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Abstract 

 
A finite-element model, CON2D, has been developed to simulate temperature, shape, stress, 
and hot-tear crack development during the continuous casting of steel, both in and below the 
mold.  The stress model features an elastic-viscoplastic creep constitutive equation that 
accounts for the different responses of the liquid, semi-solid, delta-ferrite, and austenite phases.  
Temperature and composition-dependent functions are also employed for properties such as 
thermal linear expansion.  A contact algorithm prevents penetration of the shell into the mold 
wall due to the internal liquid ferrostatic pressure.  An efficient two-step algorithm has been 
developed to integrate these highly non-linear equations.  An inelastic strain-based criterion is 
developed to predict damage leading to hot-tear crack formation, which includes the 
contribution of liquid flow during feeding of the mushy zone.  The model is validated with an 
analytical solution for temperature and stress in a solidifying plate.  It is then applied to predict 
the maximum casting speed to avoid crack formation due to bulging below the mold during 
casting of square steel billets. 
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Introduction 
 
Computational models are important tools to study complex processes such as the continuous 
casting of steel. They can help to understand how defects form and to optimize casting 
conditions to maximize quality and productivity at low cost. Several previous researchers have 
developed two-dimensional (2-D) thermal-mechanical finite element models to study crack 
formation in continuous cast steel billets [1-4]. One such model, CON2D, has been developed 
at the University of Illinois over the past decade [5-7]. It has been applied to simulate shell 
thinning breakouts [5], ideal taper optimization [5], and meniscus distortion [6, 7]. This paper 
briefly summarizes the features of this model, including a new hot-tearing criterion, and then 
describes its recent application to predict the maximum casting speed to avoid crack formation 
due to bulging below the mold during continuous casting of square billets. 

 
Model Description 

 
Heat Transfer and Solidification Model 
 
The model solves a 2-D finite-element discretization of the transient heat conduction equation 
in a Lagrangian reference frame that moves down the caster with the solidifying steel shell.  It 
features a spatial averaging method by Lemon to handle latent heat evolution [8] and a three-
level time-stepping method by Dupont [9]. 

 
Stress Model 
 
The equilibrium, constitutive, and strain-displacement equations in this 2-D slice through the 
shell are solved under a condition of generalized plane strain in the casting direction [5]. The 
total strain increment, {∆ε}, is composed of elastic, {∆εe}, thermal, {∆εth}, inelastic strain, 
{∆εin}, and flow strain, {∆εflow}, components.  Thermal strain due to volume changes caused by 
both temperature differences and phase transformations is calculated from the thermal linear 
expansion (TLE) of the material, which is based on density measurements. 

 { } ( ){ } 3
0 0( ) ( ) 1 1 0 1 ( ) ( ) ( ) 1T

th TLE T TLE T where TLE T T Tε ρ ρ= − = −  (1) 

A unified constitutive model is used here to capture the temperature- and strain-rate sensitivity 
of high temperature steel. The instantaneous equivalent inelastic strain rate εin is adopted as the 
scalar state function, which depends on the current equivalent stress, σ , temperature, T, the 
current equivalent inelastic strain, εin, which accumulates below the solidus temperature, and 
carbon content of the steel. When the steel is mainly austenite, (%γ >90%), Model III by 
Kozlowski [10] was applied. This function matches tensile test measurements of Wray [11] and 
creep test data of Suzuki [12]. When the steel contains significant amounts of soft delta-ferrite 
(%δ >10%), a power-law model is used, which matches measurements of Wray above 1400 oC 
[6, 13]. Fig. 1 shows the accuracy of the constitutive model predictions compared with stresses 
measured by Wray [14] at 5% strain at different strain rates and temperatures. This figure also 
shows the higher strength of austenite, which governs stress development in the solidifying 
shell. The von-Mises yield surface, with plasticity and normality hypotheses in the Prandtl-
Reuss flow rule is applied to model isotropic hardening of these plain carbon steels [15].  

