
ENSC-2015-no 561

Thèse de doctorat
de l’École Normale Supérieure de Cachan

Présentée par

Monsieur Guillaume Scerri

Pour obtenir le grade de

Docteur de l’École Normale Supérieure de
Cachan

Domaine :
Informatique

Sujet de la thèse :

Les preuves de protocoles cryptographiques revisitées

(Proofs of security protocols revisited)

Thèse présentée et soutenue à Cachan le 29 janvier 2015 devant le jury composé de :

Gilles Barthe Professeur Président du Jury
David Basin Professeur Rapporteur
Bruno Blanchet Directeur de Recherches Rapporteur
Hubert Comon-Lundh Professeur Co-directeur de thèse
Véronique Cortier Directrice de Recherches Co-directrice de thèse
Pierre-Alain Fouque Professeur Examinateur

Laboratoire Spécification et Vérification
ENS de Cachan, UMR 8643 du CNRS
61, avenue du Président Wilson
94235 CACHAN Cedex, France

2

3

Abstract

With the rise of the Internet the use of cryptographic protocols became
ubiquitous. Considering the criticality and complexity of these protocols, there
is an important need of formal verification.

In order to obtain formal proofs of cryptographic protocols, two main at-
tacker models have been developed: the symbolic model and the computational
model. The symbolic model defines the attacker capabilities as a fixed set of
rules. On the other hand, the computational model describes only the attacker’s
limitations by stating that it may break some hard problems. While the former
is quite abstract and convenient for automating proofs the later offers much
stronger guarantees.

There is a gap between the guarantees offered by these two models due
to the fact the symbolic model defines what the adversary may do while the
computational model describes what it may not do. Since Abadi and Rogaway
in 2000 a lot of results aimed at bridging this gap, in order to have symbolic
proofs yielding computational guarantees. They however all come at the cost
of very strong and often unrealistic hypotheses, due to the fact that attacker
capabilities are defined in a fundamentally different way in the two models.

In order to overcome this problem, in 2012 Bana and Comon devised a new
symbolic model in which the attacker’s limitations are axiomatised. Proving
security in this new model amounts to checking – for every trace of the protocol
– the unsatisfiability of a set of formulae corresponding to the trace, together
with the negation of the security property and some axioms representing the
attacker’s limitations. In addition, provided that the (computational semantics)
of the axioms follows from the cryptographic hypotheses, proving security in this
symbolic model yields security in the computational model.

The possibility of automating proofs in this model (and finding axioms gen-
eral enough to prove a large class of protocols) was left open in the original
paper from Bana and Comon. In this thesis we provide with an efficient de-
cision procedure for a general class of axioms. In addition we propose a tool
(SCARY) implementing this decision procedure. Experimental results of our
tool shows that the axioms we designed for modelling security of encryption are
general enough to prove a large class of protocols.

4

Résumé

Avec la généralisation d’Internet, l’usage des protocoles cryptographiques est
devenu omniprésent. Étant donné leur complexité et leur aspect critique, une
vérification formelle des protocoles cryptographiques est nécessaire.

Deux principaux modèles existent pour prouver les protocoles. Le modèle
symbolique définit les capacités de l’attaquant comme un ensemble fixe de règles,
tandis que le modèle calculatoire interdit seulement à l’attaquant de résoudre
certains problèmes difficiles. Le modèle symbolique est très abstrait et permet
généralement d’automatiser les preuves, tandis que le modèle calculatoire fournit
des garanties plus fortes.

Le fossé entre les garanties offertes par ces deux modèles est dû au fait que le
modèle symbolique décrit les capacités de l’adversaire alors que le modèle calcu-
latoire décrit ses limitations. Depuis l’article précurseur d’Abadi et Rogaway en
2000, de nombreux travaux ont tenté de combler ce fossé. Ils supposent tous des
hypothèses très fortes et souvent irréalistes sur l’implémentation des protocoles.
La nécessité de ces hypothèses s’explique par le fait que les modèles d’attaquant
sont fondamentalement différents dans le monde calculatoire et dans le monde
symbolique. En effet, dans le modèle calculatoire les capacités de l’attaquant
sont un plus grand point fixe alors qu’elles sont un plus petit point fixe dans
le monde symbolique. Ainsi tout résultat voulant obtenir des garanties calcu-
latoires à partir de preuves de sécurité symbolique doit s’assurer que ces deux
points fixes coïncident.

Pour pallier ce problème, en 2012 Bana et Comon ont proposé un nouveau
modèle symbolique dans lequel les limitations de l’attaquant (au lieu de ses ca-
pacités) sont axiomatisées. En pratique, prouver la sécurité d’un protocole dans
ce modèle revient à montrer – pour chaque trace du protocole – que les axiomes
limitant l’attaquant ainsi que les formules correspondant à la trace sont inconsis-
tants avec la négation de la propriété de sécurité. Les auteurs montrent que si la
sémantique calculatoire des axiomes découle des hypothèses cryptographiques,
la sécurité dans ce modèle symbolique fournit des garanties calculatoires.

La principale question laissée ouverte par l’article de Bana et Comon est la
possibilité d’automatiser les preuves dans ce nouveau modèle (et l’élaboration
d’axiomes suffisamment généraux pour prouver un grand nombre de protocoles).
Le principal problème à résoudre pour automatiser les preuves dans ce nouveau
modèle est la résolution de problèmes de satisfiabilité d’ensembles de formules du
premier ordre. Dans cette thèse nous identifions un sous-ensemble de la logique
du premier ordre englobant les ensembles de formules et axiomes considérés dans
ce modèle, et proposons une procédure de décision originale en temps polynomial
pour cette classe.

Dans un deuxième temps, nous proposons une implémentation de cette pro-
cédure de décision dans notre outil (SCARY). Nos résultats expérimentaux nous
ont dans un premier temps amené à élargir les axiomes modélisant la sécurité
du chiffrement. Nous pensons que les concepts utilisés pour étendre ces axiomes
pourront être réutilisés dans l’élaboration d’axiomes pour d’autres primitives.
Dans un deuxième temps nous avons montré que nos nouveaux axiomes sont
suffisamment généraux pour prouver une large classe de protocoles. Nous avons
également retrouvé des attaques connues sur divers protocoles qui ne sont pas
détectées par les outils symboliques usuels. Nous avons, enfin, trouvé une at-
taque originale sur le protocole Andrews Secure RPC.

5

Remerciements

En premier lieu, je tiens à remercier mes deux directeurs de thèse : Hubert
Comon et Véronique Cortier. Au delà de m’avoir fait découvrir ce beau domaine
de recherche qu’est la vérification de protocoles cryptographiques et d’avoir
toujours été disponibles pour discuter de nos idées et orientations de recherche,
ils m’ont toujours, durant ces trois ans, soutenu et poussé à continuer et aller
plus loin, même dans les périodes de découragement. Pour tout ceci ils ont ma
plus profonde gratitude.

Je tiens également à remercier mes deux rapporteurs David Basin et Bruno
Blanchet, pour avoir accepté de relire cette thèse et pour leurs nombreux com-
mentaires qui m’ont permis d’en améliorer la qualité. Merci également à Gilles
Barthe et Pierre-Alain Fouque pour avoir accepté de participer à mon jury.

Ce travail n’aurait sans doute pas été possible sans les nombreuses discus-
sions scientifiques que j’ai pu avoir avec d’autres chercheurs du LSV et d’ailleurs.
Je suis en particulier reconnaissant à Gergeï Bana, pour les nombreux échanges
que nous avons eus au cours de ces trois ans, ainsi que pour ses commentaires
sur les versions préliminaires de mon manuscrit.

Merci à tous les personnels administratifs et techniques du LSV, du LORIA,
et de l’EDSP qui m’ont fourni des conditions matérielles idéales pour cette thèse,
toujours avec le sourire.

Je remercie également tous ceux avec qui j’ai collaboré pour mes enseigne-
ments, Hubert Comon, Émile Contal, Paul Gastin, Jean Goubault, Malika Iza-
bachène, et Ocan Sankur. Grâce à eux enseigner a toujours été une joie durant
ces trois ans. Merci aussi à mes élèves qui ont amplement contribué au plaisir
que j’ai pris à enseigner.

Merci à tous ceux avec qui nous avons partagé de bons moments au quotidien
au LSV et au LORIA. En particulier, David, Cyrille, Lucca, Marie, Marie, Ma-
thilde, Nadime, Pierre-Arnaud, Rémy, Samy, Simon, Steve, Sylvain. Un grand
merci supplémentaire à ceux parmi eux qui ont eu la gentillesse de relire des
parties de ma thèse.

Ces remerciements ne seraient évidemment pas complets sans les amis hors
du laboratoire (Andréa, Arthur, Aurel, Blanche, Catherine, Florence, Lucas,
Néphéli, Nicolas, Robert, Samuel, Sarah, Umberto, Xavier, et tous ceux que
j’oublie), avec qui nous avons partagé de nombreux bons moments parfois ab-
surdes, et probablement beaucoup trop joué aux cartes et jeux de société.

Merci à René et Chantal pour m’avoir supporté, et conseillé. Un immense
merci à mes parents qui, comme toujours, m’ont inconditionnellement soutenu
et aidé durant ces trois ans, qui ont parfois été difficiles. Sans eux je n’aurais
probablement pas fini cette thèse.

Merci de tout mon coeur à Maëlle.

6

Contents

1 Introduction 9

1.1 Some context . 9
1.2 State of the art . 10

1.2.1 The symbolic models . 11
1.2.2 The computational model 12

1.3 Comparison and critic of existing models 13
1.3.1 Symbolic models vs. computational model 13
1.3.2 Computational soundness 15
1.3.3 The computationally complete symbolic attacker 16
1.3.4 Other symbolic models for a computational attacker . . . 17

1.4 Our contribution . 18

2 Formal setting 19

2.1 First order semantics . 20
2.1.1 Constraints . 21
2.1.2 Semantics . 22

2.2 Kripke semantics . 23
2.2.1 Samplings, functions and constants 23

2.3 The execution model . 27
2.4 Conclusion . 33

3 Axioms and soundness proofs 35

3.1 Core axioms . 35
3.1.1 Reflexivity, transitivity and monotonicity 36
3.1.2 Functionality . 38
3.1.3 Freshness . 38

3.2 Cryptographic axioms . 40
3.2.1 Cryptographic properties 40
3.2.2 Syntactic constraints for key usability 44
3.2.3 Simple secrecy axiom(s) 47
3.2.4 Key usability and full secrecy axioms 52
3.2.5 Integrity and non-malleability axiom(s) 55

3.3 Conclusion . 60

4 Decision procedure 61

4.1 Overview of the results and proofs 62
4.2 Tractability of deducibility axioms 64

4.2.1 Adding equality . 67

7

8 CONTENTS

4.2.2 Adding a function axiom 68
4.3 More clauses using the deducibility predicate 71

4.3.1 Adding other predicate symbols 76
4.3.2 Adding equality . 77

4.4 The general case . 79
4.4.1 Proof of Theorem 6 . 80

4.5 Conclusion . 87

5 SCARY 89

5.1 Overview of the tool . 89
5.2 Input syntax and trace computation 90
5.3 The logic . 93
5.4 Computing on terms . 95

5.4.1 Equational theory . 95
5.4.2 Constraints . 96

5.5 Preprocessing and optimisations 99
5.5.1 Functionality and reflexivity 99
5.5.2 Optimisations . 100

5.6 The decision procedure . 101
5.7 Experimental results . 103
5.8 Further work . 104

6 Conclusion 105

6.1 Extend the model and tool . 105
6.2 Equivalence properties . 106
6.3 Compositionality . 106
6.4 Other attacker models . 107

Bibliography 109

Chapter 1

Introduction

1.1 Some context

Until half a century ago cryptography was mostly used in a military or
diplomatic context, to ensure secrecy of communications. At that time the use
of cryptography was relatively simple, mainly encrypting messages was suffi-
cient. Even then it oftentimes decided the fate of nations, from the fall of Mary
Stuart [Sin99] to the successful decryption of the Enigma machine by Alan Tur-
ing that ended up being a keystone in the Allies’ success during the Second
World War [wik14]. With the rise of the Internet and the widespread usage of
computers, the use of cryptography became much more complex and diverse.
We started building complex protocols relying on the relatively simple building
blocks that are cryptographic primitives like encryption, signature. . . Nowadays
cryptographic protocols are used everywhere in our everyday life. Credit card
payments on the Internet uses SSL/TLS for their security. Mobile phones use
cryptographic protocols to ensure privacy and integrity of communications.
With the adoption of electronic passports, we use cryptographic protocols to
identify travellers at our borders. Even our political system relies on it with
several countries using e-voting protocols for legally binding elections, like Es-
tonia or even France. Ranging from the privacy of a vote or the secrecy of a
phone conversation to our credit card number, we trust cryptographic proto-
cols to protect a lot of very sensitive information. Moreover, when it comes
to election or paying our taxes online, authenticity of the data transferred is
also critical. In other terms, most of our privacy, and even some of the basic
functions of our society rely on cryptographic protocols meeting their goal.

One valid question in this context is “is our trust in such protocols mis-
guided”. Sadly the answer to this question is not the one we could hope for.
We could cite as example the Heartbleed vulnerability on SSL/TLS that may
have exposed millions of user’s passwords for various services, and let any evil-
minded individual impersonate web services using this flawed implementation
of SSL/TLS. Countless other examples exist, among others attacks on Google
single sign-on[ACC+08]. This attack could have allowed a malicious service
provider to gain access to personal information stored in any Google service.
However, trust in cryptographic protocols is essential. Whole parts of the eco-
nomic life rely heavily on such trust: cloud computing services offered by Google

9

10 CHAPTER 1. INTRODUCTION

or Amazon, countless online shops, banks. . . We need, at least, to be able as in-
dividuals to trust the result of our elections, to trust the fact that our taxes
have been correctly filed. Moreover, with the increasing importance of cryp-
tocurrencies, even the value of our money might one day depend on the faith
we have in cryptographic protocols.

Considering the importance of security of cryptographic protocols, it is clear
that designing a protocol and hoping that no one will be able to break it is not
an option. We need formal guarantees on the correctness and safety of cryp-
tographic protocols. We have been able to successfully build reliable software
for several decades now, using both testing and verification approaches. We
rely on critical software for driving some of our trains, for flying our planes or
even our space shuttles, with very few critical failures since the Ariane crashes.
Why is the picture so different for cryptographic protocols? For cryptographic
protocols the testing approach is not an option. Indeed, in classical software,
we can hope that if the software has passed sufficiently many tests, nothing
bad will happen when actually using the software. However for cryptographic
protocols if there is only one bad case, we can expect a clever attacker to find
it. Another huge difference is that, for usual critical software, we are mostly
interested in correctness of the software, while in cryptographic protocols we are
dealing with much more complex properties. A protocol might be correct (i.e.
produce the expected set of outputs given a certain set of inputs), but this does
not mean that no information leaks from these outputs. Not only the outputs
are important. Even if the messages exchanged in an e-voting protocol preserve
the secrecy of messages, the control flow might leak the vote. For example the
adversary may be able to force an error if the vote has a certain value. This
gap is the reason for which we have to design specific techniques for proving
cryptographic protocols.

1.2 State of the art

Until the 1990s cryptography was mostly a game of hide and seek between
cryptologists and cryptanalysts. One would come up with a new protocol and
give informal arguments for its security and cryptanalysts would try to break
the protocol, often succeeding. Then a fix for the protocol would be proposed,
followed by another try at breaking it and so on and so forth. Since then,
tremendous progress has been made in the task of providing formal guarantees
for both protocols and cryptographic primitives. The main step in being able
to perform rigorous proofs is to understand what an attacker against a protocol
may or may not do. Even for the basic capabilities such as intercepting and
modifying messages, there has been some discussion. Should an attacker be able
to do more than just eavesdrop communications, like injecting messages on the
network? This first point has been settled in 1978 by Needham and Schroeder
stating in [NS78]: “We assume that the intruder can interpose a computer in
all communication paths, and thus can alter or copy parts of messages, replay
messages, or emit false material. While this may seem an extreme view, it is
the only safe one when designing authentication protocols.”

However, while the power of intercepting and forging messages is definitely
a capability of any reasonable adversary, the computing power of the adversary
remains unclear. Should it be an arbitrary Turing machine, should it be a

1.2. STATE OF THE ART 11

process only able to perform some particular operations? Indeed, reflecting this
alternative, two main attacker models arose for proving protocols: the symbolic
models and the computational models. Note that these are not the only two
attacker models one can imagine; an adversary may have more capabilities than
computational capabilities in trying to break protocols. For example, he might
be able to observe other channels than just the messages sent around on the
network, typically timing or power consumption [HMA+08, Koc96].

1.2.1 The symbolic models

Historically, the first proposal of a formal framework for proving protocols
dates back to 1983 by Dolev and Yao in [DY83]. In this model the meaningful
operations, which an attacker may perform, are applying the functions involved
in the protocol. Typically encrypting, decrypting, projecting a pair. . . More
precisely in the so called symbolic models the protocols and the attacker are
processes in a concurrent process algebra, such as the applied π-calculus [AF01]
or others [THG99, AG99].

In these models, the messages are modelled as abstract terms, living in a
term algebra. Intuitively this means that a message records the information
on how it was built. We are left with the task of specifying the attacker’s
capabilities. This is usually done by giving attacker rules for building messages.
For example an attacker should be able to compute the pair of two messages he
knows, or decrypt an encryption with a key he obtained:

u v

〈u, v〉

k enc(m, k)

m

Note that a symbolic adversary is only able to perform operations that are
specified by such rules (or any equivalent means). This means that, as long as
we do not specify a capability of the adversary, the adversary does not have
this capability. In other terms, one should be especially careful, when designing
symbolic models, about the properties of the cryptographic primitives. Assume
that given the encryptions of two plaintexts u, v, it is possible to compute the
encryption of the pair 〈u, v〉. This is the case if we use some homomorphic
encryptions. If we do not specify a rule

enc(u, k) enc(v, k)

enc(〈u, v〉, k)

the symbolic adversary would not be able to use this homomorphic property.
Intuitively, the cryptographic primitives are perfect in the sense that they only
have the properties that are explicitly assumed.

In these models, the security properties can be divided between reachability
properties and equivalence properties. The former states that in a certain state
the adversary should not be able to derive a secret s, or if a certain point in the
protocol is reached, the principals should agree on some value, or similar prop-
erties. This is typically a good way to define secrecy and agreement properties.
The later is defined by stating that no adversary should be able to distinguish
two processes. Anonymity is a typical example of equivalence properties. For
example, voter anonymity[KR05] where the adversary should not be able to
notice a swapping of the votes in a voting process.

12 CHAPTER 1. INTRODUCTION

The main advantage of these symbolic models is that they can be auto-
mated. There are lots of tools that check trace properties like ProVerif

[Bla01], Scyther [Cre08], or Avispa[ABB+05]. There has been a lot of work
towards automated verification of equivalence properties as well, leading to tools
like Apte [CCD10]. The main reason of the success of the automation of this
model is that the adversarial capabilities are specified in a relatively simple
logic, and the messages live in a simple term algebra. Therefore, it is quite close
to widely studied problems in automated reasoning.

1.2.2 The computational model

In the computational model the attacker is not an abstract process dealing
with unambiguous terms but a probabilistic polynomial time Turing machine
(PPT) that deals with bitstrings. This model dates back to [GM84]. The key
idea is to define security as a game that the adversary should not be able to
win. This model allowed to define the security of cryptographic primitives in a
rigorous way. This leads to various levels of security that can be expected from
cryptographic primitives against attackers that are more or less powerful. Typ-
ical examples are IND-CPA security ([GM84]) or IND-CCA security ([RS91]).
The former states that an encryption scheme should not leak information on
the plaintext in the presence of an adversary that is able to obtain ciphertexts.
The latter models the fact that an adversary should not be able to obtain infor-
mation from a ciphertext even if he has access to a decryption oracle. Note that
these rigorous definitions of security for the primitives is a key difference with
the symbolic models. In the symbolic model the cryptographic primitives are
assumed perfect while in the computational model the cryptographic primitives
are assumed to satisfy no more than what is explicitly stated by the security
property. We will not however consider the proofs of cryptographic primitives in
this thesis. We assume that the cryptographic primitives do have some security
properties and use them to prove protocols.

Let us go a bit more into the details of the computational model. As an
example, say that the protocol P should ensure the secrecy of some value s.
Usually, the computational secrecy is defined as the indistinguishability of s
from a random value. We may also consider a weaker notion of secrecy, defined
as follows. Given a PPT A, we say that A wins the secrecy game if AP (A
interacting with the protocol P as an oracle) is able to compute s. We say
that the protocol is secure if no PPT may win this game with non-negligible
probability. The assumptions on the cryptographic primitives are also defined
by games. For example in the IND-CPA game the adversary is given access to
either a real encryption oracle or a fake encryption oracle that encrypts zeros
instead of encrypting its input. The adversary wins this game if he is able to
distinguish between the real and the fake oracle. A proof of P typically reduces
winning the IND-CPA game to winning the secrecy game against the protocol.
In other words, a proof consists in providing a PPT B simulator such that, given
an adversary A that breaks the secrecy game, then BA breaks the IND-CPA
game.

The main advantage of this model is that the attacker is much closer to what
a “real life” attacker would be. If needed to prove a protocol, cryptographic
properties must be explicitly assumed. Indeed, as the proof works by reduction
of a hard problem, if there is no hard problem, there may be no reduction. In

1.3. COMPARISON AND CRITIC OF EXISTING MODELS 13

other words, the modelling of the attacker is not an issue. However finding the
minimal hardness assumptions can be difficult.

1.3 Comparison and critic of existing models

1.3.1 Symbolic models vs. computational model

First of all, let us consider the accuracy of the computational and symbolic
models. The first difference between these models is the way messages are
represented. The symbolic models abstract messages as terms, therefore it may
overlook some confusion between messages. For example, if we only assume
that an encryption scheme is IND-CPA secure there is no reason for the set of
encryptions with some key to be disjoint from the set of encryptions with another
key. However, any reasonable term algebra would assume that. This means
that, in the symbolic models, we may miss some attacks that take advantage
of such confusions. Conversely, in the computational model, the messages are
bitstrings, which is precisely what the messages are in “real life”, therefore we
may not miss this kind of attacks. A related problem is the capabilities of
the adversary. As mentioned earlier, a symbolic adversary may only compute
messages according to a fixed set of rules. This leads to the problem mentioned
earlier: if an encryption scheme is malleable, this should be reflected in the
capabilities of the adversary. However, if an encryption scheme is only assumed
to be IND-CPA, it may be malleable in very different ways. It appears to be
a very complicated task to model them all. In other words, it seems close to
impossible to deal with under-specified cryptographic primitives in the symbolic
model, while the properties of cryptographic primitives are almost never fully
described and the security definitions leave numerous degrees of freedom. This
problem does not arise in the computational model. Indeed, the game based
proofs only rely on the (proven or assumed) properties of the cryptographic
primitives.

As a short example of this, let us examine the Needham-Schroeder-Lowe
(NSL) protocol[Low95]. Informally, the NSL protocol between agents A and B
is meant to ensure that if both agents complete the protocol successfully, they
should agree on the values of some secrets. It is described as follows:

A → B : {nA, A}pkB

B → A : {nA, nB , B}pkA

A → B : {nB}pkB

where {x}pkY
denotes the encryption of x with the public key of agent Y . If one

agent completes the protocol successfully, A and B should agree on the random
values nA and nB and these values should be secret. Now, if the encryption
scheme is malleable enough – which is the case using an El-Gamal[Gam85]
encryption with a particular implementation of pairing – an adversary can ob-
tain {nA, I}pkB

from {nA, A}pkB
, leading to the following man in the middle

attack[War03]:
A → I(B) : {nA, A}pkB

I → B : {nA, I}pkB

B → I : {nA, nB , B}pkI

I(B) → A : {nA, nB , B}pkB

A → B : {nB}pkB

14 CHAPTER 1. INTRODUCTION

From the point of view of A the protocol was completed correctly, however the
adversary I has learned the value of nA and nB . This protocol has been proven
secure in the symbolic model several times. However, all these proofs implic-
itly assume that the encryption scheme is not malleable. Or, more accurately,
they assume adversarial capabilities that do not take into account the possi-
ble malleability of the encryption scheme. On the other hand, trying to prove
this protocol secure in the computational model without assuming any form of
non-malleability of the encryption scheme is not possible. This example is a
good illustration of the gap between the computational and the symbolic mod-
els. While the computational model has precise cryptographic assumptions, in
the symbolic models the adversarial capabilities can not take into account all
possibilities that are open to a real life adversary.

Let us now compare the models from the viewpoint of the proof search. On
the one hand, in the symbolic models, as mentioned earlier, the proofs are of-
ten completely automated. It is also worth noting that usually proofs in the
symbolic models are done by applying the attacker’s rules up to saturation.
Therefore disproving the security property often yields a sequence of attacker
rules applications leading to an attack. Indeed the symbolic models have been
quite successful at finding attacks since their very beginning. As an example let
us mention Lowe’s attack[Low95] on the Needham-Schroeder protocol[NS78].
The Needham Schroeder protocol was designed in 1978 and was believed secure
until 1995 when G. Lowe, while trying to prove the protocol secure in the sym-
bolic model, found a man in the middle attack. Moreover, the proofs carried out
in the symbolic models are mainly reasonably simple proofs using a simple logic.
This fact, together with the automation of the process gives a very good level
of confidence in such proofs, although it is still difficult to obtain independently
verifiable proof scripts.

On the other hand, in the computational model, while there are proof assis-
tants such as EasyCrypt[BGHB11] or CryptoVerif[Bla06], there is no fully
automated prover so far and little hope of designing one in the near future. Not
only the proofs require some user interaction, but a failure in the proof search
is difficult to interpret. Indeed when trying to prove a protocol in the compu-
tational model, the goal is to find the correct reduction. Therefore if one fails
to prove a protocol in the computational model this failure does not necessarily
yield an attack. It might be that the proof is simply too difficult to find.

Moreover, most proofs in the computational model are still performed by
hand and not machine checked. It is hard to have complete trust in such proofs.
Indeed proofs in the computational model tend to be quite involved, as it is
necessary to take into account probabilities and complexity of the reductions.
There are several examples of computational proofs of protocols or primitives
which ended-up being wrong. One of the most striking example might be the
case of the RSA-OAEP[BR94] security proof. The RSA-OAEP scheme was orig-
inally proven secure by Bellare and Rogaway in [BR94]. The proof was flawed
and was successively corrected by Shoup[Sho02], Fujisaki, Okamoto, Pointcheval
and Stern[FOPS04] and then Pointcheval[Poi05]. In the end a correct, machine
checked proof was finally established by Barthe, Grégoire, Lakhnech and Zanella
Béguelin in [BGLB11]. The main reason for such mistakes is the fact that proofs
of cryptographic protocols in the computational model do not usually include
full details because of their complexity.

Let us sum up the previous part. The advantage of proofs in the symbolic

1.3. COMPARISON AND CRITIC OF EXISTING MODELS 15

models is that we have automation and attack reconstruction. On the other
hand the computational model is more accurate, in the sense that it gives precise
assumptions on the cryptographic primitives. Therefore a proof of protocols in
the computational model yields stronger guarantees.

1.3.2 Computational soundness

The aim of computational soundness is to get the best of the two worlds.
This area of research was started in the year 2000 by Abadi and Rogaway[AR02].
The main idea is to prove that the symbolic attacker is at least as powerful as the
computational one. Then any symbolic security proof yields the computational
security. (Though, the absence of a symbolic security proof does not necessarily
yield a computational attack). This area of research has been developed quite
successfully since then. The original result by Abadi and Rogaway was obtained
for a passive adversary – an adversary that may only observe the run of the pro-
tocol. The subsequent results were obtained for active adversaries. Let us cite
as examples among many others [BP04, MW04, CC08]. These results have been
obtained for various security goals, mainly trace properties and equivalence, and
various sets of primitives.

