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We extend the discrete dipole approximation (DDA) and the Green’s dyadic tensor (GDT) methods—
previously dedicated to all-optical simulations—to investigate the thermodynamics of illuminated plasmonic
nanostructures. This extension is based on the use of the thermal Green’s function and a original algorithm that
we named Laplace matrix inversion. It allows for the computation of the steady-state temperature distribution
throughout plasmonic systems. This hybrid photothermal numerical method is suited to investigate arbitrarily
complex structures. It can take into account the presence of a dielectric planar substrate and is simple to
implement in any DDA or GDT code. Using this numerical framework, different applications are discussed
such as thermal collective effects in nanoparticles assembly, the influence of a substrate on the temperature
distribution and the heat generation in a plasmonic nanoantenna. This numerical approach appears particularly
suited for new applications in physics, chemistry, and biology such as plasmon-induced nanochemistry and

catalysis, nanofluidics, photothermal cancer therapy, or phase-transition control at the nanoscale.
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Nanoscale control of temperature appears as one of the
most challenging aspect of Nanotechnologies. The ability to
design and measure a temperature distribution at the nano-
scale may lead to novel and significant developments in
physics, chemistry, and biology. Until now, this research area
remains mostly unexplored, mainly because of the diffusive
nature of heat that makes it difficult to investigate experi-
mentally with any noninvasive far-field approach. Oppos-
ingly, research in nano-optics and nanophotonics are much
more advanced precisely because of the possible propagative
nature of light.

Recently, new experimental photothermal approaches
have been developed, which triggered a new gain of interest
in the field of nanothermodynamics: first, the use of plas-
monic nanoparticles,' they could be the basis components
of sophisticated temperature-control nanodevices since they
act as ideal confined nanosources of heat, remotely control-
lable by light.®7 Then, original optical experimental tech-
niques, based on optical index variation in the surroundings®
or fluorescence polarization anisotropy,”!'? demonstrate dif-
ferent capabilities to investigate the heat generation and map
the temperature with a subwavelength resolution. These two
techniques, based on optical far-field measurements, have
been used to unravel intricate nanoscale thermal processes,
especially when related to plasmonic nanoparticles. To sup-
port this recent experimental development in nanotechnol-
ogy, understand the underlying physics, and predict new
nanothermodynamics-related phenomena, new numerical ap-
proaches coupling optics and thermodynamics have to be
formulated.

In this paper, we propose a unified formalism to model a
large class of experimental systems composed of metallic
nanostructures where photothermal effects occur. The for-
malism consists of further extending both the discrete dipole
approximation (DDA) and Green’s dyadic tensor (GDT)
methods—previously devoted to electrodynamic
simulations—to the description of photoinduced thermal ef-
fects, and, in particular, to compute temperature profiles. In
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the same spirit of DDA and GDT methods, the thermal ex-
tension we developed is also based on a Green’s function
formalism. This paper is divided in two sections.

The first section is dedicated to the DDA method and its
thermal extension. To illustrate this approach, well suited to
address problems involving colloidal nanoparticles, we in-
vestigate the heat generation and temperature distribution
around nanoparticles deposited on a glass substrate. We dis-
cuss the influence of the solvent and the substrate on the
expected temperature increase, as well as the physics of heat
generation throughout nanoparticles arrays.

The second section is dedicated to the thermal extension
of the GDT method, suited for more complex geometries.
This approach turns out to be nontrivial since it requires the
computation of a fictive heat generation density inside the
metallic structure. The associated algorithm that we named
Laplace matrix inversion (LMI) is explained in detail. As a
direct application, we discuss the temperature profile gener-
ated around a plasmonic nanoantenna, which we compare
with the optical near-field distribution.

Some additional questions that our numerical approach
may raise are gathered in two appendices. They concern the
influence of any interface thermal resistance (Appendix A)
and thermoinduced fluid convection (Appendix B) on the
actual steady-state temperature field distribution.

I. OPTOTHERMAL DISCRETE DIPOLE APPROXIMATION
A. Discrete dipole approximation

The DDA is a general method to investigate the optical
properties of nanoparticles assembly.'"!> It can be used to
compute absorption and scattering cross sections, optical
near-field, or light-radiation diagram. DDA is particularly
suited to take into account the presence of a planar interface
between two dielectric media to model for example the pres-
ence of a substrate. Such a typical system is represented
schematically in Figs. 1.
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FIG. 1. (Color online) Assembly of gold nanoparticles deposited
on a glass substrate, which represents one of the typical systems
that the DDA method can investigate.

In the following, the particles are assumed dielectric but
not magnetic (magnetic permittivity u= ). The size of the
particle is supposed to be small compared to the wavelength
of the incoming light. The electric permittivity and the po-
larizability of the particles are assumed isotropic to simplify
the derivations. However, extension to arbitrary dielectric
tensor or ellipsoidal particles is also permitted.

Consider N identical dipolar spherical particles of radius
a, polarizability « at the positions r; and an incident mono-
chromatic light characterized by a complex electric-field am-
plitude Ey(r,w). The polarization amplitude p,(w) of the
nanoparticle 7 is

p; = a(w)E(w) (1)

E(w) is the external electric field amplitude experienced by
the particle i. It has two origins: the incident field Ey(r;, )
and the field radiated by the N—1 neighbor particles. Hence-
forth the w dependency will be omitted in the equations for
the sake of clarity. In the dipolar approximation, the polariz-
ability of the particle reads

ap
=, 2
I 2R)ila @
where
e—¢
=4dmeya’ o 3
o Teod e+2¢e, 3)

where € and g, are the electric permittivities of the nanopar-
ticle and the surrounding medium, respectively. Formula (2)
stands for a correction to the standard Clausius-Mossotti po-
larizability «. This correction is required to verify the opti-
cal theorem and energy conservation but can be neglected for
small particles, typically less than 20 nm in diameter.

