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Abstract: Recent experimental results based on the digital image correlation technique
(U. Eitner, M. Köntges, R. Brendel, Solar Energy Mater. Solar Cells, 2010, 94, 1346–1351) show
that the gap between solar cells embedded into a standard photovoltaic laminate varies with
temperature. The variation of this gap is an important quantity to assess the integrity of the
electric connection between solar cells when exposed to service conditions. In this paper, the
thermo-elastic deformations in photovoltaic laminates are analytically investigated by devel-
oping different approximate models based on the multilayered beam theory. It is found that
the temperature-dependent thermo-elastic properties of the encapsulating polymer layer are
responsible for the deviation from linearity experimentally observed in the diagram relating
the gap variation to the temperature. The contribution of the different material constituents to
the homogenized elastic modulus and thermal expansion coefficient of the composite system
is also properly quantified through the definition of weight factors of practical engineering
use.
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1 INTRODUCTION

Photovoltaics (PV) is the direct conversion of solar

radiation into electricity using semiconductors that

exhibit the photovoltaic effect. Photovoltaic power

generation employs solar panels comprising a number

of silicon solar cells embedded in laminates. Owing to

the growing demand for renewable energy sources,

the cumulative installed photovoltaic power has

increased from 1.4 GW in 2000 to 22.9 GW in 2009 [1]

while the cost per kWpeak has declined.

Typical crystalline silicon PV laminates are multi-

layered structures composed of a glass superstrate,

the interconnected silicon (Si) solar cells, an

encapsulating polymer (ethylene vinyl acetate,

EVA), and a polymeric protective backsheet.

Figure 1 shows the schematic composition of such a

PV module. A typical distance between neighbour-

ing solar cells is 2 mm, a small quantity as compared

to the span of a solar cell of either 125 or 156 mm.

The gap between solar cells was recently found to

be dependent on temperature [2]. It varies up to

60 mm within the temperature range of �40 8C and

85 8C, which is representative for the temperature

range that PV modules experience in the field [3, 4].

The electrical connection between the cells needs to

withstand these deformations through many ther-

mal cycles without failure. Therefore it is imperative

to understand and quantify the relative displace-

ment of the solar cells within the laminate.

The challenge in understanding the gap deforma-

tion in the PV modules stems from the fact that

both the mechanical properties and the dimensions
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of the different materials in the PV module differ

considerably from each other. The glass superstrate,

with a thickness of about 4 mm, is an order of mag-

nitude thicker than the other layers, and thus domi-

nates the deformation of the PV module. The

thermal expansion coefficients vary between the dif-

ferent materials up to two orders of magnitude,

leading to considerable thermal stresses. Finally, the

stiffness of the constituents range over up to four

orders of magnitude. Temperature-dependent

mechanical properties of EVA add further complex-

ity to the problem.

The computation of thermo-elastic deformations

in PV laminates is a prerequisite to propose new

technical solutions that may result in innovative

solar cell design. In this context, the development of

analytical models would be convenient to under-

stand the roles played by the different materials on

the global mechanical behaviour.

The analysis of thermo-elastic stresses in compo-

site beams with homogeneous dissimilar layers

can be traced back to the pioneering work of

Timoshenko [5]. On the basis of an elementary beam

theory he determined the normal stresses in bi-

layered beams, assuming that these stresses remain

unchanged along the longitudinal beam axis, i.e. con-

sidering a perfectly bonded bi-material interface.

Afterwards, various simplified approaches to the

problem in question were put forward, most in con-

nection with the needs of micro-electronics technol-

ogy. Suhir [6, 7] extended the Timoshenko solution

by considering deformable interfaces. Introducing

both the longitudinal and the transverse interfacial

compliances, he evaluated the magnitude and distri-

bution of the shearing and peeling stresses along the

interface of bi-metal thermostats. More recently, the

Suhir solution was improved in reference [8], where

a correction to the peeling stresses was proposed in

order to satisfy the translation equilibrium in the

direction normal to the layers. The discrepancies

between the Suhir solution and the finite-element

results were also analysed in reference [9], where fur-

ther corrections were proposed. An extension of this

approach to electronic assemblies composed of three

layers was proposed in reference [10], although the

thickness of the intermediate layer, i.e. the adhesive

one, was considered much smaller than those of the

adjacent layers. A general theory for the analysis of

interfacial stresses in multi-layered homogeneous

beams was recently discussed in references [11] and

[12], although the applications regarded electronic

packaging with three layers only. Finally, Carpinteri

and Paggi [13] proposed a general theory for func-

tionally graded multilayered beams with shear

deformable interfaces and for a general number of

layers.