All these soundness results come to the cost of strong implementation hy-
potheses, and restrictions on the class of protocols:

• Strong cryptographic hypotheses. In order to obtain a trace mapping re-
sult, strong assumptions on the behaviour of the cryptographic primitives
are needed, such as IND-CCA or strong integrity.
• Parsing assumptions: every function should append an unambiguous tag

to its result. The reason for this assumption is to avoid confusion between
messages. The only result dropping the parsing assumption is [CHKS12],
which comes at the cost of a very complex proof.
• Absence of key-cycles: the protocol may never produce the encryption

of an honest key with itself or similar patterns. This can be dropped at
the cost of stronger cryptographic assumptions, for example the KDM
assumption[BRS02]. However practical encryption schemes do not satisfy
this assumption.
• Absence of dishonest key generation: all keys are randomly generated

using the key generation algorithm. The assumption implies that the
adversary may not generate its own keys. It would typically be enforced
using a key distribution authority. In practice, as far as symmetric keys
are considered, keys are generated by the agents without any further
check. This contradicts the honest keys hypothesis. We showed in a
previous work[CCS12] (which is not presented here) that this hypoth-
esis may be dropped. However the cost of dropping this hypothesis is
considering a much more complex symbolic model. It seems hard to au-
tomate proofs in such a model. Another way to drop this hypothesis
is to strengthen considerably the cryptographic assumption as done in
[BMU12]. The cryptographic assumption needed for such a strong result
are far from being satisfied by practical cryptographic primitives.
• The commitment problem: there are several impossibility results[BP05]

for the computational soundness of primitives such as exclusive or, hash
functions,. . .

It is unclear whether any actual implementation satisfies all the hypotheses of

16 CHAPTER 1. INTRODUCTION

a soundness result. However, these results give a good intuition of what are the
necessary assumptions for a symbolic proof to yield computational guarantees.

Let us have a closer look at proofs of computational soundness. The goal is
to obtain a trace mapping lemma. This is done by showing that if a trace exists
in the computational model but not in the symbolic model, the cryptographic
hypotheses are broken. The main difficulty in this case is the fact that the
reduction must be uniform. In other terms there should be one reduction that
works for all protocols. There are two consequences of this remark. First, com-
putational soundness proofs are very heavy, even by the standard of proofs in
the computational model. Second, the proofs are very strongly connected to the
process algebra we consider. This means that computational soundness proofs
are not modular at all. If one has proven soundness for a process algebra allow-
ing symmetric encryption and signature, then adding asymmetric encryption
means doing a completely new soundness proof. Considering that the number
of cryptographic primitives increases with time, this means doing heavier and
heavier proofs over time. This modularity problem has been addressed by Böhl,
Cortier and Warinschi in [BCW13]. This paper describes conditions on primi-
tives for having a composable soundness theorem, however the implementation
hypotheses are once again quite strong.

The main reason of such complexity in the computational soundness proofs
can be summed up as follows. In the computational model, the adversarial
capabilities are defined by what the adversary can not do. On the other hand,
in the symbolic models, the adversarial capabilities are defined by what the
adversary can do. In other terms in the computational model the adversarial
capabilities are defined as a greatest fixed point while in the symbolic models
they are defined as a least fixed point. The difficulties in soundness results is to
make sure that these two fixed points actually coincide.

1.3.3 The computationally complete symbolic attacker

Are we stuck with this unsatisfactory situation? Is it impossible to combine
the computational guarantees with the nice properties of the symbolic models
without having unrealistic cryptographic hypotheses? The answer given by
Bana and Comon in [BC12] is no. The key idea in this paper is defining a new
symbolic attacker – namely the computationally complete symbolic attacker –
that considers the attacker as a greatest fixed point.

In this model, we specify what the attacker cannot do by axioms in first
order logic. These axioms reflect quite closely the cryptographic hypotheses.
Then a transition of the protocol is possible if the condition associated with this
transition is consistent with the axioms. We define security in this model as the
unsatisfiability of the negation of the security property together with the trace
conditions and the axioms. From this definition, the satisfiability means that
there is a model, which is an attack witness. It follows that this model is very
convenient for finding attacks as demonstrated in [BAS12, BHO13]. Moreover,
checking security amounts to checking (un)satisfiability of sets of first order
formulae. This problem has been widely studied in the last 50 years, and as
demonstrated in chapter 4 we can reuse proof techniques of this field to prove
decidability of the particular subset of first order logic we study.

Having defined this model – and stated that it has the desirable properties
of a symbolic model – we are left with precising its relationship with the compu-

1.3. COMPARISON AND CRITIC OF EXISTING MODELS 17

tational model. This relationship mainly amounts to defining a computational
semantics of first order logic. This part is done by seeing the computational
model as a certain form of Kripke model and using an embedding of first or-
der logic in the S4 modal logic due to Fitting[Fit70]. If the first order axioms
are proved to be valid in such a computational semantics (thanks to the cryp-
tographic hypotheses), then the symbolic proof yields computational security.
The validity of the axioms with respect to the computational semantics are rel-
atively simple cryptographic proofs, as will be demonstrated in chapter 3. It
follows that modularity is for free in this model: if an axiom A is sound with re-
spect to the cryptographic properties of f , and axiom B is sound with respect to
the cryptographic properties of g, the conjunction of these axioms is sound with
respect to the joint cryptographic properties. Therefore, unlike usual soundness
results, we do not have to redo the whole proof if we want to add a primitive.

This model also avoids parsing assumptions, that are customary even in
computational proofs. This way we may find new attacks that rely on confusions
between messages. We could cite as example the attack from [BC12] on the
NSL protocol. This attack relies on the fact that a random number might
be confused with a pair. This attack was not found before because all proofs
implicitly assumed that such a confusion was impossible. However it is not hard
to think of implementations of the pair that would allow such an attack.

The main drawback of this model with respect to the computational model is
that it does not provide explicit bounds on the reduction. In the computational
model, when a proof is completed, a close look at the reduction provides a poly-
nomial p such that if it is impossible to break the security of the cryptographic
primitive in time t, then it is impossible to break the protocol in time p(t).
When proving protocols secure against the computationally complete symbolic
attacker we only know that such a polynomial exists, but we have no way (so
far) of actually computing it. Note that this is also a drawback for classical
soundness results. We do not think that this loss of precision on the bound
can be avoided without having a much more complex symbolic model, which
involves probabilities.

1.3.4 Other symbolic models for a computational attacker

There are, to the best of our knowledge, only two other symbolic models that
give sound axioms that are used for the proofs. The first one is the Protocol
Composition Logic (PCL)[DDM+05] and the second one is F7[FKS11]. They are
both computationally sound with much weaker cryptographic hypotheses than
usual soundness results. The way they define security is quite similar, PCL uses
Hoare logic, while F7 uses refinement types, which is intuitively the combination
of types and Hoare logic. They are both successful at proving protocols, even
large protocols like TLS[BFCZ12] or Kerberos[RDM07]. One key difference with
the Computationally Complete Symbolic Attacker is that security is not proven
by inconsistency. In their approach the security goal should follow from the
axioms and the Hoare like inference rules. This means that if one fails to prove
a protocol in these models, he does not necessarily obtain an attack. He only
knows that his axioms were not strong enough (or that he failed to find a proof).
It should also be noted that there is no automation of these models: it is the
user who writes type annotations in F7 and Hoare triples in PCL. The logic
used in these models is much more complex than the one used in our approach,

18 CHAPTER 1. INTRODUCTION

where we use only a simple fragment of first order logic. Therefore it is much
more difficult to automate.

1.4 Our contribution

The original model from Bana and Comon[BC12] defines a computational
semantics of first order logic from scratch. In order to perform proofs it is there-
fore needed to prove that this computational semantics is equivalent to the first
order semantics of the logic. Moreover, due the complexity of this computa-
tional semantics the soundness proofs of the axioms are hard to check. A more
elegant formulation is introduced in [BHO13]. We follow this formulation and
detail the model in 2. With this definition, there is no need to perform com-
plex proofs on the computational semantics as it is simply a Kripke semantics.
Moreover, this simplification of the model yields simpler soundness proofs for
the axioms.

We provide here with a formal statement of axioms for symmetric and asym-
metric encryption in chapter 3. The axioms we state and prove sound are more
general than the axioms from [BC12]. In more details, our contribution here
is threefold. For the “core” axioms, that are independent of any cryptographic
hypotheses we (apart from a generalisation) give new soundness proofs of the
original axioms from Bana and Comon. For the axiom representing the secrecy
property of the encryption, we also consider the case of symmetric encryption,
which is not encompassed by the results in [BC12]. This extension is non-trivial,
as it requires an unexpected additional hypothesis. The additional hypothesis
is the “which-key concealing property”, which states that an encryption should
not disclose information on the encryption key. The last class of axioms we
propose are integrity axioms, both for non-malleability and unforgeability of
encryptions. These two axioms are different from the ones proposed in [BAS12]
and [BHO13]. We chose another approach for tackling the problems that is
both more convenient for performing soundness proofs, and for automating the
model. Moreover, we believe that the proof techniques developed in chapter 3
could be reused to prove axioms for other primitives like signatures or hash
functions.

One question left open in [BC12] is the automatability of this symbolic
model. Even if the problem remains a satisfiability check for sets of first or-
der formulae, it has several unusual specificities. There was hope that such a
fragment would be decidable: if the set of axioms is saturated, then the satisfia-
bility could even be tractable[BG01]. There is however a difficulty, since we use
a variadic predicate symbol (the “computability” predicate) as well as ground
equations and constrained formulae. Nevertheless, having an efficient decision
procedure for this problem is actually crucial as proving security in this model
means performing one satisfiability check per trace of the protocol. We give
such a procedure in chapter 4.

The last part of this thesis describes our tool (Scary) implementing (a
variant of) this decision procedure, together with experimental results. We only
experimented this tool on a few protocols so far, but it has already yielded a
new attack on Andrew’s Secure RPC[Sat89], and we hope to find many more
attacks in the future.

Chapter 2

Formal setting

In this chapter we define the formal setting in which we prove protocols.
Most symbolic framework (for example the applied π-calculus[AF01] or strand
spaces[THG99]) specify what an adversary is able to do. Typically, a symbolic
adversary has finitely many rules to build messages from its knowledge. On the
other hand, when considering computational cryptography, instead of listing
the moves that an adversary may perform (it is an arbitrary PPT), we restrict
its capabilities by stating that it should not be able to break the cryptographic
properties of the primitives. In other words, classical symbolic adversaries have
finitely many allowed moves while computational adversaries have finitely many
forbidden moves.

The model we present here aims at defining a symbolic adversary (or more
accurately a symbolic notion of security) that mimics the computational model
in the sense that it specifies what an adversary can not do. The key idea of this
model is to allow any adversarial move, as long as it does not contradict some
axioms reflecting the cryptographic properties. It is however a symbolic model
in the sense that it abstracts the probabilities and Turing machines. The fact
that proving security mainly amounts to checking consistency of sets of first
order formulae means that in the task of proving a protocol secure, we will be
able to reuse some existing ideas of automated reasoning, as will be detailed in
chapter 4.

This setting was originally defined by Gergeï Bana and Hubert Comon-
Lundh in [BC12]. In a following paper [BHO13] the authors introduce a more
elegant formulation in terms of Kripke semantics. In this chapter we rely on
this presentation. In order to prove security in this framework, we need to prove
that, for each trace, a set of ground formulae corresponding to this trace together
with the negation of the security property and some axioms is inconsistent.
This security proof ensures computational security if the axioms are sound with
respect to the computational interpretation of the predicates and functions.

Intuitively the ground formulae encode the conditions under which a trace
is executable (basically gathering all tests done by the protocol together with
conditions stating that adversarial messages should be computable from the
relevant knowledge). The axioms encode the properties of the predicates and
functions (typically the cryptographic properties). If these formulae and ax-
ioms can be satisfied together with the negation of the security property, it then
means that the trace is executable by an adversary and then the security prop-

19

20 CHAPTER 2. FORMAL SETTING

erty is broken. There might be two reasons for this fact: either the axioms do
not account for all the properties of the adversary, allowing for a false attack, in
which case the axioms should be strengthened; or the protocol is flawed. Con-
versely, if no attack is found on a trace it means that the assumptions on the
primitives ensure that the trace is either non executable or the security property
holds on this trace.

We start by defining the first order semantics of the logic we consider. This
logic will be used to perform security proofs in an abstract way. It is also
the logic that is used to guard transitions of the protocols. As we want to
prove that security proofs in the model entail computational guarantees, we
proceed to a computational semantics of the logic. In order to do this we
need to introduce probabilities in the semantics. This is formulated in terms
of Kripke structures, where worlds are non-negligible sets of random samplings.
The intuition governing this construction is that we want to consider all possible
sets of samplings that are large enough to provide with a computational attack.
The relationship between the computational logic and the first order logic is
obtained thanks to an embedding of first order logic into a modal logic (namely
S4), due to Fitting[Fit70]. Having defined properly both a computational and a
first order semantics, we move on to defining the execution model of protocols
and the soundness result stating that if there is no symbolic attack on a protocol,
then it is computationally secure (provided that the axioms used to prove this
protocol are computationally sound).

2.1 First order semantics

Let F be a finite set of function symbols (together with their arity), C a
sorted set of constants and P be a finite set of predicate symbols together with
their arity. We write f/a for the function or predicate f with arity a. T (F , C)
is the set of ground terms built on F ∪ C (which is assumed to contain at least
one constant in order to actually be able to build terms).

Example 2.1. We take as our running example the term algebra of the tool
presented in chapter 5, built on:

• the set of functions:

F = {senc /3, sdec /2, aenc /3, adec /2,pk /1,pair /2, π1/1, π2/1}

composed of symmetric and asymmetric encryption and decryption, asym-
metric public key derivation, pairing and projections. We also consider
countably many functions {hi/i|i ∈ N} we call handles. These functions
stand for the adversarial messages.

• the set of constants C with five sorts nonce, name, skey, akey standing for
random nonces, names, symmetric keys and asymmetric private keys,
each having countably many members.

For non-ground terms we need to consider variables, we consider a set of
variables X = XC ∪XF where XC is a set of sorted variables (containing count-
ably many variables for each sort of C) and XF a disjoint set of variables that
will stand for terms without restrictions of sort. We define T (F , C,X) as the
set of terms built on F and a set of variable symbols X .

We define as usual the function symbol at position p in term t as tp and the
subterm rooted at position p as t|p

. We denote by st(t) the set of subterms of t.

2.1. FIRST ORDER SEMANTICS 21

We also use set variables (written using upper case letters X,Y, Z, ...) ranging
in a set SX and a function symbol, denoted by a semicolon, for set union. Ex-
tended terms ET (F , C,X ,SX) are expressions s1; . . . ; sn where si ∈ T (F ,X) ∪
SX . As a shortcut, when n = 0 in the previous definition we denote the ex-
tended term as ∅. A basic ordering is an ordering on terms, which is:

1. Compatible with substitutions and
2. such that, for every ground term t, the number of terms smaller than t

is polynomial in the size of t. (An example of such an ordering is the
subterm ordering).

Atomic formulae are of the following forms:
• P (t1, . . . , tn) where P ∈ P and t1, . . . , tn ∈ T (F , C,X)
• t1 = t2 where t1, t2 ∈ T (F ,X)
• S ⊲ t where t ∈ T (F ,X) and S ∈ ET (F , C,X ,SX).

The unusual ⊲ predicate intuitively means that knowing the set of terms S, it is
possible for an adversary to build term t. We do have to consider sets of terms
on the left hand side of this predicate as restricting this predicate to be a n-ary
predicate would mean bounding the number of messages sent by a protocol.

We consider clauses that are built on these atomic formulae. The axioms
for the set theory ACIN (associativity, commutativity, idempotence and neutral
element ∅) are implicitly assumed without mention on the left side of the ⊲.
Intuitively, this is because, the set S represents the knowledge of an adversary,
and, as such, order or duplication of the terms is not relevant. We also im-
plicitly assume, if not stated otherwise, the axioms for equality (equality is a
congruence) in what follows.

Given an extended term S and a substitution σ, mapping variables of SX
to finite subsets of T (F , C), variables in XC to constants with the corresponding
sorts and variables of X to terms in T (F , C), Sσ is defined by ∅σ = ∅, (s;S)σ =
{sσ} ∪ Sσ if s ∈ T (F , C,X), and (X;S)σ = Xσ ∪ Sσ if X ∈ SX .

2.1.1 Constraints

A constraint Γ is a formula interpreted as a subset of ((T (F))∗)n (n-uples of
finite sets of ground terms) if n is the number of free variables of Γ. We write
S1, . . . , Sn |= Γ when (S1, . . . , Sn) belongs to this interpretation. A constrained
clause is a pair of a clause and a constraint, which is written φ ‖ Γ. Given
a constrained clause φ ‖ Γ, we let Jφ‖ΓK = {φσ‖σ satisfies Γ}. A model of
φ ‖ Γ is, by definition, a model of Jφ‖ΓK.

These constraints will typically be used in axioms to ensure that axioms are
only applied to frames where the key usage complies to what is authorised by
the cryptographic properties, or to check whether some value is not guessable
from a set of terms.
Example 2.2. Let us give a first example of constraint, the freshness constraint
written fresh(n,X) where n is a constant. The semantics of this constraint is

S |= fresh(n,X) iff ∀t ∈ S.n 6∈ st(t)

This constraint is used in the freshness axiom that states that a random
value should not be computable from a set of terms that does not depend on it
(for more details see chapter 3)

¬X ⊲ n ‖ fresh(n,X)

22 CHAPTER 2. FORMAL SETTING

which represents the set of clauses ¬S ⊲ n where n does not appear in S.

Definition 2.3. A constraint Γ is monotone if
• if S1, . . . , Sn |= Γ and, for every i, S′

i ⊆ Si, then S′
1, . . . , S

′
n |= Γ

• if S1, . . . , Sn |= Γ and S′
1, . . . , S

′
n |= Γ, then S1 ∪ S

′
1, . . . , Sn ∪ S

′
n |= Γ.

Note that the conjunction of two monotone constraints is a monotone con-
straint, it is not, however, true of the disjunction of two monotone constraints.

Let us remark that a typical monotone constraint is a property of terms
and not a property of sets of terms. For example, the aforementioned freshness
constraint is monotone, as it is a property of the individual terms in S rather
than a property of S as a set. Note that all flavors of plaintext freshness con-
straints (stating that a key should not appear in any terms of S except for some
positions) are monotone.

Monotonicity of constraints are be used in chapter 4 to ensure that the
strategy is correct. Note however that the strongest constraints we consider in
our tool and in chapter 3 are not monotone, however the simplest constraints
which are often enough to prove protocols that make use of only asymmetric
encryption or pre-shared keys do verify this property.

Let us give a short example of a non-monotone constraint.

Example 2.4. The key usability constraint, properly defined in chapter 3, is not
a monotone constraint. Intuitively this constraint is inductively defined by the
fact that a key k is usable in a set of terms S if it only appears encrypted by
keys that are themselves usable. Typically k is usable in S1 = {k}r

k′ as it is
safely encrypted by key k′ that is not disclosed in S1, it is also usable in S2 = k′

as it does not appear in S2. However k is not usable in S1 ∪ S2 = {k}r
k′ ; k′, as

k′ is not usable itself. Therefore this key usability is not monotone.

2.1.2 Semantics

A first-order structure S is defined as usual. We only require that = is
interpreted as a congruence relation on the interpretation domain DS and that
⊲ is interpreted as a relation between the finite subsets of DS and DS .

The only somewhat unusual part is the satisfaction for constrained clauses,
which is defined as the satisfaction of all instances of the clause satisfying the
constraint:

S |= φ‖Γ iff S |= Jφ‖ΓK

Let us give a short example of this semantics.

Example 2.5. Let us consider the following first order structure S. Its interpre-
tation domain DS = T (F , C) with = interpreted as the trivial congruence. We
fix n. Let us now define the ⊲ relation as: S ⊲ n if and only if ¬ fresh(n, S). We
now have

S |= ¬X ⊲ n‖ fresh(n,X)

However, if we change the interpretation of ⊲, adding ∅ ⊲ n, S is not a model of
¬X ⊲n‖ fresh(n,X) anymore. Indeed we have S 6|= ¬∅ ⊲ n and the clause ¬∅ ⊲ n
belongs to J¬X ⊲ n‖ fresh(n,X)K

2.2. KRIPKE SEMANTICS 23

2.2 Kripke semantics

In order to give a computational meaning to this framework, we need to
define a computational semantics. Following [BHO13] we define here a Kripke
model that captures the capabilities of a computational adversary. The worlds
are sets of random samplings, representing adversarial and protocol’s random-
ness. The successor relation is simply the inclusion relation between these sets
of random samplings. Using an embedding due to Fitting[Fit70] we have the
result that if a set of formulae holds in the Kripke model considered here, then it
has a first order model. Note that this embedding, together with the fact that a
computational attack on a trace ensures that the corresponding set of formulae
has a Kripke model, yields the computational soundness result we wanted.

2.2.1 Samplings, functions and constants

We start by defining the worlds of the Kripke model. We consider first or-
der structures with domain map(S, {0, 1}∗), the functions from a non-negligible
subset S of all the possible random samplings to the bitstrings. In this thesis,
we assume that these functions are implemented by probabilistic polynomial
time Turing machine (PPT) seen as mapping from their random tape to their
output. Some of the functions, constants and predicates have a fixed interpre-
tation while others do not. Let us be more precise and start by defining what a
sampling is.

Non-negligible sampling families

A random sampling is a family of countably many infinite sequences of bits
indexed by the union of N and C. Intuitively the infinite sequence of bits la-
belled by constants is used to compute the interpretation of constants, and the
remaining sequences are used as random tapes for the machines that are witness
to the satisfaction of the ⊲ predicate.

Definition 2.6. A random sampling (ri)i∈C∪N is an element of the sampling
space

Sspace = ({0, 1}N)C∪N

We say that ri is the random tape i. For l ∈ N we write ri
l the initial segment

of length l of ri.

Now that the sampling space is defined, we need to specify what kind of
subsets of the sampling space we want to consider. Note that a set of formulae
contains only finitely many constants and finitely many ⊲ statements therefore
we only need finitely many random tapes. Moreover, all the machines used to
compute constants or be witnesses for a ⊲ statement terminate and therefore
only use finitely many random tape bits. More formally we define uniform
subsets as follows.

Definition 2.7. A sampling set S is (k, l)-uniform if the two following condi-
tions are satisfied:

1. it can be written as SK×
(
{0, 1}N

)(C∪N)\K
with #K = k. This condition

states that only the tapes in K are restricted.

24 CHAPTER 2. FORMAL SETTING

2. if (r1, . . . , rk) ∈ SK , we have (r1
l .s

1, . . . , rk
l .s

k) ∈ SK for all s1, . . . , sk ∈
{0, 1}N. This condition states that only the l first bits of any tape are
restricted.

We say that a sampling set is uniform if it is (k, l)-uniform for some integers
k, l. We denote by U the collection of uniform sampling sets.

As we want to define a measure on (uniform) sampling sets, we show that
these form an algebra.

Proposition 2.8. The collection U is stable by union, intersection and com-
plement and contains Sspace and ∅.

Proof. Let us start by remarking that Sspace and ∅ are (0, 0) uniform sampling
sets.

Let S1 be a (k1, l1) uniform set, and S2 be a (k2, l2) uniform set. Let us write
S1 = S′

1× ({0, 1}N)(C∪N)\K1 and S2 = S′
2× ({0, 1}N)(C∪N)\K2 . Let K = K1∪K2,

k = #K and l = max(l1, l2).
We show that S1∪S2 and S1∩S2 are (k, l) uniform. Note that we may write

S1 = S′′
1 × ({0, 1}N)(C∪N)\K where S′′

1 = S′
1× ({0, 1}N)K\K1 abides by condition

2. We have S1∪S2 = (S′′
1 ∪S

′′
2)×({0, 1}N)(C∪N)\K , it is now enough to note that

condition 2 holds on (S′′
1 ∪S

′′
2). Similarly S1∩S2 = (S′′

1 ∩S
′′
2)× ({0, 1}N)(C∪N)\K

and condition 2 holds on (S′′
1 ∩ S

′′
2).

The case of complement is even simpler: Sc
1 = S′c

1 × ({0, 1}N)(C∪N)\K1 and
condition 2 trivially holds on S′c

1 .

Note that cryptographic properties provide asymptotic conditions on the
attacker’s success as the security parameter grows. Therefore we can not simply
work with sampling sets. We need one sampling per security parameter, which
we call a sampling family. Moreover, we also have to reflect the fact that the
attacker’s success probability may be negligible: we need to define sampling
families that do not become arbitrarily small.

Let us start by defining the size of a sampling set. It roughly corresponds
to the proportion of all samplings that are covered by this sampling set. We
will define a measure µ on the sampling space that ensures that all uniform
samplings are measurable, and that the image measure’s by the projections on
a finite set of tapes, truncated to a finite number of bits is the uniform measure.

Let us start by properly defining the projections:

pK,l : Sspace → ({0, 1}l)K
(
(ri)i∈C∪N

)
7→ (ri

l)i∈K

Let S be a (k, l) uniform sampling set, let us write S = SK×
(
{0, 1}N

)(C∪N)\K

with #K = k. We define

µ(S) = 2−kl#pK,l(S)

Remark 2.9. The previous definition is independent of the choice of K and l.
It is enough to notice that if S is (k, l) uniform and S = SK ×

(
{0, 1}N

)(C∪N)\K

with #K = k we can increase K and l without changing the definition of µ.
Let us consider K ′ such that K ′ ∩K = ∅ and #K ′ = k′. Now, we get

pK∪K′,l+r(S) =
{

(ri
l .si)i∈K∪K′ |si ∈ {0, 1}r and (ri

l)i∈K∪K′ ∈ pK,l(S)× ({0, 1}l)K′
}

2.2. KRIPKE SEMANTICS 25

it follows that #pK∪K′,l+r(S) = 2(k+k′)r+k′l#pK,l(S), we conclude that the
definition of µ is independent from the choice of K and l.

It immediately follows from this definition that
• µ(∅) = 0 and µ(Sspace) = 1
• If S ∩ S′ = ∅ then µ(S ∪ S′) = µ(S) + µ(S′)

From these facts, we conclude that extending µ on the σ-algebra generated by
U we obtain a probability measure.

Now that we properly defined the size of a sampling set we can define non
negligible sampling families. We start by recalling the usual definition of a
negligible function:

Definition 2.10. A function f from N to R is negligible if for all polynomial p
there exists N such that for all n ≥ N we have

f(n) <
1

p(n)

The intuition of a non negligible sampling family is a family of sampling sets
that do not decrease in size too quickly, which ensures that if something bad
happens in a sampling family, it also happens with non negligible probability in
the computational model.

Definition 2.11. A sampling family is a family (Sη)η∈N of uniform sampling
sets. It is non-negligible if f : η 7→ µ(Sη) is not negligible. We will often use |S|
to denote f .

For two sampling families S, S′, we write S ⊆ S′ if for all η we have Sη ⊆ S
′
η.

Kripke worlds and accessibility relation

In all generality, we will consider the class of Kripke domains D defined by
• A non-negligible sampling family S = (Sη)η∈N. The worlds of D are all

non negligible sampling families S′ such that S′ ⊆ S. As one could expect
the accessibility relation is the ⊂ relation between sampling families.
• For each η and each constant c a random variable cη : Sη → {0, 1}∗

• For each η and each function f in F of arity l a random variable

fη : Sη →
(
({0, 1}∗)l → {0, 1}∗

)

• For each predicate p of arity l a random variable

pη : Sη →
(
({0, 1}∗)l → {⊤,⊥}

)

For a term t and a sampling τ ∈ Sη we write

JtKτ =

{
fη(τ)(Jt1Kτ , . . . , JtlKτ , τ1) if t = f(t1, . . . , tn)
cη(τ) if t = c

Similarly, we define Jp(t1, . . . , tl)Kτ as pη(τ)(Jt1Kτ , . . . , JtlKτ).
The reason for which we consider these Kripke structures is that the problem

we want to tackle is the existence of a PPT adversary against a protocol. The
non-negligible sampling family S will be the set of drawings of both honest

26 CHAPTER 2. FORMAL SETTING

and adversarial randomness on which the adversary succeeds at breaking the
security property.

We are left with defining what it means for a predicate to be satisfied in a
world S. The intuition is that p ∈ P is true on S if it is true with overwhelming
probability on S. More formally, we have S |= p(t1, . . . , tn) if and only if the
function η 7→ P(τ ∈ Sη and Jp(t1, . . . , tn)Kτ = ⊥) is negligible.
Example 2.12. Assume that in the Kripke structure nonces are interpreted as
random bitstrings of length η. Let S be a world in this Kripke structure. Let
n1, n2 be two nonces. Let us consider the binary disequality predicate 6=. We
have S |= n1 6= n2 as P(τ ∈ Sη and Jn1Kτ = Jn2Kτ) ≤ 2−η

As one could expect, the picture is quite different for the ⊲ predicate. For an
integer i and a PPT A, we define Ai as the PPT A using the i-th random tape
for its randomness. We say that S |= t1; . . . ; tn ⊲u if there exists an index i with
i ∈ N and a PPT A such that η 7→ P(τ ∈ Sη and Ai(Jt1Kτ , . . . , JtnKτ) 6= JuKτ) is
negligible. If Ai is such a witness, we write S,Ai |= t1; . . . ; tn ⊲ u, however, we
will often omit the index when it is not relevant to the proof.
Example 2.13. Let t ∈ T (F , C). Let us show that for any world S, we have
S |= t ⊲ t. Let A be the PPT that simply returns its input, we have (for any
index i) S,Ai |= t ⊲ t.
Example 2.14. Assume that the constant b is interpret as a random bit. Let
us now consider the world S where for all τ in S, the i-th component of τ
starts with JbKτ . It is easy to see that such a sampling family is non-negligible.
Let now A be the PPT that returns the first bit of its random tape. We have
S,Ai |= ∅ ⊲ b.

