
A&A 538, A115 (2012)
DOI: 10.1051/0004-6361/201117938
c© ESO 2012

Astronomy
&

Astrophysics

Thermonuclear fusion in dense stars
Electron screening, conductive cooling, and magnetic field effects

A. Y. Potekhin1,2,3 and G. Chabrier1,4

1 CRAL (UMR CNRS No. 5574), École Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France
e-mail: chabrier@ens-lyon.fr

2 Ioffe Physical-Technical Institute, Politekhnicheskaya 26, 194021 St. Petersburg, Russia
e-mail: palex@astro.ioffe.ru

3 Isaac Newton Institute of Chile, St. Petersburg Branch, Russia
4 School of Physics, University of Exeter, Exeter EX4 4QL, UK

Received 23 August 2011 / Accepted 3 December 2011

ABSTRACT

We study the plasma correlation effects on nonresonant thermonuclear reactions of carbon and oxygen in the interiors of white dwarfs
and liquid envelopes of neutron stars. We examine the effects of electron screening on thermodynamic enhancement of thermonuclear
reactions in dense plasmas beyond the linear mixing rule. Using these improved enhancement factors, we calculate carbon and oxygen
ignition curves in white dwarfs and neutron stars. The energy balance and ignition conditions in neutron star envelopes are evaluated,
taking their detailed thermal structure into account. The result is compared to the simplified “one-zone model”, which is routinely
used in the literature. We also consider the effect of strong magnetic fields on the ignition curves in the ocean of magnetars.
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1. Introduction

Thermonuclear reactions play a crucial role in stellar evolu-
tion scenarios. In particular, they are important in white dwarfs
and neutron stars. Ignition of degenerate carbon and oxygen
in the interiors of white dwarfs gives rise to Type Ia super-
novae (Hoyle & Fowler 1960; Hillebrandt & Niemeyer 2000).
Nuclear reactions in degenerate envelopes of accreting neutron
stars are responsible for X-ray bursts and for the overall chemical
and thermal structure of the envelopes (Fushiki & Lamb 1987;
Brown & Bildsten 1998). Nuclear fusion rates in the interiors of
degenerate stars can be significantly enhanced over the binary
Gamow (1928) rates because of the many-body screening effect
in the dense plasma (Schatzman 1948; for reviews, see Yakovlev
& Shalybkov 1989; and Ichimaru 1993).

The screening in degenerate matter is usually treated un-
der the assumption that the electron gas can be considered as
a uniform “rigid” background. The influence of the electron po-
larization on the enhancement of nuclear reaction rates has been
studied in some detail in several papers (Salpeter 1954; Itoh et al.
1977; Yakovlev & Shalybkov 1989; Sahrling & Chabrier 1998;
Kitamura 2000), which confirms that the electron screening ef-
fect is rather weak in degenerate matter. At the time of these
studies, uncertainties in the reaction rates due to other factors,
viz. quantum effects and deviations from the linear mixing rule
(LMR) in strongly coupled plasmas, as well as theoretical uncer-
tainties in the nuclear effective potentials at short distances, were
more important than the polarizable electron-screening effects.

The mentioned uncertainties have been substantially reduced
in recent years. There has been significant progress in treating
cross sections of binary nuclear fusion reactions (Beard et al.
2010, and references therein). Yakovlev et al. (2010) constructed

an analytic model for calculating these cross sections, which
accurately describes the data and parametrized it for a num-
ber of C, O, Mg, and Ne isotopes. Pollock & Militzer (2004)
and Militzer & Pollock (2005) used the path-integral Monte
Carlo (PIMC) method to determine contact probabilities of re-
acting nuclei for one-component plasma (OCP) with emphasis
on many-body quantum effects (these calculations supersede the
previous PIMC study by Ogata 1997). Chugunov et al. (2007)
compared these PIMC results to semiclassical calculations and
find good agreement between the two approaches at tempera-
tures higher than about one fifth of the ion plasma tempera-
ture. These authors also obtained a simple parametrization of
the reaction rates with allowance for the ion quantum effects.
Chugunov & DeWitt (2009a) extended these results to reactions
between different nuclei and suggested an analytic expression
for reaction rates in multicomponent ion mixtures, based on the
LMR. Chugunov & DeWitt (2009b) used extensive Monte Carlo
simulations and discuss corrections to the LMR for the plasma-
screening function in strongly coupled binary ionic mixtures.
They also propose an analytic formula for the screening func-
tion in ion mixtures.

Chugunov & DeWitt (2009a,b) have employed the model
of rigid electron background. In this paper we demonstrate that
the electron screening effects are not negligible compared to the
other improvements considered in recent publications. We de-
rive a simple analytic formula for a quick evaluation of these
effects. We also calculate the ignition curves for carbon, oxygen,
and their mixtures. We consider plasma cooling by heat conduc-
tion and different neutrino emission mechanisms, which evac-
uate the heat released in nuclear burning, thereby determining
the ignition curve. The account of the heat diffusion is taken by
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detailed calculation of the thermal structure of neutron star en-
velopes and corresponding heat fluxes. The result is compared
to the simplified “one-zone approximation” (Brown & Bildsten
1998; Cumming & Bildsten 2001; Gasques et al. 2007). Finally,
we consider the effects of strong magnetic fields on the ignition
curves in neutron star envelopes.

