable.

3.3. Deformation-energy constraint as a limit of an unconstrained body. In Section

3.2, we saw from (3.21) that the deformation-entropy constraint (3.15) implies that the

internal energy is a function of the deformation gradient only. Now, we consider the

deformation-energy constraint in the {F, ε} formulation in the form

ε =�(F). (3.29)

Then, the auxiliary variable φ is written as

φ= ε−�(F), (3.30)

and φ goes to zero when (3.29) holds. Using (3.30), the equation of state (2.10) of an

unconstrained material can be written in the form

η = η(F, ε)= η̃(F,φ). (3.31)

Using (2.11) and the chain rule, the Cauchy stress T becomes

T=−ρ
(

∂η̃

∂φ

)−1(
∂η̃

∂F
FT − ∂η̃

∂φ

∂�

∂F
FT

)

= ρ
∂�

∂F
FT − ρ

(

∂η̃

∂φ

)−1
∂η̃

∂F
FT . (3.32)

We also see that

θ =
(

∂η

∂ε

)−1

=
(

∂η̃

∂φ

)−1

. (3.33)

Now we assume that (∂η̃/∂φ)−1|φ=0 is a finite value and ∂2η̃/∂φ2|φ=0 →∞ so that the

product of ∂2η̃/∂φ2 and φ becomes arbitrary and finite at the limit. Under these condi-

tions, θ can be expanded as a Taylor series around φ = 0 as

θ(φ)=
(

∂η̃

∂φ

)−1∣
∣

∣

∣

∣

φ=0

− ∂2η̃

∂φ2

(

∂η̃

∂φ

)−2

|φ=0

φ+ ··· , (3.34)

where higher-order terms in (3.34) are smaller orders on magnitude. So the sum of the

terms in (3.34) yields an arbitrary but finite value.
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At the limit, the entropy becomes a function of F alone:

lim
φ→0

η̃(F,φ)=�(F). (3.35)

Substituting (3.35) into (3.32), the stress T reduces to the same as (3.22). Here again θ
plays the role of the Lagrange multiplier. From the conditions for the limit as φ→ 0 and

∂2η̃/∂φ2|φ=0 →−∞, the specific heat Cv goes to zero by expanding (2.14) as a Taylor series

around φ = 0 as

Cv =−
(

∂η̃

∂φ

)2(
∂2η̃

∂φ2

)−1∣
∣

∣

∣

∣

φ=0

−


2
∂η̃

∂φ

(

∂2η̃

∂φ2

)−1

− ∂3η̃

∂φ3

(

∂η̃

∂φ

)2(
∂2η̃

∂φ2

)−2




∣

∣

∣

∣

∣

φ=0

φ−··· −→ 0.

(3.36)

Using the chain rule, Kθ in (2.15) can be rewritten as

Kθ =−ρ0

(

∂η̃

∂φ

)−1




∂2η̃

∂J2
− 2

∂2η̃

∂J∂φ

∂�

∂J
− ∂η̃

∂φ

∂2�

∂J2
+
∂2η̃

∂φ2

(

∂�

∂J

)2




+ ρ0

(

∂η̃

∂φ

)−1(
∂2η̃

∂φ∂J
− ∂2η̃

∂φ2

∂�

∂J

)2(
∂2η̃

∂φ2

)−1

=−ρ0

(

∂η̃

∂φ

)−1






∂2η̃

∂J2
− ∂η̃

∂φ

∂2�

∂J2
−
(

∂2η̃

∂φ∂J

)2(
∂2η̃

∂φ2

)−1






.

(3.37)

In the limit as φ→ 0, the value of ∂2η̃/∂φ2|φ=0 goes to ±∞ so that the last term of the

right-hand side of (3.37) vanishes. Finally, in the limit, Kθ is reduced to

Kθ = ρ0

(

∂2�

∂J2
− θ

∂2η̃

∂J2

)∣

∣

∣

∣

∣

φ=0

+ ··· , (3.38)

where θ is arbitrary and finite. Thus, in the limit as φ→ 0 and ∂2η̃/∂φ2|φ=0 →±∞, Cv

goes to zero and the condition for the positive Kθ becomes

∂2�

∂J2
− θ

∂2η̃

∂J2
> 0. (3.39)

From Sections 3.2 and 3.3, the deformation-entropy constraint, η =�(F), implies that

the constitutive form for the internal energy is a function of deformation alone, that is,

η =�(F)⇒ ε =�(F), and the deformation-energy constraint ε =�(F) implies that the

entropy is a function of the deformation gradient alone. Thus, we see that

η =�(F) ⇐⇒ ε =�(F), (3.40)



164 Thermoelasticity with constraints

Table 3.1. Thermomechanical constraints and equivalent forms of the thermodynamic potentials.

