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Thermoplastic Instability for the 
Transient Contact Problem of Two 
Sliding Half-Planes 
We study the time dependent problem of a nonconducting half-plane sliding on the 
surface of a conductor with heat generation at the interface due to friction. The con
ducting half-plane is slightly rounded to give a Hertzian initial pressure distribution. 
Relationships are established for temperature and thermoelastic displacements due 
to a heat input of cosine type through the surface, and then these are used to obtain 
the solution in the form of a double Fourier integral. Numerical results show that, if 
the ratio of the initial size of the area of contact to that in the steady state is less than 
some critical value, the area of contact and the pressure distribution change 
smoothly toward the steady state solution. Otherwise the area of contact goes 
through bifurcation. The bifurcation accelerates the process. Numerical results are 
compared with previous approximate solutions. 

1 Introduction 

It is now well known that the pressure development at the 
partially contacting surfaces of two sliding bodies can be 
unstable in the process involving frictional heating (Barber, 
1967; Barber, 1969; Burton et al., 1973a; Burton and Nerlikar, 
1975; Dow and Burton, 1972). In the absence of wear, the pro
cess tends to a known steady state (Barber, 1976; Burton et al., 
1973b; Burton and Nerlikar, 1974). Interest in the transient 
process leading to this steady state is motivated by its applica
tion to brake design and operating conditions (Parker and 
Marshall, 1948; Barber et al., 1985). In papers by Barber 
(1980) and Barber et al. (1985), the thermoelastic 
displacements were approximated by a quadratic surface 
which resulted in considerable simplification of the governing 
equations. A more accurate solution of the problem was given 
by Azarkhin and Barber (1985), where the algorithm presented 
was based on utilization of transient Green's functions given 
by Barber and Martin-Moran (1982) for temperature and ther
moelastic displacements, giving a representation of the pro
blem in terms of the unknown pressure on the surface. The im
plementation of the algorithm indicated that for sufficiently 
large ratio of the initial width of the contact area to that in the 
steady state, bifurcation would occur. However, it proved im
possible to treat this case because of consideration of com
putational time and accuracy, which also prevented the non-
bifurcating case being pursued as far as the steady state. 

The object of the present work is to overcome these dif-
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ficulties and extend the range of time so as to follow the pro
cess from the beginning to the steady state. This is achieved by 
a volume rather than the surface representation of the 
variables. We first study relationships for a wavy perturbation 
of the temperature of the form cos (mx) cos(n_y)exp( -at) and 
then show how this can be used to present the temperature and 
the stress state in the form of a double Fourier integral with m 
and n changing continuously. Finally, we present some 
numerical results and compare them with previous approx
imate solutions. 

2 The Model 

We assume that: 

1) The contact area is stationary with respect to one solid, 
2) The other solid is a rigid nonconductor, 
3) There is no coupling between tangential and normal 

tractions, 
4) The conducting body is slightly rounded to give initial 

Hertzian pressure distribution. 
5) The uncoupled theory of thermoelasticity is used. 

The implications of these idealizations are discussed in more 
detail by the authors earlier (Azarkhin and Barber, 1985). In 
particular, we note that assumption (3) does not mean that the 
tangential tractions on the surface are neglected. Indeed the 
work done against these tractions is the source of the heat 
flux. However, the elastic displacements normal to the sur
face, caused by the tangential tractions, are much smaller than 
those produced by the normal tractions and the coupling ef
fect is negligible. This simplification is frequently made in the 
solution of contact problems with frictional sliding. Kuznet-
sov (1978) examines the magnitude of the error which can be 
anticipated and refers to other studies of the subject. We also 
note that the approximation becomes exact if constant /3 in
troduced by Dundurs (1969) is zero. 
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3 Governing Equations and Boundary Conditions 

The temperature is governed by the equation 

d2T 

dx2 

d2T 

' dy2 

with the boundary condition 
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where K is conductivity of material, diffusivity k=K/p c and 
ix, p, V are, respectively, the coefficient of friction, contact 
pressure, and sliding speed. Equation (2) states that the heat 
generated due to friction flows locally into the conducting 
body. 