Note that in nanoplasmonics, the use of the bulk permit-
tivity e is a priori not straightforward since the electron
mean free path is only 50 nm in gold. Some surface effects
could be expected additionally to the electron-phonon inter-
action (Joule effect) occurring in volume and responsible for
the temperature increase. However, it has been shown ex-
perimentally, in particular by Link and El-Sayed'? and by
Hartland ef al.,'* that no size dependence of the electron-
electron and electron-phonon relaxations exists in gold nano-
particles down to at least 9 nm in diameter. This is due to the
elastic scattering of electrons by the particle surface, which
does not lead to any energy transfer from electrons to surface
phonons. For this reason the use of the bulk permittivity is
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usually sufficient and justified to describe the physical prop-
erties of gold nanoparticles.

The problem consists in calculating the electric field am-
plitudes ES* at each particle position i. Since all the particles
are in interaction with each other, this problem is self-
consistent. The use of the Green’s dyadic tensor formalism is
appropriate to simply express and formally solve the prob-
lem. The equations read'":!>

E?Xt =Ey(r) + 2 S(rr;) - P (4)
J#i
and can be recast using Eq. (1)
ES = Eo(r) + 3 aS(r,r;) - B, (5)
j#i

where S(r;,r;) is the electric field propagator (also called
Green’s dyadic tensor) associated to the surroundings. The
self-consistency is evidenced by Eq. (5). The Dyson method
allows for recasting Eq. (5) into a resolved form where the

self-consistency is removed'"-!
ES=E(r) + >, aK(r,r)) - E(r)), (6)
j#i

where K(r;,r;) is the Green dyadic function of the complete
system (particles plus surrounding surface). The central part
of the algorithm consists in calculating the generalized
propagators K(r;,r;), which can be done by N successive
inversions of 3 X3 matrices. Once the electric field ampli-
tude ES* is known at each position r;, it can be calculated at
any position r using the electric field propagator

N

E(r) =Eo(r) + X aS(r,r) - ES*. (7)
j=1

B. Calculation of the thermal field

We now explain how the steady-state temperature distri-
bution can be obtained from the knowledge of the electric
field distribution E* calculated in the previous paragraph.
From now on, the temperature 7" has to be understood as a
tempeature increase above the ambient tempeature. In a
steady-state regime, the temperature profile 7(r) throughout
the system is solution of the Poisson equation

kV?T(r) = —g(r), (8)

where « is the thermal conductivity of the medium at r. The
thermal conductivities of all the media are supposed homo-
geneous and isotropic. ¢g(r) is the heat source density. Due to
light absorption, the particles are the sources of heat of the
problem. For a single particle, the light absorption cross sec-
tion reads

2 K
Oabs = 4 m(a) - |a|2' (9)

_I —_
7EY 3 (4mre,)?

The second term is usually negligible for small particles. The
heat power Q; delivered by a particle i is
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2, (10)

where n is the optical index of the surrounding medium.

Let us consider first the case of a single isolated spherical
nanoparticle (N=1) at the position r; in a homogeneous me-
dium of the thermal conductivity . Since no heat source is
present in the medium surrounding the nanoparticle, the tem-
perature distribution outside the nanoparticle can be deter-
mined from the Laplace equation

V2T (r) = 0. (11)

The problem can be solved analytically and easily in spheri-
cal coordinates and yields

T(r) = TOL for

r—r|=a. (12)
r—r

In the following, we will suppose that the thermal conduc-
tivity of the nanoparticle is much higher than the one of the
surrounding medium. This approximation is usually very
good for metallic nanoparticles in a dielectric environment
such as water or glass. In this case, the temperature can be
considered as uniform inside the nanoparticle

T(r)=T, for |r—-r|=a. (13)

The particle temperature T, can be retrieved by writing an
energy conservation equation. The power going through the
particle interface must equal the heat power Q delivered by
the particle

Q:f -k VT(r)-dS, (14)
s
which naturally yields
Ty= g (15)
4mka
and
Q
T(r)=——— for |r-r|=a. (16)
dmilr -1}

Note that formula (16) involves the scalar Green’s func-
tion G(r,r;) (that vanishes at the infinity) associated to the
Poisson Eq. (8) and a Dirac source distribution &(r—r;) in an
infinite homogeneous medium

1

Grr)=—""—".
(r.r) 47k(r -

(17)

Interestingly, it has been recently reported that the thermal
energy transfer between a plasmonic nanoparticle and a sur-
rounding liquid can be affected by a molecular coating on the
nanoparticle surface since acting as a surface thermal
resistance.'® This effect is not taken into account in our
method, but we show in Appendix A that, while the nano-
particle inner temperature can be indeed modified, a thermal
surface resistance does not change the temperature profile in
the surrounding medium, which is what usually matters
while investigating thermoinduced phenomena.
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FIG. 2. (Color online) The temperature distribution originating
from a heat source ¢ facing a surface can be derived by the image
method usually used in electrostatics.