In Sect. 2 we compare different approximations for the en-
hancement factors and study the effect of electron screening.
In Sect. 3 we calculate carbon and oxygen ignition curves in
degenerate stars, using the state-of-the-art treatment of carbon
and oxygen fusion reactions, neutrino emission mechanisms,
and heat conduction with allowance for strong magnetic fields.
Results are summarized in Sect. 4.

2. Enhancement factors

2.1. Classical theory and modern approximations

It is customary to write the cross section of binary nuclear fusion
reactions in the form (e.g., Yakovlev et al. 2010)

σ(E) =
e−2πη

E
S (E), (1)

where E is the center-of-mass kinetic energy of the reacting nu-
clei “1” and “2”,

η =

√
ER

E
, ER =

(Z1Z2e2)2 m12

2�2
, (2)

Z je is the charge of nucleus “ j”, e is the elementary charge,
m12 = m1m2/(m1 + m2) is the reduced mass, and S (E) is a func-
tion called “astrophysical factor”. For the Boltzmann distribu-
tion of nuclei, the reaction rate (the number of fusion events per
unit time in unit volume) in the absence of screening is given by

R12 = w12 n1n2

(
8

πm12T

)1/2 ∫ ∞

0
e−2πη−E/T S (E) dE, (3)

where n j is the number density of the ions of type “ j”, T is tem-
perature in energy units, and the factor w12 accounts for statis-
tics: w12 =

1
2 , if nuclei “1” and “2” are identical; otherwise

w12 = 1. If T is small, then the integrand in Eq. (3) is strongly
peaked at the energy Epk = (π2ERT 2)1/3, and the integral can be
evaluated as (Salpeter & Van Horn 1969)∫ ∞

0
e−2πη−E/T S (E) dE ≈

(
4π
3

T Epk

)1/2

S (Epk) e−τ, (4)

where

τ = 3(π2ER/T )1/3. (5)

Approximation (4) is valid, if τ� 1.
In order to take the plasma screening effects into account,

it is convenient to write the radial pair-distribution function for
ions in the form

g12(r) = exp
(
− Z1Z2e2

rT

)
exp

(H12(r)
T

)
, (6)

where the first factor is the Boltzmann formula for an ideal gas,
while the second one shows how the probability of separation of
two chosen ions is affected by the surrounding plasma particles.
The function H12(r) is often called screening potential of the
plasma (e.g., DeWitt et al. 1973).

Along with the customary ion sphere radii a j =

(3Z j/4πne)1/3, where ne is the electron number density, and
Coulomb coupling parameters Γ j = (Z je)2/a jT , it is convenient
to introduce parameters

Γ12 =
Z1Z2e2

a12T
, a12 =

a1 + a2

2
· (7)

Provided that H12(r) varies slowly on the scale of the clas-
sical turning point distance, which requires that 3Γ12/τ� 1
(Ichimaru 1993), the screened reaction rate is approxi-
mately given by R12eh, where the enhancement exponent is
(Salpeter 1954)

h = H12(0)/T, (8)

and R12 is given by Eq. (3) with replacement of S (E) by
S (E + H12(0)) (Chugunov & DeWitt 2009a). As discussed by
Mitler (1977) and Itoh et al. (1977), approximation (8) needs to
be corrected at higher densities, where 3Γ12/τ is not small; in the
latter case, the quantum effects on ion motion become significant
(Jancovici 1977; Alastuey & Jancovici 1978).

The Helmholtz free energy F(V, T ; {Nj}; Ne) depends on the
numbers Nj = n jV of ions of all kinds, the number of electrons
Ne = neV , volume V and temperature T . We write it in the form
F = Fid + Fex, where Fid is the free energy of the ensemble of
noninteracting ions and electrons, and Fex is the excess free en-
ergy that accounts for the interactions. In this paper we consider
only neutral plasmas, so that ne =

∑
j n jZ j. One can rigorously

prove (DeWitt et al. 1973; Jancovici 1977) that H12(0) equals the
difference between the excess free energies before and after an
individual act of fusion. In the thermodynamic limit this gives
the relation (cf. Ichimaru & Kitamura 1996)

h =
(
∂

∂n1
+
∂

∂n2
− ∂
∂n3

) [
nion fex({n j}, ne, T )

]
, (9)

where nion =
∑

j n j is the total number density of ions, including
number density n3 of composite nuclei, which have charge num-
ber Z3 = Z1 + Z2 and mass m3 ≈ m1 +m2, and fex ≡ Fex/nionVT
is the normalized excess energy.

In strongly coupled Coulomb plasma mixtures of classical
ions and degenerate electrons, the LMR is fulfilled (Hansen &
Vieillefosse 1976; Chabrier & Ashcroft 1990), so that fex ≈ flm,
where

flm({n j}, ne, T ) =
∑

j

x j f j(ne, T ). (10)

Here, x j ≡ n j/nion denotes the number fractions and f j(ne, T ) is
the normalized excess free energy fex for a plasma containing
only the jth type of ions. Accurate analytic expressions for f j

in the Coulomb liquid have been derived in our previous work
(Potekhin & Chabrier 2000), and we use these expressions here-
after. It follows from Eqs. (9) and (10) that the enhancement
exponent in the LMR approximation is

hlm = f1(ne, T ) + f2(ne, T ) − f3(ne, T ). (11)

In the approximation of rigid electron background, this
reduces to

hlm,ii = fii(Γ1) + fii(Γ2) − fii(Γ3), (12)

where fii(Γ) is the normalized excess free energy of the OCP.
In the ion sphere approximation, fii(Γ) = −0.9 Γ, hence hlm,ii
becomes (Salpeter 1954)

hS = 0.9 (Γ3 − Γ1 − Γ2). (13)
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We note, in passing, that Eq. (169) of Yakovlev & Shalybkov
(1989) recovers this equation with a factor 1.055 instead of 0.9.
We will see, however, that the factor 0.9 provides a much better
approximation to the accurate screening function.