The thermoelastic displacements are governed by the 
equations: 

d2v d2u (l-2v) d2u 1 

dx2 dy2 2 dxdy 
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(see Timoshenko and Goodier, 1970, p. 465), where v is 
Poisson's ratio, a is linear expansion coefficient, and u, v are 
the displacement components in x andy coordinate directions, 
respectively. The origin is placed in the middle of the area of 
contact and the y axis directed into the body. 

The boundary conditions can be written 

p(x,t) = -ayy(x,0,t)>0 

v(x,0,t)>C- 2R 

x2 

2R 

x<A(t) 

x>A(t) 

x<A(t) 
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v(x,0,t) = C— 

ayy(x,0,t)=0 

2 p(x)dx = P(t) 

Jo 
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= 0 x>A(t) 
In these equations, A (t) is the half-width of the area of con

tact, P(t) is the prescribed force pressing the bodies together, 
the term x2/2R describes the roundedness of the body, C is an 
arbitrary rigid body displacement, and 

£ ( l - i . ) dv vE du a.ET 

{\+v){\-2v) dy ' (\+v)(\-2v) dx \-2v 

E / du dv \ 

- + v) \ dy + dx ) 
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2(1 + v) \ dy ' dx J ( 1 2 ) 

In view of assumption (3) (see section 2 above), the tangen
tial tractions on .y = 0 have negligible effect on v(x, 0, t), ex
cept of course through their effect on the frictional heat flux 
which is implicit in equation (2). It follows that the solution of 
equations (2) and (5)-(9) for p (x, t) is uninfluenced by equa
tion (10) and hencep(x, t) is always symmetrical about x = 0 
and the equations can be written for the range x > 0. The equa
tions as stated imply that the area of contact is simply con
nected, but generalization to the case of several contact areas 
is straightforward. 

These relationships define the solution to the problem, in
cluding the area of contact, which is unknown a priori. 

4 Dimensionless Formulation 

For constant load P and speed V, the number of parameters 
can be reduced by introducing the dimensionless variables 

x*=x/A0 (13) A*(t)=A(t)/A0 (14) 

T* = 3irkpcT/(4ixPV) (15) p*=pA0/P (16) 

t*=kt/Ar (17). 

where AD is the half-width of the area of contact in the steady 
state. 

It is shown (Azarkhin and Barber, 1985) that the most in
teresting quantities—the dimensionless pressure p*, the half-
width of the contact area A* (t*), and the temperature 
T*—depend on a single dimensionless parameter 

A*(0) = A(0)/ 
/ 3-7r(l -p)kpc\ 

\ ActpVE / 
(18) 

which is the ratio of the initial contact area to the steady state 
value. 

It is therefore possible to absorb all physical parameters into 
one coefficient, velocity, say, and there is no loss of generality 
in taking v = 0, ^4(0)= 1, /*= 1, E— 1, k= 1, p= 1, c= 1, E= 1. 
This results in considerable simplification of all the equations. 
One can especially appreciate omitting Poisson's ratio. For ex
ample, equation (11) becomes simply 

dv 
•T. (19) 

It also allows us to write expressions for thermoelastic 
displacements in terms of m and n explicitly (see equations 
(27) and (28) below). In the following discussion we assume 
that this replacement has already been performed. 

5 Preview of the Algorithm 

The transient problem is discretized by dividing the process 
into small increments of time. The contact pressure, and hence 
heat input are then presented as piecewise constant functions 
with respect to time and updated at the end of each time step. 
For any particular time step the heat input is expanded into the 
Fourier integral 

dT r°° 
t Amcos{mx)dx (20) dn 

where 

2 M"> dT 2 M 
7T Jo dn 

cos(mx)dx (21) 

The displacements of the half-plane are sought as a sum of 
thermoelastic displacements corresponding to a traction free 
surface, uth and vth, and elastic displacements ue, ve caused by 
the superposed contact pressure. 