Another effect that could modify and distort the calcu-
lated temperature distribution around plasmonic structures is
a possible thermoinduced fluid convection, similar to the
Marangoni effect.'” We show in Appendix B that any ther-
moinduced fluid motion has no influence regarding the tem-
perature profile for usual temperature increase and length
scales in plasmonics.

Let us consider now the presence of a planar interface
separating two infinite media 1 and 2 [Fig. 2]. The first infi-
nite medium has a thermal conductivity «; and contains the
particle and the second one has a thermal conductivity «, and
can stand for a glass substrate. We consider an arbitrary dis-
tance d between the center of the spheric particle and the
interface. The problem consisting in calculating the tempera-
ture profile is formally equivalent to the electrostatic prob-
lem consisting in calculating the electric potential distribu-
tion created by a charge facing an interface between two
dielectric media. This problem can be solved using the image
method.'® In this analogy, the temperature is equivalent to
the electric potential and the thermal conductivity is equiva-
lent to the electric permittivity. The thermal Green’s function
now reads

1 1 Ky — Kj 1
G(r,r) = >t — | for z=0,
47TK1 R Ky + K| R,

1 1( 2Ky

41ky R\ Ky + Ky

G(r,r) = ) for z=0, (18)

where

R=\(x=x)*+(y-y)*+(z-d)?,

R'=\x=x)*+(y-y)*+(+d)>
Then, the temperature profile is simply given by

I(r) =G(r,r)Q. (19)
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Let us consider now the case of an assembly of metallic
particles under illumination. At any position r of the me-
dium, the temperature 7(r) is given by a linear superposition

N
T(r) = 2, G(r,r))0;, (20)
j=1

where G(r,r;) is the Green’s function associated to the sys-
tem that is given by formula (17) if the particles are in a
homogeneous medium or by formula (18) if there is an in-
terface separating two different media.

Then, the inner temperature 7; of each particle can be
retrieved this way

N
T;=2 G(r,r)Q, (21)
j=1
where G(r;,r;)=1/(4mka) accordingly to Eq. (15).

C. Applications
1. Influence of the surrounding media

In this paragraph, we focus on the influence of a substrate
and a solvent on the temperature increase and temperature
profile around plasmonic nanoparticles. We consider a chain
of 10 gold spheres, 15 nm in diameter, separated by 2 nm
gaps the one from each other. We consider three successive
configurations: an homogeneous medium, a glass substrate in
air, and glass substrate in water. The thermal conductivities
of air, water and glass are, respectively, 0.025 W/m K,
0.6 W/mK, and 0.9 W/m K. Optical simulations have
been performed using the regular DDA approach to compute
the power delivered by each nanoparticle. Then, the tempera-
ture profile has been calculated using the thermal DDA ex-
tension. Figure 3 displays side views of the temperature pro-
file around the plasmonic chain in various environments. The
distance between the chain and the substrate is also artifi-
cially varied [Figs. 3(d) and 3(f)] to underline the importance
of the vicinity of an interface with a conductive medium on
the heat release.

In a homogeneous medium, the temperature profile (up to
a constant prefactor) is independent of the medium conduc-
tivity. In other words, the typical temperature decay length in
the surrounding medium is not dependent on the medium
conductivity. Such a behavior can be observed in comparing
Figs. 3(a) and 3(b): the two temperature distributions and
decay lengths look the same even though the medium con-
ductivity is very different. This general rule comes from the
fact that the temperature distribution around the plasmonic
structure is governed by the Laplace equation: V27(r)=0 in
which the thermal conductivity no longer appears.

However, when the medium is not unique and infinite, the
temperature profile does depend on the relative conductivi-
ties of the different media. For a glass substrate in air [Figs.
3(c) and 3(d)], the vicinity of the surface substantially helps
to release the heat and tends to lower the nanoparticles tem-
perature. For a glass substrate in water [Figs. 3(e) and 3(f)],
the overall temperature is lower compared to the previous
case since water contributes to a better heat diffusion than
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FIG. 3. (Color online) Side view of the temperature map of a
chain of ten particles 15 nm in diameter and separated by 2 nm the
one from each other. The structure is shined form the bottom (\
=600 nm, P=10 mW/um?) with a polarization along the nanopar-
ticle chain.

7 (°C)

air. The general trend to keep in mind is: the higher the
thermal conductivity, the lower the temperature of the struc-
ture.

2. Collective effects

In this paragraph, we study the temperature increase
within an array of N XN particles as a function of N. The
nanoparticles are lying upon glass and immersed in water.
Such a system can be used in thermoplasmonics for catalysis
or biological applications. The question is to know what tem-
perature dependence can be expected as a function of the
illumination area and if some co-operative effects can be
seen.!?

Figure 4(b) displays the temperature increase calculated
in the center of an array of N X N particles as a function of N.
The nanoparticles are immersed in water, lying upon a glass
substrate and illuminated at A\=530 nm. A linear dependence
is clearly observed. As a consequence, when a regular two-
dimensional nanoparticle array is illuminated by a circular
beam of a given power, the temperature increase within the
nanoparticle array is proportional to the beam diameter 2R
for a given illuminance [, and inversely proportional to the
beam diameter for a given power Py=mR*I. Experimentally,
the first case corresponds to an illuminating beam, whose
diameter R is set by an iris; The second case corresponds to
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FIG. 4. (Color online) Numerical simulations regarding a N
XN array of plasmonic nanoparticles lying upon glass, 40 nm in
diameter, p=300 nm in pitch. The structure is shined from the bot-
tom (\=520 nm, P=1 mW/um?). (a) three-dimensional (3D) rep-
resentation of the system (for N=5). (b) Temperature in the center
of the array as a function of the size of the array showing a linear
dependence. (c) Temperature map over an array of N>=4 X 4 cells.
(d) Temperature map over an array of N>=10X 10 cells.

an illuminating beam, whose diameter R is changed by un-
focusing the beam.