A fixed-grid approach is employed which gives no special treatment to liquid elements. To 
enforce negligible shear stress in the liquid, the following constitutive equation is used to 
provide a very rapid creep strain rate in every element containing any liquid, (ie., solidusT T> ).   
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The same Prandtl-Reuss relation used for the 
solid is adopted to expand this scalar strain 
rate to its multi-dimensional vector.  This 
fixed-grid approach avoids difficulties of 
adaptive meshing and allows strain to 
accumulate in the mushy region, which is 
important for the prediction of hot-tear cracks.  
As in the real system, the total mass of the 
liquid domain is not constant: the inelastic 
strain accumulated in the liquid region 
represents mass transport due to fluid flow in 
and out of the domain, so is denoted as "flow 
strain".  Positive flow strain indicates fluid 
feeding into the simulated region. 
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Figure 1: Comparison of predicted and 

measured stress [14] 
 
Finite Element Implementation.  Applying the standard Galerkin’s method to the governing 
equations gives the linear algebraic equations to solve for temperature and then displacement 
within each time step.  The stress model uses 6-node quadratic-displacement triangular 
elements, which were each divided into four 3-node linear-temperature elements for the heat 
transfer calculation.  The stress calculation involves force vectors due to increments of thermal 
and inelastic strain, ferrostatic pressure and shell/mold interaction at special internal boundaries, 
and elastic strain corrections from the previous time step. Ferrostatic pressure from the liquid 
steel is applied as concentrated force on those nodes whose temperature is just below the 
solidus. An efficient contact algorithm based on penalty method, developed by Moitra [5], is 
adopted to prevent shell from penetrating the mold wall, while allowing it shrink freely. 

 [ ] { } { } { } { } { }
th pl

t tt t t tt t t t
fp elK u F F F Fε ε

+∆+∆ +∆+∆ +∆∆ = ∆ + ∆ + +  (3) 

Integration of the Constitutive Model.  The highly strain-rate-dependent constitutive models 
involved in this solidification problem require a robust numerical integration technique to avoid 
numerical difficulties.  This work applies a “local-global” method that alternates in each time 
step between implicit time integration of the constitutive equations to accurately estimate the 
future stress at each Gauss point, followed by standard finite element spatial integration.  
Specifically, the integration procedure used within each time step is summarized as: 

1. Estimate { }ε̂∆  based on { }u∆  from the previous time step:{ } [ ]{ }ˆ tB uε∆ = ∆ . 
2. Calculate { }* t t

σ
+∆

 , *σ  and { }* '
t t

σ
+∆

, needed to define the direction of the stress vector. 

 { } [ ] { } { } { } { } { }( )* ˆ 1 1 0 1
t t t t t t t Tt t

th in thD tσ ε ε ε ε ε
+∆ +∆ +∆= − − + ∆ − ∆&  (4) 

3. Solve the following two ordinary differential equations simultaneously for t t
inε +∆  and ˆ t t+∆σ  at 

each local Gauss point, using a fully implicit bounded Newton-Raphson integration method 
from Lush [16]. This method gives the best robustness and efficiency of several alternative 
approaches evaluated [6].  Function F is either Kozlowski model III for γ, the power law for δ, 
or flow strain for liquid phase. 
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4. Expand this scalar stress estimate into vector form: { } { }
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5. Calculate t t
inε +∆&  from ˆ t t+∆σ and t t

in
+∆ε using F according to the material phase.  

6. Expand t t
inε +∆&  into a vector { } t t

inε +∆
& with the same direction as { }ˆ ' t tσ +∆ using Prandtl-Reuss 

eqs.; Update { } { } { }t t t t t
in in in tε ε ε+∆ +∆= + ∆&  only for solidified elements. 