Note that in section 2.1 we say that we assume the ACIN axioms, we
therefore have to prove that these axioms hold in every Kripke world. It is
clear for associativity as we are considering sets as lists. For commutativ-
ity it is enough to notice that if σ is a permutation of {1, . . . , n}, if we have
S,Ai |= t1, . . . , tn ⊲ u, defining Aσ

i (x1, . . . , xn) = Ai(xσ(1), . . . , xσ(n)) we have
S,Aσ

i |= tσ(1), . . . , tσ(n) ⊲ u. The same technique holds for idempotence.
We further restrict the class of Kripke models we consider as follows:
• For each function f in F we fix a probabilistic polynomial time Turing

machine Af , we fix fη(τ)(x1, . . . , xl) = Af
1 (η, x1, . . . , xl) where η is coded

in unary. All functions share the same randomness. This randomness is
also accessible to the adversary as it is stored on the first adversarial tape.
Therefore if one wants to model private or independent randomness, as
in probabilistic encryption, it is necessary to include it explicitly in the
arguments of the function. We do not restrict the functions to determin-
istic functions as the adversarial messages are randomised functions of
the adversarial knowledge.

• For each predicate p in P we fix a polynomial time Turing machine Ap,
we fix pη(τ)(x1, . . . , xl) = ⊤ if and only if Ap

1(η, x1, . . . , xl) accepts.
• For each sort s of constants we fix a PPT As. If c is of sort s, we take
cη(τ) = As

c(η).
Intuitively, these restrictions ensure that the Kripke models we consider cor-
rectly reflect the computational model. We call these models computational
Kripke models.

Recall that the problem we want to solve is: given a set of modal formulae (we
will consider this set to be ground and possibly infinite), is there a computational

2.3. THE EXECUTION MODEL 27

Kripke model of these formulae? For simplicity reasons, we do not want to solve
the problem within modal logic. We then use the Fitting’s embedding of first
order logic into S4 in order to ensure that if such a model exists, then a first
order model also exists. Note that the converse might not hold.

The S4 modal logic has two modalities: � and ♦. The � modalities is the
“always” modality: S |= �F means that for every world S′ accessible from S,
S′ |= F . The ♦ modality is the “eventually” modality: S |= ♦F is defined as
there exists a world S′ accessible from S such that S′ |= F . Additionally it
admits as Kripke models all Kripke structures in which the accessibility rela-
tion is reflexive and transitive. Note that this is in particular the case of the
computational Kripke models.

Let us give a statement of the Fitting’s embedding ([Fit70]).

Theorem 1 (Fitting’s embedding). Let us define A∗ for each first order formula
A: for A atomic, A∗ = �♦A and

(A ∧B)∗ = �♦(A∗ ∧B∗)
(A ∨B)∗ = �♦(A∗ ∨B∗)

(A→ B)∗ = �♦(A∗ → B∗)
(¬A)∗ = �♦(¬A∗)

(∀x.A(x))∗ = �♦(∀x.A(x)∗)
(∃x.A(x))∗ = �♦(∃x.A(x)∗)

Let S be a set of first order formulae. S is consistent if and only if S∗ is
consistent in S4.

Given a set of (first order) axioms A such that A∗ holds in every computa-
tional Kripke model, and a set of ground formulae S, we get that if there exists
a computational Kripke model in which S∗ holds, then there exists a first order
model of A∪S. In other words, as S will encode a trace of the protocol together
with the negation of the security property, if the protocol has a computational
attack, then A ∪ S is consistent for the S corresponding to the attack trace.

Remark 2.15. The converse might not be true. Recall that we are not consid-
ering all Kripke models of S4, only the computational Kripke models. Hence
A∪S could be consistent, while its model does not show an attack (though we
do not have an example of such a false attack).

2.3 The execution model

In order to state the computational soundness theorem, we need to define
properly the execution model and the security definitions. This execution model
is very permissive, we define protocols as transition system and do not stick to
any particular syntax or semantics: the operational semantics of process calculi
such as applied π-calculus or the transition systems specified by multiset rewrite
rules can be easily formulated using the next definition.

As in [BC12] we define a protocol as follows, assuming Q is a (possibly
infinite) set of control states with a distinguished initial state q0:

Definition 2.16. A protocol is a recursive set of tuples

(q(n), q′(n.n′), 〈x1, . . . , xk〉, x, ψ, s)

28 CHAPTER 2. FORMAL SETTING

where q, q′ ∈ Q, x1, . . . , xk, x are variables n, n′ are finite sequences of names, ψ
is a first order formula over the set of predicate symbols P and function symbols
F and the names n ∪ n′ , whose free variables are in {x1, . . . , xn, x} and s is a
term whose free variables are in {x1, . . . , xn, x}.

Let us give some intuition. The formula ψ is the guard of the transition,
enforced by the protocol. It typically expresses either the verification that a
message is well formed (decrypts or projects correctly) or that some equalities
hold. A transition from q to q′ is possible, if given the previous inputs x1, . . . , xn

and the last input x, the guard ψ holds. If the transition is fired, the names n′

are generated and the message s is sent out.

Example 2.17. Let us consider the following simple one-way authentication pro-
tocol:

A → B : {n,A}pkB

B → A : {n}pkA

We assume, without loss of generality that the action of A is triggered by the
adversary with some signal. For one instance of each role, the transition system
is as follows:

• the transition (q0(), qA(n.r), 〈〉, xA,⊤, {n,A}
r
pkB

) for the action of A
• let us call vAB

n the term adec(xAB , skB); if A has already played, the
action of B yields the transition

(qA(n.r), qAB(n.r.r′), 〈xA〉, xAB , (π2(vAB
n) = A), {π1(vAB

n)}r′

pkA
)

• let us call vB
n the term adec(xB , skB); if B plays first, we have the tran-

sition
(q0(), qB(r′)〈〉, xB , (π2(vB

n) = A), {π1(vB
n)}r′

pkA
)

• finally (qB(r′), qBA(r′.n.r), 〈xB〉, xBA,⊤, {n,A}
r
pkB

) for the subsequent
action of A.

Note that this transition systems does not consider any concurrency, there
is only one adversary, one channel. This does mean that some translation work
has to be done from usual protocol models such as applied π-calculus, mainly
unravelling all interleavings as can be seen in the previous example.

Having defined our protocol model, we can now define security properties
as recursive functions from the state to the formulae. The intuition is that the
security property represents the set of conditions that should be verified in a
state. Typically it will be stating that some constant should not be computable
with the messages that were sent on the network, or that some equalities should
hold (in other terms some parties should agree on some values) if the protocol
reaches some particular “accepting” state.

Definition 2.18 (Security property). A security property is a recursive function
from Q to the first order formulae over P and F .

Example 2.19. Let us come back to example 2.17. We wish to express that the
nonce n is not computable from the messages that are sent. This is expressed
with the following property p:

• p(q0) = ¬∅ ⊲ n
• p(qA) = ¬[{n,A}r

pkB
⊲ n] and p(qAB) = ¬[{n,A}r

pkB
; {π1(vAB

n)}r′

pkA
⊲ n]

• p(qB) = ¬[{π1(vB
n)}r′

pkA
⊲ n] and p(qBA) = ¬[{π1(vB

n)}r′

pkA
; {n,A}r

pkB
⊲ n]

2.3. THE EXECUTION MODEL 29

Expressing agreement is even simpler. We need to state that if B accepts a
nonce, then it should be the nonce sent by A. If B has not accepted yet (in
q0, qA) the security property is ⊤. In every other state, it is π1(vB

n) = n.

We now need to give a precise semantics for this model. Given a security
parameter η, computational interpretation of functions and predicates, the com-
putational semantics behaves as follows. Note that we do need an adversary to
compute and schedule the communications.

Definition 2.20 (Computational semantics). Given a protocol P and a PPT
adversaryA, we define the execution of P withA as environment (written P‖A).
As a lot of computations will be probabilistic, we fix τ a random sampling and
let r be the first adversarial randomness tape in τ .

• We define a computational state as (q(n), 〈h1, . . . , hn〉, 〈m1, . . . ,ml〉) where
q ∈ Q, h1, . . . , hn are bitstrings standing for the previously received mes-
sage and m1, . . . ,ml are the messages sent over the network so far.
• We define the transition relation →τ as follows:

(q(n), 〈h1, . . . , hn〉, 〈m1, . . . ,ml〉)→τ

(q′(n.n′), 〈h1, . . . , hn, h〉, 〈m1, . . . ,ml,m〉)

if (q(n), q(n.n′), 〈x1, . . . , xk〉, x, ψ, s) ∈ P with

1. h = Ar(〈m1, . . . ,ml〉) is the new message computed by the adversary

2. τ, {x1 7→ h1, . . . , xn 7→ hn, x 7→ h} |= ψ

3. m = JsKτ,σ with σ = {x1 7→ h1, . . . , xn 7→ hn, x 7→ h} i.e. the inter-
pretation of all constants are taken according to τ and the variables
are replaced by the corresponding adversarial messages.

A computational transition sequence starting from state the initial state q0 is
called a computational trace.

Note that with any reasonable translation of protocols into this model we
just redefined the usual computational semantics.

Example 2.21. Let us come back to example 2.17. Let us describe the honest
execution of the protocol where A plays first then B and the message is sim-
ply forwarded by the adversary. Let τ be a sampling. We get the following
computational trace:

(q0(), 〈〉, 〈〉)→τ (qA(n.r), 〈h1〉, 〈J{n,A}
r
pkB

Kτ 〉)

→τ (qAB(n.r.r′), 〈h1, J{n,A}
r
pkB

Kτ 〉, 〈J{n,A}
r
pkB

Kτ , J{n}
r′

pkA
Kτ 〉)

We say as usual that a protocol P satisfies the security property p if for any
PPT A, the following function f is negligible

f : η 7→ Pτ

[
P‖A →∗

τ (q(n), 〈h1, . . . , hn〉, 〈m1, . . . ,ml〉)

with τ, {x1 7→ h1, . . . , xn 7→ hn)} |= ¬p(q)
]

In other terms, the protocol P satisfies the security property p if and only if any
polynomial time attacker computing the messages sent to the protocol, a state
of P where p is not satisfied can only be reached with negligible probability.

30 CHAPTER 2. FORMAL SETTING

While this computational semantics is basically the usual semantics of the
computational model we need to abstract it into a symbolic semantics. Indeed
if we do not fix one particular sampling, it is infinitely branching. Moreover, we
do not want to consider one adversary explicitly, as quantifying over all PPT is
not really an option if we want to have an abstract model. What we do in the
symbolic semantics, as in [BC12], is to regroup all traces that follow the same
control path. In other terms, we give a symbolic semantics that, at each step,
gather all the traces that satisfy one transition guard ψ. Afterwards, the Kripke
semantics we defined in the previous section will allow us to reason on whether
or not there exists an adversary capable of executing such a symbolic trace. In
order to define a symbolic semantics, we need to define functions to represent the
adversarial messages. We therefore assume that F contains {handlei /i|i ∈ N}.

Definition 2.22 (Symbolic semantics). A symbolic state of the network consists
of:

• a control state q ∈ Q together with a sequence of names (that have been
generated so far) n1, . . . , nk

• a sequence of ground terms h1, . . . , hn recording the inputs of the protocol
• a ground extended term φ called the frame (recording the agents outputs)
• a set of ground formulae Θ built over P,=, ⊲ (the conditions that have

to be satisfied in order to reach the state).
A symbolic transition of a protocol P is

(q(n), 〈h1, . . . , hm〉, φ,Θ)→ (q′(n′), 〈h1, . . . , hm, h〉, φ; s,Θ ∪Ψ)

if there exists a transition rule

(q(n), q′(n′), 〈x1, . . . , xm〉, x, ψ, s
′) ∈ P

with
• s = s′{x1 7→ h1, . . . , xi 7→ hi}
• h = handlei(φ)
• Ψ = φ ⊲ h ∧ ψ{x1 7→ h1, . . . , xi 7→ hi}

A symbolic transition sequence starting from the initial state q0 is called a
symbolic trace.

Note that there is exactly one symbolic transition per rule of the protocol,
therefore we can map each computational trace to the symbolic trace executing
the same protocol rules.

Example 2.23. Let us come back to example 2.17. Recall the computational
trace we described:

(q0(), 〈〉, 〈〉)→τ (qA(n.r), 〈h1〉, 〈J{n,A}
r
pkB

Kτ 〉)

→τ (qAB(n.r.r′), 〈h1, J{n,A}
r
pkB

Kτ 〉, 〈J{n,A}
r
pkB

Kτ , J{n}
r′

pkA
Kτ 〉)

This computational execution is mimicked by the following symbolic trace:

(q0(), 〈〉, ∅, ∅) → (qA(n.r), 〈h1〉, φ1,Θ1) → (qAB(n.r.r′), 〈h1, h2〉, φ2,Θ2)

with the frames φ1 = {n,A}r
pkB

and φ2 = φ1; {π1(adec(h2, skB))}r′

pkA
. The pro-

tocol guards that are checked along the trace, together with the computability
of adversarial messages are:

2.3. THE EXECUTION MODEL 31

• Θ1 = ∅ ⊲ h1

• Θ2 = Θ1, {n,A}r
pkB

⊲ h2, π2(adec(h2, skB)) = A
Note that the symbolic execution represents any computational trace following
the same control path as the one of the original computational trace. Therefore
it represents infinitely many computational transition sequences at once.

Definition 2.24. Let A be a set of first order axioms. We say that a symbolic
trace

(q0(n0), ∅, φ0, ∅)→ · · · → (qm(nm), 〈h1, . . . , hm〉, φm,Θm)

of P is valid with respect to A if for 0 ≤ i ≤ m the set of formulae Θi,A is
satisfiable.

Note that as (Θi)i≤m is an increasing family of sets, it is enough to check
the condition on Θm.

Now that the symbolic transition system is defined, and that we have a
notion of which traces are valid, we can move on to the definition of symbolic
security. Intuitively, a protocol is symbolically insecure if and only if there exists
first order modelM that is a witness to the validity of a trace t andM |= ¬p(t).

Definition 2.25 (symbolic security). Let P be a protocol, p be a security
property. We say that P is symbolically secure with respect to axioms A and
property p if for every valid symbolic transition sequence of P with respect to
A

(q0(n0), ∅, φ0, ∅)→ · · · → (qm(nm), 〈h1, . . . , hm〉, φm,Θm)

the negation of the security property is incompatible with the axioms: i.e. the
set of formulae A,Θm, ¬(p(qm(nm)){x1 7→ h1, . . . , xn 7→ hn}) is inconsistent.

The whole point of considering this symbolic model and defining the com-
putational Kripke models is to define a symbolic model that is as permissive as
the computational model. In order to achieve this goal we have to relate the
axioms used in the previous definitions to the computational model.

Definition 2.26. Let A be a set of first order formulae. We say that A is
computationally sound if for every computational Kripke model M we have
M |= A∗.

Having stated computational soundness for the axioms, we can state the
main theorem. This theorem simply states that, as long as the axioms we
consider are computationally sound, checking symbolic security is sufficient to
obtain computational security.

Theorem 2 (Computational soundness). Assume that P has a finite number
of symbolic traces. Let A be a set of computationally sound first order axioms.
If the protocol P is symbolically secure with respect to axioms A and security
property p then it is computationally secure with respect to security property p.

Proof. Let us assume that P is computationally insecure. Let us consider an
adversary A breaking the computational security of P . There is a non negligible
sampling family S such that for all η and all τ ∈ Sη we have

P‖A →τ (q(n), 〈h1, . . . , hn〉, 〈m1, . . . ,ml〉)

with τ, {x1 7→ h1, . . . , xn 7→ hn} |= ¬p(q)

32 CHAPTER 2. FORMAL SETTING

Each of these attack traces can be mapped to a symbolic trace of P . As P only
has a finite number of possible symbolic traces we get a non-negligible sampling
family S′ and a symbolic trace t = (q0(_),_,_,_)→∗ (qn(n), 〈h1, . . . , hn〉, φn,Θn)
of P such that for every τ in S′ there exists a computational trace tτ

P‖A →τ (q(n), 〈hτ
1 , . . . , h

τ
n〉, 〈m

τ
1 , . . . ,m

τ
n〉)

with τ, {x1 7→ hτ
1 , . . . , xn 7→ hτ

n} |= ¬p(q)

which is abstracted by t. Let us write (qi(_), 〈hτ
1 , . . . , h

τ
i 〉, 〈m

τ
1 , . . . ,m

τ
i 〉) the

i-th step of tτ . For 0 < i ≤ n, let (qi−1(_), qi(_), 〈x1, . . . , xi−1〉, xi, ψi, si) the
rule of P used to fire the i-th transition of tτ . Note that as we assume that
all the tτ are abstracted by the same symbolic trace, this definition does not
depend on τ .

Let h1, . . . , hn be the terms representing the protocol’s inputs in the symbolic
trace t. We define σ as the substitution {x1 7→ h1, . . . , xn 7→ hn} and στ as
{x1 7→ hτ

1 , . . . , xn 7→ hτ
n}. Let us now show that S′ |= [Θn,¬(p(q)σ)]∗. The

only functions whose interpretations are not fixed are the handles. We simply
interpret the handlei(x1, . . . , xi) function as A(x1, . . . , xi). It is now enough to
remark that S′ actually is computational Kripke model of [Θm, ¬p(q)σ]∗. Note
that A is a witness for all the ⊲ formulae and all the other formulae hold on S′

by construction. Let us state this formally.
Note that as all the constants are drawn according to τ in tτ , with our

definition of the handles we get JφiKτ = 〈mτ
1 , . . . ,m

τ
i 〉. We consider ψ a formula

in Θn, let us assume the ψ ∈ Θi\Θi−1. Then we have
• either ψ = φi−1 ⊲ hi, and then (writing the first adversarial random tape

as r) S′,A1 |= φi−1 ⊲ hi by definition of the interpretation of handlei.
Now we observe that for any S′′ ⊆ S′, we have S′′,A1 |= φi−1 ⊲ hi. We
conclude that S′ |= �♦φi−1 ⊲ hi, as for all successor S′′ of S′ there exists
a successor of S′′ on which φi−1 ⊲ hi holds (in this particular case S′′

itself).
• or ψ = ψi and for all τ ∈ S′ we have τ, στ |= ψi as this is exactly the

computational requirement for the protocol to execute trace t. Therefore
as in the previous point S′ |= (ψiσ)∗

The only case left out is the case of ¬p(q)σ. As previously, we have for all
τ ∈ S′, τ, στ |= ¬p(q) hence S′ |= (¬p(q)σ)∗

Now remark that S′ is also a computational Kripke model of A∗ as the
axioms are assumed computationally sound. Fitting’s embedding yields the
first order satisfiability of Θn, ¬(p(q)σ), A. This concludes the proof.

The previous soundness theorem can be seen as a trace mapping result. Note
that the number of hypotheses involved in the proof and the length of the proof
is considerably shorter than usual trace mapping results found in computational
soundness proofs (for examples of such proofs see [BP04, MW04, CC08],. . .).
The main reason of this simplicity is that the attacker’s possibilities are naturally
reflected in our symbolic models, thus we do not have to reason on a way to
restrict the meaningful actions of a computational adversary. The assumption
that the protocol only has a bounded number of traces is a design choice of
this model. If we do not make this hypothesis, we need to consider attacks
whose length depending on the security parameter. Considering such attacks
would necessitate a representation of this security parameter somewhere in the

2.4. CONCLUSION 33

symbolic model. In order to keep the model simple, the authors decided in
[BC12] to disregard such attacks. We follow that choice here.

2.4 Conclusion

We have defined here, along the ideas of [BC12] albeit in a different formal-
ism originally introduced in [BHO13] a symbolic framework for proving crypto-
graphic protocols. The main idea behind this framework is to define a symbolic
attacker that is as powerful as possible. We defined a computational logic re-
flecting the capabilities of a computational adversary. Using this logic we can
formulate a symbolic transition system that is sound with respect to the com-
putational model. The last part is to notice that, thanks to Fitting’s embedding
of first order logic into S4, checking whether there exists a valid symbolic trace
contradicting the security property can be reduced to proving that a set of first
order formulae is satisfiable.

Note that one of the crucial parts is to formulate a set of axioms A in first
order logic that are computationally sound (i.e. that hold in any computational
Kripke model). This is the problem we tackle in the next chapter. The rea-
son for which this part of formulating axioms is so crucial is because without
any such axiom, the interpretation of the predicates (and in particular the ⊲)
is not restricted in any way when checking first order satisfiability. However in
the computational model, the functions (in particular the cryptographic primi-
tives) are instantiated and therefore have a lot of properties. These properties
formulated as axioms naturally hold in any computational Kripke model.

34 CHAPTER 2. FORMAL SETTING

Chapter 3

Axioms and soundness
proofs

In the previous chapter, we showed that proving a protocol computation-
ally secure amounts to checking the consistency of a set of ground formulae
S together with a set of computationally sound axioms A. In this chapter,
we propose a list of computationally sound axioms modelling the adversarial
capabilities. We start by presenting what we call the “core axioms” that re-
strict the capabilities of any PPT adversary independently of any hypotheses
on the cryptographic primitives. In other words, these core axioms represent
the restriction of an adversary that hold even if the cryptographic primitives
are insecure. These axioms are proven sound with very minimal hypotheses on
the implementation of functions. We then proceed to model axioms for classical
properties of encryption schemes, namely integrity and secrecy.

Apart from a slight generalisation, the core axioms are the ones proven sound
in [BC12, BAS12]. However, the formal model we consider here is not exactly
the same as the one presented in [BC12]. The proofs mostly rely on the same
ideas, but are presented in a different setting. The cryptographic axioms how-
ever have some differences. We identify a missing cryptographic hypothesis for
the proof of the secrecy axiom in the symmetric case. The original proof from
Bana and Comon, does not carry over the symmetric encryption case. We show
here that this hypothesis is necessary for the axiom to be sound. The main
contribution however is allowing for a less restrictive use of (symmetric) keys in
the axioms, which is necessary in order to prove lots of protocols involving sym-
metric encryption, in particular key-exchange protocols. The third contribution
regarding the cryptographic axioms is the design of an axiom for unforgeability
of encryption with a very different approach from [BHO13].

3.1 Core axioms

Let us first present the core axioms, that are sound regardless of the cryp-
tographic properties. These axioms represent the capabilities of an adversary
that are independent of any security hypothesis on the cryptographic primitives
or implementation hypothesis on the functions. The only assumption we make
is that all functions are implemented by polynomial time algorithms which is

35

36 CHAPTER 3. AXIOMS AND SOUNDNESS PROOFS

in practice always satisfied as the protocols using these functions are always
supposed to run in polynomial time. We also give a precise computational con-
dition under which random values such as nonces and keys are not guessable
and provide with the corresponding axiom. All of the axioms presented in this
section were originally introduced in [BC12]. The proofs are however presented
in the formalism proposed in chapter 2 instead of the original formalism from
[BC12]. Moreover we extend the freshness axiom by weakening the computa-
tional hypotheses.

One interesting point is that they are very similar to the way we would model
the deductive capabilities of a Dolev Yao adversary. This makes sense because,
in the Dolev Yao world, as all primitives are considered “perfect”, the adversary
possesses only these minimal capabilities. In the present context however, they
are just a lower bound on the capabilities of an adversary. Although stating such
capabilities is not necessary, it makes life simpler;other axioms can be stated in
a simpler way, as shown by the following example.

Example 3.1. Let us consider the following statement: 〈{n}r
k, A〉 ⊲ n. It should

not be satisfied by any reasonable encryption scheme.
We are left with two choices for designing the axioms.
• We can state that the pair is a computable function (in other words
x; y ⊲ 〈x, y〉) therefore obtaining {n}r

k;A ⊲ n. In addition we design an
axiom stating that n can not be computed from {n}r

k: {n}r
k 6 ⊲n.

• We can omit the ability of the adversary to compute pairs and design an
axiom such as 〈{n}r

k, A〉 6 ⊲n.
We chose the first option. The second option would need to design a much

more involved secrecy axiom whose proof would be much more technical.

3.1.1 Reflexivity, transitivity and monotonicity

The three first axioms we describe here are the only axioms in this framework
that are sound irrespectively of any other computational hypothesis. They
reflect some properties of Turing machines.

The simplest axiom here is the reflexivity (denoted by Refl) axiom, it ba-
sically states that the identity function is computable.

X;x ⊲ x

The first non-trivial axiom is the transitivity axiom (denoted by Tr), in-
tuitively it states that giving to the adversary knowledge that it can already
compute does not increase its capabilities. In other words, it states that the
composition of two PPT is also a PPT.

X ⊲ x , X;x ⊲ y → X ⊲ y

The third core axiom is the monotonicity axiom (denoted by Mon) that
states that the adversary may discard some of its inputs. In terms of computabil-
ity, it means that if a n-ary function f is computable then so is g : (x1, . . . , xn+1) 7→
f(x1, . . . , xn)

X ⊲ y → X;x ⊲ y

Even if these three axioms seem fairly natural, due to the relative complexity
of the underlying modal logic and the Fitting’s translation, we still need to prove

3.1. CORE AXIOMS 37

their soundness. We also hope that the proof of the next proposition will be a
good example that very natural axioms have a very natural soundness proof.

Proposition 3.2. The axioms Refl, Tr and Mon are computationally sound
irrespectively of any computational hypothesis.

Proof. Let us start with the reflexivity axiom, Fitting’s translation yields:

�♦X;x ⊲ x

Let S be a sampling family, let Aπ be the (polynomial time) Turing machine
returning its last argument (i.e. Aπ(X,w) = w). We have

S,Aπ |= X;x ⊲ x

We now prove the monotonicity axiom, which is translated as:

�♦(�♦X ⊲ y → �♦X;x ⊲ y)

We consider an instance of this axiom:

�♦(�♦t1; . . . ; tn ⊲ u → �♦t1; . . . ; tn; t′ ⊲ u)

Let S be a sampling in which there exists a PPT A such that A, S |= X ⊲ y.
Let now A′ be the PPT that takes n + 1 arguments, ignores the last one and
computes as A. Note that A′(Jt1K, . . . , JtnK, Jt′K) if and only if A(Jt1K, . . . , JtnK).
We can conclude that for any sampling family S

S |= �♦t1; . . . ; tn ⊲ u → �♦t1; . . . ; tn; t′ ⊲ u

We now consider an instance of the transitivity axiom, more precisely:

�♦(�♦(�♦t1; . . . ; tn ⊲ t ∧�♦t1; . . . ; tn; t ⊲ u) → �♦t1; . . . ; tn ⊲ u)

Let S be a sampling family, assume the left hand side of the implication holds,
let us take S1 ⊆ S, we want to prove that there exists S2 ⊆ S1 and a PPT A
for which S2,A |= t1; . . . ; tn ⊲ u.

1. According to the left hand side of the implication, there exists S′
1 ⊆ S1

such that S′
1 |= �♦t1; . . . ; tn ⊲ t ∧�♦t1; . . . ; tn; t ⊲ u

2. �♦t1; . . . ; tn⊲t yields S′′
1 ⊆ S

′
1 and a PPT B such that S′′

1 ,B |= t1; . . . ; tn⊲
t. Let us remark that for every sample family U smaller than S′′

1 , we have
U,B |= t1; . . . ; tn ⊲ t

3. �♦t1; . . . ; tn; t ⊲ u gives S2 ⊆ S
′′
1 such that S2,B

′ |= t1; . . . ; tn; t ⊲ u

Summing everything up, taking A(x1, . . . , xn) = B′(x1, . . . , xn,B(x1, . . . , xn))
we get S2,A |= t1; . . . ; tn ⊲ u

Having proven the axioms that do not rely on any hypotheses, we can move
on to the other core axioms relying on natural assumptions.

38 CHAPTER 3. AXIOMS AND SOUNDNESS PROOFS

3.1.2 Functionality

We now assume that all functions in F are computable in polynomial time.
The functionality axioms simply state that fact. This set of axioms is quite easy
to prove, as the witness for the computability of a function in F is precisely the
machine computing this function.

For f in F , we define the functionality axiom (Funf) as follows,

x1; . . . ;xn ⊲ f(x1, . . . , xn)

Proposition 3.3. If f is computable in PTIME, then Funf is computationally
sound.