II. OPTOTHERMAL GREEN’S DYADIC
TENSOR METHOD

A. Green’s dyadic tensor method

The GDT method is suited to compute the electromag-
netic field inside and outside particles of arbitrarily complex
geometry, in the possible presence of a planar interface sepa-
rating two homogeneous media. The basic idea is to gather
the previous dipoles considered in the DDA to form a vol-
ume (Fig. 5). However, an important point has to be stressed:
these dipoles no longer represent physical spheres. In the
GDT approach, the mesh has to be thought as an assembly of
coordinates r;, where localized dipoles are located. This is a
way to discretize the polarization field of the structure.

The numerical frameworks of GDT and DDA are very
similar since a self consistent assembly a dipoles has to be
considered in both cases. This is why DDA and GDT are
often assimilated or presented in parallel although the na-
tures of the numerical systems are different: in the DDA
case, the dipoles represent spheres and are endowed with the
sphere polarizability [Eq. (2)], while in the present GDT
case, the dipoles are endowed with the bulk susceptibility of

the metal y(w)
X=€—é&n (22)

times the volume of the unit cell v.

FIG. 5. (Color online) The Green’s dyadic tensor technique en-
ables one to model arbitrarily large non-spherical objects, type
lithographic nanostructures. The meshing of the system is restricted
to the nanostructure itself. This figure represents a typical system
and geometry.

The second difference with DDA appears in the sum of
Eq. (5) where a nonzero depolarization term has to be taken
into account for i=j

S(rp,r;) = - I, (23)

3ev
where v is the volume of a unit cell of the structure meshing
and [ the identity matrix. In the case of a compact meshing—
either fcc or hep—the unit-cell volume is v=(2a)?/ V2.
The previous DDA self-consistent Eq. (5) reads thus now
in the GDT approach

N

E; =E(r)+ > vxS(r.r) - E;.
j=1

(24)

B. Calculation of the thermal field

The heat power arising from each cell of the structure
reads

Q; = wv Im(s)[E*. (25)

Since we are now investigating an extended structure, we can
define a continuous heat source density ¢(r) inside the struc-
ture as the heat power Q; divided by the volume of a cell

q(r;) = o Im(e)[E|*. (26)

In the GDT Method, we cannot directly use DDA Egs.
(20) and (21) to calculate the temperature distribution. The
situation is indeed different since the dipoles belong now to
the same piece of metal while they stand for isolated metal
spheres in the DDA case. The cells are thus now interacting
with each other also through the thermal conductivity of the
metal structure. The direct consequence of the internal heat
diffusion is known: it tends to make the temperature profile
uniform.®’ Simply using DDA amounts to suppressing this
internal temperature diffusion and leads indeed to a nonuni-
form temperature profile inside the structure as represented
in Fig. 6(b), which does not correspond to reality. The origi-
nal approach we are developing in the following basically
consists in using DDA [Eq. (21)] but with a fictive heat
source density that imposes a uniform temperature field.
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FIG. 6. (Color online) Explanation of the LMI method based on
the top view of a triangular plasmonic structure. The hexagonal
mesh of the structure has been represented as an assembly of
packed spheres. (a) Heat source density distribution ¢;
=wv Im(g)|E;|? calculated in a triangular gold nanostructure under
illumination. (b) Internal temperature 7; calculated from the heat
source density g; of figure a using Eq. (21). This procedure is valid
in DDA but gives a wrong temperature distribution in GDT since
non uniform. (c) Fictive heat source density distribution associated
to a fictive internal electric field e;, obtained by the LMI method. (d)
Real temperature profile, that is indeed uniform, inside the plas-
monic structure obtained from the fictive heat source density distri-
bution of figure ¢ by using Eq. (21).

Start from the DDA Eq. (21) giving the temperatures T; in
each cell. Using Eq. (10) this equation can be recast into a
matrix formulation linking the temperature and the square
electric field amplitude

i
47Tk

Im(e) <
wv Im(e

j=1
Equation (27) has to be seen as a matricial equation linking
the vectors (T7);cr1n) and (|[E{?);cpia). Let us call A the
Laplace matrix. According to Eq. (17), in an infinite homo-
geneous medium the Laplace matrix elements of A read

1
|1'i—1'j|

while according to Eq. (18), in the presence of a surface, the
Laplace matrix elements of A read

1 - 1
= i , (29)

|r,~—l‘j‘ Ky + K| |ri—l‘;

Aij

where r; = (x_,-, y j,—zj) is the image of r; through the surface.
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To work out the real temperature distribution, the tech-
nique we propose consists in calculating a fictive distribution
ejz- that results in a uniform temperature inside the metal
structure. To do that, one just needs to invert the NXN
Laplace matrix A and apply it to a uniform temperature dis-
tribution 7;=T,

€ = 2 (A1), T (30)

v Im(s)

Note that some source terms ei2 can be negative. In this case
they act as fictive heat wells.