7. Use classic FEM spatial integration to solve Eq. 3 or { } t tu +∆∆  based on { }̂ t tσ +∆  and { } t t
inε +∆
& .   

8. Finally, find { } t tε +∆∆  from { } t tu +∆∆ and update { } t tε +∆  and { } t tσ +∆ . 

 
Hot-tear Criterion.  A simple empirical critical strain function, εc, fitted by Won [17] from 
many measurements, was adopted in this work as a criterion to indicate hot tears (Eq. 6).  Hot-
tear cracks form if the thick dendrites in the brittle temperature range, ∆TB [17], prevent the 
surrounding liquid from compensating the contraction of interdendritic liquid and solid 
expansion.  Cracks are predicted when hot-tear strain, εhot-tear, exceeds the critical strain, εc.  
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Hot-tear strain is defined as the flow strain accumulated within the brittle temperature range, 
calculated during the post-processing phase. The hot-tear strain component chosen for 
comparison is taken perpendicular to the dendrite growth direction, which is along the “hoop” 
direction, so named because it is tangential to the surface of the solidifying shell. 

 
Model Validation 

 
An analytical solution of thermal stress in an unconstrained solidifying plate developed by 
Weiner and Boley [18] is used as a test problem to validate this solidification stress model. The 
elastic-perfectly-plastic constitutive equation used in this solution was transformed to a 
numerically challenging rate formulation in Eq. 2 and computed by CON2D. 

  
Table I: Steel Used in Billet Analysis 

Steel Composition 
(wt%) 

0.27C, 1.52Mn, 
0.34Si, 0.015S, 
0.012P 

Liquidus Temp. (oC) 1500.72 
70% Solid Temp. (oC) 1477.02 
90% Solid Temp. (oC) 1459.90 
Solidus Temp. (oC) 1411.79  

Table II: Simulation Conditions 
Billet Section Size (mm×mm) 120×120 
Total Mold Length (mm) 800 
Meniscus Level (mm) 100 
Mesh Size (mm×mm) 0.1×0.1~1.4×1.0 
Number of Nodes  7381 
Time Step Size (sec.) 0.001 – 0.5 
Pouring Temperature (oC) 1540.0  
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Figure 2: Temperatures through solidifying 

plate at different times compared 
with analytical solution 
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Figure 3: Stresses through solidifying plate 

at different times compared with 
analytical solution 

 
Figs. 2 and 3 show the analytical solutions compared with CON2D predictions. The CON2D 
results match within 2% average error for the same mesh and time step sizes used in the actual 
2-D caster simulations – Table II.  This demonstrates that the model is numerically consistent 
and has an acceptable mesh. 

 
Application to Thermal Mechanical Behavior of Continuous-Cast Billet 

 
The finite-element thermal-mechanical model is next applied to predict temperature, bulging, 
strain, stress and hot tearing in continuous cast steel billets, in the absence of sub-mould 
support.  The results are then used to find the critical casting speeds to avoid quality problems 
related to bulging below the mold. 

 
Modeling Domain 
 
The model domain is the L-shaped region of one quarter of a transverse section through the 
billet shown in Fig. 4.  Assuming two-fold symmetry and removing the center portion of the 
section, which is always liquid, saves computational cost. 

 
Heat Flux at Shell Surface 
 
The instantaneous heat flux, given in Eq. 7, is based on fitting many plant measurements of 
total mold heat flux and differentiating [19]. It is assumed to be uniform around the perimeter of 
the billet surface in order to simulate ideal taper and perfect contact between the shell and mold. 
After the billet leaves the mold, its surface temperature is kept unchanged from its 
circumferential profile at mold exit. This eliminates the effect of spray cooling practice on sub-
mold reheating or cooling and the associated complication for the stress/strain development.  
Transformation temperatures defining the phase evolution of the typical plain carbon steel 
studied here are given in Table I. 

 ( ) ( )
( )
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Simulation Results 
 
CON2D is used to simulate the mechanical behavior of a steel billet
under the conditions shown in Table II with various casting speeds.  