Proof. Let Af be the polynomial time Turing machine computing f . Let us
consider an instance of the Funf axiom:

�♦t1; . . . ; tn ⊲ f(t1, . . . , tn)

To obtain the soundness of this axiom, we only need to observe that, for any
sample family S,

S,Af |= t1; . . . ; tn ⊲ f(t1, . . . , tn)

Do note that if one wants to add some function that if not computable in
PTIME for technical reasons (for example for encoding practically uncheckable
conditions in the trace), it is enough to exclude it from the functions for which
we assume the functionality axiom. Therefore the restriction of all functions
being computable in PTIME could be dropped to the cost of having a set
of functions that is computable in polynomial time and another that is not.
However, as we do not have realistic examples of the usefulness of such non
PTIME computable functions we decided to give a simpler definition of the set
of functionality axioms.

3.1.3 Freshness

In order to actually prove protocols secure, we need to be able to derive
contradictions. This can not be done using only the previous axioms. Indeed
none of the previous axioms has an empty conclusion. The aim of the freshness
axiom is to provide us with the first impossibility in this model. Intuitively,
it states that if the distribution of the values of a sort s is computationally
close enough to the uniform distribution, it should be computationally hard to
guess a particular element of this sort. We start by defining formally what we
mean by being close enough to the uniform distribution. In [BC12] the freshness
axiom is limited to nonces that are interpreted as random bitstrings of length
proportional to η. Here we extend the axiom to any sort whose interpretation
has enough entropy. Note that, as in a computational Kripke model all constants
of a particular sort are interpreted by the same PPT, either all constants of sort
s have high entropy or none do.

3.1. CORE AXIOMS 39

Definition 3.4 (Computationally unpredictable sort). A sort s is said to be
computationally unpredictable if for any polynomial time Turing machine A and
constant c of sort s, we have

Pτ

[
JcKη

τ = A(1η)
]

= negl(η)

where negl is a negligible function.

The nonces that are typically interpreted as (possibly tagged) random bit-
strings are computationally unpredictable. Note that if an encryption scheme is
secure for any usual notion of security, the keys also are unpredictable. Other-
wise the adversary would have a good chance of guessing the correct key, thus
breaking the scheme.

In order to use this definition in axioms, we need to be able to state in which
context (aside from the empty one) an unpredictable constant n is actually
unpredictable. A sufficient condition is the absence of occurrence of n in the
context.

Definition 3.5 (Freshness). Let t be a term and c be a constant in C. We
say that c is fresh in t (written fresh(c, t)) if and only if c does not appear as a
subterm of t.

By extension, for a set S and a constant c we say that c is fresh in S
(fresh(n, S)) if and only if for every t in S we have fresh(c, t).

Now intuitively, if a constant c is fresh in S, and if its sort s is unpredictable,
then it should be impossible to guess c from S. We then state the following axiom
Fresh

c
s

for every computationally unpredictable sort s and every constant c of
sort s.

¬X ⊲ c ‖ fresh(c,X)

We often write Fresh in the following chapters to denote the set of all sound
freshness axioms {Fresh

c
s
| s computationally unpredictable and sort(c) = s}.

Proposition 3.6. If s is computationally unpredictable and sort(c) = s then
Fresh

c
s

is computationally sound.

Proof. Let ¬t1; . . . ; tn ⊲ c be a valid instance of the Fresh
c
s

axiom scheme. Let
S be a sampling family. Note that c is generated independently from the ti. Let
us assume A, S |= t1; . . . ; tn ⊲ c.

Let us fix the adversarial random tape and the random tapes of all constants
other that c. Applying definition 3.4 yields

P
[
JcK = A(Jt1K, . . . , JtnK)

]
= negl(η)

as A can be considered as a deterministic Turing machine running in polyno-
mial time with respect to η. It follows that S is of negligible size which is a
contradiction.

Therefore, we can deduce that for every sampling family S, and any PPT
A, A, S 6|= t1; . . . ; tn ⊲ c which concludes the proof.

Note that this freshness axiom is a generalisation of the freshness axiom
given in [BC12]. The original freshness axiom was only stated (and proven) for
nonces implemented as random bitstrings of size η. Here in contrast, we have
the precise condition under which a constant may not be guessed, allowing our
axiom to be used for tagged bitstring but also keys.

40 CHAPTER 3. AXIOMS AND SOUNDNESS PROOFS

3.2 Cryptographic axioms

We have now proven all the core axioms and would be able to verify any
protocol that does not use cryptographic primitives. However, our goal is ver-
ifying cryptographic protocols. We need to design axioms for cryptographic
properties.

In this section, we give axioms for the two most common expected properties
of encryption schemes: secrecy and integrity. Note that integrity is formulated
differently if we are dealing with asymmetric encryption, in which case it is
more precisely defined as a non-malleability property, or if we are considering
symmetric encryption where it is usually achieved via unforgeability.

The main contribution here compared to [BC12, BAS12] is the design of
syntactic constraints stating in which context a key is usable for various cryp-
tographic security properties. This applies to both symmetric and asymmetric
encryption. In [BHO13] the authors developed simultaneously another approach
to tackle the same problem of defining key usability, however they take a very
different approach, defining a new predicate (quite similar to the ⊲ predicate) for
key compromise. Their approach is quite convenient for doing proofs by hand,
however considering that our aim is a decision procedure, we believe that adding
another variadic predicate with complex interactions with the ⊲ predicate would
be much more costly than handling relatively simple syntactic constraint.

We also change the specification of the non-malleability axiom from [BAS12]
giving an axiom requiring less assumptions and design an axiom reflecting un-
forgeability. We also fix a gap in the proofs of the axioms (in the symmetric case)
that were proven sound without the which-key concealing hypothesis, while we
show here that this assumption is necessary.

We start by recalling the cryptographic properties we use, namely IND-
CPA, IND-CCA, KDM and which key concealing and give a short proof that
these notions imply that keys should be computationally unpredictable (see
definition 3.4). Having defined these notions, we move on to defining the key
usability notion, which follows quite closely the power of the adversary in the
various definitions. We then proceed to actually prove the axioms.

3.2.1 Cryptographic properties

Let us first present the cryptographic properties for which we devised axioms,
by order of strength. We present here the definitions with left or right oracles
instead of definitions using real or random oracles, as using left or right oracles
is simpler in our proofs. The two definitions are equivalent.

We first give the definition of IND-CPA (originally defined in [GM84]). The
intuition behind this definition is that the encryption scheme should not leak
any information on the plaintext as long as the adversary is only given access
to encryption oracles.

Definition 3.7 (IND-CPA). Let (E ,D,K) be an encryption scheme. Let Os(1η)
(with s = l or s = r) be an oracle behaving as follows:
• Generate a key pair (pk, sk) = K(1η), if the encryption scheme is a sym-

metric encryption scheme, we assume pk = sk in order to have uniform
notation for both cases.

• If the encryption scheme is an asymmetric encryption scheme, on input
key, return pk.

3.2. CRYPTOGRAPHIC AXIOMS 41

• On input encrypt(ml,mr), draw a new randomness r ∈ {0, 1}η and
output E(ms, pk, r).

We say that (E ,D,K) in IND-CPA secure if for any PPT A· with one oracle we
have ∣∣∣P

[
AOl(1η)(1η) = 1

]
− P

[
AOr(1η)(1η) = 1

]∣∣∣ = negl(η)

where negl(η) is a negligible function in η.

The definition of IND-CCA2 security (originally defined in [RS91]) is much
stronger than the definition of IND-CPA as the adversary is also able to decrypt
arbitrary messages. In particular this means that no adversary should be able
to forge an encryption that is meaningfully related (but not equal) to an honest
encryption, in other words non-malleability.

Definition 3.8 (IND-CCA2). Let (E ,D,K) be an encryption scheme. Let
Os(1η) (with s = l or s = r) be an oracle behaving as follows:

• Generate a key pair (pk, sk) = K(1η), if the encryption scheme is a
symmetric encryption scheme, assume pk = sk in order to have uniform
notation for both cases.
• Initialise a list L := [] that memorises queried encryptions.
• If the encryption scheme is an asymmetric encryption scheme, on input

key, return the public key pk.
• On input encrypt(ml,mr), draw a new randomness r ∈ {0, 1}η and

output c = E(ms, pk, r). Record L := c :: L.
• On input decrypt(c), if c ∈ L then return invalid otherwise return
D(c, sk).

We say that (E ,D,K) in IND-CCA2 secure if for any PPT A we have
∣∣∣P

[
AOl(1η)(1η) = 1

]
− P

[
AOr(1η)(1η) = 1

]∣∣∣ = negl(η)

where negl(η) is a negligible function in η.

The KDM security defined by [BRS02] is even stronger in the sense that the
adversary is able to compute the plaintext depending on the secret keys of the
oracle. This notion is not necessary to prove most protocols, however it allows
key cycles and thus gives more freedom for designing protocols. We also present
it here because the proofs of the axioms are a bit simpler if we assume this
notion.

Definition 3.9 (KDM). Let (E ,D,K) be an encryption scheme. Let Os(1η)
(with s = l or s = r) be an oracle behaving as follows:

• Generate a vector of key pairs (pk1, sk1), . . . , (pkn, skn) = K(1η)n, if the
encryption scheme is a symmetric encryption scheme, we will take in
order to have uniform notation for both cases pki = ski.
• Initialise a list L := [] that memorises all queried encryptions.
• If the encryption scheme is an asymmetric encryption scheme, on input

keyi, return the public key pki.
• On input encrypt(pl,pr,i), where pl and pr are (encodings of) polyno-

mial time Turing machine:
− compute ms = ps((pk1, sk1), . . . , (pkn, skn)) for s = l, r
− if the length of the output of ps is not constant return invalid. If

the length of the outputs of pl and pr are not equal, return invalid.

42 CHAPTER 3. AXIOMS AND SOUNDNESS PROOFS

− otherwise draw a new randomness r ∈ {0, 1}η and output c = E(ms, pki, r).
Record L := c :: L

• On input decrypt(c,i), if c ∈ L then return invalid otherwise return
D(c, ski).

We say that (E ,D,K) in KDM secure if for any PPT A we have
∣∣∣P

[
AOl(1η)(1η) = 1

]
− P

[
AOr(1η)(1η) = 1

]∣∣∣ = negl(η)

where negl(η) is a negligible function in η.

One of the notions of security we do need in order to prove protocols that
involve symmetric encryption is the integrity of cyphertexts. We use the most
straightforward notion of integrity, namely INT-CTXT (introduced in [BKY01])
which states that the adversary should not be able to forge a new cyphertext
from existing ones.

Definition 3.10 (INT-CTXT). Let (E ,D,K) be a symmetric encryption scheme.
Let Ok be the encryption oracle for key k. The encryption scheme is said INT-
CTXT if the following quantity is negligible in η

∣∣∣Pk,r

[
AOk(1η)(1η) = c with D(c, k) 6= ⊥ ∧ c 6∈ S

]∣∣∣

Where S = {c1, c2, · · · } is the sequence of answers of the oracle Ok(xi)

Let us now prove that any of these three notions implies that keys are com-
putationally unpredictable. This is intuitive because if there was a good proba-
bility for a key to be guessed, there would be no way for the encryption scheme
to be secure.

Proposition 3.11. Assume that the encryption scheme (E ,D,K) satisfies any
of the aforementioned security properties. If the sort skey (resp. akey in the
asymmetric case) is implemented by the key generation algorithm K (resp. the
first projection of K), the sort skey (resp. akey) is a computationally unpre-
dictable sort.

Proof. We only consider the symmetric case, the asymmetric case is treated
exactly in the same way. Let us assume by contradiction that there exists A
such that

Pτ

[
K(1η) = A(1η)

]
= f(η)

where f is non negligible. Now, consider the adversary B against the IND-CCA
game behaving as follows:

• compute k = A(η)
• choose two random bitstrings m1,m2 of size η
• submit encrypt(m1,m2) to O obtaining c
• if D(c, k) = m1 return 1, if D(c, k) = m2 return 0
• otherwise return 0 or 1 randomly

Note that if the key drawn by the oracle is not k′ 6= k, and if m is a random
bitstring, P[D(E(m, k′, r), k) = m] is necessarily negligible as otherwise we would
be able to reliably decrypt without the key with non-negligible probability which
contradict IND-CPA. Let us call negl(η) this probability.
B answers 1 in the presence of Ol if one of the following happens:

3.2. CRYPTOGRAPHIC AXIOMS 43

• k = k′

• k 6= k′ and either
− D(c, k) = m1

− or D(c, k) 6= m1,m2 and 1 is randomly chosen at the last step.
With these considerations, the probability of B answering 1 in the presence of
Ol is

pl(η) = P[k = k′] + (1− P[k = k′])(negl(η)︸ ︷︷ ︸
k 6=k′

D(c,k)=m1

+
1
2

(1− negl(η))2

︸ ︷︷ ︸
k 6=k′

D(c,k) 6=m1,m2

)

Similarly, let us compute the probability of B answering 1 in the presence of Or

pl(η) = (1− P[k = k′])(negl(η)︸ ︷︷ ︸
k 6=k′

D(c,k)=m1

+
1
2

(1− negl(η))2

︸ ︷︷ ︸
k 6=k′

D(c,k) 6=m1,m2

)

Having computed these two quantities, we get the following contradiction:
∣∣∣P

[
BOl(1η)(1η) = 1

]
− P

[
BOr(1η)(1η) = 1

]∣∣∣ = pl − pr = f(η)

As IND-CCA2 and KDM are stronger than IND-CPA, we do not need to
prove our statement again for these notion. Let us however give the proof in the
case in which the scheme is only INT-CTXT secure. The adversary computing
k = A(η) and sending E(0, k, r) to the oracle wins the INT-CTXT game with
probability f which contradicts the hypothesis.

The last notion we need in order to prove our axioms is the notion of “which
key concealing encryption”[AR02]. While it may seem unintuitive, such a no-
tion is needed in order to prove our axioms. Such a property is necessary for
simplifying some statements. For instance, we wish to simplify S, {u}r

k ⊲ n into
S ⊲ n if k is a usable key. Such a simplification is however only sound if {u}r

k

does not carry any information on the plaintext, but also no information on the
key. “Which key concealing” expresses the latter property. It states roughly
that {u}r

k and {u}r′

k′ are indistinguishable.
A more detailed example of that will be given later in this chapter. Note

that while the definition we give here is slightly different that the one in [AR02],
the two are equivalent.

Definition 3.12 (Which key concealing). Let (E ,D,K) be an encryption scheme.
Let Os(1η) (with s = l or s = r) be an oracle behaving as follows:

• pick two keys kl = K(1η) and kr = K(1η)
• on request encrypt(m,i) with i ∈ {l, r} pick a new randomness r and

return E(m, ki, r)
• on request challenge(m) pick a new randomness r and return E(m, ks, r)

The encryption scheme (E ,D,K) is which key concealing if for any PPT A
∣∣∣P

[
AOl(1η)(1η) = 1

]
− P

[
AOr(1η)(1η) = 1

]∣∣∣ = negl(η)

where negl is a negligible function.

44 CHAPTER 3. AXIOMS AND SOUNDNESS PROOFS

3.2.2 Syntactic constraints for key usability

Let us first define key-usability constraints for various security notions. Intu-
itively usableN (k, S) means that the way the key k is used in S does not corrupt
the key k. In other words, a key k is usable in a set of terms if it is possible to
build this set of terms using only the oracles available for security property N
for encryption and (possibly) decryption with k. Let us give some examples.
Example 3.13. We show some examples of sets of terms in which the key k is
usable or unusable for the various cryptographic properties.

• k is CPA-usable in {A}r
k as the encryption could be performed with the

encryption oracle
• k is CPA-usable in {k}r′

k′ ; {A}r
k as using a CPA oracle for the first en-

cryption shows that the previous situation is indistinguishable from the
situation in which we give {0}r′

k′ ; {A}r
k to the attacker.

• k is not CPA-usable in {A}r
k; sdec(A, k) as the CPA oracle does not allow

decryption, however k is CCA-usable.
• k is neither CPA-usable nor CCA-usable in {k}r

k as the oracles do not
allow passing their own key as plaintext, it is however KDM-usable.

• k is not usable (for any N) in {k}r
k′ ; k′ as it is derivable.

Note that this notion of key usability is quite similar to the notion introduced
in [DDMW06] albeit in a somewhat different context. The notion of key usabil-
ity in [DDMW06] states that a key is usable after execution of a certain key
exchange protocol if the cryptographic security (for example IND-CPA) holds
even if instead of having the oracle generate a fresh key at the beginning of the
game, the key is established by an honest session of the key exchange protocol
witnessed by the adversary. In our case, what we try to capture with the key
usability constraints is the fact that the cryptographic security still holds even
if instead of simply generating the key at the beginning of the cryptographic
game, we generate the key and let the adversary observe some messages that
may contain the key. In other words it is a kind of passive version of the key
usability defined in [DDMW06]. We will not however formally state a security
game for this as we are mostly aiming to rewrite terms using this notion.

An important restriction in all the oracles used for defining the cryptographic
properties is that the encryption’s randomness must be chosen uniformly and
independently. This is what we capture in the next definition.

Definition 3.14 (Valid randomness). We say that a term r is a valid random-
ness with respect to a set of terms S, written valid(r, S), if

• r only appears as a third argument of an encryption (symmetric or asym-
metric)

• all subterms of the form {_}r
_ in S are equal.

In words: r is only used as a randomness for encryption and only one en-
cryption with r is performed (although it may be appear several times in S).
This constraint does not really restrict the way we are able to use our axioms.
Indeed, in practice it is never the case that randomness from an encryption is
reused elsewhere. Let us give a small example of this notion.
Example 3.15. The nonce r is a valid randomness in {t}r

k; {{t}r
k}

r′

k′ , as r is used
in two different places but actually it is the whole encryption that is used twice.
However r is not a valid randomness in {0}r

k; {1}r
k as r is used to encrypt two

different messages.

3.2. CRYPTOGRAPHIC AXIOMS 45

Plaintext freshness

Let us start by defining a constraint that holds in the cases in which a key
is trivially usable. Intuitively, this plaintext freshness constraint ensures that a
key is used only in a way that could be mimicked by the oracles provided by
the cryptographic properties. We define this notion only for the IND-CPA or
IND-CCA case. Indeed in the KDM case it does not really make sense to speak
of plaintext freshness (as keys can be used in plaintexts in the KDM case) and
it is simpler to directly define key usability.

Definition 3.16 (Plaintext freshness). For k a symmetric key and S a set of
terms, we say that k is CPA plaintext fresh (resp. CCA plaintext fresh) in S,
written pfreshCPA(k, S) (resp. pfreshCCA(k, S)) if

• k appears only in encryption key position (resp. encryption and decryp-
tion key position)
• for all subterms t of S if t = {_}r

k then r is a valid randomness with
respect to S

For (sk, pk) an asymmetric key pair and S a set of terms, we say that sk is
CPA plaintext fresh (resp. CCA plaintext fresh) in S, written pfreshCPA(sk, S)
(resp. pfreshCCA(sk, S)) if sk is fresh (resp. only appears in decryption key
position) in S.

Remark 3.17. Note that for the asymmetric encryption case, a secret key is CPA
plaintext fresh if and only if it is fresh.

KDM key usability

The simplest key usability notion is the KDM one, albeit stronger than
needed for proving most protocols. The intuition behind that notion is that
a key is compromised under KDM if and only if it appears outside of a valid
encryption with a non compromised key.

Definition 3.18 (KDM usability). The set of KDM compromised keys in S =
t1; . . . ; tn is the smallest set of keys such that: k is KDM compromised if and
only if there exists p, l such that k appears in tl at position p and for all p′ prefix
of p: Cp′ 6= enc or C|p′ = enc(x, k′, r) with k′ compromised or r is not a valid
randomness with respect to S. A key k is KDM usable if and only if it is not
compromised.

There are two reasons for which we started by presenting this notion. First
it reflects almost directly the KDM game, which is not so much the case in the
other key usability definition. Intuitively it comes from the fact that the KDM
game considers a set of keys, and specifies quite precisely their usage (the other
games only consider one key at a time) and our key usability notions account for
key protecting other keys. The second reason (note that it is a consequence of
the first one) is that it is as easy to prove our secrecy axiom with KDM usability
as it is to prove it with plaintext freshness.

IND-CPA and IND-CCA key usability

Key usability is a little bit harder to define in the case of IND-CPA and IND-
CCA. Aside from the case in which a key is plaintext fresh (and then trivially

46 CHAPTER 3. AXIOMS AND SOUNDNESS PROOFS

usable), a key is usable if it is encrypted by another usable key. The difference
with the KDM case is that instead of defining the set of compromised keys as a
smallest fixed point, we have to define the set of usable keys as a smallest fixed
point. It ensures that a key might not be protected by itself which would not
make sense as far as IND-CPA or IND-CCA are concerned.

Let us start by defining how a not necessarily plaintext fresh key might be
protected by other keys.

Definition 3.19 (CPA and CCA key protection). We say that k (resp. (sk, pk))
is CPA (or CCA) protected by the set of keys (resp. key pairs) K in the set of
terms S (written protectCPA(k,K, S) or protectCCA(k,K, S)) if and only if for
each t in S we can write

t = C[{m1}
r1

k1
, . . . , {ml}

rl

kl
]

with
• r1, . . . , rl valid randomnesses with respect to S
• for 1 ≤ m ≤ l: km ∈ K (resp. (skm, km) ∈ K)
• CPA case: k only appears in C in encryption key position with a valid

randomness with respect to S (resp. does not appear in C)
• CCA case: k only appears in C in encryption key position with a valid

randomness with respect to S or decryption key position (resp. only
appears in decryption key position) and if dec(C1, C2) is a subterm of C,
either C1 does not contain holes or none of the km (resp. skm) appear
in C2

Remark 3.20. Note that if k is plaintext fresh in S, then for all K (in particular
K = ∅), k is protected by K in S.

In the IND-CPA case, the condition is pretty straightforward and as IND-
CPA oracles do not authorise decryption, we do not have to take care of the
possible decryption of an encrypted message. The more complex condition for
IND-CCA is designed to avoid the pathological case where C = dec(_, k′) and
k1 = k′ and m1 = k, in which case k is clearly not protected by k′ even if it
appears under an encryption with k′.

Example 3.21. Let us give some examples of key protection:
• k is protected by k′ in {k}r

k′ ; {A}r′

k as both randomnesses are valid and
k is safely encrypted under k′

• k is CCA protected in {k}r
k′ ; dec(A, k); {A}r′

k for the same reasons as
above (as using k as a decryption key is now authorised).

• k is not CCA protected in dec({k}r
k′ , k′) as k′ appears as a subterm of a

decryption key position.
• k is CCA protected in {k}r

k′ ; dec({A}r′

k′ , k′) as k′ only appears as a de-
cryption key in a term that does not need to be encrypted to ensure that
k is protected.

Now we can state that a key k is usable, if it is protected by a key that
is itself usable even if the key k is insecure, in other terms if it satisfies the
following definition.

Definition 3.22 (CPA and CCA key usability). We say that k (resp. (sk, pk))
is CPA (resp. CCA) key usable if it is in the least fixed point of the function
K 7→ {k | protectN (k,K, S)} with N = CPA (resp. N = CCA).

3.2. CRYPTOGRAPHIC AXIOMS 47

We use this definition of usability in the proofs to progressively replace the
encryptions by plaintext-fresh keys with encryptions of zeros (using the security
game oracles), thus obtaining a set of terms where the key that were encrypted
by plaintext-fresh keys are now plaintext-fresh themselves. This is typically
the proof techniques that are used in all soundness results following [AR02].
Note that the condition on decryption keys for the CCA protection can be
seen as making sure that we do not submit honestly encrypted messages to the
decryption oracle.

3.2.3 Simple secrecy axiom(s)

Having defined the syntactic constraints stating when a key can be safely
used for encryption, we can now start defining the axioms reflecting the security
properties of the encryption scheme. The first axiom we present here is a secrecy
axiom where we assume that keys are plaintext-fresh (or simply usable in the
KDM case). In the IND-CPA and IND-CCA case we do not define immediately
an axiom where keys are assumed to be usable instead of plaintext-fresh because
the soundness proof of such an axiom actually requires to prove this simple
secrecy axiom sound. This axiom states that an encryption with a safe key
should not leak any information on a secret. It is the axiom originally proposed
in [BC12]. The soundness proof of this axiom was flawed in the original paper
from Bana and Comon. We fix it here by adding the which-key concealing
hypothesis. We also demonstrate here that this hypothesis is actually necessary.

Sec :

X; {x}r
k ⊲ n → X ‖ C(k,X), fresh(r, (X;x)) ⊲ n

with C =





pfreshCCA in the CCA case
pfreshCPA in the CPA case
usableKDM in the KDM case

Proposition 3.23. If the encryption scheme is IND-CPA (resp. IND-CCA,
resp. KDM) and which key concealing, the corresponding Sec axiom is sound.

Example 3.24. While the which key concealing assumption may seem unneces-
sary, we exhibit a counterexample if this hypothesis is not satisfied. First of all,
let us build an IND-CPA encryption scheme that does not verify the which-key
concealing hypothesis. Let (E ,D,K) be an IND-CPA encryption scheme, m be
a bitstring. We let 0 be 0η. We define (E ′,D′,K′) as follows:

K′(r.r′) = K(r).K(r′)

E ′(m, k1.k2, b.r) =





k1.E(m, k2, r) if m 6= 0 and b = 1
k1.E(m, k2, r) if m = 0 and b = 0
0.E(m, k2, r) otherwise

D′(c1.c2, k1.k2) = D(c2, k2)

48 CHAPTER 3. AXIOMS AND SOUNDNESS PROOFS

It is easy to see that the new scheme is still IND-CPA. In addition let us assume
that the implementation of the pair is simply the concatenation of messages.
We consider the following atom:

{n}r1

〈k′,π1({0}r
k

)〉, {1}
r′

k ⊲ n

Let us now consider the sampling family S = {τ |JrKτ = 0._, Jr′Kτ = 1._}.
We write JkKτ = k1.k2, note that we have both J{1}r′

k Kτ = k1.c for some c and
J{n}r1

〈k′,π1({0}r
k

)〉Kτ = d.E(m, k1, r) for some d. From these observations, we can

deduce that S |= �♦{n}r1

〈k′,π1({0}r
k

)〉, {1}
r′

k ⊲ n as D is obviously computable.
Now, let us show why the secrecy axiom does not hold. As k is CPA plaintext

fresh, the secrecy axiom would yield

S |= �♦{n}r1

〈k′,π1({0}r
k

)〉 ⊲ n

which is absurd as on S′ = {τ |JrKτ = 0._} the encryption of n is basically an
encryption with an honest key and a valid randomness.

One could think of fixing this problem by adding the encryption of zeros to
the second part of the secrecy axiom:

X; {x}r
k ⊲ n → X; {0}r

k ⊲ n ‖ C(k,X), fresh(r,X;x)

however it is easy to check that the same counterexample holds.

We now proceed to prove a succession of lemmas leading to the proof of
proposition 3.23. Each of the following lemmas shows that if a nonce is guessable
from X together with an encryption in X then it is guessable from X, with
weaker and weaker assumptions on this encryption. For simplicity’s sake, when
η is clear from the context, we will omit it as an argument of the PPT involved.
We start by proving a simple lemma in which the encryption is an encryption
of zeros with a fresh key:

Lemma 3.25. If k and r are fresh in X and S,A |= X; {0}r
k ⊲ n then there

exists a PPT B and a polynomial p such that:
• for all τ ∈ Sη, B(JXKτ) = n1# . . .#np(η) where # is a fresh delimiter

symbol.
• {τ ∈ Sη|B(JXKτ) = n1# . . .#np(η) with ∀i.ni 6= JnKτ} is negligible.

Proof. The main idea of the proof is to guess k and r and then simulate A. We
will precise the polynomial p later.

On input m, B draws k1, . . . , kp(η) and r1, . . . , rp(η) uniformly at random and
outputs A(m, {0}r1

k1
)# . . .#A(m, {0}

rp(η)

kp(η)
)

We are left to prove that at least one of the random choices falls in S with
overwhelming probability. We will denote by S−k,r the set samplings that differ
from a sampling in S only on the interpretation of k and r. First of all, let
us note that as S is non negligible, there exists c ∈ N and α > 0 such that
|Sη| ≥

α
ηc . As S is non negligible, note that S−k,r is also non negligible because

S ⊆ S−k,r. Let us also note that

Pτ (τ ∈ S−k,r
η ∧ τ ∈ Sη) ≥

α

ηc

3.2. CRYPTOGRAPHIC AXIOMS 49

Therefore, as k, r are fresh in X, we get the following inequality:

Pτ,k′,r′(∃τ ′ ∈ S.JkKτ ′ = k′ ∧ JrKτ ′ = r′ ∧ JXKτ = JXKτ ′) ≥
α

ηc

With this remark we can compute the probability of B correctly guessing n:

Pτ∈S

(
B(JXKτ) = n1# . . .#np(η) with ∀i.ni 6= JnKτ

)
≤ (1−

α

ηc
)p(η)

We now need to prove that (1− α
ηc)p(η) is a negligible function for a suitable

polynomial p.