The application of such theories to PV laminates

is however not straightforward at all. All the avail-

able models assume constant material properties

for the layers along the longitudinal (axial) direction.

This is not the case of PV laminates, where the solar

cells are longitudinally separated by EVA. Moreover,

all the models listed above assume temperature

independent material properties, which is not realis-

tic for polymer layers that exhibit a strong tempera-

ture-dependent behaviour.

Hence, in the present work, the theory of multi-

layered beams will be extended to the thermo-

elastic analysis of PV laminates. The non-continuity

of the solar cells, separated by EVA, will be carefully

modelled. Different assumptions will be tested in

order to propose a closed-form solution for the com-

putation of the gap between solar cells as a function

of temperature, keeping the formulation as simple as

possible. The resulting models’ predictions will be

compared to the experimental measurements carried

out in the Institute for Solar Energy Research in

Hamelin (ISFH). As a main result, the role played by

the individual material constituents on the overall

deformability of the PV laminate is elucidated.

2 MATERIAL PROPERTIES AND GEOMETRY

Consider a multilayered material sketched in Fig. 1,

where it is possible to identify three structural com-

ponents making a representative element of a PV

panel, periodically repeated along the longitudinal

(axial) coordinate: a glass superstrate with thickness

hG = 4 mm, and two composite beams. Beam 1 has 4

layers: an encapsulating polymer layer (EVA) with

thickness hEVA = 0:5 mm, the silicon solar cell

with thickness hSi = 0:166 mm, another layer of EVA

Fig. 1 Sketch of a representative element of a PV
module (not in scale); the variables are defined
in the Appendix
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with the same thickness as the previous one, and

finally a thin backsheet made of an ethylene tetra-

fluoroethylene core with silicon nitride coating (iso-

volta Icosolar T 2754), with thickness hbs = 0:1 mm.

The span of beam 1 at 20 8C, l1, 0, is 125 mm. Beam 2

is composed of two layers: an EVA layer with total

thickness equal to hSi + 2hEVA, and the backsheet as

in beam 1. Its span l2, 0 is equal to 2 mm at 20 8C. All

the values of the geometrical parameters are sum-

marized in Table 1.

Not only are the thicknesses of the layers quite

different from each other, but also the mechanical

properties of the constituent materials differ consid-

erably. As a result, although some layers are quite

thin, it is not obvious if their mechanical contribu-

tion to the deformation field can be neglected. More

specifically, considering the Young’s moduli, glass

and silicon are much stiffer than backsheet and

EVA. In fact EG = 73 GPa [14], ESi = 130 GPa [15], and

Ebs = 2:8 GPa. The value for the backsheet is deter-

mined from tensile tests using ASTM D638 TYPE I

specimens and a strain velocity of 0.175/min. The

Young’s modulus is calculated by linear regression

of the true-stress to true-strain curve in the strain

interval 0.001–0.015.

The Young’s modulus of EVA is strongly dependent

on temperature and varies from 1 MPa at high tem-

peratures to 1 GPa at low temperatures. To better

characterize this material, tensile relaxation tests have

been performed in ISFH [16] in order to determine

EEVA versus temperature for different relaxation times.

Here, it is possible to use the isothermal relaxation

curves given in reference [16] to create isochronal

curves over temperature. Times of 1 s, 2 s, 5 s, 10 s,

20 s, 1 min, 2 min, 5 min, 10 min, 20 min, 1 h, and 2 h

in the isothermal experimental data were selected and

the corresponding value of the tensile relaxation

modulus read out. These moduli are then plotted ver-

sus temperature as shown in Fig. 2. For high tempera-

tures, the Young’s modulus of EVA tends to

approximately 1 MPa regardless of the relaxation time.