The LMR is not exact, and it becomes progressively inaccu-
rate with decreasing Γ j. When Γ j � 1 for all j, the excess free
energy Fex is described by the Debye & Hückel (1923) approx-
imation, FDH = −VT/12πD3, where D is the screening length.
For nondegenerate electrons and ions,

D−2 = D−2
e + D−2

ion, (14)

D−2
e =

4πe2

T
ne, D−2

ion =
4πe2

T

∑
j

n jZ
2
j . (15)

In the approximation of rigid electron background, D = Dion.
In the Debye-Hückel approximation, Eq. (9) yields for the en-
hancement exponent (Salpeter 1954)

hDH =
Z1Z2e2

DT
· (16)

For an arbitrary degree of degeneracy (but at not too strong
Coulomb coupling; see Chabrier 1990), the screened interac-
tion between ions is approximately described by a Yukawa po-
tential, Z1Z2e2e−r/D/r, with D = k−1

TF for electron screening or

D =
(
k2

TF + D−2
ion

)−1/2
for electron and ion screening. Here,

k2
TF = 4πe2 ∂ne/∂μe (17)

is the Thomas-Fermi wave number, and μe is the chemical po-
tential of Fermi gas of electrons. Using Eq. (24) of Chabrier
& Potekhin (1998), one can write kTF(ne, T ) in analytic form.
We note, however, that the Yukawa model corresponds to the
Thomas-Fermi limit, ε(k) ∼ 1 + (kTF/k)2, for the static dielectric
function ε(k), which may only be justified at k � kTF (see, e.g.,
Galam & Hansen 1976). Therefore, this model is inappropriate
at short distances (i.e., large wavenumbers k). In particular, it
is not applicable for the evaluation of the screening potential at
zero separation, H12(0).

For the general case, Salpeter & Van Horn (1969) pro-
posed the following interpolation between the Debye-Hückel
and strong-coupling limits:

hSVH =
hS hDH√
h2

S + h2
DH

, (18)

where hS and hDH are given by Eqs. (13)−(16).
Another analytic approximation for the enhancement fac-

tor beyond the LMR was constructed by Chugunov & DeWitt
(2009b), based on Monte Carlo simulation results for the rigid
background model.

These analytic approximations can be compared to the result
given exactly by Eq. (9). We write the normalized excess free en-
ergy in the form fex = flm + fmix, where flm is given by Eq. (10),
and fmix({x j}, {Z j}; ne, T ) is the correction to the LMR, which
was recently obtained in analytic form (Potekhin et al. 2009).
Then, from Eq. (9), we obtain the enhancement exponent

h0 = hlm +
d fmix(x1 + ξ, x2 + ξ, x3 − ξ)

dξ

∣∣∣∣∣
ξ=0
, (19)

where hlm is given by Eq. (11). Figure 1 shows enhancement
factors for 12C fusion in different approximations, normalized

Fig. 1. Plasma enhancement exponents for carbon fusion reactions in
different approximations, neglecting the ion quantum effects, normal-
ized to the enhancement exponent given by Eq. (18), as functions of
mass density for 2 isotherms (top panel: T = 108 K; bottom panel: T =
109 K). Dot-dashed lines correspond to the electron rigid background
model. Namely, dot-short-dashed lines show hii given by Eq. (19) for a
rigid background, while dot-long-dashed lines show the approximation
of Chugunov & DeWitt (2009b). The other lines correspond to the po-
larizable electron background case: dotted line: LMR [Eq. (11)]; solid
line: h0 [Eq. (19)]; dashed line: happr [Eq. (21)].

to the Salpeter & Van Horn (1969) enhancement factor approxi-
mation (18). Here, we intentionally neglect ion quantum effects
and postpone their discussion to Sect. 2.3. We compare the an-
alytic expressions for the OCP (thus rigid background: the fit of
Chugunov & DeWitt 2009b), and the result of using Eq. (19) for
a rigid background, i.e. with hlm replaced by hlm,ii and fmix given
by the fit of Potekhin et al. (2009) for the rigid background case.
Hereafter, this approximation will be denoted hii. Comparison
of the two dot-dashed curves shows that these approximations
agree with each other within typically 2%.

2.2. Electron screening

In Fig. 1 we compare the enhancement factors obtained us-
ing Eq. (19), where fmix is given by the fit of Potekhin et al.
(2009), for the case of a polarizable electron background, and
for the OCP. This comparison illustrates the contribution of elec-
tron gas polarization to the screening exponent under the present
conditions. Additionally we show hlm, given by Eq. (11), with
the electron polarization taken into account in f j(ne, T ). We see
that the correct enhancement factor differs appreciably from the
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LMR result in the low-density regime, and the difference in-
creases with temperature.