In view of equation (20), the thermoelastic displacements 
and temperature can be expressed as a series of terms of the 
form/„,(.)>, t)cos(mx) (see equations (24), (27)-(31) below) 
where fm(y, t) are unknown functions which are determined 
from the boundary conditions during the time step and the in
itial temperature distribution at the beginning of the time step. 
When computations for a current time step are completed, we 
move the origin to the end of the time step and the functions 
are updated using a recurrent relation (37). 

The superimposed contact pressure for each time step is 
found from the integral equation, following from equation (7) 
and expressed in terms of the Green's function: 

vth+\ .. ,P(z)G(x,z)dz 
I-All) 

2 [AW 
= vth+ p(z)\og\x-z\dz = C-

•K i-AU) 2R 
(22) 
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The solution to this equation is subject to constraints (5), (6), 
and (9). This defines the area of contact which is not known a 
priori and has to be found by iteration. A convergent iterative 
procedure for the search for the area of contact and its 
numerical implementation are described in sections 8 and 9. 

7 Fourier Integral Representation 

The results of the previous section can be used as the basis 
of a Fourier integral representation of the thermoelastic field 
in a body subjected to a heat input of the more general type 

dT 
-= / (* ) 02) 

6 Results for a Sinusoidal Temperature Distribution W e w r i t e 

dy 

Suppose that the heat input through the surface has the 
form 

dT 
—Amcos(mx) (23) 

where Am is a constant. The temperature in the body is then 
given by 

T=^- Tm(y,t)cos{mx)*^ 
m m 

j exp( - my) 

\ C„,(n)cos(ny)exp[- (m2 + n2)t]dn\cos(mx) 

(24) 

which is also a definition for Tm (y, t). The first term on the 
right hand side of equation (24) represents the steady state 
solution. Functions C,„(n) in the second, decaying term are 
defined by the initial conditions 

C„,(n)= ( [7m0>,0)-exp(-my)]cos(rt>>)*' (25) 
TT Jo 

The integrand in equation (25) is the difference between the in
itial and steady state temperature distributions. In particular, 
for the initial step of the process Tm {y, 0) = 0 and 

Cm(n)^C° ( w ) = - — 2
m (26) 

We present displacements as a sum of thermoelastic 
displacements, uth and vth, corresponding to traction free 
boundary condition, and elastic displacements caused by the 
superimposed pressure/)(x, t) which brings the two bodies in
to contact. The thermoelastic displacements can be written in 
the form 

A A 
ulh=—?- um(y,t)sin(mx) =—" 

wr mL 
-[z?m(0[exp(- my) 

{
oo 

B„,(n,t)cos(ny)dn 
o 

+ exp(-my) jsin(/ra:) (27) 

-^-vm(y,t)cos(mx) =—^-\(Dm(t) - l)exp(-my) 

-Dm(t)(my + 3i)exp(-my) 

+ m\ Fm(n,t)sm(ny)dnlcos(mx) (28) 

where these equations constitute definitions of um and v,„. 
These expressions satisfy the boundary condition (10) iden
tically when substituted into equation (12) and also satisfy 
equations (3) and (4) if 

Fm(n,t) = nC
0
mi"l exp[-(m 2 + n2)r] 

Bm(n,t)-. 

(m2 +n2) 

mCm(n) 
exp[ — (m2 + n2)t] 

(29) 

(30) 
(m2 + n2) 

The functions Dm are obtained from the traction free boun
dary condition (ayy = 0 on y = 0) using equation (11). We find 

' Cm (n)exp[- (m2 + n2)t]dn 
D,„(t)=m2^ 

(m2 + n2) 
(31) 

T(x,y,t) = [°°—^ Tm(y,t)cos(mx)dm (33) 
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m 

A 
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in which case equation (32) is satisfied if Am is defined by 
equation (21). 