This value is nearly five orders of magnitude lower

than that of glass and silicon, and three orders of

magnitude lower than that of backsheet. On the other

hand, for low temperatures, the elastic modulus of

EVA increases considerably and ranges from 0:1 to

1 GPa, depending on the relaxation time.

Regarding the thermal expansion coefficients, the

situation is reverted and glass and silicon present

the lowest values. Typical values for float glass are

in the range of 7.5 310�6 to 9 310�6/K. An inter-

mediate value of aG = 8:00310�6 is used in the

calculation here. For silicon, aSi = 2:5310�6 was

selected, as determined in reference [17]. EVA has a

thermal expansion coefficient approximately two

orders of magnitude higher, aEVA = 2:70310�4, which

was determined from the tensile elongation during

a dynamical mechanical analysis in torsion. The

manufacturer of the backsheet gives abs = 5:04310�5,

which is an intermediate value between glass and

silicon on one hand and EVA on the other hand. All

the values of the material parameters are summar-

ized in Table 1.

Owing to such a significant mismatch in the

thermo-elastic properties of the constituent materi-

als, a complex state of stress and deformation is

expected in the PV laminate. In order to gain some

insight into the interplay of the materials and their

impact on the gap deformation, an analytical model

is developed in the next section for the prediction of

the gap deformation in PV laminates.

3 ANALYTICAL MODEL FOR THE

COMPUTATION OF THE GAP BETWEEN

SOLAR CELLS

Specific simplifications of the complicated mechan-

ical interplay of the different mechanical properties

Table 1 Values of the geometrical and mechanical

parameters

Variable Value

Geometrical parameters
hbs 0.1 mm
hEVA 0.5 mm
hG 4 mm
hSi 0.166 mm
l1, 0 125 mm
l2, 0 2 mm
Mechanical parameters
Ebs 2.8 GPa
EEVA dependent on T , see Fig. 2
EG 73 GPa
ESi 130 GPa
abs 5:04310�5

aEVA 2:70310�4

aG 8:00310�6

aSi 2:49310�6
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in a PV laminate allow the development of an analy-

tical model. Therewith the computation of the gap

between solar cells in PV laminates can be per-

formed as a function of the environmental

temperature.

3.1 Derivation of the equivalent mechanical

parameters

The central simplification within this work is to

assume shear-free deformation in the complete sys-

tem. This leads to a quasi-one-dimensional (1D)

analysis, thus drastically reducing the degrees of free-

dom and allowing for a comprehensible analytical

solution. It is, however, not a particularly good

assumption for the EVA at least at high temperatures,

as it is much more compliant than the other materi-

als and will therefore shear to compensate for the dif-

ferent thermal expansions of glass, silicon and

backsheet. Instead of explicitly considering the shear

deformation of EVA, it is assumed that the interface

between glass and EVA is totally debonded, while all

other interfaces are assumed to be perfectly bonded.

The influence of the underlying stack on the

expansion of the glass is negligible, as the glass is

much thicker than the other materials combined,

and is second in stiffness only to the thin silicon. On

the other hand, the influence of the glass on the

remaining stack is considered in form of boundary

conditions: the length of the remaining stack at any

given temperature is determined by the freely

expanded glass. This pinning of the centres of the

solar cells to certain positions of the glass corre-

sponds to symmetry conditions within the extended

PV module.

These kinematic hypotheses allow the present

authors to treat the problem in one dimension.

Owing to its periodicity in the in-plane directions,

the analysis is restricted to a representative PV lami-

nate element, composed of two half-cells and an

interlayer, as sketched in Fig. 1.

Under such conditions, attention is focused on

the beams 1 and 2 composing the stack. Let an axial

strain e be imposed to the ith beam (i = 1, 2), uni-

form along its cross-section. The resulting axial

forces in the beams are

Ni =
Xn

j = 1

sjhjt = e
Xn

j = 1

Ejhjt (1)

where t is the beam width, whereas Ej and hj are the

elastic moduli and the height of the jth layer,

respectively. The summation is extended to all the n

layers composing the ith beam. The existence of an

equivalent homogenous beam with the same

mechanical response can now be postulated. Its

behaviour in terms of axial force versus strain would

be

Ni = eE�i ht (2)

where h =
Pn
j = 1

hj and E�i are the composite elastic

moduli. Equating equations (1) and (2), the expres-
sion for E�i is obtained, which coincides with the
Voigt estimate for Young’s modulus of a composite
system under isostrain conditions and perfectly
bonded bi-material interfaces [18]

E�i =

Pn
j = 1

Ejhj

Pn
j = 1

hj

(3)

Equation (3) implicitly assumes that the stress–strain

constitutive relation of the material components is

linear elastic. This assumption might not hold for

EVA in the high-temperature regime. However, the

elastic modulus of EVA is particularly low at those

temperatures as compared to the elastic modulus of

the other materials. Therefore, the error in using a

linearized stress–strain curve of EVA instead of a

strain-dependent Young’s modulus is negligible.