The electron screening contribution can be quickly estimated
as follows. We define the effective ion screening length for the
reacting nuclei as

D̃ion =

√
D2

ion + (0.6 a12)2. (20)

At low densities, where the Debye-Hückel theory is appropriate,
D̃ion approaches Dion while at high densities it is proportional to
a12. The numerical factor 0.6 is the only fitting parameter. Then
the approximation for h0 reads as

happr = hii

√
1 + k2

TF D̃2
ion. (21)

The result is also illustrated in Fig. 1.

2.3. Quantum effects

Jancovici (1977) and Alastuey & Jancovici (1978) examined
the short-range behavior of the internuclear correlation func-
tions and showed that the quantum effects for the ions decrease
the enhancement factor, which we write as ehq . They developed
a perturbation expansion of the enhancement exponent hq in
powers of the parameter (3Γ/τ). This theory is applicable at
Γ � 1 and 3Γ/τ <∼ 1. Pollock & Militzer (2004) and Militzer
& Pollock (2005) performed PIMC calculations of the contact
probabilities in the quantum regime. They confirm the conclu-
sions of Jancovici (1977) and Alastuey & Jancovici (1978) and
extended numerical results beyond the applicability range of the
perturbation theory. Chugunov et al. (2007) find that the results
of Militzer & Pollock (2005) agree with semiclassical calcu-
lations and suggest an analytic parametrization of the reaction
rates that accounts for the quantum effects in an OCP. A similar
parametrization for multicomponent mixtures has recently been
derived by Chugunov & DeWitt (2009a), in the LMR approxi-
mation. They find that the quantum effects can be described by
the use of Eq. (12) with the substitution1 Γ j → Γ̃ j = Γ j/t12,
where

t12 =
[
1 + c1 (3Γ12/τ) + c2 (3Γ12/τ)2 + c3 (3Γ12/τ)3

]1/3
, (22)

c1 = 0.013 γ2, c2 = 0.406 γ0.14, c3 = 0.062 γ0.19 + 1.8/Γ12,

τ and Γ12 are defined by Eqs. (5) and (7), and γ = 4Z1Z2/(Z1 +
Z2)2 (see Fig. 2).

Expansions of the fitting functions of Chugunov et al. (2007)
and Chugunov & DeWitt (2009a) in Taylor series do not re-
cover the perturbation series of Alastuey & Jancovici (1978).
This mismatch, however, is probably unimportant (unless one is
interested in the second and higher derivatives of h), because the
numerical agreement with the Alastuey-Jancovici results in their
validity domain (3Γ/τ < 1) is quite good.

To include the quantum effects in the general case, we multi-
ply the classical expression (e.g., Eqs. (19) or (Eq. (21))) by the
quantum decreasing factor q = h̃lm,ii/hlm,ii, where hlm,ii is given
by Eq. (12), and h̃lm,ii results from the replacement of Γ j by Γ̃ j
in Eq. (12). The function h0 · q is also plotted in Fig. 2.

2.4. Discussion

Figures 1 and 2 demonstrate that electron screening always in-
creases the value of the enhancement factor. This result is in-
tuitively expected, because allowance for additional screening

1 Here a typo in Chugunov & DeWitt (2009a) is corrected.

Fig. 2. Same enhancement exponents as in Fig. 1, but with other approx-
imations. Solid, dotted, and dot-dashed lines correspond to results while
neglecting ionic quantum effects on the enhancement factor: the dotted
line corresponds to the LMR for OCP (Eq. (12)), the dot-dashed line
demonstrates LMR for the polarizable electron background (Eq. (11)),
and the solid line shows h0 beyond the LMR approximation (Eq. (19)).
The dashed lines illustrate the impact of ionic quantum effects: the long-
dashed line presents the fit of Chugunov & DeWitt (2009a), while the
short-dashed line is the approximation qh0, which includes both the
ionic and electronic screening contributions and takes both the quan-
tum effects and the deviations from the LMR into account (see text).

particles augments the overall effect. It qualitatively agrees also
with the findings of Salpeter & Van Horn (1969), DeWitt et al.
(1973), Yakovlev & Shalybkov (1989), Sahrling & Chabrier
(1998), and Kitamura (2000). The opposite result was claimed
by Pollock & Militzer (2004), who found that electron screening
“reduces the enhancement effect”. This confusion arises from
their use of a Yukawa potential to describe the electron screen-
ing. We pointed out in Sect. 2.1 that the Yukawa model be-
comes incorrect at short distances; in particular, it is incapable
of determining the contact probabilities between fusing nuclei.
Ichimaru (1993) mentioned two opposite effects of electron
screening: first, the binary repulsive potentials between react-
ing nuclei are reduced by electrons (“short-range effect”), which
increases H12(0); second, the reduction of particle interactions
by the screening affects the many-body correlation function in
such a way that it decreases H12(0) (“long-range effect”). In
real electron-ion plasmas (without the Yukawa approximation)
the first effect overpowers the second one. The Yukawa model
grasps the second effect, but misses the first, dominant one.
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In the high-density domain (ρ >∼ 108 g cm−3), where the fu-
sion ignition in dense stars occurs, both corrections to h due to
electron screening and due to the deviations from the LMR (see
Fig. 1) become quite small, of a few percent or less. Moreover,
since these two corrections have opposite signs, they can bal-
ance each other out. This is illustrated in Fig. 2, where the accu-
rate result is the same as in Fig. 1, and we show also the result
of application of the LMR for the cases of polarizable electron
background according to Eq. (11) and the rigid background with
LMR approximation according to Eq. (12).