Constraint form
ε =�(F) θ =�(F)

η =�(F) ψ =�(F)

Equivalent form ψ(F,θ)=�(F)− θ�(F) ε(F,η)=�(F) +η�(F)

Stress
T= ρ

∂�

∂F
FT − ρθ

∂�

∂F
FT T= ρ

∂�

∂F
FT + ρη

∂�

∂F
FT

θ independent η independent

Specific heat Cv = 0 Cv =∞

Bulk modulus Kθ = ρ0
∂2�

∂J2
− ρ0θ

∂2�

∂J2
Kθ =−∞

and in both cases the absolute temperature plays the role of the Lagrange multiplier. It

is interesting to note that both constraints (3.15) and (3.29) can be implemented by a

special Helmholtz potential of the form

ψ(F,θ)=�(F)− θ�(F). (3.41)

The stress response derived from (3.41) is identical to (3.22) and the specific heat turns

out to be zero.

Moreover, as Scott [12] found, we can obtain the same constitutive responses as those

from the deformation-entropy and deformation-energy constraints if we simply require

that Cv = 0. To see this, substituting Cv = 0 into (2.13), we obtain that

(

∂η

∂θ

)

fixedF
= 0, (3.42)

which implies that the entropy is a function of F only. Also substituting Cv = 0 into (2.14)

results in

∂2ψ̂

∂θ2
= 0, (3.43)

which implies that the Helmholtz potential is affine with respect to the temperature.

Thus, simply setting Cv = 0 in a Helmholtz potential is equivalent to the deformation-

entropy and deformation-energy constraints.

Therefore the following four assumption are equivalent:

(1) η =�(F),

(2) ε=�(F),

(3) ψ =�(F)− θ�(F),

(4) Cv = 0.

We summarize the thermomechanical constraints and the equivalent forms of potential

functions in Table 3.1.
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4. The application of thermomechanical constraint to a rubberlike material

In polymeric materials, statistical mechanics considerations reveal that the entropy is sig-

nificantly affected by isochoric deformation whereas the internal energy hardly changes

so that a simple incompressible thermoelastic model for polymeric solids assumes that

(1) the material is incompressible, (2) η = η̂(F), and (3) the internal energy is constant.

Such a model is usually referred to as purely entropic elasticity.

It has been shown by Chadwick [3] that such an idealization is inadequate for the

realistic modeling of thermoelastic processes. Motivated by the results of Section 3, we

consider a generalization of the above questions by assuming that (a) the material is com-

pressible and (b) the energy ε is a function of J alone. Note that assumption (b) implies

that, for isochoric deformations, the energy is constant in keeping up with the idealiza-

tions used in purely entropic elasticity. In view of the results in Section 3, assumption (b)

precludes the entropy η from being a function of the temperature so that

η =�(F). (4.1)

Furthermore, the assumption of the energy implies that the Helmholtz potential is of the

form

ψ =−θ�(F) + ε(J). (4.2)

A specific form for �(F) and ε(J) can be derived from the constitutive equations which

were suggested by Chadwick [3] by letting the specific heat Cv → 0. To elaborate, Chad-

wick considered a Helmholtz potential of the form

ψ(F,θ)= θ

θ0

[

ψ0(F)− ε0(F)
]

+ ε0(F)−A

(

θ ln
θ

θ0
− θ + θ0

)

. (4.3)

The stress T, obtained by combining (2.4) and (4.3), is given by

T= ρ
θ

θ0

∂ψ0

∂F
FT + ρ0

(

1− θ

θ0

)

∂ε0

∂J
I, (4.4)

and η is given by

η(F,θ)=− 1

θ0

[

ψ0(F)− ε0(J)
]

+A ln
θ

θ0
. (4.5)

The entropy η is separated into two parts: the first part is a function of the deformation

gradient and the second part is a function of the temperature alone. The specific heat at

constant deformation Cv and Cp at constant stress T= T∗ is given by

Cv = A,

Cp = Cv + θ
∂η

∂J

(

∂J

∂θ

)

T=T∗
.

(4.6)

We also note that the value of Cv has no effect on the stress response.
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4.1. Application of deformation-entropy and deformation-energy constraints. In view

of Section 3, the equivalent form of Helmholtz potential to the deformation-energy con-

straint can be obtained by setting Cv = 0, which in this case reduces to A= 0. Thus, letting

Cv → 0, the Helmholtz potential reduces to

ψ(F,θ)= θ

θ0

[

ψ0(F)− ε0(J)
]

+ ε0(J). (4.7)

Comparing (4.7) with (4.2), the equivalent constraints are obtained as

ε =�(F)= ε0(J), (4.8)

η =�(F)=− 1

θ0

[

ψ0(F)− ε0(J)
]

. (4.9)

Using (3.22), the stress is obtained as (4.4) in the unconstrained case. The specific heat

Cp is given by

Cp = θ
∂η

∂J

(

∂J

∂θ

)

T=T∗
. (4.10)

We now consider empirical functions used by Chadwick [3] of the form

ψ0(F)= µ

ρ0

(

I1− 3J2/3
)

+
κ

ρ0m

(

J +
1

m− 1
J−m+1− m

m− 1

)

,

ε0(F)= καθ0

ρ0n

(

Jn− 1
)

.