Then, the unknown temperature 7,, can be obtained by
energy conservation

N N
Xei=2 [Ef. (31)
i=1 i=1

Using Egs. (25), one can derive one of the most important
formula of this paper, which gives the steady-state tempera-
ture of a plasmonic structure under illumination

T=—2 (32)

4, >, (A_l)ij

i=1 j=1

Interestingly, by comparing Egs. (15) and (32), it turns out
that 2 (A~ l) appears as an effective radius of the nanostruc-
ture, which we shall name the Laplace radius r

”LZZ (/\_l)ij- (33)
ij

Equation (32) along with this concept of Laplace radius al-
lows for the computation of the steady-state temperature of a
plasmonic structure only from the knowledge of the ab-
sorbed power Q =0,/ and the Laplace matrix A. This radius
is easy to compute since the matrix elements of A only de-
pend on the geometry and the meshing, no optical or thermal
calculation is necessary. It just requires an N X N matrix in-
version where N is the number of meshing cells. The nature
of the meshing does not matter, it does yield to a good esti-
mation of the Laplace radius as long as the meshing remains
regular and refined enough.

Finally the temperature anywhere in the surroundings can
be calculated using the regular Eq. (21) applied to the fictive
heat source density distribution ¢;=wv Im(g)e;

N

T(r) = 2, G(r,r;)wv Im(e)e,. (34)
j=1

C. Validity of the Laplace matrix inversion method

The validity of the use of a fictive heat source density
distribution is a priori not straightforward. Here are the ar-
guments that validate this approach. (i) By construction of
the fictive electric field distribution, all the cells of the nano-
particle are bound to feature the same temperature, which is
the required situation. The boundary conditions (uniform
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FIG. 7. (Color online) Temperature increase profile of a gold
nanoparticle, 36 nm in diameter, under illumination (1 mW/ ,umz,
A=530 nm). The Laplace matrix method using a fictive heat source
density distribution shows a very good agreement with the analyti-
cal solution. The internal temperature of the particle is found to be
3.61 °C while the exact solution gives 3.56 °C.

temperature at the nanoparticle/medium interface) are then
fulfilled. (ii) Outside the structure, the temperature field cal-
culated using the LMI method and Eq. (34) is a solution of
the Poisson equation since constructed as a linear superposi-
tion of thermal Green’s functions.

From these two arguments, and given the unicity of the
solution of a Laplace equation for given temperature bound-
ary conditions (Dirichlet problem),'® we can conclude that
the temperature profile 7(r) obtained using this strategy is
valid inside and outside the structure, up to a constant pref-
actor. Then, the energy conservation that we ensure in this
formalism by Eq. (31) implies that the temperature distribu-
tion T(r) that has the appropriate profile is also quantitatively
valid.

As a visual example, we compute the temperature profile
around a spherical gold nanosphere using this LMI method.
We chose this geometry because it makes it possible to com-
pare the numerical simulation with the exact analytical solu-
tion [Eq. (16)]. The results are presented in Fig. 7 and show
a very good agreement even for a relatively low number of
cells (N=1261 in this case). The computation gives a nano-
particle temperature of 7(,=3.61 °C while this exact calcula-
tion gives T,=3.56 °C. This small difference is due to the
fact that the sphere diameter is not well defined due to the
finite size of the mesh cell, which makes the interface
slightly irregular. The effect can be minimized if need be by
increasing the number of cells. Moreover, the calculated tem-
perature profile outside the nanoparticle matches perfectly
the analytical solution, which is a direct consequence of en-
ergy conservation.

Note that the Laplace matrix formalism that we propose
in this paper is actually not restricted to plasmonics and ther-
modynamics. It stands for a general mathematical approach
that can be applied to any problem relying on Laplace equa-
tion with a finite-size source domain featuring a uniform
potential, such as in electrostatics or particle diffusion.
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FIG. 8. (Color online) (a) 3D representation of a gap antenna.
The two rods, 400 nm long, 100 nm wide, and 50 nm thick, are
separated by a gap of 20 nm. The structure is lying upon a glass
substrate and immersed in water. The structure is illuminated at the
resonance wavelength A=700 nm, P=1 mW/um?. (b) Top view
of the temperature profile generated by the plasmonic structure cal-
culated 10 nm above the structure. (c) Optical near-field profile
calculated at the same height.

|E|? (arb. units)

D. Application
1. Thermal versus optical near field

Originally, the GDT numerical approach, which the LMI
method is based on, is suited for optical calculation. Hence,
the GDT-LMI theoretical framework we present in this paper
can be used easily to perform a systematic comparison be-
tween the optical near-field and the thermal near-field distri-
butions around plasmonic structures under illumination.

To exemplify such an approach, we consider a gold gap-
antenna structure.’®?! This structure, as defined in Fig. 8,
features a well-defined plasmonic resonance in the near in-
frared. We applied the GDT method to compute the optical
near field and the LMI extension to compute the temperature
profile surrounding such a structure. The optical near-field
features a dramatic field enhancement in the gap region
while the temperature profile is completely uniform through-
out the structure. This illustrates the fact that, in plasmonics,
gaps are suited to enhance the optical near field but are not
especially favorable for heat generation.