At lower density, the corrections to the enhancement expo-
nent h due to electron polarization and deviation from the LMR
become relatively large, but h itself becomes rather small, so that
its effect on the reaction rate is not very significant. This domain
concerns partially degenerate objects, such as low-mass stars or
brown dwarfs, and may affect the nuclear production of light ele-
ments, such as deuterium, lithium, beryllium, etc., which provide
tracers for the mass and/or age determination of these objects
(Chabrier & Baraffe 2000). These situations will be examined in
a forthcoming paper.

One can note that the simple approximation of Salpeter &
Van Horn (1969), which we have chosen for normalization, per-
forms surprisingly well: in the presently explored ρ – T domain
of astrophysical interest, it provides an accuracy of the enhance-
ment factor better than 10%, i.e., better than 0.04 for log10 σ(E).
Some later approximations (Yakovlev & Shalybkov 1989; Itoh
et al. 1990) are not as good. (They would fall outside the frames
of Fig. 2.)

Since the uncertainties in the nuclear part of the reaction
rates are still larger (see, e.g., Aguilera et al. 2006), in prac-
tice it appears sufficient to use the approximation of Salpeter &
Van Horn (1969) with the quantum correction:

h ≈ hSVH q, (23)

where hSVH and q are given in Sects. 2.1 and 2.3, respectively.
Including further improvements to h is currently just a ques-
tion of completeness. However, as we have seen in Sect. 2.2,
the electron-polarization corrections are generally comparable
to or even larger than other corrections discussed in literature.
Therefore, the electron screening should be taken into account in
every treatment of the thermodynamic enhancement factor that
goes beyond approximation (23).

3. Ignition curves

3.1. Nuclear heating and neutrino cooling

The ignition curve is the line in the ρ – T plane that determines
the highest densities and temperatures at which exothermic nu-
clear reactions in the plasma can be stable against thermal run-
away. It is determined by the balance between nuclear energy
generation rate and local heat losses. In this subsection we focus
on the case where the heat losses are mainly caused by neutrino
emission, which is appropriate in white dwarfs, e.g., for model-
ing supernova Ia events (Hillebrandt & Niemeyer 2000).

The thermonuclear fusion rate is given by Eq. (3), where for
S (E) we substitute the parametrization of Yakovlev et al. (2010).
The energy release power per unit volume equals R12Q12, where
Q12 is the energy release in a single fusion event. We use
the values of Q12 given by Fowler et al. (1975): 13.931 MeV
for 12C + 12C, 16.754 MeV for 12C + 16O, and 16.541 MeV for
16O + 16O reactions.

At very high densities, pycnonuclear fusion due to zero-point
ion vibrations (Cameron 1959) becomes more important than the

Fig. 3. Ignition curves for carbon (lower/left group of lines) and oxy-
gen (upper/right group of lines) in different approximations. Solid lines
are obtained using Eq. (19) and the quantum correction according to
Sect. 2.3; long-dashed lines: Eq. (12) and the quantum correction; dot-
dashed lines: Eq. (18) without any correction. The lines are plotted
heavy if the characteristic nuclear fuel burning time tburn is shorter than
1 Myr; the lines are plotted thin if 1 Myr < tburn < 14 Gyr. In the domain
where tburn > 14 Gyr the lines are dotted. For the carbon case we also
plot the fit (Potekhin et al. 2003) to the results of Sahrling & Chabrier
(1998) (the short-dashed line).

thermonuclear one. We calculate it using Eq. (33) and Table II
(the first line) of Yakovlev et al. (2006) and add it to the ther-
monuclear rate. The ignition curves portrayed in the figures,
however, never enter the domain of pycnonuclear burning.

The dominant mechanism of energy loss due to neutrino
emission differs, depending on the physical conditions. For the
present conditions of interest, the main mechanisms are neu-
trino bremsstrahlung by electron scattering off nuclei, plas-
mon decay, and electron-positron annihilation. The energy loss
rates are given, respectively, by Eqs. (76), (38), and (22) of
Yakovlev et al. (2001).

Figure 3 illustrates the ignition curves for 12C+12C and
16O+16O reactions in different approximations. Here, the igni-
tion curves are obtained with the enhancement factors given
by Eq. (19) with the quantum correction included according
to Sect. 2.3, and are copmpared with the approximations of
Chugunov & DeWitt (2009a) and Salpeter & Van Horn (1969).
In the low-temperature region, where the characteristic burning
time tburn that is required to consume 63% of the nuclear fuel ex-
ceeds the Universe age, the ignition curves lose any astrophys-
ical sense, because the burning becomes unrealistically slow,
and also because the poorly known quantum effects become too
strong (see the discussion in Gasques et al. 2005; Yakovlev et al.
2006).

We see that the electron screening slightly shifts the ignition
curves to lower densities, a consequence of the increased en-
hancement factor, as mentioned previously. This result agrees
with the previous findings by Sahrling & Chabrier (1998)
and Kitamura (2000)2. In the figure we have also plotted the

2 The carbon ignition curve of Kitamura (2000) substantially differs
from our results, because it was calculated under the assumption of a
fixed neutrino emission power.
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carbon ignition curve of Sahrling & Chabrier (1998) as fitted
by Potekhin et al. (2003), which is close to our current result.
The difference is mainly caused by modern improvements in the
astrophysical factor (Yakovlev et al. 2010) and neutrino reaction
rates (Yakovlev et al. 2001), included in the present treatment.
In Appendix A we present a fit to the current carbon and oxygen
ignition curves in a wide density range.