More specifically, for the problem here find

E�1 =
2EEVAhEVA + ESihSi + Ebshbs

h

E�2 =
EEVA(2hEVA + hSi) + Ebshbs

h

It is now possible to define the following stiffness

weight factors to understand the contribution of

each material constituent on the elasticity of the

composite beam 1

f EVA
1 =

2EEVAhEVA

hE�1

f Si
1 =

ESihSi

hE�1

f bs
1 =

Ebshbs

hE�1

and the same for beam 2

f EVA
2 =

EEVA(2hEVA + hSi)

hE�2

f bs
2 =

Ebshbs

hE�2

These weight factors are plotted in Fig. 3, selecting

an elastic modulus for EVA corresponding to a
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relaxation time of 1 h. This choice is consistent with

the experimental conditions used to measure the

variation of the gap between solar cells where the

temperature is slowly raised and lowered as

described in reference [2].

Figure 3 clearly shows that, under the condition

of perfectly bonded interfaces, the axial stiffness of

the composite beam 1 is substantially governed by

the elastic modulus of the silicon cell. On the other

hand, the stiffness of beam 2 is mostly governed by

the backsheet for temperatures higher than 20 8C.

For temperatures below 0 8C, the contribution of

EVA significantly increases up to 30 per cent, due to

its temperature-dependent elastic properties.

The ratio between the composite elastic moduli

of beams 1 and 2 is shown in Fig. 4. This ratio is a

non-linear function of temperature, again due to

the temperature-dependent elastic modulus of EVA.

In a similar way, the composite thermal expansion

coefficients can be determined. Neglecting the beam

curvature due to the constraint exerted by the glass

superstrate, the axial thermo-elastic stress in the jth

layer is [13]

sj = � ajEjDT + eiEj (4)

where aj is the thermal expansion coefficient of that

layer. The axial deformation e of the composite beam

can now be determined by imposing the condition of

vanishing axial force in a generic cross-section

N =
Xn

j = 1

Z y(1)
j

y(2)
j

sjtdy = 0 (5)

where y(1)
j and y(2)

j correspond, respectively, to the

coordinates of the upper and lower interfaces of the

jth layer, their difference being equal to the layer

thickness, hj. The variable t is the beam width, as

defined in equation (1). Introducing equation (5)

into (4) and solving for e you get

ei =

Pn
j = 1

ajEjhj

Pn
j = 1

Ejhj

DT (6)

The existence of an equivalent homogenized beam

with the same mechanical response can be postu-

lated. Its thermo-elastic behaviour would be

governed by

ei = a�i DT (7)

Equating equations (7) and (6) the expression for a�i
is obtained as

a�i =

Pn
j = 1

ajEjhj

Pn
j = 1

Ejhj

(8)

The following thermal expansion weight factors can

be defined to understand the contribution of each
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J. Strain Analysis Vol. 46



material constituent to the composite thermal

expansion coefficient of beam 1

gEVA
1 =

2EEVAaEVAhEVA

2EEVAaEVAhEVA + ESiaSihSi + Ebsabshbs

gSi
1 =

ESiaSihSi

2EEVAaEVAhEVA + ESiaSihSi + Ebsabshbs

gbs
1 =

Ebsabshbs

2EEVAaEVAhEVA + ESiaSihSi + Ebsabshbs

and of beam 2

gEVA
2 =

EEVAaEVA(2hEVA + hSi)

EEVAaEVA(2hEVA + hSi) + Ebsabshbs

gbs
2 =

Ebsabshbs

EEVAaEVA(2hEVA + hSi) + Ebsabshbs

These weight factors are plotted in Fig. 5 for EEVA

corresponding to a relaxation time of 1 h. The com-

posite thermal expansion coefficient of beam 1 is

mostly governed by silicon, which has a weight fac-

tor ranging from 60 per cent to 80 per cent, depend-

ing on the temperature. The backsheet contributes

to 20 per cent, more or less independently from the

temperature. The EVA has a non-linear contribution

which is approximately negligible for temperatures

higher than 60 8C and become relevant for tempera-

tures below 0 8C. Regarding beam 2, the contribu-

tion of EVA is negligible for temperatures higher

than 60 8C, whereas it significantly increases for

T\0 8C, up to nearly 80 per cent.