As reported in a previous work,” the optimization of plas-
monic structures as nanosources of light does not follow the
same rules as the optimization as nanosources of heat. For
this reason, such a systematic comparison will help unravel-
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vertical polarization

horizontal polarization

T(°C)

0
0 (um) 1.2

Temperature

3.3
I 0

Optical near-field

FIG. 9. (Color online) The system consists of two rods, 400 nm
long, 100 nm wide, and 50 nm thick, separated by a gap of 20 nm.
The structure is lying upon a glass substrate and immersed in water.
One of the two rod is illuminated at A\=700 nm, P=1 mW/um?,
(a) Temperature profile observed along the structure for the two
polarizations. [(b) and (c)] Associated temperature maps. [(d) and
(e)] Associated optical near-field distributions.

(°C)

arb. units

ing the rules of optical and thermal energy conversion at the
nanoscale in plasmonics for arbitrarily complex nanostruc-
tures.

2. Multiple structures

When a plasmonic system is just composed of a single
plasmonic structure, the plasmonic structure usually features
a uniform temperature because of the high thermal conduc-
tivity of metals,® which is besides a requisite to apply the
LMI method and is usually satisfied in plasmonics. This has
already been mentioned above.

When a plasmonic system is composed of disconnected
structures (such as a dimer), the temperature is still supposed
to be uniform in each individual structure, but the tempera-
ture is not supposed to be identical from one structure to
another. In the previous paragraph, the temperatures of each
part of the gap antenna structure were bound to be the same
for symmetry reasons (symmetry regarding both the structure
morphology and the illumination conditions). It is the reason
why the LMI method could be applied straightforwardly, but
when the temperatures are not supposed to be identical, the
LMI method as described above no longer applies.

In this paragraph, we explain how the LMI method can be
further extended to investigate composite structures in which
the temperatures of each structure are not supposed to be
identical. For the sake of simplicity, we shall consider a plas-
monic system composed of two disjointed structures (Fig. 9)
labeled 1 and 2 even though the LMI method can be ex-
tended to an arbitrary high number of disjointed structures.
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Let Ny and N, be the number of cells of the two structures
and T, and T, their steady-state inner temperatures. In this
situation, the matricial Eq. (30) should no longer involve a
uniform temperature vector (7);[; 5] but a vector in which
appear two temperatures: 7, and T,. We shall recast Eq. (30)
into a matricial formulation to clarify the procedure

€N 47k T

, |=—==n"] ] (35)
€N+ wv Im(e) T,
eN,+N, T2

In order to compute the two steady-state temperatures 7 and
T,, two new energy conservation laws [cf. Eq. (31)] have to
be formulated

Ny Ny
D=2 [Ef=c, (36)
i=1 i=1
Ni+N, Ni+N,
2 = 2> [E['=c,. (37)
i=N+1 i=Nj+1

The two temperature 7 and 7, can now be retrieved from
these two coupled equations

41k
Clz(rlTl+r12T2) N (38)
wv Im(e)
41k
C2=(r21T| +72T2) N (39)
wv Im(e)

where r; and r, are the Laplace radii defined by Eq. (33) and
r1» and ry; are coupled radius terms defined as

Ny N{+N,

rp=ra=2 X (A7 (40)

i=1 j=N;+1

rip=ry; since matrix A is symmetric. These coupled effective
radii are negative and can be seen as the sum of the terms of
the upper right (or lower left) quadrant of the matrix A~'.
As an example, Fig. 9 presents the results for a gap
nanoantenna. The structure is symmetric but the illumination
consists of a focused beam that illuminates only one rod. In
each rod, the temperature is uniform while a high-
temperature gradient is observed in the gap region.

III. CONCLUSION

We have shown how the DDA and the GDT techniques
can be further extended to compute the temperature profile in
and out plasmonic structures under illumination. Problems
involving numerous spherical nanoparticles or complex plas-
monic nanostructures lying upon a substrate can be straight-
forwardly resolved. In the GDT case, the core of the thermal
extension relies on a different formalism that we named
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14l 2xR, - - - K,=0.1 K,
L 2R, — k=10 K,
10 T

8L

Temperature increase (°C)

FIG. 10. (Color online) Temperature profile through a sphere of
conductivity kg and radius R; having a surrounding coating of con-
ductivity «; and thickness R,—R; immersed in a medium of con-
ductivity k,. For this example, we chose Q=1 uW, k> kK
=1 W/mK, R;=15 nm, and R,=17 nm. As shown by the two
temperature profiles, the presence of a resistive coating does not
affect the temperature distribution in the surroundings, only the in-
ner particle temperature is modified.

LML In particular, such a formalism allows for a computa-
tion of the internal temperature of a plasmonic structure only
from the knowledge of the absorption cross section, avoiding
any calculation of electric field distribution (Fig. 10).

In order to illustrate the high degree of applicability of
this numerical framework, several problems have been ad-
dressed. First, by considering a chain of nanospheres, we
discuss the influence of a substrate and the nature of the
surrounding medium in the temperature distribution around
plasmonic structures. Then, by considering an array of N
X N particles, we discuss the collective effect that can be
observed when heating an assembly of nanoparticles and
what the temperature increase is as a function of the size of
the illuminated area. As an application of the LMI formal-
ism, we have computed the optical and thermal near fields
around a gap nanoantenna for symmetric and asymmetric
illuminations. While a dramatic optical near-field enhance-
ment is observed within the gap region, the temperature re-
mains uniform throughout the nanoantenna. This example
illustrates that the design of an efficient plasmonic nano-
source of light does not follow the same rules as the design
as an efficient plasmonic nanosource of heat.