8 Contact Pressure: Algorithm and Numerical 
Implementation 

We start with initial temperature zero and the Hertzian 
pressure distribution 

IP ( r x 1 2 - ) 1 / 2 

irA(0) 

The corresponding heat input (equation (2)) is considered to 
be constant for a small period of time At. The heat input is ex
panded into the Fourier integral representation according to 
equations (20) and (21) where dT/dn = ixpV. This step defines 
the function Am. Since Cm(n), Fm(n, t) and Dm are known 
from equations (26), (29), and (31), the thermoelastic 
displacements vlh at time At can be found from equation (28). 
This makes it possible to update the thermal bulge at the end 
of the time interval. The corresponding contact pressure can 
then be found as the solution to the integral equation (22). For 
the numerical implementation the pressure is represented as a 
polygon with nodes distributed uniformly over the area of 
contact. The unknowns are the pressures at these nodes and 
the constant C in equation (7). They can be found from the 
system of algebraic equations which is obtained from equation 
(7) written for each interior node. One more equation comes 
from a numerical analog of equation (6). The area of contact 
is not known a priori but can be found by iteration. If the area 
of contact was not guessed correctly, tensile pressure will oc
cur at some nodes and (or) overlapping of the bodies at others. 
We then release the nodes of the first type and introduce con
tact for the nodes of the second type, and repeat the pro
cedure. The convergence of this algorithm will be discussed in 
section 9 below. 

It is worth noting that at first we used a variational formula
tion of the problem with a penalty approach to approximate 
the contact inequalities. However, the direct iteration on the 
inequality constraints discussed above was found to be con
siderably more efficient numerically. 

Suppose that the area of contact has been found at the end 
of the time step, and both the pressure and the functions Am 

have been updated. We can now move the origin for time to 
the end of the time step Ar, and update the coefficients Cm(n) 
from the condition that the temperature at the end of the 
previous time step is equal to that at the start of the next step. 
This gives the recurrence relation: 

C+(n)=C»(/!)[-^—l] 

+ C,-(77)-
A: 

exp[-(w 2 + n2)Ar] (37) 
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A*(0) = 5 

0-2 0-6 X' 
Fig. 1 Devlopment of the pressure distribution for A*(0) = S 

-i 1 1 r 

2 4 6 8 10 
Fig. 2 Reduction of the area of contact with time for d*(0)<10 

where superscripts + or - relate, respectively, to the previous 
and consecutive time steps, and Cm(n) are defined by equa
tion (26). 

Expressions (33)-(35) contain infinite limits of integration, 
but an integral in a finite range can be obtained by the change 
of variable 

K-) ™ 

p* 

0 5 -

0 - 3 " 
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\ t * = 2 8 
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-— \ ^\ 

— ^ \ '•• 
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Fig. 3 Development of the pressure distribution for A*{0) = 25 

20 

t 
10 20 30 

Fig. 4 Reduction of the area of contact with time for A *(0) = 15, 20, 25 
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We note that for the first time step 

2 YYICITI 
Cm(n)dn = C°,(n)dn = 

•K (m2 + n2) 

2 dg 

7T [g2+(l-g)2] 
(39) 

0-i 0-2 0-3 X/A(0) 0 4 

Fig. 5 Development of the pressure distribution for A *(0) = 30 

and the dependence on m vanishes. This attractive feature is 
not preserved for the consecutive time steps, but the transfor
mation (equation (38)) still gives good numerical accuracy for 
the numerical integration procedure. 

9 Search for the Area of Contact: Convergence of the 
Algorithm 

It is conceivable that the iterative algorithm for determining 
the extent of the contact area should not converge—for exam
ple, the release of nodes which require tensile tractions for 
contact could cause overlapping to occur at one or more nodes 
at the next iteration. However, we note that the release of the 
tensile area is equivalent to an application of compressive 
stresses at the released area, self-equilibrated somewhere else 
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A(0)=70 

Fig. 6(a) Earlier stage of process 
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Fig. 6(b) After bifurcation 

0 3 X/A(0) 

A*(0) = 70 
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Fig. 6(c) Midpoint takes over the whole load 

X/A(0) 

Fig. 6 Development of the pressure distribution for A *(0) = 70 

in the remaining portion of the contacting area. It can be 
shown by integration by parts of the integral in equation (22) 
that this does not change the rigid body displacement C in 
equation (7), and with this constraint, it is proved (Barber, 
1974) that the additional displacements of the surface caused 
by the self-equilibrated load are nonnegative. It follows that 
the iterative procedure converges monontonically on the solu
tion which satisfies the inequalities (equations (5) and (9)). 