The ratio between the composite thermal expan-

sion coefficients of beams 1 and 2 is reported in

Fig. 6. This ratio ranges between 0.04 and 0.06 in the

considered temperature range.

3.2 Computation of the variation of the gap
between solar cells

When a uniform temperature excursion DT is

applied from the reference temperature, the spans

l1, l2, and lG modify as follows

l1 = l1, 0(1 + a�1DT )

l2 = l2, 0(1 + a�2DT )

lG = lG, 0(1 + aGDT )
(9)

where l1, 0, l2, 0; and lG, 0 are the initial spans corre-

sponding to DT = 0, and are equal to 62.5 mm,

2 mm, and 127 mm, respectively. According to the

previous kinematic assumption, the total deformed

span of the composite beam 1–2 must be equal to

the span of the glass superstrate, for each tempera-

ture value. In formulae x1(DT ) + x2(DT ) = lG(DT )

where x1 and x2 are the equilibrium coordinates of

the interfaces between beams 1 and 2 (see Fig. 1).

This boundary condition allows the unknown

x2(DT ) to be written in terms of x1(DT )

x2 = lG � x1 (10)

Under the assumption of no external loads and

purely axial deformation of the stack, the total

potential energy of the system coincides with the

deformation energy. For Clapeyron’s theorem

Etot = 2
E�1
2

x1 � l1

l1

� �2

+
E�2
2

x2 � x1 � l2

l2

� �2

(11)

where the terms in parentheses correspond to the

axial strains of the composite beams 1 and 2,

respectively. Again, in the derivation, linear elastic

stress–strain constitutive relations for the materials

have been assumed. The error in using a linearized

stress–strain curve of EVA at high temperatures

instead of a strain-dependent Young’s modulus is

reasonably negligible.

The equilibrium position x1 is now determined of

the interface between beams 1 and 2 introducing

equation (10) into (11), and finding the minimum of

the total energy

dEtot(x1)

dx1
= 2E�1

x1 � l1

l2
1

� 2E�2
lG � 2x1 � l2

l2
2

= 0 (12)

This gives

x1 =
E�1 l1l2

2 + E�2 l2
1(lG � l2)

l2
2E�1 + 2l2

1E�2
(13)

and the variation of the gap between the solar cells

is finally given by

Dg = (x2 � x1)� l2, 0 = lG � 2x1 � l2, 0 = lG � l2, 0

�2
E�1 l1l2

2 + E�2 l2
1(lG � l2)

l2
2E�1 + 2l2

1E�2

(14)

4 ANALYTICAL PREDICTIONS AND
COMPARISON WITH EXPERIMENTS

So far, experimental results regarding the variation

of the gap between solar cells have been interpreted

in the literature by considering the deformations of

the glass superstrate and the silicon cells only [2].

There, the contributions of the backsheet and of the

EVA were neglected, so that the following approxi-

mate formula was proposed [2]
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Dg = lG � lSi = (lG, 0 � 2l1, 0) + (lG, 0aG � 2l1, 0aSi)DT
(15)

which suggests a linear dependence between Dg

and DT . The predictions obtained using equation

(15) are plotted in Fig. 7 with a black dashed line.

Experimental measurements are also superimposed

with black dots. The quadratic norm of the relative

error between the numerical predictions and the

experimental results is equal to 0.81. A straightfor-

ward comparison between predictions and experi-

ments shows that the simplified formula (15)

slightly overestimates the gap variation for tempera-

tures higher than 20 8C. On the other hand, a sig-

nificant discrepancy between predictions and

experiments is observed for temperatures below

0 8C. The temperature-dependent behaviour of EVA

becomes important for temperatures below zero

and this may qualitatively explain the deviation

from the linear trend predicted by equation (15).