Figs. 5(a) and 6(a) show the distorted temperature contours near the 
strand corner at 200mm below the mold exit for casting speeds of
2.2m/min and 5.0m/min.  The latter speed is the critical speed at 
which hot-tear crack failure of the shell is just predicted to occur. 
The shell is hotter and thinner at the higher casting speed, owing to
less time in the mold.  This thinner, hotter, and weaker shell then
bulges more under the ferrostatic pressure below the mold. 

Figs. 5(b) and 6(b) show contours of “hoop” stress constructed by
taking components in the x direction across the dendrites in the
horizontal portion of the domain and the y direction in the vertical  Figure 4: Model Domain 
portion.  High values appear at the off-corner sub-surface region, due to a hinging effect that the 
ferrostatic pressure over the entire face exerts around the corner.  This bends the shell around 
the corner and generates high subsurface tensile stress at the weak solidification front in the off-
corner subsurface location. This tensile stress peak increases slightly and moves towards the 
surface at higher casting speed. Stress concentration is less and the surface hoop stress is 
compressive at the lower casting speed. This indicates no possibility of surface cracking.  
However, tensile surface hoop stress is generated below the mold at high speed in Fig. 6(b) at 
the face center due to excessive bulging.  This tensile stress, and the accompanying hot-tear 
strain, might contribute to longitudinal cracks which penetrate the surface. 
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Figs. 5(c) and 6(c) show contours of hot-tear strain accumulated according to Eq. 6.  The 
highest values of hot-tear strain appear at the off-corner sub-surface region in the hoop 
direction. Moreover, significantly higher values are found for the higher casting speed. The hot-
tear strain in the hoop direction exceeds the threshold at 12 nodes, all located near the off-
corner subsurface region at 5.0 m/min. This is caused by the hinging mechanism around the 
corner. No nodes fail at 2.2m/min or at the center surface. The effect of mold length and section 
size on the critical casting speed is discussed elsewhere [19].  The critical casting speed 
predictions match industrial experience [20]. 

The predicted hot-tearing region matches the location of off-corner longitudinal cracks 
observed in sections through the solidifying shell, such as pictured in Fig. 7.  The bulged shape 
is also similar.  Results from many computations determined the critical speed to avoid cracks 
as a function of section size and working mold length, presented in Fig. 8.  These predictions 
slightly exceed plant practice, which is generally chosen by empirical trial and error.  This 
suggests that plant conditions such as mold taper are less than ideal, that other factors limit 
casting speed, or those speeds in practice could be increased.  The qualitative trends are the 
same.  Larger section sizes are more susceptible to bending around the corner, so have a lower 
critical speed, resulting in less productivity increase than expected.  The trend towards longer 
molds over the past 3 decades enables a higher casting speed without cracks by producing a 
thicker, stronger shell at mold exit. 

Figure 7: Off-corner internal crack in a 
175 mm square bloom 
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Figure 8: Comparison of critical casting 

speeds, based on hot-tearing criterion, 
and typical plant practice [20] 

 
Conclusions 

 
A thermal-mechanical finite-element model, CON2D, has been developed to analyze the 
thermal-mechanical behavior of the solidifying shell in the continuous casting of steel.  This is a 
Lagrangian approach with a 2-D generalized plane strain condition featuring unified elastic-
viscoplastic constitutive models for solid phases, an elastic-perfect-plastic constitutive model 
for liquid, and a robust and efficient time integration technique.  An empirical hot-tear failure 
criterion is used to predict hot tear cracks quantitatively. This model is then applied to 
investigate the effect of casting speed during continuous casting of a square steel billet.  If 
casting speed exceeds a critical threshold, then sub-surface, off-corner longitudinal hot-tear 
cracks are predicted to form due to sub-mold bulging causing tensile bending strain in the off-
corner subsurface.  The critical casting speeds to avoid those hot tears vary from only 1.5 
m/min for short (600 mm length) and large sections (250 mm) to 6.0 m/min for long (1100 mm 
length) and small sections (120 mm). 
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