Through its versatility and easy implementation on any
DDA or GDT code, this numerical framework stands for a
unique tool that will reinforce the development of a new area
of nanotechnology that we could name nanothermics, the art
of shaping and using temperature at the nanoscale.
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APPENDIX A: INFLUENCE OF A SURFACE THERMAL
RESISTANCE OF THE NANOPARTICLES ON THE
TEMPERATURE PROFILE

It was recently reported that the efficiency of heat ex-
change at a nanoparticle interface can be affected by any
molecular coating that acts as a surface thermal resistance.'®
Our approach does not take into account such an effect.
However, we show in this paragraph that any interface resis-
tance is not supposed to affect the temperature increase ob-
served in the surrounding for a given heat power Q released
by the nanoparticle.

This effect can be demonstrated using a simple spherical
model that can be solved analytically. Consider a sphere of
radius R; and conductivity k, surrounded by a spherical
layer of thickness R,—R; and conductivity «; mimicking a
molecular coating. k, is the thermal conductivity of the sur-
rounding medium (r>R,). In each medium j € {1,2,3}, the
temperature reads 7(r)=a;/r+b;. We suppose that x,
> Ky, K, so that the nanoparticle temperature 7|, is uniform.
By writing continuity relations for the temperature 7" and the
thermal current —«; VT, we obtain the temperature profile in
each of the three media

1 1 1
rSRl:T():g( - )7

+
4 K]Rl K2R2 K1R2
1 1 1
R, SrSRz:T(r)=2<—+———>,
4 K\r K2R2 K1R2
r=R,T(r)= Q . (A1)
41iyr

We observe that the temperature in the surrounding medium
is indeed only dependent on the power released by the nano-
particle and the thermal conductivity «, of the surrounding
medium. It is not dependent on the thermal properties of the
nanoparticle, and in particular, the thermal conductivity «; of
the molecular coating. This temperature increase in the sur-
roundings is usually the temperature that really matters since
responsible of any thermoinduced phenomena. In a more
general way, in a multilayer problem, the conductivities of
the inner layers do not affect the temperature of the outer
ones.

APPENDIX B: INFLUENCE OF A THERMOINDUCED
FLUID CONVECTION ON THE
TEMPERATURE PROFILE

A local temperature increase in a fluid within a gravity
field can give rise to spontaneous Rayleigh-Bénard instabil-
ity and fluid convection. The Marangoni effect is a famous
example.!” From this consideration, it is worth wondering if
the local temperature increase that a plasmonic nanostructure
features under illumination can give rise to fluid instability
that might affect the temperature profile calculated by our
steady-state numerical approach. In this appendix we show
that, on the nanoscale, a temperature profile cannot be af-
fected by any thermoinduced fluid convection.
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Such a question can be addressed without carrying out
sophisticated hydrodynamic simulations. The orders of mag-
nitude can be simply obtained by dimensional analysis of the
differential equations governing the problem.

Consider a nanosource of heat that features a typical tem-
perature increase 7,=50 °C and whose typical size is L
=500 nm. Considering a large nanostructure and high tem-
perature is the most favorable case to induce fluid convec-
tion. The fluid dynamics is governed by the steady-state
Navier-Stokes equation

p(v(r) - V)v(r) = pV2v(r) + £ (x),

where p is the fluid mass density, # the dynamic viscosity,
v(r) the fluid velocity, and f,(r) the volumetric force due to
temperature nonuniformity. This thermal force can be evalu-
ated by the Boussinesq approximation.?> This approximation
accounts for the temperature dependence of the density by
adding an external buoyancy force term, which is dependent
on the temperature distribution

(B1)

fin(r) = pagT(r), (B2)

where g is the gravity, a the dilatation coefficient of the
fluid, and T(r) the temperature increase. In the Navier-Stokes
Eq. (B1), the first term represents the acceleration of a fluid
particle along a stream line. This term does not control the
physics of temperature-induced fluid convection. The two
forces that are in competition are the viscosity force and the
thermal force. Hence, they have to be of the same order of
magnitude

7Vv(r) ~ pagT(r). (B3)

Let V be the order of magnitude of the velocity in the fluid.
We obtain

V~ L*pagTy/ 7. (B4)

Using p=10° kg/m?, a=10"* K™, =107 Pas, and ¢
=9.8 m/s™2, we obtain that the typical fluid velocity of the
thermal-induced convection is V~10~% m/s~!. This very
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slow fluid velocity is mainly due to the small length scale of
the system. At such a scale, the viscous force is always domi-
nant (in this particular case the Reynolds number is Re
=107%) and leads to a highly laminar fluid motion.

We shall see now if such a slow fluid convection can
distort the temperature profile. In the presence of fluid con-
vection, Poisson Eq. (11) has to be modified

pc, V - [T(r)v(r)] - «kV2T(r) =0,

where ¢, is the specific-heat capacity at constant pressure
(cp=4.18 X 10° J/kg K for water). The first term of Eq. (B5)
represents heat transport through fluid convection—it is on
the order of pc,T,V/L—while the second term represents
heat transport through heat diffusion—on the order of
pcpToV/ L. The ratio of the orders of magnitude of these two
terms gives a dimensionless number—called the Rayleigh

(B5)

number?’—that quantifies the diffusion versus convection ef-
fects
agTyL’
Ra= 280 (B6)
Dv

where D=«/pc, is the thermal diffusivity of the medium
and v= 7/p its cinematic viscosity. In water medium, one
can write Ra=10To(K)L?mm) as far as the temperature in-
crease Ty and length scale L are expressed in Kelvin (or
degree Celsius) and millimeter respectively. If the Rayleigh
number Ra is much lower (respectively, larger) than unity,
thermal diffusion is dominant (respectively, negligible) with
respect to fluid convection on the establishment of the tem-
perature profile.