(4.11)

We use thermoelastic material parameters of a peroxide-cured vulcanizate of natural

rubber (see Chadwick [3] and Wood and Martin [14]) and they are the density ρ0 =
906.5kg/m3, the shear modulus µ = 4.2 × 102 kPa, the isothermal bulk modulus κ =
1.95× 106 kPa, the volume coefficient of thermal expansion α= 6.36× 10−4 K−1, and the

material parameters m= 9 and n= 5/2. The initial temperature θ0 is 25◦C.

In order to compare the numerical results of the constrained case with those of the

unconstrained case, we consider a simple homogeneous deformation of the form

x = J1/3λX, y = J1/3

√
λ
Y, z = J1/3

√
λ
Z, (4.12)

where (X,Y,Z) are the position in reference configuration and (x, y,z) are the position in

current configuration in Cartesian coordinate. The deformation gradient is calculated as

F= J1/3















λ 0 0

0
1√
λ

0

0 0
1√
λ















, B= J2/3















λ2 0 0

0
1

λ
0

0 0
1

λ















, (4.13)
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where λ is the isochoric biaxial stretch. The invariants of B are given as

I1 = J2/3
(

λ2 +
2

λ

)

, I2 = 2J4/3λ, I3 = J2. (4.14)

Substituting (4.11) into (4.9), the deformation-entropy relation is obtained by

η =− κ

ρ0θ0

[

µ

κ

(

I1− 3J2/3
)

+
J

m
+
J−m+1−m

m(m− 1)
− αθ0

n

(

Jn− 1
)

]

. (4.15)

It follows from (4.4) that the stress T is given by

T= 2µθ

Jθ0

(

B− J2/3I
)

+
κθ

mθ0

(

1− J−m
)

I + καθ0J
n−1

(

1− θ

θ0

)

I. (4.16)

The volume-pressure relation for pure volume expansion can be found by substituting

λ= 1 and T=−PI into (4.16) to give

−P = κθ

mθ0

(

1− J−m
)

+ καθ0J
n−1

(

1− θ

θ0

)

. (4.17)

Figure 4.1 shows the volume temperature curves for four different nondimensionalized

pressures P/κ. From (4.17), the relation between temperature and volume change in

isothermal process and at the stress-free state is obtained by

θ = −καθ0Jn−1

(

κ/mθ0

)(

1− J−m
)

− καJn−1
. (4.18)

The specific heat at constant pressure Cp can be obtained from (4.10) and (4.16) for

the fixed value of the stress T and λ. When T = 0 and λ = 1, ∂J/∂θ|T=0 can be obtained

from (4.18) and substituting the result into (4.10) gives Cp-temperature curve shown in

Figure 4.2. The results are compared with the unconstrained case and the experimental

data of Wood and Martin [14].

Since the stress responses in isothermal deformation are the same for both constrained

and unconstrained cases (see (4.4) and (4.10)), assume an isentropic deformation and

compare the stress and temperature responses for the two cases. In order to find temper-

ature and stress responses in isentropic homogeneous extension for the constrained case,

we substitute the value of λ and η = 0 into (4.15) and obtain J . Then, the temperature

and the biaxial stress are obtained from (4.16) by assuming other stress components to

be zero except the axial stress Txx which is set to σ .

The variation of temperature with respect to the axial stretch Λ for the isentropic pro-

cess is plotted in Figure 4.3, where the axial stretch is defined by

Λ= λ

(

J

J0

)1/3

. (4.19)

The nondimensionalized temperature changes by about 1% for up to two times of axial

stretch, and the absolute value of temperature changes by about 3◦C. The stress responses

plotted in Figure 4.4 are very close for both the constrained and unconstrained cases.
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Figure 4.1. Volume expansion with temperature variation for different ambient pressures. Solid

curves are for the constrained material. Experimental data is from Wood and Martin [14].
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Figure 4.2. Comparison Cp for the constrained (Cv = 0 j/kgK) and unconstrained (Cv = 1662 J/kgK)

materials. Experimental data is from Wood and Martin [14].
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Figure 4.3. The variation of temperature with axial stretch for different Cv . Experimental data is from

Dart (see James and Guth [7]).
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5. Discussion

Thus we have shown that it is unnecessary to consider equations of the form J=Ĵ(η) or J =
Ĵ(ε) as constraints. Indeed, such conditions are easily gone with appropriate Helmholtz

potentials of the form

ψ = ε̂(F)− θη̂. (5.1)

For peroxide-cured vulcanizate of rubber, we show that a constitutive function of the

form (5.1) can be used to model the response. We see that the stress and temperature

responses in isothermal and isentropic extension, regardless of the change in Cv, are al-

most the same for Λ < 1.5. This implies that, for this value of Λ, the deformation-entropy

constraint or the equivalent form of the Helmholtz free energy can be employed without

serious error.

One of the principal motivations for considering constraints is the simplification that

it offers for analytical solution of some boundary value problems. However, constraints

of the form J = Ĵ(η) and J = Ĵ(ε) do not allow for such simplification, and it may be better

to simply use an unconstrained thermoelastic model if one is interested in capturing the

effects of volume change.
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