3.2. Conductive cooling

Nuclear burning in neutron stars occurs in relatively thin en-
velopes, whose geometric depth is not more than a few percent
of the stellar radius (e.g., Brown & Bildsten 1998, and refer-
ences therein). Thermal conductivity in these envelopes is high
and thermal relaxation time is short, so that cooling by heat dif-
fusion can stabilize nuclear burning beyond the ignition limits
considered in Sect. 3.1.

Hansen & Van Horn (1975) estimated stability of H and He
burning in envelopes of neutron stars by comparison of the char-
acteristic time scale of thermonuclear heating with characteris-
tic time scales for removal of energy from the shell by radiative
and conductive thermal diffusion. Fushiki & Lamb (1987) intro-
duced a differential criterion for such estimates. They defined
the boundary of thermal stability of the nuclear burning from the
condition

δεnuc(y, T )
δT

=
δεcool(y, T )
δT

, (24)

where y is the column depth of the burning material (carbon or
oxygen in our case), δT is a variation in temperature, δεnuc is the
respective variation in the nuclear energy release rate per unit
mass (εnuc = R12 Q12/ρ), and δεcool is the variation of the cooling
rate εcool = −dFr(y)/dy, where Fr is the outward radial heat flux
through unit surface. The cooling rate εcool depends on the first
and second derivatives of the temperature, therefore the condi-
tion (24) is not local, but depends on the overall temperature and
density structure of the envelope.

Thermal relaxation of the neutron star crust occurs on the
scale of a few tens of years, while the relaxation time of the
outer envelopes is still shorter (Lattimer et al. 1994; Gnedin et al.
2001; Fortin et al. 2010). Therefore, the outer envelopes are con-
sidered quasistationary for most of the astrophysical problems,
and their thermal structure is calculated at stationary equilib-
rium (Gudmundsson et al. 1983). In particular, Fushiki & Lamb
(1987) applied this approximation to the stability analysis of H
and He shells of accreting neutron stars, and Brown & Bildsten
(1998) and Cumming & Bildsten (2001) applied it to the sta-
bility analysis of carbon shells. The problem is that Eq. (24)
depends not only on the equilibrium quasistationary tempera-
ture profile T (y), but also on the profile of its variation δT (y).
In equilibrium dFr(y)/dy = εν − εnuc + T∂s/∂t, where εν is the
neutrino emission power per unit mass, s is the entropy per unit
mass, and t is time. (Here for simplicity we neglect the General
Relativity corrections; for the complete set of accurate equa-
tions see, e.g., Richardson et al. 1979.) In the quasistationary
approximation, one neglects ∂s/∂t. As a result, were the vari-
ations δT (y) in equilibrium, one would have εcool = εnuc − εν,
which exhausts Eq. (24). Meanwhile, different nonequilibrium
forms of δT (y) lead to different values of δεcool. Fushiki & Lamb
(1987) assumed the global temperature variation, dδT/dy = 0.
For example, an assumption of the overall variation in the inter-
nal energy would result in dδT/dy = −(δT/cP) dcP/dy, where
cP(y) is the heat capacity per unit mass at constant pressure,
taken at equilibrium.

In modern literature (Brown & Bildsten 1998; Cumming &
Bildsten 2001; Gasques et al. 2007), a simplified “one-zone ap-
proximation” is used for the cooling rate in Eq. (24):

εcool = ρ κ T/ỹ2, (25)

where κ is thermal conductivity, ỹ = P/g is the column depth in
the plane-parallel nonrelativistic approximation, P is pressure,
and g is the surface gravity. Definition (25) is local and, there-
fore, free of uncertainties. Because it is local, the variational
derivatives δε/δT in Eq. (24) can be replaced by the partial
derivatives ∂ε/∂T . However, it misses the information about
the real dependence of conductivity on column depth, which is
fraught with risk being inaccurate.

We define the ignition curve in the outer envelope of neu-
tron stars in the quasistationary approximation, taking into ac-
count the detailed thermal and mechanical structure of the en-
velope and assuming equilibrium variations of the temperature
profile δT (y). For definiteness, let us suppose that δT > 0. For
a surface element dS of a shell confined between y1 = y and
y2 = y + dy, an increase in temperature δT leads to an increase
in the nuclear energy release power δεnuc dydS , an increase in
neutrino energy emission power δεν dydS , and changes of the
heat flux through the outer and inner boundaries of the shell,
δF1,2 dS = δFr(y1,2) dS . If δεnuc � δεν, the increase in the nu-
clear heat release is compensated for by the increase in the en-
ergy emission, and the nuclear burning is stable.

We now consider the case where δεnuc > δεν. If the sta-
tionary equilibrium requires an increase in the heat income rate
F2 dS through the inner boundary, i.e., δF2 > 0, it means that
the increase in the net heat release in the considered volume,
δεtot = δεnuc − δεν, is overcompensated for by the increase in
the outward flux to the stellar surface. In this case, the nuclear
burning is stable. In the opposite case, where δF2 < 0, δεtot is
not compensated by the conductive energy escape to the surface,
so that thermal runaway occurs. Therefore, the largest column
depth y, at which the burning can be stable, corresponds to the
condition

δFr(y)/δT (y) = 0. (26)

At the column depth where the condition (26) is satisfied, the net
energy release δεtot is balanced exactly by the increase in surface
luminosity. Beyond this stationary point, thermal runaway starts.