(
1− α

ηc

)p(η)

= exp
(
p (η) . ln

(
1− α

ηc

))

∼η→∞ exp
(
−p (η) . α

ηc

)

Choosing p(x) = xc+1 is enough make this function negligible.

Having proven this first lemma, we weaken the assumption on the encryption,
letting the key be plaintext-fresh instead of fresh.

Lemma 3.26. Assume that the encryption scheme is IND-CPA (resp. IND-
CCA, resp. KDM) and which key concealing. If k is CPA (resp. CCA, resp.
KDM) plaintext fresh and r is fresh in X and S,A |= X; {0}r

k ⊲ n then there
exists a PPT B and a polynomial p such that:

• for all τ ∈ S, B(JXKτ) = n1# . . .#np(η) where # is a fresh delimiter
symbol.
• {τ ∈ S|B(JXKτ) = n1# . . .#np(η) with ∀i.ni 6= JnKτ} is negligible

Proof. All Turing machines considered here take the security parameter in unary
as input. For simplicity’s sake we will omit it here as it is clear from context.
We will prove this lemma by contradiction using lemma 3.25 and the which
key concealing hypothesis. Assume that we have S,A |= X; {0}r

k ⊲ n under the
condition of the lemma. Assume that for all PPT B we have

{τ ∈ Sη|B(JXKτ) = n1# . . .#np(η) with ∀i.ni 6= JnKτ} non-negligible (3.1)

We will use the oracle provided by the which-key concealing definition with
keys k and k′ to build either X; {0}r

k or X; {0}r′

k′ . We build X using the left
key of the oracle for encryptions with k and submit 0 as the challenge. If the
oracle is the left oracle, we have built X, {0}r

k, and if we are dealing with the
right oracle, we have built X, {0}r′

k′ with k′, r′ fresh. We can then use lemma
3.25 to build an adversary that distinguishes the two cases.

In more details, let us assume that S is “maximal”. More precisely we take
S = {τ | A(JX; {0}r

kKτ) = JnKτ}. This is not a loss of generality. Indeed proving
the result for such an S is enough to guarantee that it holds for all S′ ⊆ S∪Snegl

with Snegl of negligible size. Let now S0 = {τ | A(JX; {0}r′

k′Kτ) = JnKτ} for some
k′, r′ fresh in X. Lemma 3.25 yields D such that

{τ ∈ S0,η|D(JXKτ) = n1# . . .#np(η) with ∀i.ni 6= JnKτ} is negligible

We now consider the following adversary B against the which key concealing
game that behaves as follows:

50 CHAPTER 3. AXIOMS AND SOUNDNESS PROOFS

• Draw all names except k and the randomness involved in k encryptions.
Let us call this sampling (together with the oracles interpretation of k, k′

and randomnesses) τ .
• Build JXKτ using the encryption oracle for encryption (and decryption

oracle for decryption in the CCA and KDM case) with key k (note that
the key freshness or KDM usability hypothesis ensures that this is pos-
sible)

• send 0 as the challenge to the which key game, call x the result
• compute A(JXKτ , x) = a and D(JXKτ) = d
• if a = τ(n) and none of the components of d are equal to τ(n) answer

left

• otherwise answer right with probability 1
2 and left with probability 1

2
Let us now compute the advantage of this adversary. We divide the sampling

space as follows:
• Sd = {τ | one of the components of D(JXKτ) is equal to τ(n)} of size δd(η)
• Sa00 = {τ 6∈ Sd|A(JX, {0}r′

k′Kτ) 6= τ(n) and A(JX, {0}r
kKτ) 6= τ(n)} of

size δa00(η)
• Sa01 = {τ 6∈ Sd|A(JX, {0}r′

k′Kτ) 6= τ(n) and A(JX, {0}r
kKτ) = τ(n)} of

size δa01(η)
• Sa10 = {τ 6∈ Sd|A(JX, {0}r′

k′Kτ) = τ(n) and A(JX, {0}r
kKτ) 6= τ(n)} of

size δa10(η)
• Sa11 = {τ 6∈ Sd|A(JX, {0}r′

k′Kτ) = τ(n) = A(JX, {0}r
kKτ)} of size δa11(η)

The definition of S0 yields Sa11, Sa10 ⊆ S0. With the definition of D, S0\Sd is
of negligible size. Hence δa11 and δa10 are negligible. By equation 3.1 we have
that δa01 + δa11 is non negligible, hence δa01 is non negligible.

With these remarks, we can compute the advantage of B against the which
key concealing game. We distinguish the case in which the oracle is the left one
or the right one:

• left case: the probability of guessing correctly is

1
2
.(δd + δa00 + δa10) + δa01 + δa11

• right case:
1
2
.(δd + δa00 + δa01)

We can then compute the probability α of B guessing correctly

α =
1
2
.δd +

1
2
.δa00 +

1
2
.δa11 +

1
4
.δa10 +

3
4
.δa01

=
1
2
.(δd + δa00 + δa01 + δa10 + δa11) + (

1
4
.δa01 −

1
4
.δa10)

=
1
2

+
1
4

(δa01 − δa10)

As δa01 is non negligible and δa10 is negligible, B has a non negligible advantage,
which contradicts the cryptographic hypothesis.

We can now proceed to prove the last lemma. Here the restriction on the
encryption is the same as the one the of secrecy axiom. Once we have this lemma,
it will be enough to show that being able to guess n with good probability from
X implies that X ⊲ n to prove proposition 3.23.

3.2. CRYPTOGRAPHIC AXIOMS 51

Lemma 3.27. Assume that the encryption scheme is IND-CPA (resp. IND-
CCA, resp. KDM) and which key concealing. If k is CPA (resp. CCA, resp.
KDM) plaintext fresh and r is fresh in X,x and S,A |= X; {x}r

k ⊲ n then there
exists a PPT B and a polynomial p such that:

• for all τ ∈ S, B(JXKτ) = n1# . . .#np(η) where #is a fresh delimiter
symbol.
• {τ ∈ S|B(JXKτ) = n1# . . .#np(η) with ∀i.ni 6= JnKτ} is negligible

Proof. This proof is very similar to the proof of lemma 3.26. As previously
Assume that S,A |= X, {x}r

k ⊲ n under the condition of the lemma. Assume
that for all PPT B we have

{τ ∈ S|B(JXKτ) = n1# . . .#np(η) with ∀i.ni 6= JnKτ} non-negligible (3.2)

Let us assume that S is maximal. Let now S0 be a maximal sampling such
that S0,A |= X; {0}r

k ⊲ n for some k′, r′ fresh. Lemma 3.26 yields D such that

{τ ∈ S0|D(JXKτ) = n1# . . .#np(η) with ∀i.ni 6= JnKτ} is negligible

Let us call O the left or right CPA (resp. CCA, resp. KDM) oracle. We
now build the following adversary B against the CPA (resp. CCA, resp. KDM)
game that behaves as follows:

• Draw all names expert k and the randomness involved in k encryptions.
Let us call this sampling (together with the oracles interpretation of k
and randomnesses) τ .
• Build JXKτ and JxKτ using the encryption oracle (and decryption in the

CCA and KDM case) with key k. More precisely, we build JuKτ recur-
sively as follows:

Jf(u1, . . . , un)Kτ =





JfK(Ju1Kτ , . . . , JunKτ) if u 6= enc(_, k,_),dec(_, k)
O(JmKτ , JmKτ) if u = enc(m, k, r)
O(JmKτ) if u = dec(m, k)

using a table to compute the interpretation of each term only once. Note
that the key plaintext-freshness or KDM usability hypothesis ensures
that this is possible, and that we have the correct oracles.

• send (JxKτ , 0) to the encryption oracle and call the result e.
• compute A(JXKτ , e) = a and D(JXKτ) = d
• if a = τ(n) and none of the components of d are equal to τ(n) answer

left

• otherwise answer right with probability 1
2 or left with probability 1

2
With exactly the same computation as in the previous proof, we obtain a

non-negligible advantage for B against the CPA (resp. CCA, resp. KDM) game
which is contradictory.

We now have all the tools to prove proposition 3.23.

proof of proposition 3.23. Assume that the interpretation of enc is IND-CPA
(resp. IND-CCA, resp. KDM). Assume S |= �♦X; {x}r

k ⊲ n with k is CPA
plaintext fresh (resp. CCA plaintext fresh, resp. KDM usable) in X;x and r
fresh in X;x.

52 CHAPTER 3. AXIOMS AND SOUNDNESS PROOFS

We need to prove S |= �♦X ⊲ n. Let S′ ⊆ S be a sampling family. The
assumption S |= �♦X; {x}r

k ⊲ n provides us with a sampling S′′ ⊆ S′ and A
such that S′′,A |= X; {x}r

k ⊲ n. Lemma 3.27 yields B and p such that
• for all τ ∈ S′′, B(JXKτ) = n1# . . .#np(η) where # is a fresh delimiter

symbol.
• {τ ∈ S′′|B(JXKτ) = n1# . . .#np(η) with ∀i.ni 6= JnKτ} is negligible

We can now build B′ that on input m

1. computes p(η)

2. pick 1 ≤ i ≤ p(η) uniformly at random (we take a random tape which is
not restricted in S′′)

3. computes n1# . . .#np(η) = B(m)

4. returns ni

Note that B′ guesses the correct i on a subset of size 1
p(η) .(|S

′′
η | − negl(η)) at

least which concludes the proof as it is a non negligible subset of S′.

We have now proven the soundness of our first secrecy axiom. Let us then
give short examples of proofs using this axiom.

Example 3.28. We would like to show that given {k′}r
k and {n}r′

k′ an adversary
is not able to compute the nonce n. Let us assume {k′}r

k; {n}r′

k′ ⊲ n. Using
the secrecy axiom, as k is plaintext fresh and r is a valid randomness, we get
{n}r′

k′ ⊲ n, and another application of Sec gives us ∅ ⊲ n. Now, as n is trivially
fresh in ∅, the freshness axiom yields a contradiction.

Example 3.29. Now assume we have a key cycle: {k′}r
k; {k}r′

k′ ; {n}r1

k′ ⊲ n. This
should not be a contradiction if we are only using the CPA or CCA version of Sec

and indeed, neither k nor k′ are plaintext fresh, therefore we can not apply the
secrecy axiom. However if we use the KDM instance, we obtain {k′}r

k; {k}r′

k′ ⊲ n
after one application of this axiom contradicting the nonce freshness axiom.

3.2.4 Key usability and full secrecy axioms

The simple secrecy axiom is strong enough to prove most protocols relying
only on the secrecy of an encrypted plaintext. The full secrecy axiom we present
here is indeed not more powerful than the simple secrecy axiom. It is however
more convenient for building proofs. Note that using this axiom instead of the
simple secrecy one also yields a non negligible speedup in our tool. We could
derive this second secrecy axiom from the previous one, but a direct proof is
here slightly more convenient. Indeed it relies mainly on a technical lemma
allowing us to rewrite the left hand side of ⊲ atoms that will be heavily reused
in the proofs of the integrity axioms.

This Sec2 axiom is very similar to the Sec axiom, except that it uses key
usability instead of plaintext freshness as a constraint. This is a generalisation
of the secrecy axiom from [BC12].

X, {x}r
k ⊲ n → X ⊲ n ‖ usableN (k, (X;x)), fresh(r, (X;x))

Where N may be CPA, CCA or KDM depending on the assumption on the
encryption scheme.

3.2. CRYPTOGRAPHIC AXIOMS 53

As usual, we do need to prove that under the suitable cryptographic assump-
tion, this axiom is sound.

Proposition 3.30. Assuming the encryption scheme is IND-CPA (resp. IND-
CPA) and which key concealing, Sec

CPA

2 (resp. Sec
CCA

2) is sound.

The direct proof of this proposition relies mainly on lemma 3.27, that allows
us to explicitly build a PPT computing n from X given a PPT computing n
from X; {x}r

k. The main difficulty is to get rid of the occurrences of k inside
encryptions. This is exactly the purpose of the following lemma. Note that this
lemma allows us to simplify the left hand side of ⊲ atoms in order to prove the
integrity axioms in the next subsection. It is worth remarking that one way of
looking at this lemma is that if a key is usable, then for any purpose it is as
good as a plaintext fresh key, which is quite similar to the idea of key usability
from [DDMW06].

Lemma 3.31. Assume the encryption scheme is IND-CPA (resp. IND-CCA).
Let X be a set of terms, let K be a set of CPA (resp. CCA) usable keys in X.
We have

Pτ

[
A(JXKτ) = 0

]
= Pτ

[
A(JX̃Kτ) = 0

]
+ negl

When X̃ is obtained from X by rewriting any encryption with a key in K to
an encryption of zeros. Note that handles are computed by a PPT from their
dependencies. Therefore it makes sense to replace encryptions in these depen-
dencies.

Proof. This proof is very similar to the proof in [AR02], we however consider an
arbitrary signature in addition to the encryption, and stay in the computational
model.

We reason by induction on the maximal length of the derivation of usable(k,X)
for the keys in K. We write K = K0 ⊔ · · · ⊔ Ks where Ki is the set of keys
k for which i is the minimal length of the derivation of usable(k,X). We as-
sume Ks 6= ∅. Let us write Ks = {k1, . . . , kl}. Let O be an IND-CPA (resp.
IND-CCA) oracles. Let A be a PPT. We write

ǫ = Pτ

[
A(JXKτ) = 0

]
− Pτ

[
A(JX̃Kτ) = 0

]

Base case: if s = 0 for all keys in K, it means that all keys in K are CPA
(resp. CCA) plaintext fresh. We use a classical hybrid argument. We define
Xm for 0 ≤ m ≤ l as X rewritten with the rules enc(x, ki, y) → enc(0, ki, y)
for 1 ≤ i ≤ m. Note that X0 = X and Xl = X̃. Let us now prove that for
0 < m ≤ l

Pτ

[
A(JXm−1Kτ) = 0

]
= Pτ

[
A(JXmKτ) = 0

]
+ negl

Let us call ǫm = Pτ [A(JXm−1Kτ) = 0]− Pτ [A(JXmKτ) = 0]
Let us build the following adversary B against the IND-CPA (resp. IND-

CCA) game. B behaves as follows:
• recursively compute the interpretation r(X) of Xm−1 or Xm using O:
− draw the interpretation τ of all constants apart from km and the

nonces that appear as randomness of km encryption.

54 CHAPTER 3. AXIOMS AND SOUNDNESS PROOFS

− if X = {u1, . . . , uk} compute r(X) = {r(u1), . . . , r(uk)} with r(u)
defined by

r(u) =





τ(u) if u is a constant
JgK(r(v1), . . . , r(vl)) if u = g(v1, . . . , vl) with g 6= enc,dec
E(r(v1), r(v2), r(v3)) if u = enc(v1, v2, v3) with v2 6∈ {k1, . . . , km}

E(0, r(v2), r(v3)) if u = enc(v1, v2, v3) with v2 ∈ {k1, . . . , km−1}

O(r(v1), 0) if u = enc(v1, km, v3)
D(r(v1), r(v2)) if u = dec(v1, v2) with v2 6= km

O(r(v1)) if u = dec(v1, km)

It is easy to check that CPA (resp. CCA) plaintext freshness implies
that km is not used outside of the oracle calls, and that in the CPA
case the decryption oracle is never used. Additionally, the random-
nesses used in km encryptions are all used only once.

• compute A(r(X)) = a
• if a = τ(n) answer left otherwise answer right

It is clear from the previous remarks that for τ , if the CPA (resp. CCA)
oracle is the left oracle then r(X) = JXm−1Kτ and if it is the right oracle, then
r(X) = JXmKτ . We now compute the advantage of B against the IND-CPA
(resp. IND-CCA) game:

Adv(B) = Pτ,b[A(r(X)) = 0, b = left] + Pτ,b[A(r(X)) 6= 0, b = right]

=
1
2
.
(
Pτ,b[A(JXm−1Kτ) = 0] + Pτ,b[A(JXmKτ) 6= 0]

)

=
1
2

+
1
2
ǫm

The cryptographic hypothesis yields the fact that ǫm is negligible. It is now
enough to note that |ǫ| ≤ |ǫ1|+ · · ·+ |ǫs| to get the fact that ǫ is negligible.

Induction step: Let us assume that for all K such that the usability of any
key in k can be derived in at most s − 1 step, the lemma is true. Consider
K ′ = K0 ⊔ . . .Ks−1. We call X ′ the set X in which all terms are rewritten
with the rules enc(x, k, z) → enc(0, k, z) for all k in K ′. From the induction
hypothesis we get that

ǫ1 = Pτ [A(JXKτ) = 0]− Pτ [A(JX ′Kτ) = 0]

is negligible. Let us define

ǫ2 = Pτ [A(JX ′Kτ) = 0]− Pτ [A(JX̃Kτ) = 0]

Let us prove that all keys in Ks are CPA (resp. CCA) plaintext fresh. These
keys may not be plaintext fresh in X (otherwise they would be in K0). Let k
be a key in K, let L be a set such that (k, L,X) such that all keys in L can be
deemed usable in less than s − 1 steps. Such a set exists as k can be deemed
usable in less than s steps. By maximality of K, we have that L ⊆ K ′. By
definition of key protection, k is plaintext fresh in X ′. We now apply the base
case to conclude that ǫ2 is negligible. The induction variable s does not depend
on the security parameter. Therefore the union of s negligible sets is negligible.
As |ǫ| ≤ |ǫ1|+ |ǫ2|, we have that ǫ is negligible which concludes the proof.

3.2. CRYPTOGRAPHIC AXIOMS 55

As in the proof of our simple secrecy axiom, we prove a slightly stronger
lemma, which will lead to the proof of proposition 3.30.

Lemma 3.32. Assume that the encryption scheme is IND-CPA (resp. IND-
CCA, resp. KDM) and which key concealing. If k is CPA (resp. CCA) usable
fresh and r is fresh in X,x and S,A |= X, {x}r

k ⊲ n then there exists a PPT B
and a polynomial p such that:

• for all τ ∈ S, B(JXKτ) = n1# . . .#np(η) where is a fresh delimiter sym-
bol.
• {τ ∈ S|B(JXKτ) = n1# . . .#np(η) with ∀i.ni 6= JnKτ} is negligible

Proof. Let us choose X,x, k, r,A, S under the conditions of the lemma, assume
S maximal. Let K be the maximal set of usable keys in X. As previously, let
us write X̃, the set obtained from X by rewriting encryptions with usable keys
to encryptions of zeros. Lemma 3.31 provides us with S0 such that |S0| = |S|
(in particular non negligible) such that S0,A |= X̃, {0}r

k ⊲n. Lemma 3.26 yields
D and p such that

• for all τ ∈ S0, D(JX̃Kτ) = n1# . . .#np(η) where is a fresh delimiter
symbol.
• {τ ∈ S0|D(JX̃Kτ) = n1# . . .#np(η) with ∀i.ni 6= JnKτ} is negligible

To conclude the proof, we now need to prove that

{τ ∈ S|D(JXKτ) = n1# . . .#np(η) with ∀i.ni 6= JnKτ} is negligible

Consider the following PPT B which on input x, y, z:
• computes A(x, y) = a and D(x) = d1# . . .#dp(η)

• answers 0 if a = z and ∀i.di 6= z, 1 otherwise
Lemma 3.31 yields:

P[B(X, {x}r
k, n) = 0] = P[B(X̃, {0}r

k, n) = 0] + negl

As P[B(X̃, {0}r
k, n) = 0] is negligible, so is P[B(X, {x}r

k, n) = 0] which concludes
the proof.

We complete the proof of proposition 3.30 with the exact same proof as the
proof of proposition 3.23, using the previous lemma instead of lemma 3.27.

We now come back to example 3.28 to demonstrate that this new secrecy
axiom is indeed more efficient for deriving contradictions.

Example 3.33. Consider the atom {k′}r
k; {n}r′

k′ ⊲ n. Using the simple secrecy
axiom, we need two steps to derive a contradiction. However using this stronger
axiom, we get that k′ is usable and therefore derive (in one step) {k′}r

k ⊲n which
is a contradiction.

3.2.5 Integrity and non-malleability axiom(s)

While the secrecy axioms are sometimes strong enough to prove simple pro-
tocols, most protocols assume that the adversary may not interfere with an
honest encryption. This is the point of security properties like IND-CCA which
intuitively implies that the adversary is not be able to produce the encryp-
tion of a plaintext that is meaningfully related to a plaintext of an honestly
generated encryption. The integrity properties for symmetric encryptions are

56 CHAPTER 3. AXIOMS AND SOUNDNESS PROOFS

even stronger, stating that the adversary should not be able to produce valid
cyphertexts at all. In what follows we give axioms that reflect these intuitions.

Let us here give a short example of how the malleability of an encryption
scheme might be used to break a simple one-way authentication protocol that
would be otherwise secure.

Example 3.34. Let us consider the following one-way authentication protocol:

A → B : {n,A}pkB

B → A : {n}pkA

At the end of the protocol, we would like n to be secure. Let us consider the trace
in which B thinks its message originated from the adversary. If the encryption
scheme is malleable, there is an attack on this trace:

A → I(B) : {n,A}pkB

I → B : {n, I}pkB

B → I : {n}pkI

I(B) → A : {n}pkA

Where the second message is obtained using the malleability of the encryption
scheme. Therefore we can observe that this protocol could not be proven secure
with only the secrecy axiom. Now remark that if the encryption scheme is IND-
CCA secure, and the key pkB is honest, the second message in the attack can
not depend on n, therefore this trace can not be completed. Formally this attack
trace (up to the point where the attacker is able to compute n) is represented
by the following set of atoms:

• {n,A}r1

pkB
⊲ h1 for the first attacker’s message

• π2(adec(h1, skB)) = I for the condition tested by B
• {n,A}pkB

; {π1(adec(h1, skB))}r2

pkI
⊲ n for the derivability of n.

Any reasonable definition of a non-malleability axiom should ensure that these
formulae, together with the axioms, are unsatisfiable.

Non-malleability

We define the following non malleability axiom scheme (nm):

X ⊲ y X, dec(y, sk) ⊲ n →
∨

{x}r
pk

∈st(X)

y = {x}r
pk ‖ C

with C the conjunction of the following constraints:
• usableCCA(sk,X)
• n only appears under encryption by usable keys of X

Formally the conjunction as conclusion of the axiom is expressed as a con-
straint. The formula

∨
{x}r

pk
∈st(X) y = {x}r

pk represents the formula
∨p

i=1 y =

{xi}
ri

pk constrained by “{{xi}
ri

pk|i ≤ p} is the set of subterms of X that are
encryptions with pk”. We abbreviate for simplicity reasons.

The original non-malleability axiom from [BAS12] has the form

X ⊲ y X, dec(y, sk) ⊲ n → X ⊲ n ∨
∨

{x}r
pk

∈st(X)

y = {x}r
pk ‖ C

3.2. CRYPTOGRAPHIC AXIOMS 57

where the constraint C does not constrain the place where n might appear in X.
The computational soundness of this axiom assumes that the signature of the
model only contains one type of encryption and pairing. This restriction would
not allow to prove protocols that use more primitives than just asymmetric
encryption. This is the main reason for which we choose to add an additional
constraint on n instead.

Moreover the original axiom assumes plaintext-freshness of the key. We
weaken this assumption to key-usability, in order to allow exchange sending
private keys around.

Example 3.35. Let us observe that our axiom allows us to prove that the simple
one way authentication presented in example 3.34 is secure. By simplifying
the second atom {n,A}r1

pkB
; {π1(adec(h1, skB))}r2

pkI
⊲ n, using the functionality

axiom, we get {n,A}r1

pkB
; adec(h1, skB); pkI ⊲ n. Using the non-malleability

axiom and the atom {n,A}r1

pkB
⊲ h1 we get h1 = {n,A}r1

pkB
and therefore A = I

with the condition tested by B. This is a contradiction as A is assumed honest.

Proposition 3.36. If the encryption scheme is IND-CCA, then the non-malleability
axiom is sound.

Proof. Let us consider an instance of the non-malleability axiom

X ⊲ y X, dec(y, sk) ⊲ n →
∨

{x}r
pk

∈st(X)

y = {x}r
pk

where X is a ground extended term and y is a ground term. Assume sk is us-
able in X and all instances of n in X appear under encryptions by usable keys.
Assume S,A |= X ⊲ y and S,B |= X, dec(y, sk) ⊲ n and S |=

∧
{x}r

pk
∈st(X) y 6=

{x}r
pk. Let f be a fresh function symbol, with JfK = A. The previous state-

ment is equivalent to S,B |= X, dec(f(X), sk) ⊲ n (in other terms we can
drop the first premise of the axiom). Assume that the minimal derivation of
usableCCA(sk,X) ends by using protectCCA(sk,K,X). Let us write X ↓K the
set X in which all encryptions by keys in K are replaced by encryptions on ze-
ros. We know that sk 6∈ K therefore, lemma 3.31 yields S0 such that |S0| = |S|
and S0,B |= X ↓K ,dec(f(X ↓K), sk) ⊲ n and (as it is also testable by a PPT)
S0 |=

∧
{x}r

pk
∈st(X↓K) y 6= {x}

r
pk.

Now we need to prove that there exists S1 such |S1| = |S0| and S1,B |=
X ↓K,sk,dec(f(X ↓K,sk), sk) ⊲ n. Let us build the following adversary D against
the IND-CCA game behaving as follows:

1. compute the interpretation r(X) of X ↓K or X ↓K,sk submitting (m, 0)
to the IND-CCA oracle to compute any pk encryption as in lemma 3.31
and drawing all other constants according to τ .

2. submit A(r(X)) to the IND-CCA oracle, if it returns an error, return
right, otherwise if it returns m check whether B(r(X),m) = τ(n) if so,
return left, otherwise return right.

As in lemma 3.31, we conclude from the IND-CCA security of the encryption
that

Pτ (B(JX ↓K ,dec(f(X ↓K))Kτ = τ(n))) ≈

Pτ (B(JX ↓K,sk,dec(f(X ↓K,sk))Kτ = τ(n)))

58 CHAPTER 3. AXIOMS AND SOUNDNESS PROOFS

Now, let KM the maximal set of usable keys in X, lemma 3.31 yields S2

such that |S2| = |S1| and S2,B |= X ↓KM
,dec(f(X ↓KM

), sk) ⊲ n. Now as the
Fresh axiom is sound and n is fresh in X ↓KM

, S2 is negligible, it follows that
S is negligible which concludes the proof.

Unforgeability

Remark that while this non-malleability axiom could be defined for symmet-
ric encryption as well (and easily proven sound), in practice when speaking of
integrity of symmetric encryption, one thinks of unforgeability, which is much
stronger than non-malleability as it ensures that the cyphertext was honestly
created. We therefore define here an axiom for this unforgeability notion.

Defining this unforgeability axiom requires some more definitions and as-
sumptions on the computational interpretations. We assume that the decryp-
tion function returns a public failure constant ⊥ when failing. We define a well-
formedness predicate wf. The computational interpretation of wf is wf(x) =
(x 6= ⊥). We do not give axioms for wf. The protocol conditions should include
checking that the terms used during its run are well-formed.

Let us now define our integrity axiom scheme Int.

X ⊲ y wf(sdec(y, k)) →
∨

{z}r
k

∈st(X)

y = {z}r
k ‖ C

Where as usual C is either usableCCA(k,X) or usableKDM(k,X). Note that
we do not need to consider the CPA case as joint IND-CPA and INT-CTXT
implies IND-CCA (see [BN08]).

Note that [BHO13] simultaneously proposed another computationally sound
axiom for integrity. However the definition of their an axiom requires dealing
with several versions of the ⊲ predicate, for deducibility with respect to various
adversaries. We favoured here the simplicity of the model at the cost of having
slightly more complicated constraints. As mentioned earlier, this choice allows
us to obtain a relatively simple decision procedure.

Let us give a small example of the usefulness of such an axiom.

Example 3.37. Consider the following simple protocol where we wish to guar-
antee the secrecy of a nonce n. In this protocol A sends a fresh key to B which
is then used to encrypt a secret.

A → B : {k}r1

kAB

B → A : {n}r
k

It is quite easy to see that this protocol may not be proven secure with our non-
malleability axiom. Indeed, nm does not guarantee any form of authenticity
of an encryption therefore it may not forbid the following attack where the
adversary simply forges an encryption.