The contribution of EVA at low temperatures is in

fact relevant in terms of stiffness for beam 2 (see

Fig. 3), and in terms of thermal expansion coeffi-

cient for both beam 1 and beam 2 (see Fig. 5).

Let the general formula (14) now be considered,

which allows different scenarios to be investigated

towards the understanding of the role played by the

different constituents on the deformability of PV

modules, since all the materials are taken into

account. The model predictions have been carried

out for temperatures down to �35 8C, consistently

with the elastic modulus data of EVA plotted in

Fig. 2. Lower temperatures were not explored, due

to technical limitations in performing experimental

measurements of the elastic modulus according to

relaxation tests in a climate chamber at tempera-

tures less than �35 8C. In practical applications,

however, the range of temperatures explored in the

present study is exhaustive for the characterization

of PV modules. In fact, the typical temperature

range for PV modules in Europe is considered to lie

between �40 8C and 85 8C.

Plotting the predictions of equation (14) versus T

in Fig. 7 (square dots), there is however a much stif-

fer response as compared to experiments, with a

significantly lower predicted gap variation. The

norm of the relative error between the analytical

predictions and the experimental results is equal to

2.06. Here, it has to be remarked that equation (14)

corresponds to the physical situation consisting in a

perfect bonding between the interfaces of the stacks

in beams 1 and 2, and between the two beams

themselves. It also assumes that the cross-sections
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of the beams remain plane after deformation,

neglecting shear deformations. This assumption

allows the problem to be treated as a monodimen-

sional one. To better interpret the experimental

results, some of these constraints have to be

released.

In experiments, the EVA layer deforms much

more than silicon and the cross-section does not

remain plane under deformation. To visualize the

concentration of strains at the end of the Si cells, a

2D linear elastic finite element thermo-elastic analy-

sis is performed with Comsol Multiphysics under

plane strain. Periodic boundary conditions are con-

sidered on the vertical sides. The horizontal bound-

aries are stress-free. The reference temperature is

set equal to 150 8C, which is the temperature at

which bonding between the materials is made. The

strain state at T = � 40 8C is examined. The material

parameters are those listed in Table 1. Regarding

EVA, an elastic modulus of 1 GPa is adopted. A non-

linear FE analysis with temperature-dependent

properties was beyond the scope of the present

study and is left for further investigation. The geo-

metry is meshed with a triangular grid, with quadra-

tic Lagrangian elements. A fine mesh around the

interfaces was used to capture the strain concentra-

tion. Figure 8 shows the contour plot of the strain

component gxy at T = � 40 8C. It is superimposed to

the deformed geometry of the PV module (with an

amplification factor of 5) to show the non-planarity

of the cross-sections, especially in beam 2. A zoom

of that area is also provided for a better

visualization.

The rigidity of the intermediate beam is mostly

governed by backsheet (see Fig. 3). The de facto

shearing of EVA drastically reduces the effective

contribution of the backsheet to the stiffness of

beam 2, so the stiffness of beam 2 becomes negligi-

ble as compared to that of beam 1. These experi-

mental observations suggest modifying equation

(14) by setting E�2 = 0 to investigate this limit case

DgE�2!0 = lG � l2, 0 � 2l1 = (lG, 0aG � 2a�1l1, 0)DT (16)

Here, it is interesting to note that the prediction no

longer depends on the composite thermal expan-

sion coefficient of beam 2. The variation of gap

between solar cells is therefore given by the differ-

ence between the deformation of the glass super-

strate and the deformation of the beam 1. The

predictions are shown with a solid line in Fig. 7. The

agreement with experiments significantly improves

with respect to the case where E�2 6¼ 0 (norm of the

relative error equal to 0.23). For DT\0, the devia-

tion from linearity observed in experiments is cor-

rectly captured, since the temperature-dependent

elastic modulus of EVA in beam 1 is considered in

the analysis.