Figure 4 illustrates different approximations for the carbon
ignition curve in the ocean of a typical neutron star with mass
M = 1.4 M
 and radius 12 km. The carbon ignition curve with-
out conductive cooling is calculated according to Eq. (A.1). The
other lines have been obtained by calculating series of tempera-
ture profiles for carbon envelopes of the star, assuming different
surface luminosities and applying different ignition conditions.
The thermal structure has been calculated using the same code
as in Kaminker et al. (2009), but the artificial heating model
of Kaminker et al. has been replaced by the nuclear heating.
The line corresponding to the Fushiki & Lamb (1987) model
shows a jump at a certain temperature, which corresponds to a
switch from conductive to neutrino cooling. The switch signi-
fies that at higher temperatures the constant variation δT cannot
provide a powerful enough off-equilibrium cooling rate δεcool to
compete with the neutrino cooling. Another functional choice
of δT (y), corresponding to a constant variation of internal en-
ergy per mass, is shown by the dotted line. It displays a similar
switch at a higher temperature, therefore the conductive cooling
provided by this variation appears more efficient. The underes-
timation of the ignition densities and temperatures by the two
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Fig. 4. Carbon ignition curves in the ocean of a neutron star with mass
M = 1.4 M
 and radius 12 km, according to different models: solid line
corresponds to Eq. (26), long-dashed line to Eq. (25), short-dashed and
dotted lines, respectively, to the original and modified approximations
of Fushiki & Lamb (1987), Eq. (24). For comparison, the ignition curve
without account of conductive cooling is plotted by the dot-dashed line.

artificial forms of δT (y) above the jump temperatures indicates
that these functional variations are unstable on the characteristic
cooling timescale.

The line corresponding to the one-zone approximation (25)
is compared to the positions of the stationary points (26). The
latter two models qualitatively agree with each other, with the
quantitative difference caused by the local approximation em-
bedded in the one-zone model.

A similar comparison of the models for the oxygen ignition
curve gives similar results. For typical accreting neutron stars
with low magnetic fields and effective temperatures from one
to several MK, the ignition curves obtained in our calculations
using the “stationary point” condition (26) can be reproduced by
a modified one-zone approximation, where the right-hand side
of Eq. (25) is multiplied by a constant factor α (or equivalently,
an effective thermal conductivity κeff = ακ is substituted). As the
surface gravity varies from g ≈ 0.7×1014 cm s−2 (e.g., for stellar
mass M = M
 and radius about 15 km) to g ≈ 4 × 1014 cm s−2

(e.g., for M = 2 M
 and radius of 10 km), the correction factor
α varies from 0.18 to 0.16 in the case of carbon shell and from
0.33 to 0.28 in the case of oxygen shell burning.

3.3. The effect of strong magnetic field

A strong magnetic field can affect conductivities and make the
heat transport anisotropic, if the Hall parameter (the product of
electron gyrofrequency and effective relaxation time) is larger
than one (e.g., Urpin & Yakovlev 1980, and references therein).
Therefore, it can affect the conductive cooling rate and shift the
ignition curves in neutron star envelopes. We have evaluated the
magnitude of this effect by calculating the temperature profiles

Fig. 5. Carbon (lower/left group of lines) and oxygen (upper/right group
of lines) ignition curves in the ocean of a magnetar with mass M =
1.4 M
, radius 12 km, and magnetic field B = 1014 G for different an-
gles between the field lines and the normal to the surface: θB = 0◦, 60◦,
75◦, and 85◦ (respectively, 4 solid lines from top to bottom in each of
the two groups). For comparison, the ignition curves given by Eq. (A.1)
are plotted by the dot-dashed lines, and the ignition curves without ac-
counting for the magnetic field effects are shown by dashed lines.

for different magnetic field strengths B and inclinations θB at the
neutron star surface.

In strongly magnetized neutron star envelopes, synchrotron
neutrino emission becomes an important energy sink. We calcu-
late it according to Eq. (56) of Yakovlev et al. (2001). Figure 5
illustrates a few examples. Here, a neutron star with M = 1.4 M

and radius 12 km is supposed to possess a magnetic field B =
1014 G, typical of magnetars (Mereghetti 2008). The lower lines
are drawn for the carbon envelope, and the upper lines for the
case of oxygen. In each of these groups of lines, the four solid
curves (from top to bottom) are plotted for angles θB between the
field lines and the normal to the surface equal respectively to 0◦,
60◦, 75◦, and 85◦. We do not show the case of a strictly tangen-
tial field, because, for any reasonable distribution of the mag-
netic field over the stellar surface, the heat transport becomes
essentially two-dimensional around the surface spots where θB
is close to 90◦, which invalidates the employed approximation
of radial (one-dimensional) transport. For comparison, we show
the nonmagnetic ignition curves and the fusion-vs-neutrino bal-
ance curves discussed in Sect. 3.1 (presumably appropriate for
white dwarfs).

When the field lines are nearly tangential to the surface,
the strong magnetic field increases the conductive opacity, be-
cause the heat transport perpendicular to the field is strongly sup-
pressed. Such a field lowers the ignition curves and thus reduces
the stability region.