I(A) → B : {kI}
r1

kAB

B → I(A) : {n}r
kI

However, intuitively this protocol should be secure as long as the encryption
scheme ensures unforgeability as the only key that B may use to encrypt is then

3.2. CRYPTOGRAPHIC AXIOMS 59

k. Let us show that the unforgeability axiom is strong enough to prove this
protocol secure. Let us consider the trace where A plays then B (no other trace
is really interesting), the corresponding set of formulae is:

1. {k}r1

kAB
⊲ h for the first message

2. wf(sdec(h, kAB)) for B checking that the message decrypts correctly

3. {k}r1

kAB
; {n}r

sdec(h,kAB) ⊲ n for the security property

From atoms 1 and 2 and our unforgeability axiom, we get h = {k}r1

kAB
. There-

fore, atom 3 becomes {k}r1

kAB
; {n}r

k⊲n and simply applying secrecy and freshness
we get a contradiction.

Considering the previous example, one might wonder whether plaintext
freshness might be substituted for usability. Consider a modification of the
previous protocol where kAB is obtained by executing a key exchange protocol.
Now the first atom becomes XkAB

; {k}r1

kAB
⊲ h where XkAB

is the frame corre-
sponding to the execution of the key exchange protocol. Typically kAB will be
usable but not plaintext fresh in XkAB

. As the right hand side of this atom is
not a nonce, there is no way to use secrecy to remove encrypted occurrences of
kAB , therefore proving this protocol secure requires the constraint for Int to be
key usability.

Of course, having shown the usefulness of this axiom is not enough, we need
it to be computationally sound as well. This is the point of the next proposition.

Proposition 3.38. Assume that the decryption function returns a public failure
constant when the encryption is not well formed and the interpretation of wf
returns true on all bitstrings except this failure constant. Then, provided that
the encryption scheme is jointly IND-CCA (resp. KDM) and INT-CTXT, the
CCA (resp. KDM) version of Int is sound.

Proof. Let us prove the proposition by contradiction. Assume S,A are such
that:

• S,A |= X ⊲ y
• S |= wf(dec(y, k))
• S |= ∀z, r.(enc(z, k, r) ∈ st(X)→ y 6= enc(z, k, r))
• K a set of usable keys such that (K, k,X) and k 6∈ K.

Let Lp be the list of positions in X ↓K that are encryptions with K, let L =
(X|p

)p∈Lp
. We only consider the encryptions that are present in X ↓K to ensure

that we will be able to build those encryptions with oracles, for example we do
not wish to consider {k}r

k if it only appears protected by a fresh key.
Let D by the PPT behaving as follows on input xX , xL, xk:

1. computes y = A(xX)

2. answers 1 if y ∈ xL

3. answers 0 if wf(sdec(y, xk)), 1 otherwise. The computational semantics
of wf ensures that D answers 0 at this step if and only if sdec(y, xk) 6= ⊥.

Note that on S, D(JXK, JLK, JkK) returns 0.
By lemma 3.31,

Pτ (D(JXKτ , JLKτ , JkKτ) = 0) ≈ Pτ (D(JX ↓KKτ , JL↓KKτ , JkKτ) = 0)

Now, let us remark that as k is protected by K plaintext fresh in X ↓K , this
means that as usual we can build X ↓K using only the relevant oracles for the

60 CHAPTER 3. AXIOMS AND SOUNDNESS PROOFS

k encryption. Let us build the following adversary D′ against the INT-CTXT
game:

1. draws the interpretation of all constants except k and the randomnesses
in k encryptions

2. computes the interpretation xX of X ↓K using the encryption/decryption
oracle for encrypting/decrypting with k

3. computes y = A(xX)

4. submits y as the challenge to the INT-CTXT oracle

Let us remark that D′ wins the INT-CTXT game having drawn the constants
according to τ if and only if D outputs 0 on JX ↓KKτ , JL↓KKτ , τ(k). It follows
that Pτ (D(JX ↓KKτ , JL↓KKτ , JkKτ) = 0) is negligible, which in turn implies that
S is negligible.

3.3 Conclusion

We have defined here axioms for the usual properties of encryption schemes.
As it will be discussed in chapter 5, these axioms are sufficient to prove the
protocols in the Spore[SPO14] library, that involve encryption only. The main
contribution is the design of syntactic constraints for key usability, that are
both strong enough for all reasonable use cases and easily computable. We
also formulated new axioms for unforgeability of encryption and modified the
non-malleability axiom from [BC12]. Finally we filled a gap in the proof of the
secrecy axioms (and further extended them with our key-usability notion) in the
symmetric case, showing that the notion of which-key concealing encryption was
necessary.

We are confident that the proof techniques used to prove the cryptographic
axioms (in particular lemma 3.31) could be widely reused in order to prove
sound other axioms for similar properties, typically unforgeability of signatures,
or secrecy preserving of zero knowledge proofs. However building a larger library
of axioms is left as future work.

Moreover, these axioms, under their current form are well suited for au-
tomated consistency checks as will be precised in chapter 5. They do not fit
exactly in the class described in chapter 4. The main difference is the fact
that the key-usability constraints are not monotone constraints and that the
integrity axioms allow a branching on the equational theory. They are however
close enough to let us reuse the main intuitions of our decision procedure in the
tool.

Chapter 4

Decision procedure

In this chapter, we prove tractability of fragments of First Order Logic. Fol-
lowing the approach of D. Mc Allester [McA93], D. Basin and H. Ganzinger [BG01]
show that, if a set of Horn clauses is saturated, with respect to a well suited
ordering and a well suited notion of redundancy, then the associated inference
system is tractable. They also consider a variadic predicate, however loosing
tractability. The main restriction in order to have a PTIME decision proce-
dure using this technique is on the ordering with respect to which the clauses
have to be saturated: given a ground term t, there should be only polynomially
many terms smaller than t. (The subterm ordering, is an example. The term
embedding does not satisfy this property).

However, the Horn clauses derived from security assumptions are beyond
the scope of these results for several reasons that we describe below.

• The deducibility predicate ⊲ can be seen as a variadic predicate symbol,
whose arguments (except the last one) are unordered. This is a problem,
since Basin and Ganzinger method yields an NP decision procedure with
such a predicate: even if A is saturated (modulo the set axioms for the
left part of the ⊲ predicate), when we use A to reduce a ground atom
S ⊲ t, potentially all subsets of S will be considered (see Section 4.2 for
an example).
• Axioms (i.e. Horn clauses) are constrained. A priori, this is not an

obstacle to the Basin and Ganzinger procedure, as the constraints can
be checked on each superposition between an axiom and a ground clause.
However, the very notion of saturation of a set of constrained clauses is
an issue (as reported for instance in [NR01] for basic strategies or [CT97]
for order constraints). In short: we cannot assume our set of axioms to
be saturated.
• Clauses contain an equality predicate. This is not too tricky, since we may

assume that A does not contain any equality. Hence equalities appear
only as ground literals. We have to consider our clauses modulo a ground
equational theory.

61

62 CHAPTER 4. DECISION PROCEDURE

4.1 Overview of the results and proofs

We split our results in three parts: we extend stepwise the tractable fragment
of First Order Logic. Each extension may use the previous one as a tractable
oracle.

Including a variadic predicate. We consider sets of ground Horn clauses
with equality, whose atomic formulae may (also) be S ⊲ t where S is a finite
set of (ground) terms and t is a ground term, together with a saturated set of
clauses A with no deducibility predicate and the following set of clauses A0:

A0 =





X ⊲ x → X; y ⊲ x weakening
X ⊲ x, Y ;x ⊲ y → X;Y ⊲ y transitivity

→ x ⊲ x
X1 ⊲ x1, . . . , Xn ⊲ xn → X1; . . . ;Xn ⊲ f(x1, . . . , xn) f function symbol

We prove first that satisfiability of such a set of clauses is in PTIME, there-
fore extending Basin and Ganzinger result, in particular with the deducibility
predicate.

The main idea then is to use another layer of ground Horn clauses entailment
problem: given S1 ⊲ t1, . . . , Sn ⊲ tn, S ⊲ t, whether S1 ⊲ t1, . . . , Sn ⊲ tn entails S ⊲ t
can be solved in PTIME. This is done by transforming literals S ⊲ t into clauses
S → t. Since the resulting clauses do not contain ⊲ anymore, this can be used
as an oracle in a (modified) ground Horn clauses entailment problem. This
tractability result is proved stepwise in section 4.2.

Adding axioms on the deducibility predicate. The previous result is
not sufficient for our purpose as, for instance, simple axioms such as secrecy
(provided in chapter 3) cannot be expressed in the considered fragment.

We therefore extend the previous results, adding formulae of the form

S ⊲ x, S;u(x) ⊲ t(y) → S ⊲ t(y)

S;u(x) ⊲ v(y) → S ⊲ v(y)

These formulae are relevant for our application. Indeed, the secrecy axiom
described in chapter 3 is an axiom of the second form. The axioms of the first
form are useful to express for example some integrity properties. If we do not
take into account the branching on possible equations on right hand side of the
axiom, the original non-malleability axiom from [BC12] is of the second form.
Likewise, as will be seen in chapter 5, we will use a consequence of our integrity
axiom (still ignoring the branching on equations) that has the following form:

∀X,x, y. X ⊲ x X; sdec(x, k) ⊲ n → X ⊲ n ‖ P (x)

We do not think that ignoring the branching on equations is a problem as
the complexity arising from the exploration of all possible equations between
decrypted terms and honest encryptions seems to be manageable. This is ex-
perimentally confirmed as will be explained in more details in chapter 5.

We show again in this case that the satisfiability is in PTIME. The first idea
consists in seeing these clauses as new inference rules. For instance, the first

4.1. OVERVIEW OF THE RESULTS AND PROOFS 63

axiom above can be seen as a generalised cut (it is a cut when u(x) = x). As
before, we first consider the entailment problem for deduction atomic formulae,
which in turn can be seen as an entailment problem for Horn clauses. This can
also be easily reduced to the problem of deducing the empty clause.

We design a strategy, which is complete for this extended deduction system
and for which the proof search is in PTIME. Let us explain how it works. With
the usual cut rule (and not the extended one above), whether the empty clause
can be derived, can be decided in PTIME using a unit strategy. This is not
the case with an extended cut rule. However, introducing some new rules and
additional syntactic constructions, we design a proof system, whose expressive
power is the same as the original proof system, and for which the unit strategy
is complete, yielding a PTIME decision procedure. In other words, our strategy,
that cannot be explained as a local strategy of application, can be reduced to a
unit strategy, thanks to some memorisation. This extension, including axioms
on the deducibility predicate, is proved in section 4.3.

Adding constraints. Our application case requires to consider constraints,
typically expressing that some term does not occur in the left side of a deduction
relation. Such constraints have good stability properties: if they are satisfied by
two sets of literals, then they are satisfied by their union and, if a constraint is
satisfied by a set of literals S, then it is satisfied by any subset of S. Our main
restriction is however that there are only a fixed set of possible constraints. We
show again that the satisfiability is in PTIME.

We cannot simply use the previous strategy, checking that constraints are
satisfied whenever we need to apply them. The extended deduction system
of the previous section is proved to be complete by a proof transformation
that may not preserve constraint satisfaction. We therefore refine the strategy,
memorising additional information in the formulae: on the one hand, we store
the constraints that are necessarily satisfied by all instances of the clause (this
is inherited in the deduction rules) and, on the other hand, the constraints that
have to be satisfied in the remainder of the proofs. Using this new syntax and
inference rules, we show that they do not increase the expressiveness and yet
that the unit strategy is refutation complete for these new rules. This shows
the PTIME membership.

In the next step, we show that the entailment problem is decidable in PTIME
in this new syntax. We need however to memorise a third component, which
depends on the instance of the entailment problem. This result, including con-
straints, is proved in section 4.4.

Final result. From the previous paragraphs, we can build a PTIME entail-
ment algorithm which, given S1 ⊲ t1 . . . Sn ⊲ tn, S ⊲ t and clauses

A1 =
{
S ⊲ x, S;ui(x) ⊲ t(y) → S ⊲ t(y) ‖ Γi

S; sj(x) ⊲ v(y) → S ⊲ v(y) ‖ ∆j

where Γi,∆j are finite sets of constraints, decides in PTIME whether S1 ⊲
t1, . . . , Sn ⊲ tn, A1, A0,A |= S ⊲ t.

This algorithm can be used as an oracle in a variant of the Basin and
Ganzinger algorithm, to decide the satisfiability of a set of clauses including for-
mulae extending A0, A1 together with ground clauses with equality. Altogether,

64 CHAPTER 4. DECISION PROCEDURE

we obtain a PTIME procedure for arbitrary ground clauses and saturated Horn
clauses (as in Basin & Ganzinger), together with the aforementioned clauses.

4.2 Tractability of deducibility axioms

We first consider the consistency problem of a very specific case:

Problem 4.1. Let C be a set of ground clauses built on the deducibility predi-
cate only. Is C ∪{→ X;x⊲x, X ⊲x → X; y ⊲x, X ⊲x, X;x⊲y → X ⊲y}
consistent?

Do note that these three axioms are the Refl,Mon,Tr axioms from the
previous chapter.

Consider for instance a ground clause a1; . . . ; an ⊲ a →⊥. If we simply use
a unit resolution strategy (which is refutation complete for Horn clauses), this
single clause, together with the weakening clause, may generate all unit clauses
S ⊲ a →⊥ where S ⊆ {a1, . . . , an}. This should be avoided since we seek for
a polynomial time algorithm. Similar problems occur with transitivity, if we
try to use binary resolution with a simple strategy. Here is a more concrete
example.

Example 4.2. Let C = {a1; a2; a3 ⊲ a0 →⊥, → a1; a4 ⊲ a0, → a2 ⊲ a4}. The
system C ∪{Mon,Tr} is provably unsatisfiable using binary resolution modulo
ACIN only.

→ a1; a4 ⊲ a0 X1 ⊲ x1 → X1; y1 ⊲ x1

→ a1; a4; y1 ⊲ a0 X2 ⊲ x2, X2;x2 ⊲ y2 → X2 ⊲ y2

a1; y1 ⊲ a4 → a1; y1 ⊲ a0

with unifiers X1 = a1; a4, X2 = a1; y1, x1 = a0, x2 = a4 and y2 = a0

a1; y1 ⊲ a4 → a1; y1 ⊲ a0

→ a2 ⊲ a4 X3 ⊲ x3 → X; y3 ⊲ x3

→ a2; y3 ⊲ a4

→ a1; a2 ⊲ a0

with unifiers X3 = a2, y1 = a2 and y3 = a1

and

→ a1; a2 ⊲ a0 X4 ⊲ x4 → X4; y4 ⊲ x4

→ a1; a2; y4 ⊲ a0 a1; a2; a3 ⊲ a0 →⊥

⊥

with unifiers X4 = a1; a2, x4 = a0 and y4 = a3.
This derivation introduces the clause→ a1; a2 ⊲ a0, where a1; a2 is a new set

(i.e. it does not appear in the initial sets). This is actually unavoidable: any
derivation of the empty clause requires as an intermediate step the derivation
of either → a1; a2 ⊲ a0 or a1; a4; a3 ⊲ a0 →⊥. Both of them involve sets that are
not in the initial class.

However if we move from the object level to the meta-level, viewing weaken-
ing and transitivity as inference rules and deducibility atoms as clauses, we can

4.2. TRACTABILITY OF DEDUCIBILITY AXIOMS 65

at least solve this very particular case. More precisely, consider the inference
system:

R
X;x ⊲ x

X ⊲ x
W

X; y ⊲ x

X ⊲ x X;x ⊲ y
T

X ⊲ y

where X is a logical variable ranging over extended terms and x, y are logical
variables ranging over terms.
Let ⊢R,W,T be the derivability relation associated with these three inference
rules.

Lemma 4.3. Given ground atomic formulae S1 ⊲ t1, . . . , Sn ⊲ tn and S ⊲ t, we
can decide in linear time whether {S1 ⊲ t1, . . . , Sn ⊲ tn} ⊢R,W,T S ⊲ t.

Proof. We associate with each term occurring in S1∪ . . .∪Sn∪S∪{t1, . . . , tn, t}
a proposition variable. We claim that S1 ⊲t1, . . . , Sn ⊲tn ⊢R,W,T S ⊲t iff S → t is
derivable from S1 → t1, . . . , Sn → tn using the propositional binary resolution,
excluded middle and weakening rules only. Indeed we notice that T , R and W
can be simulated by resolution and excluded middle. For W the proof rewriting
is straightforward. We present the proof rewriting for T and R:

S ⊲ t S; t ⊲ u
T

S ⊲ u
=⇒

S → t S, t→ u
Res

S → u

R
S; t ⊲ t =⇒

Excl
t→ t

====== Weak
S, t→ t

Conversely the resolution, excluded middle and weakening can be simulated
by R, T and W . The proof rewriting is straightforward for excluded middle and
weakening, we only present it for resolution:

S1 → t S2, t→ u
Res

S1, S2 → u
=⇒

S1 ⊲ t
======= W
S1;S2 ⊲ t

S2; t ⊲ u
========= W
S1;S2; t ⊲ u

T
S1;S2 ⊲ u

Then derivability of S → t is equivalent to unsatisfiability of S1 → t1, . . . , Sn →
tn, S,¬t (where Si is a shortcut for the conjunction of propositional variables
corresponding to terms occurring in Si), which can be decided in linear time: it
is a HornSat problem.

Now, the trick of viewing the clauses Mon,Tr as new inference rules allows
to decide our problem in PTIME. We write ⊢Resu+R+W +T for the derivability
with inference rules R, W , T and unit resolution.

Lemma 4.4. Given a set of ground Horn clauses (built on ⊲) C, the satisfiability
of C ∪ {Refl,Mon,Tr} is decidable in cubic time.

Proof. We show first that C ∪ {Refl,Mon,Tr} is unsatisfiable if and only if
the empty clause can be derived from C, using unit resolution R + W + T . If we
can derive the empty clause in this system, then we can derive the empty clause
from C∪{Refl,Mon,Tr} by resolution, thanks to simple proof rewriting rules:

R
S; t ⊲ t =⇒ S; t ⊲ t (instance of Refl)

66 CHAPTER 4. DECISION PROCEDURE

π1

S ⊲ t
W

S;u ⊲ t

=⇒
π1

S ⊲ t
X ⊲ x → X; y ⊲ x

Res
S;u ⊲ t

π1

S ⊲ t
π2

S; t ⊲ u
T

S ⊲ u

=⇒

π1

S ⊲ t
X;x ⊲ y, X ⊲ x → X ⊲ y

Res
S; t ⊲ y → S ⊲ y

π2

S; t ⊲ u
Res

S ⊲ u

Conversely, if we cannot derive the empty clause from C using unit resolution
R + W + T , then let M = {S ⊲ u | C ⊢Resu+R+W +T S ⊲ u}. We claim that
M is a model of C ∪ {Refl,Mon,Tr}: As M is closed by R,W, T , it is a
model of {Refl,Mon,Tr} and, if B1, . . . , Bn → H ∈ C, then either Bi /∈ M
for some i or else, by construction, for every i, C ⊢Resu+R+W +T Bi, hence, by
unit resolution, C ⊢Resu+R+W +T H. In all cases, M |= B1, . . . , Bn → H.

It only remains to prove that whether C ⊢Resu+R+W +T⊥ or not can be
decided in cubic time. Let B be the set of atomic formulae occurring in C. Let
M be the least fixed point of

f(X) = {S ⊲ u ∈ B | C ∪X ⊢Resu
S ⊲ u or C ∪X ⊢R+W +T S ⊲ u}

Since f is monotone, there is a least fixed point, which is contained in B by
construction. Computing M can be performed in quadratic time, as there are
at most |B| iterations and each step requires at most a linear time, thanks to
the Lemma 4.3.

If the empty clause can be derived from M, C using unit resolution, then
C ⊢Resu+R+W +T⊥. Let us show the converse implication. For this, we prove,
by induction on the proof size that, for every atomic formula S ⊲ t ∈ B,
C ⊢Resu+R+W +T S ⊲ t implies S ⊲ t ∈M.

If the last rule of the proof is a unit resolution, then the proof can be written:

π1

S1 ⊲ t1

π2

S2 ⊲ t2

πn

Sn ⊲ tn
(S1 ⊲ t1, . . . , Sn ⊲ tn → S ⊲ t) ∈ C

S1 ⊲ t1, . . . , Sn ⊲ tn → S ⊲ t

S1 ⊲ t1, . . . , Sn−1 ⊲ tn−1 → S ⊲ t
...

S1 ⊲ t1, S2 ⊲ t2 → S ⊲ t

S1 ⊲ t1 → S ⊲ t

S ⊲ t

S1 ⊲ t1, . . . , Sn ⊲ tn ∈ B and, by induction hypothesis, S1 ⊲ t1, . . . , Sn ⊲ tn ∈ M.
It follows that M, C ⊲Resu

S ⊲ t, hence S ⊲ t ∈ f(M) =M.
If the last rule of the proof is W or T , then there are atomic formulae

S1 ⊲ t1, . . . , Sn ⊲ tn such that S1 ⊲ t1, . . . , Sn ⊲ tn ⊢R+W +T S ⊲ t and, for every i,
either Si ⊲ti ∈ C or the last rule in the proof of Si ⊲ti is a resolution step and, as
noticed previously all, Si ⊲ ti are in B. In all cases Si ⊲ ti ∈ B and, by induction
hypothesis, Si ⊲ ti ∈M. By definition of the function f , S ⊲ t ∈ f(M) =M.

If C ⊢Resu+R+W +T⊥, then there is a negative clause S1 ⊲ t1, . . . , Sn ⊲ tn →⊥
in C such that, for every i, C ⊢Resu+R+T +W Si ⊲ ti, hence Si ⊲ ti ∈ M as we

4.2. TRACTABILITY OF DEDUCIBILITY AXIOMS 67

just saw. Then ⊥ can be deduced from C,M using unit resolution (which can
be decided in linear time again).

Example 4.5. Let us get back to to Example 4.2:

C = {a1; a2; a3 ⊲ a0 → ⊥, → a1; a4 ⊲ a0, → a2 ⊲ a4}

There is no unit resolution step on C. We claim that C ⊢R+W +T a1; a2; a3 ⊲ a0.
Indeed, turning atoms into clauses, from the clauses {a1; a4 → a0, a2 → a4,
→ a1,→ a2, a0 →⊥} we deduce ⊥ by unit resolution. Hence a1; a2; a3 ⊲ a0

belongs to f(∅). Then, by one step of unit resolution on C ∪{a1; a2; a3 ⊲ a0}, we
get a contradiction.

R
X;x ⊲ x

X ⊲ x
W

X; y ⊲ x

X ⊲ x X;x ⊲ y
T

X ⊲ y

Figure 4.1: Inference rules for Refl,Mon,Tr without equalities

4.2.1 Adding equality

Now, we assume that atomic formulae in C may contain equalities on terms
(not extended terms). The equality axioms (the equality is a congruence) are
implicit in what follows.

We start by adding inference rules as previously, in order to cope with the
equalities. We define the unit resolution rule with equalities Resu(E) as follows,
where the predicate p ranges over = and ⊲

p(t1, t2) p(u1, u2), A1, · · · , An → B
t1 =E u1, t2 =E u2

A1, · · · , An → B

We also define an equality elimination rule Elim(E) as follows:

t1 = t2, A1, · · · , An → B
t1 =E t2

A1, · · · , An → B

We modify the transitivity rule as follows:

X ⊲ x X; z ⊲ y x =E z
T (E)

X ⊲ y

Lemma 4.6. Given a list of terms S1 ⊲ u1, · · · , Sn ⊲ un, a finite set of ground
equations E and a goal term S ⊲ u, the problem E,S1 ⊲ u1, · · · , Sn ⊲ un, (x ⊲
x)x∈T ⊢

?
W,T (E) S ⊲ u is decidable in polynomial time with access to an oracle

deciding E.

Proof. Let T be the set of terms occurring in S1, . . . , Sn, S, u1, . . . , un, u. Split
T into disjoint equivalence classes modulo E, calling (at most) a quadratic
number of times the oracle deciding E. For each equivalence class, choose a
representative and replace the terms in S1 ⊲ u1, · · · , Sn ⊲ un, S ⊲ u with their
representatives. Then, the resulting entailment problem can be turned into a
HornSat problem (as before), replacing every representative of an equivalence
class with a proposition variable.

68 CHAPTER 4. DECISION PROCEDURE

Lemma 4.7. Given a set of ground Horn clauses (built on ⊲ and =) C, the
satisfiability of C ∪ {Refl,Mon,Tr} is decidable in polynomial time.

Proof. Let B1 be the set of equalities occurring in C. Let B2 be the set of S ⊲ t
occurring in C, as well as ⊥.

We want to compute the least fixed point of the following function F which
takes as input a set of equations E ⊆ B1 and a set of ⊲ literals B and returns
E′ and B′ built as follows:

B′ = {S ⊲ t ∈ B2|C ∪ B ⊢Resu(E),Elim(E) S ⊲ t} ∪ {S ⊲ t ∈ B2|B ⊢R,W,T (E) S ⊲ t}

E′ = {u = v ∈ B1|C ∪ B ⊢Resu(E),Elim(E) u = v}

Our algorithm answers Unsatisfiable iff ⊥ is derivable using from the least
fixed point of F using unit resolution.

E is always a finite (polynomially bounded) set of ground equations. Hence
there is an polynomial time oracle that decides the equality modulo E, for
instance using a congruence closure algorithm. Then, thanks to lemma 4.6, F
can be computed in polynomial time. Furthermore, the number of iterations of
F is linear. Hence the fixed point can be computed in polynomial time.

Let Bf , Ef be the least fixed point of F . Let us prove now that C ∪
{Refl,Mon,Tr} is satisfiable iff ⊥/∈ Bf .

If ⊥∈ Bf , then C ∪ {r, w, t} is unsatisfiable since every deduction step used
in the computation of F is a consequence of C ∪ {Refl,Mon,Tr} (and the
equality axioms).

Conversely, if ⊥/∈ Bf , we consider the first-order structure M, in which
the interpretation domain is the quotient T / =Ef

of the set of ground terms
by the congruence generated by Ef and the interpretation of ⊲ is the set {S ⊲
t | B2 ⊢R,W,T (Ef) S ⊲ t}.
M is, by construction, a model of Refl,Mon,Tr. If S1⊲t1, . . . , Sn⊲tn, u1 =

v1, . . . , um = vm → H is a clause of C, and, for every i, M |= Si ⊲ ti and, for
every j, uj =Ef

vj , then, for every i, Bf ⊢R,W,T (Ef) S ⊲ ti. Hence Si ⊲ ti is in
the first component of F (Bf , Ef), hence in Bf .

It follows that, Bf , C ⊢Resu(E),Elim(E) H. Hence H 6=⊥ and H is in either
components of F (Bf , Ef) = (Bf , Ef). Therefore M |= H.

We have proved that M is a model of each clause of C. Since it is a model
of Refl,Mon,Tr, this concludes the proof.

R
X;x ⊲ x

X ⊲ x
W

X; y ⊲ x

X ⊲ x X;x ⊲ y x =E z
T (E)

X ⊲ y

Figure 4.2: Inference rules for Refl,Mon,Tr with equalities

4.2.2 Adding a function axiom

We extend now the clauses specifying ⊲ with the functionality axioms for F
(denoted by Fun(F) later): X ⊲x1, · · · X ⊲xn → X ⊲g(x1, . . . , xn), for
every function symbol g in a set of function symbols F (which is later omitted).

4.2. TRACTABILITY OF DEDUCIBILITY AXIOMS 69

We will use, as the main tool of this proof, the fact that it is possible to
decide whether, given t1, . . . , tn, u and E, there exists a context C such that
C[t1, . . . , tn] =E u. Using that tool, we will be able to extend the inference
rules to accommodate the functionality axioms. We try to give the intuition in
the next example:

Example 4.8. b ⊲ c, ⊲a ⊢R+W +T (g(g(a))=b)+Fg
⊲c since there is a context C (with

C[_] = g(g(_))) such that C[a] = b.

First, note that the axiom Funf : S ⊲ x1, · · · , S ⊲ xn → S ⊲ f(x1, · · · , xn) is
equivalent (modulo weakening and transitivity) to t1; . . . ; tnf

⊲ f(t1, · · · , tnf
)

Now we know, as a consequence of Lemma 4.7 that the set of clauses C is
satisfiable together with the axioms {Refl,Mon,Tr} ∪ Fun(F) iff the empty
clause is not derivable from C together with all possible instances of the function
axiom {t1; . . . ; tnf

⊲ f(t1, · · · , tnf
)|f ∈ F , t1, . . . , tnf

∈ T } using the rules T (E),
Resu(E), Elim(E) and W .