If the square dots and solid curves can be consid-

ered as the lower and upper bounds to the gap var-

iation, the intermediate situations physically

correspond to a finite shearing of EVA. Within the

framework of the monodimensional model dis-

cussed here, this phenomenon globally manifests as

a reduced contribution of the backsheet to the stiff-

ness of the composite beams, similarly to the inde-

pendent expansion of the glass. The stiffness of

beam 2 is in fact governed by the backsheet at high

temperatures and therefore Ebs is the only para-

meter that can be tuned to effectively improve the

predictions. It cannot be excluded that the change

of Ebs with respect to the declared value provided by

the producer might be partially due to a possible

temperature dependency of its properties. However,

this effect seems to be unlikely.

To investigate the influence of the backsheet

contribution, its elastic modulus is artificially

reduced, reducing in this way its stiffness and ther-

mal expansion weight factors, fbs and gbs, respec-

tively. It is necessary to search for the value of Ebs

that minimizes the norm of the relative error

between the model predictions and the experimen-

tal values of the gaps. Only the data for T.20 8C

have been considered in this procedure. In that

range, the gap is a linear function of the tempera-

ture and the above criterion just requires to change

Ebs in order to match the slope of the Dg versus T

experimental data. The obtained curve is shown in

Fig. 7 with a dashed line and it has been obtained

by setting Enew
bs = 5Ebs=1000. The norm of the rela-

tive error for this case is the lowest and is equal to

0.14. Comparing these predictions with those

Fig. 8 Contour plot of shearing strains obtained from
a 2D FE analysis, superimposed to the
deformed geometry (amplification factor equal
to 5); note the concentration of strains at the
end of the Si cells and the non-planarity of
beam 2 in the zoom of the central part
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obtained by applying equation (16) (solid line),

note that they are both very close to experiments,

apart from T\� 20 8C where the solid line deviates

from the experimental trend. The reason behind

the search for an optimal solution using equation

(14) is not to find the best agreement as possible

with experiments, but rather to understand the rea-

sons for the discrepancy between the predictions

provided by equation (14) (considering all the

materials, square dots line in the figure) and the

experimental trend. From the present analysis it is

possible to conclude that the stiffness of the back-

sheet plays an important role in the monodimen-

sional model.

The corresponding updated weight factors are

shown in Figs 9 and 10 with a solid line. The weight

factors of the original model without taking account

shearing effects are also superimposed with a

dashed line. Regarding the composite elastic modu-

li, note that the stiffness of beam 1 is largely gov-

erned by the silicon cell, which has a weight factor

approximately equal to 100 per cent, see Fig. 9(a).

On the other hand, the situation significantly

changes for beam 2, where now the contribution of

EVA prevails with respect to that of the backsheet

for temperatures lower than 60 8C, see Fig. 9(b).

Looking at the composite thermal expansion

coefficient of beam 1 (Fig. 10(a)), note that the con-

tribution of backsheet is now sensibly reduced,

whereas that of EVA remains almost unchanged.

The silicon contribution is the prevailing one, espe-

cially for temperatures higher than 60 8C. As far as

beam 2 is concerned, Fig. 10(b), the contribution of

EVA is now prevailing over that of the backsheet in

the whole temperature range. For temperatures

lower than 20 8C, the weight factor of EVA reaches

100 per cent.

5 DISCUSSION AND CONCLUSION

In the present paper, a model based on multilayered

beam theory has been proposed for the thermo-

elastic analysis of PV modules. Special emphasis has

been given to the computation of the variation of

the gap between solar cells when exposed to
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Fig. 9 Weight factors for the composite Young’s modulus after effectively considering the effect
of shearing; dashed lines correspond to the predictions with neglected shear effects; the
labels (bs) and (Si) denote, respectively, the backsheet and the silicon cell
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effect of shearing; dashed lines correspond to the predictions with neglected shear effects;
the labels (bs) and (Si) denote, respectively, the backsheet and the silicon cell
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environmental temperatures, as happens during ser-

vice conditions. This quantity is of paramount

importance to assess the integrity of the electric

connection between solar cells.