In the opposite case of field lines perpendicular to the sur-
face, the strong magnetic field somewhat raises the ignition
curves and expands the stability region. The latter result could
not be obtained in the one-zone approximation (25), which
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relies on the local values of thermal conductivity, κ, and ther-
modynamic quantities ρ, T , and P. Indeed, in the ρ – T do-
main shown in Fig. 5, thermal conductivity along the magnetic
field is the same as without the field, because the field is non-
quantizing at ρ � ρB, where, for carbon-oxygen compositions,
ρB = 1.41×107 (B/1014 G)3/2 g cm−3 (e.g., Potekhin 1999). The
equation of state also does not depend on B, if ρ � ρB. Finally,
the synchrotron neutrino emission cannot produce the observed
effect, because the neutrino synchrotron power is less than 5%
of thermonuclear power along the full ignition lines for the con-
ditions appropriate to Fig. 5. The effect is caused by the opacity
decrease in the heat-blanketing envelope at densities ρ <∼ ρB,
where the field is strongly quantizing. The opacity reduction in
this outer region makes the entire envelope more transparent and
facilitates the heat escape to the surface. Thus, the effect is in-
trinsically nonlocal.

4. Conclusions

We have studied the effects of electron screening on thermonu-
clear reactions in dense plasmas and compared different approx-
imations to determine plasma enhancement factors for the nu-
clear fusion rates. The electron screening always increases the
enhancement effect. The opposite conclusion, sometimes en-
countered in the literature, comes from using the Yukawa po-
tential model, which is inappropriate to calculating the contact
probability for fusing nuclei. The electron screening correction,
which we calculate using accurate analytic expressions for the
free energy, can be satisfactorily described by a simple approxi-
mation (21). This correction, although small for the case of dense
stars, has the same order of magnitude as other recently sug-
gested corrections to the enhancement factor, so it needs to be
properly calculated.

Using our analytic formulae for the enhancement factors
and state-of-the-art astrophysical factors for thermonuclear cross
sections, we calculated carbon and oxygen ignition curves in de-
generate stars. The ignition conditions in neutron star envelopes
were evaluated, taking their detailed thermal structure into ac-
count. Comparison of the results to customary simplified models
demonstrates the restricted applicability of these latter.

We also studied the effects of strong magnetic fields on the
ignition curves in neutron star envelopes. These results show
that the ignition surface shifts to lower densities in the stellar re-
gions where the magnetic field is strongly inclined and to slightly
higher densities in the regions of nearly radial magnetic field.
The latter effect could not be obtained in the simplified one-zone
model. For a magnetar, the shift in the ignition curve can be sim-
ilar to the difference between the accurate and one-zone calcula-
tions and larger than the correction due to the electron screening
in the plasma.
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Appendix A: Fit for C and O ignition curves

White dwarfs contain a mixture of carbon and oxygen nuclei.
Therefore, it is of practical interest to determine ignition curves
for such mixtures with different number fractions of carbon (xC)
and oxygen (xO = 1 − xC). We have derived a fitting formula
for ignition temperature as a function of mass density, which is

Table A.1. Parameters of Eq. (A.1) for the cases 16O+16O reaction in
pure oxygen plasma and 12C+12C reaction in a mixture of carbon and
oxygen with number fractions xC and xO, respectively (0 � xO � 0.99,
xC = 1 − xO).

Parameter Pure 16O 12C+12C in 12C/16O mixture

log10 ρlim (g cm−3) 10.6902 9.76 + 0.025xO − 0.47 ln xC

log10 ρ1 (g cm−3) 7.2 4.82 + 0.6xO − 0.2 ln xC

log10 ρ2 (g cm−3) 6.6 2.8 + 2.2x4
O

log10 T1 (K) 9.161 8.75 + 0.015xO − 0.033 ln xC

α0 3.55 4.2
α1 1.4 0.5 + 3x4

O
α2 0.155 0.084/α1 − 0.0029 ln xC

α3 0.085 −0.0053 ln xC

relevant for densities ρ > 100 g cm−3, temperatures T > 108 K,
and oxygen number fractions xO � 0.99:

Tfit(ρ < ρlim) =
T1 [1 + (ρ1/ρ)α1 ]α2

{1 + [α0/ ln(ρlim/ρ)]2.7}0.2 [1 + (ρ2/ρ)2]α3
,

(A.1)

where ρlim, ρ1, ρ2, T1, and α0 –α3 are fitting parameters, given
in Table A.1.

At high ρ, the ignition curves determine the critical den-
sity of the ignition, rather than the critical temperature, as at
smaller ρ. Therefore, there is no sense to measure the fit error
by differences between the model (Tfit) and data (Tdat) values of
temperature at a fixed ρ. Instead, we measure the fit error by the
geometric distance in the log ρ – log(T 4) plane between numer-
ical points (ρdat, T 4

dat) and the line T 4
fit(ρ) (the fourth power of

T is relevant because it is proportional to the luminosity). The
fractional error is defined as

ε(ρdat) = min
ρ

⎡⎢⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎝T 4

fit(ρ) − T 4
dat

T 4
dat

⎞⎟⎟⎟⎟⎠2

+

(
ρ − ρdat

ρdat

)2
⎤⎥⎥⎥⎥⎥⎥⎦

1/2

· (A.2)

The maximum error maxρdat ε(ρdat) varies from 0.06 for xO = 0.5
to 0.09 for xO = 0 and xO = 0.99. For oxygen, maxρdat ε(ρdat) =
0.05 under the condition that T > 1.7 × 108 K (at lower temper-
atures the ignition curve is unreliable anyway). This is a good
accuracy, given that the considered ρ and T 4 values span several
orders of magnitude.
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