Lemma 4.9. Given a set of ground equations E, a set of ground terms u, t1, . . . , tn,
and F a set of function symbols. The problem ∃C.C[t1, . . . , tn] =E u with C
(multi)context built on F is decidable in polynomial time.

Proof. We proceed as follows (the steps will be precised later):

1. Build a tree automaton A (of polynomial size) that recognises the set of
all t such that t =E u.

(a) Compute (in polynomial time in |E|) a flat convergent rewriting sys-
tem R for E (of polynomial size in the size of E).

(b) Build a tree automaton (of polynomial size in |R|+ |t|), which accepts
the terms that rewrite to t↓R.

2. Build a tree automaton B (of polynomial size in Σi|ti|) that recognises
the language {C[t1, . . . , tn]}.

3. Check (in polynomial time in |A|+ |B|) whether L(A) ∩ L(B) = ∅.

1a - We add a constant cu for every subterm u of E, t and add an equation
cu = u to E. In this way, we may now assume w.l.o.g that every equation in E
has the form f(a1, . . . , an) = a or a1 = a (we call equations of this form flat). We
choose an arbitrary linear order on symbols in which the non-constant function
symbols are greater than the constants and run a Knuth-Bendix completion
on E using a lexicographic path ordering that extends this precedence. This
yields a flat convergent rewrite system R whose size is polynomial in E. Indeed
the superposition of two flat equations is necessarily flat, and there are only
polynomially many such equations. This requires only a polynomial time.

1b - We want to recognise the set of terms u such that u ↓R= t ↓R. Note
that t↓R is a constant ct. Now build a tree automaton A as follows:
• the set of states of A is the set S of constants appearing in R,
• for each constant c add a transition c()→ c
• for each rule f(a1, . . . , an) → a in R add a transition f(a1, . . . , an) → a

in A
• for each rule a1 → a in R and every transition f(a1, . . . , an)→ a1 replace
a1 by a in the transition (applying this point starting from the highest
a1 in the order chosen to complete E).

• the accepting state of A is ct

70 CHAPTER 4. DECISION PROCEDURE

Note that this procedure yields a polynomial size A in polynomial time. If A
recognises u, it is clear that the accepting run of A can be seen as a rewrite
sequence from u to ct. Conversely, each rewrite sequence from u to ct yields an
accepting run of A on u.

2 - Build the tree automaton A1, . . . ,An recognising the terms t1, . . . , tn
with accepting state q0. Now let A′ be the automaton recognising the language
t1, . . . , tn with accepting state q0 (it is the sum of the n previous automata). Let
B be the automaton obtained extending A′ with the transitions f(q0, . . . , q0)→
q0. Note that B is built in polynomial time and is of polynomial size. It is clear
that B recognises the language {C[t1, . . . , tn]| C context built on F}.

3 - Build the product automaton that recognises L(A)∩L(B) (of polynomial
size) and test for emptiness in polynomial time.

Now having proven that we can decide whether a term t can be built from
a set of terms ui, we are left with proving that entailment with the transitivity
and monotonicity rules is still decidable in PTIME, which is the fundamental
tool for building the decision procedure.

Lemma 4.10. Given a list of terms S1 ⊲ u1, · · · , Sn ⊲ un, a finite set of ground
equations E and a goal term S ⊲u, the problem S1 ⊲u1, · · · , Sn ⊲un, (t1; . . . ; tnf

⊲
f(t1, · · · , tnf

))f∈F,t1,...,tnf
∈T ⊢

?
W,T (E) S ⊲ u is decidable in polynomial time.

Proof. Note that in the proof of lemma 4.6 we saturate S1 → u1 . . . Sn → un, S,
modulo the unit version of T (E) and check if we obtain u. Now, we need to
saturate S1 → u1 . . . Sn → un, S,¬u, (f(t1, · · · , tnf

))f∈F,t1,...,tnf
∈T modulo the

unit version of T (E). Observe the following: if a function clause is used to
derive u then it is used in a proof that has the following structure (we omit here
that everything is done modulo E)

ti

tl t1, . . . , tn → f(t1, . . . , tn)

t1, . . . , tl−1, tl+1, . . . , tn → f(t1, . . . , tn)

. . .

ti → f(t1, . . . , tn)

f(t1, . . . , tn) f(t1, . . . , tn), A1, . . . , Ak → B

A1, . . . , Ak → B

In its turn either ti is a term in U =
⋃

i Si∪S∪{u1, . . . , un} or its proof has the
structure shown above. Therefore, there exists v1, . . . , vl, w ∈ U (and the units
v1, . . . , vl are derivable) such that w = f(t1, . . . , tn) and C[v1, . . . , vl] =E w.
Note that this observation gives us the following:

E, S1 ⊲ u1, · · · , Sn ⊲ un,

(t1; . . . ; tnf
⊲ f(t1, · · · , tnf

))f∈F,t1,...,tnf
∈T ⊢

?
W,T (E) S ⊲ u

is decidable in PTIME by saturating E,S1 → u1, · · · , Sn → un, S by

x1 . . . xn X, z → y
∃C.C[x1, . . . , xn] =E z

X → y

4.3. MORE CLAUSES USING THE DEDUCIBILITY PREDICATE 71

and checking whether ∃C.C[v1, . . . , vk] =E u where v1, . . . , vk are the units
derived by the saturation. As checking the condition ∃C.C[t1, . . . , tn] =E u is
decidable in PTIME, the saturation is in PTIME.

As previously, we deduce from the existence of a decision procedure for
the rule operating only on the ⊲ atoms a decision procedure for the complete
problem.

Lemma 4.11. Given a set of ground Horn clauses (built on ⊲ and =) C, the
satisfiability of C ∪{Refl,Mon,Tr}∪Fun(F) is decidable in polynomial time.

Proof. The proof goes exactly as the proof of lemma 4.7 except that we use the
oracle of lemma 4.10 instead of the oracle of lemma 4.6.

R
X;x ⊲ x

X ⊲ x
W

X; y ⊲ x

x1 . . . xn X;x ⊲ y ∃C.C[x1, . . . , xn] =E x
T (E)

X ⊲ y

Figure 4.3: Inference rules for Refl,Mon,Tr,Fun(F)

4.3 More clauses using the deducibility predi-
cate

We now enrich the class of clauses involving the deducibility predicate. Given
a linear term p (later called the pattern), we consider a finite set of clauses of
the following forms:
cs(u) : X;u ⊲ p→ X ⊲ p where u is a linear term that does not share variables

with p

cc(w) : X ⊲ y,X;w ⊲ p → X ⊲ p where w is a linear term that does not share
variables with p, and y is a variable of w.

The restriction to linear terms (i.e. terms where each variable appears at most
once) might seems odd but it ensures that checking checking that a term t
matches a pattern modulo an equational theory can be solved in PTIME.
Example 4.12. The secrecy axiom described in chapter 3 (stripped from the
constraints)

X; enc(x, pk) ⊲ n → X ⊲ n

is an instance of the first class of clauses above, with p = n and u = enc(x, pk).
The condition usable(sk,X) requires constraints, that are considered in Sec-
tion 4.4.

As explained in the previous section, we may turn the additional clauses
into new inference rules, using ≤E , the matching modulo E (a term t satisfies
u ≤E t if there is a substitution σ such that t =E uσ).

u ≤E x X;x ⊲ p
Stru

X ⊲ p

(y, w) ≤E (x, z) X ⊲ x X; z ⊲ p
Cutw

X ⊲ p

72 CHAPTER 4. DECISION PROCEDURE

Let I be the inference system defined by a finite collection of rules Stru,Cutw,
the rules R,W, T (E) for a finite set of ground equations E and the rules Fg for
a set of function symbols g.

We are going to prove that, again, I can be decided in polynomial time.
However, we cannot use the same proof as in the previous section. S1⊲t1, . . . , Sn⊲
tn ⊢I S⊲t can no longer be reduced to a problem S1 → t1, . . . , Sn → t1, S ⊢Resu

t
(modulo a PTIME oracle).

Example 4.13. Assume E is empty and we have a single rule Cutf(x,k) for the
pattern p = n. f(a, k) ⊲ f(b, k), f(b, k) ⊲ n ⊢I a ⊲ n:

R
a ⊲ a

f(a, k) ⊲ f(b, k)
W

a; f(a, k) ⊲ f(b, k)

f(b, k) ⊲ n
W

a; f(a, k); f(b, k) ⊲ n
T

a; f(a, k) ⊲ n
Cutf(x,k)

a ⊲ n

We cannot use a unit version of T (or resolution) in this example. And moving
to a general binary resolution would yield an exponential procedure.

As before, after turning the clauses into inference rules, we turn the de-
ducibility atomic formulae into clauses. We call again I the resulting inference
system. We have to be careful however: this is a purely syntactic transformation
and the inference rules resulting from this translation are no longer correct in a
classical semantics. For instance Cutw becomes

A1, . . . , An → y w,B1, . . . , Bm → p

A1, . . . , An, B1, . . . , Bm → p

where the premises are matched modulo a set of ground equations E.
In order to apply a simple fixed point computation, we would like to be able

to transform any proof into a unit strategy proof. Since this is not possible with
the current proof system (as shown by Example 4.13), we introduce additional
inference rules that will allow such a strategy, however bookkeeping what the
rest of the proof owes, in order to enable a translation back into the original
proof system.

Example 4.14. Continuing Example 4.13, the unit proof of → n from the hy-
potheses → a, f(a, k)→ f(b, k), f(b, k)→ n will look like this:

→ a f(a, k)→ f(b, k)
Cut1

f(x,k)
→p f(b, k) f(b, k)→ n

Cut2

→ n

The rule Cut1
w is a generalisation of Cutw since the constraint of being an instance

of the pattern p on the right is dropped. It bookkeeps however a duty as a mark
p on the arrow. The mark on a clause S →p t can in turn be erased only when a
clause S′, t→ p is one of the premises. Such a mechanism allows both to use a
complete unit strategy and to enable reconstructing an original proof from the
extended one, as we will prove (here the annotation is erased in the last rule as
the second premise is an instance of S, f(x, k) ⊲ n).

Intuitively, the head s of a marked clause can only be used in a proof that
will end up deriving an instance of the pattern.

4.3. MORE CLAUSES USING THE DEDUCIBILITY PREDICATE 73

We extend the syntax, allowing both unmarked clauses S → t and marked
clauses S →p t. The clause S →p t can only be used in proofs that will end
up deriving an instance of p. For simplicity, we first do not consider the set of
ground equations E nor the function axioms. We write S →? t when it does
not matter whether the arrow is marked or not. We then consider the inference
system J consisting of T (E), W and the following rules (for each Cutw there
are two rules Cuti

w and for each rule Stru there are two rules Stri
u):

A1, . . . , An →? y B1, . . . , Bm, w →? v
Cut1

w
A1, . . . , An, B1, . . . , Bm →p v

A1, . . . , An →? y w,B1, . . . , Bm → p
Cut2

w
A1, . . . , An, B1, . . . , Bm → p

A1, . . . , An →? x B1, . . . , Bm, x→? v
Cut1

A1, . . . , An, B1, . . . , Bm →? v

in which the conclusion is marked iff one of the premises is marked.

A1, . . . , An →? x x,B1, . . . , Bm → p
Cut2

A1, . . . , An, B1, . . . , Bm → p

A1, . . . , An, u→? x
Str1

u
A1, . . . , An →p x

A1, . . . , An, u→ p
Str2

u
A1, . . . , An → p

Note that the above system has no classical semantics.

Lemma 4.15. Let S be a set of ground clauses, and s be a ground term. In
case E = ∅ and removing the function and reflexivity axioms from I, S ⊢I→ s
if and only if S ⊢J→ s.

Let us first give a proof sketch of this result before diving into the full proof.
Proof sketch: For one implication we prove that W is not necessary, hence I
can be simulated by J . For the other implication, we rewrite a proof in J as
follows. We consider a last rule that introduces a mark. Since the marks must
eventually disappear, there is also a matching rule that removes the mark. This
part of proof is then rewritten as explained on the following example:

Sn → tn

S2 → t2

S1 → t1 S,wσ → vσ
Cut1

w
S1, S →p vσ

Cut1
w2

S′
2 →p vσ

...
Cut1

wn
S′

n →p vσ S0, tσ
′ → pθ

Cut2
t

S0, S
′
n → pθ

rewrites to

Sn → tn

S1 → t1

S,wσ → vσ S0, tσ
′ → pθ

Cutt
S0, S, wσ → pθ

Cutw
S0, S1, S → pθ

...
Cutwn

S0, S
′
n → pθ

74 CHAPTER 4. DECISION PROCEDURE

The proof rewriting terminates and we end up with a proof in I. Let us prove
this result formally.

Proof. We first prove that, if there is a proof Π of s in I from S, then there is
a proof Π′ without W . Indeed, we may push W to the bottom of the proof as
follows:

A1, . . . , An → x
W

A1, . . . , An, C → x B1, . . . , Bm, w → p
Cutw

A1, . . . , An, B1, . . . , Bm, C → p

can be rewritten to

A1, . . . , An → x B1, . . . , Bm, w → p
Cutw

A1, . . . , An, B1, . . . , Bm,→ p
W

A1, . . . , An, B1 . . . , Bm, C → p

W also commutes with the rules Stru. Since the proof of a unit clause cannot
end with W , Π does not contain W .

Now let us show that if there is a proof of → s in J then there is a proof
of → s in I: Consider a minimal (in number of Cut1, Cut1

w, Str1
u rules) proof

Π of S → t in J . Consider a subproof Π′ of Π that uses once Cut2
w, as a last

inference rule. We show that Π′ can be rewritten into a strictly smaller proof
(w.r.t. the size). This contradicts the minimality of Π, hence this proves that
the minimal size proof does not make use of any extra rule.

First note that, according to labels inheritance, once a clause is annotated,
then the label cannot be removed completely, unless we apply Cut2

w or Cut2.
Since the leaves of Π′ are not annotated, we can write Π′ as:

...

...
π1

S1 → t
R1

...
Rn

Sn →p t
π2

S,wσ → pσ
Cut2

w
Sn, S → pσ

where R1, . . . , Rn are Cut1
w, Cut1 or Str1

u.
We argue that Π′ can be rewritten into

...

...

π1

S1 → t
π2

S,wσ → pσ
Cut2

w
S1, S → pσ

R̃1

...
R̃n

Sn, S → pσ

This proof contains a strictly less annotations. It only remains to define the
rules R̃i and check that the above proof is a valid proof in the new inference
system indeed. Let σ̄ be σ restricted to the variables of p. As the variables of
p are disjoint from those of u,w, the following R̃k rules are well defined.

4.3. MORE CLAUSES USING THE DEDUCIBILITY PREDICATE 75

If Rk =
V k

2 →p t
k V k

1 , w
′σ′ →p t

Sk →p t

We let R̃k =
V k

2 →p t
k S, V k

1 , w
′σ′σ̄ → pσ′σ̄

S, Sk → pσ′σ̄

The rule Cut1
w′ is therefore replaced with a rule Cut2

w′ .

If Rk =
V k

1 , vσ
′ →p t

V k
1 →p t

we let R̃k =
S, V k

1 , vσ
′σ̄ → pσ′σ̄

S, V k
1 → pσ′σ̄

The rule Str1
v is replaced with a rule Str2

v.

It is now enough to note that the choice of R̃k ensures that Π′ is a valid
proof in the I inference system.

The unit strategy for J consists in applying the rules only when n = 0 for
the Cuti

w rules (i.e. when the left premise of a Cuti
w is a unit clause).

Lemma 4.16. If S ⊢J→ s then → s is derivable from S in J using the unit
strategy.

Proof. Let us first sketch the proof. We prove this lemma by induction on the
proof size. We assume w.l.o.g. that all proofs of literals (whether marked or not)
labelling a node in the proof (except the root) use a unit strategy. We consider
the last step that does not comply with the unit strategy. If A1, . . . , An →?

s is its conclusion, then all atoms A1, . . . , An can be proved in J with the
unit strategy. We therefore simplify the premises accordingly, which yields an
inference rule complying with the unit strategy.

In more details, let Π be a proof of → s in J minimal in the number of non
unit cuts. Assume, by contradiction that Π uses at least one non-unit rule, for
example the following instance of Cut2

w,

R0
S →p u S′, wσ → pσ

S, S′ → pσ

then as the conclusion of Π is a unit clause, Π has a subproof of the following
form:

R0

S0 → pσ
R1

S1 → pσ

...
Rn

→ pσ

Let I = {i1, . . . , il} be the set of indices such that Si−1\Si ⊆ S. If i ∈ I and

Ri
→? t

i Si−1 → pσ

Si → pσ

76 CHAPTER 4. DECISION PROCEDURE

we let

R̃i
→? t

i S ∩ Si−1 →p u

S ∩ Si →p u

and if i ∈ I and

Ri
Si−1 → pσ

Si → pσ

we let

R̃i
Si−1 →p u

Si →p u

Then replacing the original subproof by the following one in Π yields a proof
with one less non-unit cut.

S →p u
R̃i1

. . .
R̃il

→p u S′, wσ → pσ

S′ → pσ

As previously, solving the entailment problem on ⊲ atoms is the key to
proving the more general Theorem 3.

Theorem 3. If S is a set of ground clauses built on ⊲, we can decide in PTIME
the satisfiability of S, together with T,W and finitely many clauses cs, cc, that
are built on the same pattern p.

Proof. First observe that the unit resolution strategy in 4.16 yields a PTIME
decision procedure for the problem: S ⊢J→ s. Now to solve , S ⊢J S → s
observe that it is enough to erase the elements of S in all premises of clauses in
S (yielding S ′) and check if S ′ ⊢J→s which is decidable in PTIME.

Now we only have to use the previous oracle instead of the one of lemma 4.6
in the proof of lemma 4.7 yielding our theorem.

4.3.1 Adding other predicate symbols

We now consider the case where the clauses cs, cn, cc are guarded with literals
built on a set of predicate symbols P not containing ⊲ and that are defined using
a saturated set of Horn clauses A0. For instance, cc(w) is extended to clauses
of the form P1(s1), . . . , Pn(sn), X ⊢ y, X;w ⊢ p → X ⊢ p. The variables of
s1, . . . , sn are assumed to be a subset of the variables of w, y.

We modify the rules Cuti
w adding as premises the literals P1(s1), ..., Pn(sn).

The precise formulation of these rules is presented in figure 4.4. For the rule
cutw we gather the predicates P1(s1), ..., Pn(sn) guarding the rule in the formula
Ψw(y, w). The mark inheritance is as in the previous subsection. We write ?1∧?2

as syntactic sugar for the existence of a mark p if ?1 or ?2 is a mark.
Lemma 4.15 still holds, provided we add to S finitely many ground atoms

on the new alphabet of predicates. To see this, we need to check that the proof
transformation yields the same instances of Pi(si). Lemma 4.16 is unchanged.
These properties rely on the fact that guards (and their instances) do neither

4.3. MORE CLAUSES USING THE DEDUCIBILITY PREDICATE 77

depend on the set variable X (nor its instances) nor on the instances of the
pattern.

Theorem 3 can then be extended to this case: when computing the fixed
point, the instances of applicable inference rules are known at each step and
we only have to check whether the corresponding instances of the guards are
consequences of A0 (and possibly a finite set of ground atoms), which can be
performed in PTIME, thanks to [BG01]. As a consequence, we get:

Theorem 4. Let P be a set of predicate symbols, not containing ⊲,= and A0 be
a set of Horn clauses built on P and which is saturated w.r.t. a basic ordering.
If S is a set of ground clauses built on ⊲ (possibly with guards using P), we can
decide in PTIME the satisfiability of S ∪ A0, together with T,W and finitely
many clauses cn, cs, cc, that are built on the same pattern p and which may be
guarded by atomic formulae that use the predicate symbols in P.

A0 ⊢ Ψw(x,w) A1, . . . , An →? x B1, . . . , Bm, w →? v
Cut1

w
A1, . . . , An, B1, . . . , Bm →p v

A0 ⊢ Ψw(x,w) A1, . . . , An →? x w,B1, . . . , Bm → p
Cut2

w
A1, . . . , An, B1, . . . , Bm → p

A1, . . . , An →?1 x B1, . . . , Bm, x→?2 v
Cut1

A1, . . . , An, B1, . . . , Bm →?1∧?2 v

A1, . . . , An →? x x,B1, . . . , Bm → p
Cut2

A1, . . . , An, B1, . . . , Bm → p

A0 ⊢ Ψu(u) A1, . . . , An, u→? x
Str1

u
A1, . . . , An →p x

A0 ⊢ Ψu(u) A1, . . . , An, u→? p
Str2

u
A1, . . . , An → p

Figure 4.4: Inference rules for the case with additional predicates

4.3.2 Adding equality

We can extend again Theorem 4 to ground equalities in the atomic formulae
of S. The procedure is the same as in Lemma 4.7: for a fixed E, Lemmas 4.15
and 4.16 can be extended, considering representatives modulo =E . Then we
only have to compute a fixed point of a function f on the atomic formulae of
S, using the PTIME oracles provided by (extensions of) Lemmas 4.15 and 4.16.
Note that in order to know if the Stru rule of Cutw rules can be applied, we
need to decide the following problem: given a ground term t and a linear term
u does it exist a σ such that t =E uσ.

78 CHAPTER 4. DECISION PROCEDURE

Lemma 4.17. Given a ground term t, a ground equational theory E and a
linear term u, checking the existence of σ such that t =E uσ in in PTIME.

Proof. The proof is quite similar to the proof of lemma 4.9.

1. Build a tree automaton A (of polynomial size) that recognises the set of
all v such that v =E t.

2. Build a tree automaton B (of polynomial size in |u|) that recognises the
language {uσ|σ : fv(u)→ T }.

3. Check (in polynomial time in |A|+ |B|) whether L(A) ∩ L(B) = ∅.

The only point that was not precised in the proof of lemma 4.9 is the second
step. As u is a linear term, the problem is only recognising terms the top
symbols of a term which should match the one of u. This can easily be done by
a tree automaton of size linear in |u|.

Given the previous lemma, obtaining the theorem is simply a matter of
extending the inference rules as shown in figure 4.5 for them to work up-to the
equational theory.

A0 ⊢ Ψw(x,w) A1, . . . , An →? x B1, . . . , Bm, y →? v ∃σ.y =E wσ
Cut1

w(E)
A1, . . . , An, B1, . . . , Bm →p v

A0 ⊢ Ψw(x,w) A1, . . . , An →? x w,B1, . . . , Bm → z ∃σ.y =E wσ, z =E pσ
Cut2

w(E)
A1, . . . , An, B1, . . . , Bm → z

A1, . . . , An →?1 x B1, . . . , Bm, y →?2 v x =E y
Cut1(E)

A1, . . . , An, B1, . . . , Bm →?1∧?2 v

A1, . . . , An →? x x,B1, . . . , Bm → z x =E y, ∃σ.z =E pσ
Cut2(E)

A1, . . . , An, B1, . . . , Bm → z

A0 ⊢ Ψu(u) A1, . . . , An, y →? x ∃σ.y =E uσ
Str1

u(E)
A1, . . . , An →p x

A0 ⊢ Ψu(u) A1, . . . , An, u→? z ∃σ.y =E uσ, z =E pσ
Str2

u(E)
A1, . . . , An → z

Figure 4.5: Inference rules for the case with additional predicates and equality

Theorem 5. Let P be a set of predicate symbols, not containing ⊲,= and A0 be
a set of Horn clauses built on P and which is saturated together with the theory
of equality w.r.t. a basic ordering. If S is a set of ground horn clauses built on
⊲,= (possibly with guards using P), we can decide in PTIME the satisfiability
of S ∪A0, together with T,W and finitely many clauses cn, cs, cc, that are built
on the same pattern p and which may be guarded by atomic formulae that use
the predicate symbols in P.

4.4. THE GENERAL CASE 79

4.4 The general case

Finally, we extend the results of the previous section to clauses with mono-
tone constraints (note that we do not cover arbitrary constraints).

Adding a fixed set of possible constraints increases significantly the difficulty:
Lemmas 4.15 and 4.16 no longer hold, as shown by the following example:

Example 4.18. Consider the clause cf(y,k) : X ⊲ y, X; f(y, k) ⊲ n → X ⊲
n ‖f(a, k), f(b, k), f(c, k) /∈ X. Consider the ground deducibility formulas:
S = {(f(a, k) ⊲ f(b, k), f(b, k); f(c, k) ⊲ n}. Does cf(y,k) and S entail a; c ⊲ n ?

Following the procedure of Section 4.3,

→ c

→ a f(a, k)→ f(b, k)
Cut1

f(y,k)
→p f(b, k) f(b, k); f(c, k)→ n

Cut2

f(c, k)→ n
Cut2

f(y,k)
→ n

in which each Cuti
f(y,k) satisfies the constraint that f(a, k), f(b, k), f(c, k) do not

appear in the context: the instance of X is empty in each case. The procedure
would then incorrectly answers “yes” to the entailment question.

Indeed, the proof rewriting of Lemma 4.15 yields the following (invalid)
proof, in which the constraints are not satisfied in the first application of
Cutf(x,k), since the corresponding instance of X is the one element set f(c, k):

→ c

→ a

f(a, k)→ f(b, k) f(b, k); f(c, k)→ n
Res

f(a, k); f(c, k)→ n
Cutf(x,k)

f(c, k)→ n
Cutf(x,k)

→ n

Our solution consists in designing another inference system, along the same
ideas as before, for which Lemmas 4.15 and 4.16 still hold. To do so, we mem-
orise more information in the mark (typically the constraints that need to be
satisfied) so that the matching rule (removing the mark) can be applied only if
the actual clauses would satisfy the constraints recorded in the mark.

Example 4.19. To explain the main idea, we give a simplified example of how
the new proof system works. Coming back to Example 4.18, in our system we
get:

→ a f(a, k)→ f(b, k)
Cut1

f(y,k)
→f(a,b),f(b,k),f(c,k)/∈X f(b, k)

But we cannot apply Cut2 since its application requires that the context satisfies
the constraint in the mark, which is not the case. We could apply a Cut1, without
removing the mark but then the mark could not be removed any more since the
marks can never be removed from the “pattern premise” of a Cuti

w rule.
If the clause is less constrained, for instance assume that we only impose

80 CHAPTER 4. DECISION PROCEDURE

f(b, k) /∈ X, then we can prove → n as follows:

→ c

→ a f(a, k)→ f(b, k)
Cut1

f(y,k)
→f(b,k)/∈X f(b, k) f(b, k); f(c, k)→ n

Cut2

f(c, k)→ n
Cut2

f(y,k)
→ n

This time, we may remove the mark, as the instance of X is the singleton
{f(c, k)}, that does not contain f(b, k).

We get an analogue of Lemmas 4.15 and 4.16, which yields a PTIME decision
procedure (because the number of possible marks is fixed), thus getting our main
theorem.

Theorem 6. If S is a set of ground clauses built on ⊲, we can decide in PTIME
the satisfiability of S together with T,W and finitely many constrained clauses
cs, cc built on the same pattern p, provided the constraints are monotone.

4.4.1 Proof of Theorem 6

Let us consider the constrained versions of the cuts and strengthening rules.

Cuti

X → y X ′, ui(y)→ p
Γi(X ∪X ′)

X;X ′ → p

and

Stri

X; vi → p
∆i(X)

X → p

where Γi(X∪X ′) (resp. ∆i(X)) guarding the rule Cuti (resp. Stri) means that
the rule may only be applied to S → t and S′;ui(t)σ → pσ (resp. S; viσ → pσ)
if S ∪ S′ |= Γi (resp. S |= ∆i).

In order to be able to have a unit proof strategy we need to be able to
do some cuts early, even if the constraints are not satisfied. For that purpose,
we introduce some constraint satisfaction obligations in the clauses: we consider
now labelled clauses S ∆→Γ t where ∆,Γ are finite sets of constraints. Intuitively
the ∆ mark records which constraints were satisfied at the introduction of the
mark, while the Γ mark records which constraints will have to be satisfied when
removing the mark.