As compared to classical multilayered beams, the

complexity of the problem is herein represented by

the non-continuity of solar cells along the longitudi-

nal direction, and by the temperature-dependent

elastic properties of EVA. The comparison with

experiments shows that it is reasonable to consider

the stacks composed by EVA, solar cells, and back-

sheet as disconnected from the cover glass, whose

effect can be regarded as a boundary condition on

the deformation of the system. Two limit situations

have then been modelled, one corresponding to a

pure 1D model without shear deformation, and

another with maximum effect of shear deformation

obtained by setting E�2 = 0. They provide, respec-

tively, the lower and the upper bounds to the varia-

tion of the gap between solar cells. Intermediate

configurations with finite shearing of EVA can be

effectively modelled by reducing the elastic modu-

lus of backsheet, in order to reduce its contribution

to the overall composite material properties of

beams 1 and 2. The experimental data are best

reproduced if the contribution of backsheet is sig-

nificantly reduced. This suggests that, due to the

shearing of EVA, the influence of the backsheet on

the variation of the cell gap is negligible with a rea-

sonable degree of accuracy. On the other hand, the

temperature-dependent elastic modulus of EVA has

an important role for the prediction of the stiffness

of the composite beams and for capturing the devia-

tion from linearity observed for temperatures below

zero.

The analysis carried out for improving the predic-

tions of equation (14) is important for two main rea-

sons. First, in principle, the use of the complete

solution including all the materials is expected to be

easier to be generalized for the case of other geome-

tries and materials. In fact, although setting E�2 = 0

was a reasonable approximation in the present

application, this assumption should be checked

with care if other materials are used. Second,

improving the predictions of equation (14) has per-

mitted the authors to understand that the elastic

modulus of backsheet is a key parameter for the use

of the present monodimensional beam model.

Although the degree of accuracy of the proposed

model is satisfactory from the engineering point of

view, more refined investigations based on 2D finite

element models could be pursued. The main advan-

tage of a 2D model concerns the possibility to simu-

late the non-planarity of the beam cross-section

after deformation, an aspect that cannot be

captured using a monodimensional model. It also

makes it possible to obtain a detailed description of

the local stress and strain fields. However, the pres-

ent analytical approach provides useful information

about the global behaviour of the PV module

through weight factors that cannot be easily

deduced from a finite element simulation. These

weight factors can be used to assess the effect of dif-

ferent materials and layers arrangements on the

stiffness and thermal expansion distributions of

newly designed PV modules.

FUNDING

MP would like to thank the Alexander von Humboldt

Foundation for supporting his research fellowship

during the year 2010 at the Institut für Kontinuum-

smechanik, Leibniz Universität Hannover (Germany).

SKS and UE acknowledge financial support by the

state of Lower Saxony, Germany.

� Authors 2011

REFERENCES

1 EPIA. Global market outlook for photovoltaics until
2014. European Photovoltaic Industry Association
Technical Report, May 2010.
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APPENDIX

Notation

Ebs elastic modulus of backsheet

Enew
bs

actual elastic modulus of backsheet

EEVA elastic modulus of the encapsulating poly-

mer layer

EG elastic modulus of glass superstrate

Ej elastic modulus of the jth layer

ESi elastic modulus of silicon cell

E�i composite elastic modulus of the ith

beam

f bs
i stiffness weight factor of backsheet for the

ith beam

f EVA
i stiffness weight factor of EVA for the ith

beam

f Si
1 stiffness weight factor of silicon cell for

the beam 1

gbs
i thermal expansion weight factor of back-

sheet for the ith beam

gEVA
i thermal expansion weight factor of EVA

for the ith beam

gSi
1 thermal expansion weight factor of silicon

cell for the beam 1

lG span of the glass superstrate for a given

DT

lG, 0 reference span of the glass superstrate for

DT = 0

li span of the ith beam for a given DT

li, 0 reference span of the ith beam for DT = 0

Ni axial force in the ith beam

hbs thickness of backsheet

hEVA thickness of the encapsulating polymer

layer

hG thickness of the glass superstrate

hj thickness of the jth layer

hSi thickness of silicon solar cell

h total thickness of PV laminate

t beam thickness

xi equilibrium coordinates of the ith

interface

abs coefficient of thermal expansion of the

backsheet

aEVA coefficient of thermal expansion of the

encapsulating polymer layer

aG coefficient of thermal expansion of the

glass superstrate

aj coefficient of thermal expansion of the jth

layer

a�i composite coefficient of thermal expan-

sion of the ith beam

Dg variation of the gap between solar cells

DT temperature variation from 20 8C

e total potential energy of the system

e axial strain

ei axial strain in the ith beam

sj axial stress in the jth layer
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