This conclusion was supported by the numerical results. 
With a finite number of nodes, the iterative process terminates 
after a finite number of steps. Approximately three iterations 
were required on average, and in the worst case—where the 
contact area was multiply connected—only five iterations were 
required. 

10 Numerical Results 

Numerical solutions were obtained for values of A*(0) in 
the range 3 to 100. The improved algorithm permitted us to 
track the process from the start to an advanced stage which 
was close to the steady state. 

For A*(0) < 10, both the pressure and the area of contact 
changed smoothly with the progress of time, tending to the 
steady state solutions. An example of the pressure develop
ment for A *(0) = 5 is shown in Fig. 1. Figure 2 shows how the 
contact area shrinks with time for various initial values. 

For A*(0)= 15, 20, and 25 some waviness was observed in 
the pressure distribution in the intermediate stage. However, 
this tendency was not strong enough to cause bifurcation of 
the contact area. In effect, the reduction in contact area is too 
rapid in these cases for the waviness to develop into bifurca
tion, as can be seen from the contact pressure distribution in 
Fig. 3 for A *(0) = 25. The variation of contact area with time 
for these cases is shown in Fig. 4. Notice that each of the 
curves shows a slight irregularity near A* = 5, which is 
associated in each case with a transition from a trough to a 
peak at x = 0. In Fig. 5 for.<4*(0) = 30, the pressure follows the 
same pattern at first, but this time waviness is sufficient to 
cause bifurcation, and the mid-point loses contact. Then the 
contact regions (one is the mirror image of the other) move to 
the middle until they merge; still later maximum pressure is 
established at the midpoint, and the pressure converges to the 
steady state. 

The larger the ratio A*(0), the more contact regions are 
developed during the bifurcation phase. For example, three 
regions are developed for A * (0) = 70 and five for A * (0) = 100. 
The development of the pressure for these two ratios is shown 
in Figs. 6 and 7. The pattern of pressure variation differs from 
that for ^4*(0) = 30. The maximum is established at the mid
point at the start and after bifurcation the maximum pressure 
for each region grows with time. However, the rate of growth 
is different at the different regions and eventually the process 
is reversed for all regions except one which takes over the 
whole load. 

Variation of contact area with time is shown in Fig. 8. 
Broken lines represent the bifurcation phase of the process for 
which A* is interpreted as the sum of contact zone dimen
sions. We can see that bifurcation accelerates the process of 
convergence to the steady state. 

The temperature variation at the midpoint for A*(0) in the 
range from 3 to 10 is given in Fig. 9. All the curves eventually 
converge, as might be anticipated, since the size of the steady 
state area of contact is approximately the same (A0 = 1). In 
Fig. 10, development of the temperature for larger values of 
A*(0) is given. The flat piece of the curve for A *(0) = 30 in the 
interval 24 < t* < 28 is due to temporary separation at the 
midpoint. The curves for ^4*(0) = 70 and 100 are close in the 
interval 47 < t* < 50. A possible explanation is that the bifur
cation for both cases is over at that time, and areas of contact 
are almost the same (see Fig. 8). Later, however, the two 
curves diverge slightly. 
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11 Comparison with Previous Solutions 

We now compare the present results with the previous 
numerical solution (Azarkhin and Barber, 1985) and with the 
approximate solution based on a Hertzian distribution 
(Barber, 1980). Since neither of these solutions was able to 
treat the bifurcation phase of the process, we concentrate at
tention on the comparison of results for A*(fl)<25. 