In the present case, Ra~10"7. As a consequence, in
nanoplasmonics experiments occurring in waterlike medium,
the temperature distribution is mainly governed by heat dif-
fusion and not fluid convection. In other words, on the nano-
scale the temperature reaches its steady state distribution so
fast that such a slow fluid motion (V~10~% m/s) cannot
distort it. This conclusion justifies the use of the standard
Poisson equation for the thermal calculations performed
within the paper.

*Corresponding author: guillaume.baffou @fresnel.fr

'A. 0. Govorov and H. H. Richardson, Nano Today 2, 30 (2007).

2S. Link and M. A. El-Sayed, Int. Rev. Phys. Chem. 19, 409
(2000).

3D. Pissuwan, S. M. Valenzuela, and M. B. Cortie, Trends Bio-
technol. 24, 62 (2006).

4L. Cao, D. Barsic, A. Guichard, and M. Brongersma, Nano Lett.
7, 3523 (2007).

SE. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier,
and J. J. Greffet, Nat. Photonics 3, 514 (2009).

9G. Baffou, R. Quidant, and J. F. Garcia de Abajo, ACS Nano 4,
709 (2010).

7G. Baffou, R. Quidant, and C. Girard, Appl. Phys. Lett. 94,
153109 (2009).

8S. Berciaud, L. Cognet, G. A. Blab, and B. Lounis, Phys. Rev.
Lett. 93, 257402 (2004).

9G. Baffou, C. Girard, and R. Quidant, Phys. Rev. Lett. 104,
136805 (2010).

19G. Baffou, M. P. Kreuzer, F. Kulzer, and R. Quidant, Opt. Ex-
press 17, 3291 (2009).

'C. Girard, Rep. Prog. Phys. 68, 1883 (2005).

2M. A. Yurkin and A. G. Hoekstra, J. Quant. Spectrosc. Radiat.
Transf. 106, 558 (2007).

13S. Link and M. A. El-Sayed, J. Phys. Chem. B 103, 8410 (1999).

14]. H. Hodak, A. Henglein, and G. V. Hartland, J. Chem. Phys.
112, 5942 (2000).

15C. Girard, E. Dujardin, G. Baffou, and R. Quidant, New J. Phys.
10, 105016 (2008).

167, Alper and K. Hamad-Schifferli, Langmuir 26, 3786 (2010).

7L. E. Scriven and C. V. Sternling, Nature (London) 187, 186
(1960).

18], D. Jackson, Classical Electrodynamics (Wiley, New York,

165424-10


http://dx.doi.org/10.1016/S1748-0132(07)70017-8
http://dx.doi.org/10.1080/01442350050034180
http://dx.doi.org/10.1080/01442350050034180
http://dx.doi.org/10.1016/j.tibtech.2005.12.004
http://dx.doi.org/10.1016/j.tibtech.2005.12.004
http://dx.doi.org/10.1021/nl0722370
http://dx.doi.org/10.1021/nl0722370
http://dx.doi.org/10.1038/nphoton.2009.144
http://dx.doi.org/10.1021/nn901144d
http://dx.doi.org/10.1021/nn901144d
http://dx.doi.org/10.1063/1.3116645
http://dx.doi.org/10.1063/1.3116645
http://dx.doi.org/10.1103/PhysRevLett.93.257402
http://dx.doi.org/10.1103/PhysRevLett.93.257402
http://dx.doi.org/10.1103/PhysRevLett.104.136805
http://dx.doi.org/10.1103/PhysRevLett.104.136805
http://dx.doi.org/10.1364/OE.17.003291
http://dx.doi.org/10.1364/OE.17.003291
http://dx.doi.org/10.1088/0034-4885/68/8/R05
http://dx.doi.org/10.1016/j.jqsrt.2007.01.034
http://dx.doi.org/10.1016/j.jqsrt.2007.01.034
http://dx.doi.org/10.1021/jp9917648
http://dx.doi.org/10.1063/1.481167
http://dx.doi.org/10.1063/1.481167
http://dx.doi.org/10.1088/1367-2630/10/10/105016
http://dx.doi.org/10.1088/1367-2630/10/10/105016
http://dx.doi.org/10.1021/la904855s
http://dx.doi.org/10.1038/187186a0
http://dx.doi.org/10.1038/187186a0

THERMOPLASMONICS MODELING: A GREEN’S FUNCTION...

1999).

19H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and
A. O. Govorov, Nano Lett. 9, 1139 (2009).

20P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van
Hulst, and R. Quidant, Phys. Rev. Lett. 101, 116805
(2008).

PHYSICAL REVIEW B 82, 165424 (2010)

2IM. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshny-
chenki, J. F. Garcia de Abajo, and R. Quidant, Nano Lett. 9,
3387 (2009).

22E. Guyon, J. P. Hulin, L. Petit, and C. D. Mitescu, Physical
Hydrodynamics (Oxford University Press, USA, 2001).

165424-11


http://dx.doi.org/10.1021/nl8036905
http://dx.doi.org/10.1103/PhysRevLett.101.116805
http://dx.doi.org/10.1103/PhysRevLett.101.116805
http://dx.doi.org/10.1021/nl803677x
http://dx.doi.org/10.1021/nl803677x