The present results agree with those of Azarkhin and Barber 
(1985) during the earlier stage of the process, but later the two 
solutions diverge. Typical results are shown in Fig. 11 for 
A*(0)= 10, where the solid line represents the present results 
and the broken line the earlier results. The source of this 

discrepancy was identified in the earlier paper. The contribu
tion to the thermal distortion of the heat input which occurred 
at time t during an interval At was computed as an integral 
with limits t and t — At. When t is large, the results are ob
tained as a small difference between two large numbers and 
become progressivly inaccurate. For the purpose of the 
present comparison, an improved version of the previous solu
tion was developed in which this difficulty was overcome by 
replacing the corresponding terms with the solutions for a 
point source. This replacement (small circles in Fig. 11) shows 
good agreement with the present results. In general, the pre
sent technique is more efficient at an advanced stage of the 

A (0) = IOO 
0-4 

0-2 0-4 0-6 X/A(0) 10 

Fig. 7(a) Earlier stage of the process; first bifurcation 
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Fig. 7(b) Two more regions of contact develop 
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Fig. 7(c) Decrease of the pressure at all the regions except the 
midpoint 
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Fig. 7(d) The midpoint takes over the whole pressure 

Fig. 7 Development of the pressure distribution for A *(0) = 100 
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100 

Fig. 8 Reduction of the area of contact with time for A *(0) = 30, 50, 70, 
and 100 

• • • • Hertzian approxi

mation for A (0)=3 

and 10 * 
• • • • ' t 

5 10 15 20 25 
Fig. 9 Dimensionless temperature at the midpoint for A *(0) = 3, 5, 7,10 

Fig. 10 Dimensionless temperature at the midpoint for 4*(0) = 25, 30, 
70, 100 

process, but its particular advantage is of course that it allows 
us to follow the process through bifurcation for A*(0)>30. 
Notice however, that the algorithm developed before is more 
efficient for the earlier stages of the process. Figure 11 also 
shows results for the simplified model, based on the Hertzian 
approximation, for A *(0) = 3, 10. This method gives an order 
of magnitude estimate of the reduction of contact area with 
time. 

- present results 
- algorithm from 

reference 12 

o improved 

algorithm of 12 

Hertzian 
approximation 

Fig. 11 Comparison with the simplified model. Reduction of the area 
of contact for A * (0) = 3, 10 

10-

0-6 

o-oi % 0 ' l% I 0 Ap /p lO ) IO% 

Fig. 12 Influence of a wavy perturbation of the surface on the time at 
which bifurcation occurs 

The temperature at the midpoint predicted by the Hertzian 
approximation are compared with the present accurate results 
in Fig. 9. For small values of t* the approximate theory gives 
good results, but at larger t* the temperature is overestimated, 
as we might anticipate, since the approximate solution con
verges to a steady state contact area which is 15 percent 
smaller than the known exact solution given by Barber (1976). 

However, the approximate solution is sufficiently accurate 
to justify its use—with the consequent large saving in com
puting time—when the initial contact area is not large enough 
to cause bifurcation to occur. 
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12 Sensitivity Analysis References 

Since the transient process of pressure distribution and area 
of contact development is unstable for sufficiently large ratios 
A*(Q), it is reasonable to expect that small changes introduced 
by the data or numerical implementation might produce con
siderable changes in the results. It is interesting to know for 
which ratios A *(0) this is the case. To answer this question, we 
superposed some additional waviness on the surface of the 
body 

8 = 50cos(mx) 

where m was chosen to correspond to the wave of maximum 
growth rate (see Dow and Burton, 1972; and Azarkhin and 
Barber, 1985). The results are given in Fig. 12, where the 
relative time of bifurcation t/t0 is plotted against the relative 
amplitude of the initial pressure perturbation Ap//?(0)xl00 
percent. In this figure, t is the bifurcation time and t0 is the 
bifurcation time for the unperturbed surface. Inspection of 
the curves shows that the required accuracy of implementation 
is high and unlikely to be reached. Therefore, the pressure 
development shown in Figs. 6 and 7 can be viewed as a pattern 
rather than taken literally. In general, we note that the tran
sient development of the instability is very sensitive to the ex
istence of an initial waviness of appropriate wavelength. 

In a practical sliding system waviness will be developed due 
to nonuniform wear during previous periods of sliding. Thus, 
sliding surfaces which have previously experienced ther-
moelastic instability behavior will be liable to develop it more 
rapidly on subsequent occasions. 
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