Having introduced these new marks, let us generalise the Cuti and Stri:

Cut
1
i

X ∆1
→Γ1

y X ′, ui(y) ∆2
→Γ2

x
Γi(X ∪X ′), Γi ∈ ∆1, Γ1(X ′)

X,X ′
∆2
→Γ1,Γ2,Γi

x

In the previous rule, ∆1,∆2,Γ1,Γ2 are sets of constraints. By abuse of notation,
we also view a set of constraint as representing the conjunction of all constraints
in the set, thus giving a meaning to the condition Γ1(X ′). Intuitively, this rule
allows delaying application of a Cuti, checking that it could have been applied
at the introduction of the mark (Γi ∈ ∆1), and its earlier application would not
contradict other inferences made between the application of the mark and the

4.4. THE GENERAL CASE 81

current step (Γ1(X ′)). As in the previous section, we also need a way to remove
marks:

Cut
2
i

X ∆1
→Γ1

y X ′, ui(y)→ p
Γi(X ∪X ′), Γi ∈ ∆1, Γ1(X ′)

X,X ′ → p

As previously, in this rule we check that all relevant conditions are satisfied.
Moreover, the marks are removed because the clause ends with an instance of p,
therefore there is no need to rewrite the proof to obtain a valid proof. Extending
the Stri rule is simpler as we only need to record one constraint satisfaction
obligation:

Str
1
i

X, vi(y) ∆→Γ x
∆i(X)

X ∆→Γ,∆i
x

So far we have not defined any rule that introduce a mark, it is the scope of the
next rule:

Context
X → x

X ∆ → x
∆(X)

where ∆(X) will typically be the conjunction of all constraints satisfied by the
instance of X in the rule application. This rule simply record that when we
entered the marked zone, the constraint ∆ was satisfied.

Our goal is now to prove that the new rules we added do not modify the
entailment relation, as stated in the following lemma.

Lemma 4.20. The previous Cut
1
i ,Cut

2
i ,Str

1
i ,Context are sound and com-

plete with respect to Cuti,Stri and weakening.

Proof. Assume that S is a set of Horn clauses (without annotations with con-
straint sets) and that S → t is a clause, that is derivable in the inference system
that includes the new extra rules. We show below that S → t is also provable
without the extra rules.

We first note that, if one of the premises of a rule has a non-empty left or
right constraint, it is also the case of the conclusion, except for the rule Cut

2
i .

Therefore, any proof of a clause S → t that uses one of the additional rules,
must also use at least once Cut

2
i . Consider a minimal (in size) proof Π of

S → t, that might use the extra rules. Consider a subproof Π′ of Π that uses
once Cut

2
i , as a last inference rule. We show that Π′ can be rewritten into a

strictly smaller proof (w.r.t. the size). This contradicts the minimality of Π,
hence this proves that the minimal size proof does not make use of any extra
rule.

First note that, according to labels inheritance, once a clause is annotated
with sets of constraints, then the labels cannot be removed completely, unless we
apply Cut

2
i . Since the leaves of Π′ are not annotated with sets of constraints,

we can write Π′ as:

82 CHAPTER 4. DECISION PROCEDURE

...

...

π1

S1 → t
∆1

1(S1)
S1

∆→∅ t
R1

...
Rn

Sn
∆n

1
→Γn

1
t

π2

S, ui(t)→ pσ
Γi(Sn, S),Γi ∈ ∆n

1 ,Γ
n
1 (S)

Sn, S → pσ

where π1, π2 are proofs that do not use the extra rules and R1, . . . , Rn are in
Cut

1
i ,Str

1
i . In particular, Γ1

1 ⊆ . . . ⊆ Γn
1 since these two rules only increase

the right set of constraints.
We argue that Π′ can be rewritten into

...

...

π1

S1 → t
π2

S, ui(t)→ pσ
Γi(S1, S)

S1, S → pσ
R̃1

...
R̃n

Sn, S → pσ

This is a strictly smaller proof, which is what we want. It only remains to define
the rules R̃i and check that the above proof is a valid proof in the new inference
system indeed.

If

Rk =
V k

2 ∆k
2
→Γk

2
tk V k

1 , ui(tk) ∆k
1
→Γk

1
t

Sk
∆k

1 ∩∆k
2
→Γk

1 ,Γk
2 ,Γk

t
Γk(V k

1 , V
k

2), Γk ∈ ∆k
2 , Γk

2(V k
1)

we let

R̃k =
V k

2 ∆k
2
→Γk

2
tk S, V k

1 , ui(tk)→ pσ

S, Sk → pσ
Γk(S, V k

1 , V
k

2), Γk ∈ ∆k
2 , Γk

2(S, V k
1)

The rule Cut
1
i is therefore replaced with a rule Cut

2
i . The conditions are

satisfied indeed (we get a valid proof):
• Γk ∈ Γk

1 ∪ Γk
2 ∪ {Γk} = Γk+1

1 ⊆ Γn
1 and S satisfies Γn

1 , hence Γk(V k
1 , V

k
2)

→ Γk(S, V k
1 , V

k
2)

• Γk
2 ⊆ Γk+1

1 ⊆ Γn
1 , and S satisfies Γn

1 , hence Γk
2(V k

1) → Γk
2(S, V k

1)
If

Rk =
V k

1 , vi(uk) ∆k
1
→Γk

1
t

∆i(V k
1)

V k
1 ∆k

1
→Γk

1 ∪{∆i} t

we let

R̃k =
S, V k

1 , vi(uk)→ t
∆i(S, V k

1)
S, V k

1 → t

The rule Str
1
i is replaced with a rule Stri. The condition is satisfied since , as

before, ∆i ∈ Γn
1 and S satisfies Γn

1 .

4.4. THE GENERAL CASE 83

The previous rules let us have a nicer proof shape, but they are still not
sufficient to obtain completeness of a unit strategy. In order to reach this goal,
we need to extend the rules even more. We add a new mark L that, intuitively,
records a set of cuts that are done in advance. Note that remembering the
precise cut is not useful, it is enough to remember the constraints involved in
the cut. Effectively L is a multiset of facts ¬Γ → ¬∆, recording the fact that
as long as the constraint Γ is not satisfied, neither is the constraint ∆. The
idea is that we do the cut in advance ignoring the fact that the constraint Γ is
not yet satisfied, removing a literal that contradicts satisfaction of constraint ∆,
but record that this cut is not effective (at least in terms of constraints) until
the constraint Γ is satisfied. We start by extending the four previous rules with
this new marking, keeping track of the fact that the constraints in L are not
satisfied.

Cut
1
i

X ∆1
→L1

Γ1
y X ′, ui(y) ∆2

→L2

Γ2
x

X,X ′
∆2
→L1,L2

Γ1,Γ2,Γi
x

Γi(X∪X′), Γi∈∆1, Γ1(X′),
∀(¬Γ→¬∆)∈L1,L2.Γi,Γ1 6∈∆

Cut
2
i

X ∆1
→L1

Γ1
y X ′, ui(y)→L2 p

Γi(X∪X′), Γi∈∆1,Γ1(X′),
∀(¬Γ→¬∆)∈L1,L2.Γi,Γ1 6∈∆X,X ′ →L1,L2 p

Str
1
i

X, vi(y) ∆→
L1

Γ x
∆i(X), ∀(¬Γ→ ¬∆′) ∈ L1.∆i 6∈ ∆′

X ∆→
L1

Γ,∆i
x

Context
X →L x

X ∆ →
L x

∆(X), ∀(¬Γ→ ¬∆′) ∈ L.∆′ 6∈ ∆

The four previous rules do not allow us to anticipate cuts (or strengthenings),
this is the purpose of the next three rules. Note that we only give the unit
version of these rules. The three next rules allow to perform a unit cut or a
strengthening without checking that the associated constraint holds, and instead
record that the constraints contradicted by the removed literal do not hold until
the constraints necessary to actually apply the non-anticipated inference rule
are satisfied.

Cut
′
i

∆1
→L1

Γ1
y X ′, ui(y) ∆2

→L2

Γ2
x

X ′
∆2
→

L1,L2,(¬Γ1,Γi→¬∆c)
Γ2

x
Γi ∈ ∆1, ∆(ui(y))

The intuitive meaning of the new element of L here is: as long as Γ1,Γi are not
satisfied (note that these are the constraints that would be checked when apply-
ing Cut

1
i), neither are the constraints contradicted by ui(y) (the complement

of the constraints satisfied by ui(y)). We proceed similarly for the two other
rules.

Cut
′′
i

∆1
→L1

Γ1
y X ′, ui(y)→L2 p

Γi ∈ ∆1, ∆(ui(y))
X ′ →L1,L2,(¬Γ1,Γi→¬∆c) p

Str
′
i

X, vi(y) ∆→
L1

Γ x
∆(ui(y))

X ∆→
L1,(¬∆i→¬∆c)
Γ x

We are now left with the task of virtually applying the anticipated cut and
strengthenings. This is in practice only removing an element of L. In order to

84 CHAPTER 4. DECISION PROCEDURE

do so, one has to check that the corresponding constraints are satisfied, and add
the corresponding constraint satisfaction obligations.

Remove1

X ∆1
→

L,(¬Γ→¬∆)
Γ1

x

X ∆1
→L

Γ1,Γ x
Γ(X), ∀(¬Γ′ → ¬∆′) ∈ L.Γ 6∈ ∆

Remove2

X →L,(¬Γ→¬∆) p

X →L p
Γ(X), ∀(¬Γ′ → ¬∆′) ∈ L.Γ 6∈ ∆

We now have to show that adding these new rules is sound with respect to
the previous inference system.

Lemma 4.21. If S entails a (possibly annotated) clause S (∆)→(Γ) t with the

modified rules then S entails S (∆)→(Γ) t with rules Cuti,Stri,Cut
1
i ,Cut

2
i ,Str

1
i

and Context, cut and weakening.

Proof. First of all, note that if a proof Π with the new rules does not use
Cut

′
i,Cut

′′
i ,Str

′
i then for all clauses S (∆)→

L
(Γ) t in Π, L is empty. Note that

with L empty, the old and the new version of Cut
1
i ,Cut

2
i ,Str

1
i are the same

as the old ones, therefore, Π is a valid proof in the old proof system.
Let Π be a proof of S (∆)→(Γ) t. Assume that the number of rules Cut

′
i,Cut

′′
i ,Str

′
i

is minimal in Π. By contradiction assume that there is a rule Cut
′
i,Cut

′′
i ,Str

′
i

in Π. We will only treat the case of a Cut
′
i here, as this is the most involved

case. Assume that it is the following Cut
′
i rule:

R0 ∆1
→L1

Γ1
u S, ui(u) ∆2

→L2

Γ2
v

S ∆2
→

L1,L2,(¬Γ1,Γi→¬∆(ui(u))c)
Γ2

v
Γi ∈ ∆1

As the conclusion of Π is not annotated by (¬Γ1,Γi → ¬∆(ui(u))c) there is in
Π after the previous cut a Remove rule of the following form – assume that
it is a Remove1 rule (the Remove2 case is similar) – we take Rn as the first
occurrence of such a rule after R0

RnS
′

∆→
L,(¬Γ1,Γi→¬∆(ui(u))c)
Γ v′

S′
∆ →

L
Γ,Γi,Γ1

v′
Γi,Γ1(S′), ∀(¬Γ′ → ¬∆′) ∈ L.Γi,Γ1 6∈ ∆′

Let R1, . . . , Rn−1 be the path in Π from the R0 to Rn. If Rk is

Rk
Sk

1 ∆1
→

Lk
1

Γ1
uk Sk

2 , ui(uk) ∆2
→

Lk
2

Γ2
vk

Sk
1 , S

k
2 ∆2
→Lk

Γ1,Γ2,Γi
vk

Γi(Sk
1 ∪Sk

2), ′Γi∈∆1, Γ1(Sk
2),

∀(¬Γ→¬∆)∈L1,L2.Γi,Γ1 6∈∆

if Rk−1 is the left premise of Rk, we take R̃k as

R̃k
Sk

1 , ui(u) ∆1
→L̃k−1

Γ1
uk Sk

2 , ui(uk) ∆2
→

Lk
2

Γ2
vk

Sk
1 , S

k
2 ∆2
→L̃k

Γ1,Γ2,Γi
vk

Γi(Sk
1 ,Sk

2 ,u), Γi∈∆1, Γ1(Sk
2),

∀(¬Γ→¬∆)∈L1,L2.Γi,Γ1 6∈∆

With L̃k = L̃k−1, Lk
2 . As (¬Γ1,Γi → ¬∆c

ui
) is in L2 (and ∆ui

(ui(u))), we know
that Γi,Γ1 6∈ ∆c

ui
, therefore, Γi(ui(u)) holds and Γ1(ui(u)) holds, the constraints

of R̃k are satisfied.

4.4. THE GENERAL CASE 85

We make a similar transformation if Rk is any other rule, and similar ar-
guments ensures that that these transformations are correct. Note that L̃k =
Lk\({(¬Γ1,Γi → ¬∆c

ui
)} ∪ L1).

Now write:

R̃n ∆1
→L1

Γ1
u S′, ui(u) ∆2

→L̃n−1

Γ2
v′

S′
∆1∩∆2

→L1,L2

Γ1,Γ2,Γi
x

Γi(S′), Γi∈∆1, Γ1(S′),
∀(¬Γ→¬∆)∈L.Γi,Γ1 6∈∆

Let Π′ be Π in which we remove R0 and for k = 1..n we substitute R̃k

for Rk. The inference Π′ is a valid inference of S (∆)→(Γ) t, with one less
Cut

′
i,Cut

′′
i ,Str

′
i rule than Π which contradicts our hypothesis. We conclude,

that there is no Cut
′
i,Cut

′′
i ,Str

′
i in Π, therefore Π is an inference in the old

inference system.

Having now proven that the our set of rules is indeed sound, we can finally
reach the conclusion we wanted in the following lemma.

Lemma 4.22. With the previous rules, a unit saturation strategy is complete.

Proof. Let Π be a proof of → t with a minimal number of non unit rules. Let
us assume, by contradiction that Π contains at least one non unit rule, let R0

be a bottommost such rule, assume that R0 is an instance of Cut
2
i

R0
S ∆1
→L1

Γ1
u S′, ui(u)→L2 p(v)

Γi(S∪S′), Γi∈∆1, Γ1(S′),
∀(¬Γ→¬∆)∈L1,L2.Γi,Γ1 6∈∆S, S′ →L1,L2 p(v)

We know that all rules following R0 are unit rules, so there is a path in Π such
that:

R0

S0 →L1,L2 p(v)
R1

S1 →L1

p(v)

...
Rn

→Ln

p(v)

Consider the sublist (Rk1 , . . . , Rkl) of (Ri)i=1..n where Ski\Ski−1 ∈ S. Let us
define wi = Ski\Ski−1 and S̃i as S\{w1, . . . , w

i}.

Let us define inductively, for i = 1..l the rules R̃ki , R̃mki and L̃ki . L̃0 = ∅.
If

Rki ∆i
1
→

Li
1

Γi
1
vi Ski+1, uji

(vi)→Lki
p(v)

Γji
∈ ∆1

Ski+1 →Li
1,Lki ,(¬Γi

1,Γji
→¬∆(uji

(ui))c) p(v)
then

R̃mki
∆i

1
→

Li
1

Γi
1
vi S̃i, uji

(vi)→L1, ˜Lki−1 ,L̃i−1
p(v)

Γji
∈ ∆1

S̃i+1 →Li
1,L1, ˜Lki−1 ,(¬Γi

1,Γji
→¬∆(uji

(ui))c) p(v)

and L̃ki = L̃ki−1 , (¬Γi
1,Γji

→ ¬∆(uji
(ui))c) and

R̃ki

Ski\S →Lki−1,(L̃kl \ ˜Lki−1) p(v)

Ski+1\S →Lki ,(L̃kl \L̃ki) p(v)

86 CHAPTER 4. DECISION PROCEDURE

Note that R̃ki is simply the identity rule. We define R̃mki , L̃ki , R̃ki the same
way if Rki is an instance of Str

′
i

If

Rki ∆i
1
→

Li
1

Γi
1
vi Ski+1, uji

(vi)→Lki
p(v) Γji

∈∆i
1,Γi

1(Ski+1),Γi
1(Ski+1),

∀(¬Γ→¬∆)∈Li
1,Lki .Γji

,Γi
1 6∈∆Ski+1 →Li

1,Lki
p(v)

then

R̃mki
∆i

1
→

Li
1

Γi
1
vi S̃i, uji

(vi)→L1, ˜Lki−1 ,L̃i−1
p(v)

Γji
∈ ∆1

S̃i+1 →Li
1,L1, ˜Lki−1 ,(¬Γi

1,Γji
→¬∆(uji

(ui))c) p(v)

and L̃ki = L̃ki−1 , (¬Γi
1,Γji

→ ¬∆(uji
(ui))c) and

R̃ki

Ski\S →Lki−1,(L̃kl \ ˜Lki−1) p(v) Γji
(Ski \S),Γi

1((Ski \S),

∀(¬Γ→¬∆)∈Lki ,(L̃kl \L̃ki).Γji
,Γi

1 6∈∆
Ski+1\S →Lki ,(L̃kl \L̃ki) p(v)

Note that R̃ki is a valid Remove rule. We define R̃mki , L̃ki , R̃ki the same way
if Rki is an instance of Str

1
i .

If j 6∈ {k1, . . . , kl}, if ki < j < ki+1 we define R̃j as

R̃j
Sj−1\S →Lj−1,(L̃kl \L̃ki) p(v)

Rj

Sj\S →Lj ,(L̃kl \L̃ki) p(v)

Now note that

S ∆1
→L1

Γ1
u
R̃mk1

...
R̃mkl

∆1
→L1,L̃kl

Γ1
S′, ui(u)→L2 p(v)

R̃0

S0\S →L0,L̃kl p(v)
R̃1

S1\S →L1′

p(v)

...
R̃n

→Ln

p(v)

is a valid proof of →Ln

p(v) with one less non unit cut, which contradict our
hypothesis.

Let us call K the previous set of inference rules. Having proven that a unit
strategy is complete with respect to K it is only a formality to prove that as in
the previous section, the entailment problem for atoms is decidable in PTIME.

Lemma 4.23. The problem S1 → t1, . . . , Sn → tn ⊢K S → t is in PTIME

4.5. CONCLUSION 87

Proof. In S ∆→
L
Γ t it is easy to see that whether the multiplicity of x ∈ L is

2 or strictly greater than 2 is not relevant, as if x appears 2 times in L and a
Remove can be applied for x (yielding a clause C annotated with L′ with x of
multiplicity 1 in L′), then it can be applied repeatedly if x appears more than
twice in order to yield the same C.

First of all note that we know how to decide the problem S1 → t1, . . . , Sn →
tn ⊢K→ t as we can apply a unit strategy, and there are only a bounded number
of annotations the decision procedure is in PTIME.

Now in order to decide the entailment problem, let Λ be a new constraint such
that for all S, ¬Λ(S). Now for every clause in Ci = Si → ti and every constraint
Γ let SΓ

i = Si\{u ∈ S|¬Γ(u)} and CΓ
i = SΓ

i →
(¬Λ→¬Γ). We observe that

S1 → t1, . . . , Sn → tn ⊢K S → t iff there exists Γ such that S1 → t1, . . . , Sn →
tn ⊢K→

(¬Λ→¬Γ) t. Clearly if S1 → t1, . . . , Sn → tn ⊢K→
(¬Λ→¬Γ) t (i.e. Π be

a proof of →(¬Λ→¬Γ) t in K) then as the (¬Λ → ¬Γ′) annotations can never
be removed, replacing the leafs of Π that are CΓ

i by Ci = CΓ
i ∪ {u ∈ S|¬Γ(u)}

yields a proof of S′ → t with S′ ⊆ S. Conversely, if there exists a proof of
S′ → t with S′ ⊆ S with S′ ⊆ S without weakening, then one can build a proof
of →(¬Λ→¬Γ) t from the CΓ

i by backtracking the origin of the atoms in S′.

From the PTIME decidability of the entailment problem from atoms as
given in the previous lemma, we can (easily) prove our main theorem with the
same proof technique as for the simpler cases.

proof of Theorem 6. Computing the least fixed point of the function defined in
the proof of lemma 4.7 using the oracle computing whether S1⊲t1, . . . , Sn⊲tn ⊢K

S ⊲ t yields a PTIME decision procedure.

4.5 Conclusion

Beyond our tractability results, our techniques and ideas are reused in Scary

in order to design an efficient strategy. The most crucial idea that is reused is
transforming axioms into inference rules. Moreover, the techniques of comput-
ing these inference rules modulo equality caries over in Scary. During early
experiments with Scary, we discovered that non-monotone constraints were
necessary to prove some protocols. We thus lose the PTIME complexity. How-
ever, we hope that the memorisation strategies we devised here may indeed be
reused in other contexts.

88 CHAPTER 4. DECISION PROCEDURE

Chapter 5

SCARY

In this chapter we describe the Scary (Security: Computational Attacks
Reliable Yielder) tool based on the ideas of the previous chapter. The main
part of the tool consists of an implementation of (a variant) of the decision
procedure described in the previous chapter. The main difference is that we
drop the PTIME requirement because of the complexity of keeping track of the
constraints used and therefore move to an NP decision procedure. We will start
by describing the computational axioms and the signature we consider. We will
then describe the actual behaviour of the tool, starting with how we perform the
necessary operations on terms such as matching modulo an equational theory
or computing constraints, and then describe the global saturation procedure.

The aim of the tool is to decide the following problem:

Input A finite protocol P using only the functions described in the next section
and equality tests

Output If there exists an attack, the trace on which the attack is possible
together with a model of the attack. Secure otherwise.

The tool works in two phases: first compute a symbolic representation of all the
traces of P , and the corresponding sets of formulae, second check, for each set
of formulae, if it is satisfiable together with the axioms described in the next
section. Attack finding is in overall in NP (including trace guessing).

We will only describe very shortly the first phase as it is very straightforward.
However we will describe in details the second part of the tool, that take a set
of ground equalities and ⊲ atoms and returns a model if there exists one or
unsatisfiable otherwise.

5.1 Overview of the tool

Let us first present a brief overview of the inner working of the tool. The
first remark is that the decision procedure described in chapter 4 take as input
a set of clauses where our tool take as input a protocol specified in a small
concurrent calculus. Therefore, the first task of the tool is to compute all traces
of the protocol and compute the sets of clauses corresponding to each trace
together with the security property. We will not detail the algorithm used
for unravelling the traces of the protocol, however we explain the generation
of the set of formulae corresponding to a trace. This first part is done by

89

90 CHAPTER 5. SCARY

Figure 5.1: SCARY schematics

an independent module so it would be fairly easy to support various process
algebras.

Then the main task is checking the satisfiability of each set of clauses corre-
sponding to a trace together with the axioms we consider. However, as could be
seen in the previous chapter, dealing with the functionality axiom can be cum-
bersome, therefore a small preprocessing phase is necessary, in order to generate
all potentially useful instances of the functionality axiom. Another important
part of the preprocessing phase is processing the equational theory in order to
transform it into a convergent rewriting system. We also use this phase to per-
form some optimisations, breaking pairs that appear at top-level in the ⊲ atoms,
and removing some trivially deducible terms from the left hand side of ⊲ atoms.

The main part of the tool is the saturation procedure. The first difficulty
is the computations that need to be performed on terms. Namely, computing
a convergent rewriting system from the equational theory, filtering modulo this
equational theory and computing constraints. A big part of the difficulty of
computing constraints comes from the fact that we want to know if, for a set of
terms S, there exists a set of terms S′ =E S that satisfies the constraint, instead
of just checking whether S satisfies the constraint. Apart from these problems
the other difficulty is the unusual branching on equality when applying integrity
axioms.

5.2 Input syntax and trace computation

Let us start by defining the process algebra used in our input syntax. We
use here a very simple process algebra, quite close to the basic processes defined

5.2. INPUT SYNTAX AND TRACE COMPUTATION 91

in [CC08]. A process in this algebra is a finite parallel composition of sequential
processes without else branches. All nonces and secret keys are assumed to
be restricted at top-level, all names and public keys are assumed to be public.
The semantics of this process algebra is quite straightforward, there is only one
input channel, one output channel and all communications are scheduled by the
adversary. Let us give a more precise definition of this process algebra. First
the sequential processes are defined by the following grammar:

P = 0 null process
| in(x).P input
| out(t).P output
| [Ψ]P conditional if Φ then P else 0

where terms are built over the functions symmetric and asymmetric encryption,
pairing and projections and the constants nonces, names and keys (symmetric
and asymmetric). The condition Ψ is assumed to be a conjunction of equalities
between terms. Now the basic processes we consider are parallel compositions of
these sequential processes B = P‖ . . . ‖P . Note that while this process algebra
is quite minimalist, it is large enough to encode most cryptographic protocols as
else branches are mostly used in processes that should have indistinguishability
properties. Anyway, it is, in principle, quite easy to extend to procedure to
processes involving non-trivial branching. The only unusual point is that we
forbid replication of a process. However, as precised in chapter 2, this model is
only sound for finite processes, moreover we need to make a satisfiability check
for each trace, therefore we need to ensure that there are finitely many traces of
a protocol. The only security property we consider is secrecy. More precisely,
we consider security properties of the form ¬φ ⊲ s where s may be a nonce or
a secret key and φ is the frame corresponding to the trace. Again, extensions
to other reachability properties is just a matter of time; there is no obstacle in
principle.

In the input syntax of our tool we add some syntactic sugar allowing us to
define roles, and substitute terms for variables in the protocol. We will also
implicitly assume that all randomnesses used for encryptions are valid random-
nesses (according to definition 3.14). This is not a strong restriction as it only
means that the randomnesses of encryptions are only used once, which is always
the case in practice. Let us give a short example of this input syntax, it is an
encoding of the NSL protocol with one honest session and one session of the
responder communicating with the adversary.

role(Initiator):

out(aenc(pair(a,na),pkb,ra1)).in(a1).

[pi1(pi1(adec(a1,ska))) = b ; pi2(pi1(adec(a1,ska))) = na].

out(aenc(pi2(adec(a1,ska)),pkb,ra2));

role(Responder):

in(b2).[pi1(adec(b2,skb)) = a].

out(aenc(pair(pair(b,pi2(adec(b2,skb))),nb),pka,rb1));

role(Initiator)

(

a -> name(a),

na -> nonce(a),

92 CHAPTER 5. SCARY

pkb -> pk(2),

ska -> sk(1),

ra1 -> nonce(ra1),

ra2 -> nonce(ra2)

)

|| role(Responder)

(

skb -> sk(2),

a -> name(a),

nb -> nonce(b),

pka -> pk(1),

rb1 -> nonce(rb1)

)

|| role(Responder)

(

skb -> sk(2),

a -> name(i),

nb -> nonce(bi),

pka -> pk(3),

rb1 -> nonce(rb1i)

)

honest_key(1), honest_key(2) => secret(nonce(b));;

The first part defines prototypes for the roles of initiator and responder, the
second part instantiates these roles with the correct public keys and nonces,
one initiator A talking to B, and two responders B: one talking to A for the
honest session and one talking to I the attacker. The last part encodes the
security property. For simplicity reasons we classify keys between honest keys
(that have been honestly generated) and dishonest keys (that are adversarial
keys). In practice these honest keys will be treated as constants of the sort key
while dishonest keys will be considered as another sort that does not necessarily
comply to the cryptographic axioms but complies with the equational theory of
encryption. The last line of the input example simply states that if we assume
that the keys 1 and 2 are honest then nonce nb should be secret.

We will not go into the details of how we generate all traces as it is pretty
straightforward. Note that considering this process algebra, it is very easy to
compute all possible interleavings of actions. Now translating these interleaving
of actions into the model of chapter 2 is immediate. We are left with generating
the clause sets corresponding to each trace. This is done as one could expect.
The only somewhat non-trivial part is the security property. Let us consider
a trace t, it is easy to compute the frame φ corresponding to this trace, we
therefore add to the clauses set St corresponding to this trace the atom φ ⊲ s
which is the negation of the security property. We also specify in the clause set
which keys are honest. Handles are functions of the frame (as it is when they are
generated). All instances of the application of one particular handle function
are, however, equal. This allows to see handles as constants as the arguments
of the handles are irrelevant as far as equalities are concerned. Therefore, we
code handles as constants, and store the arguments of each handle using the
handle_dependency predicate. At this point our tool generates a file coding for

5.3. THE LOGIC 93

the clause set. Let us give a short example of such a file:

honest_key(2);

handle_dependency(handle(1), [aenc(nonce(2),pk(2),nonce(123))]);

(aenc(nonce(2),pk(2),nonce(123))) |- handle(1);

pi2(adec(handle(1),sk(2))) = name(3) ;

(

aenc(nonce(2),pk(2),nonce(123)) ;

aenc(pair(pair(pi1(adec(handle(1),sk(2))),nonce(3)),name(2)),pk(3),nonce(124))

) |- nonce(2);;

For simplicity reasons we do not give the full example of a trace of NSL. The
trace specified here corresponds to a trace where one honest session has been
completed. We dropped all messages from this honest session except the last
one. We want to prove secrecy of the nonce involved in this last message. More
precisely the trace is:

A → {nb}pkb

B ← {xn, I}pkb

B → {xn, n
′, B}pkI

we wish to check the secrecy of nb. Note that this is only a session of the
responder talking with an adversary that has some knowledge from a previous
session.

5.3 The logic

We mainly rely on axioms presented in chapter 3, with several variations
that are explained here.

We fix once and for all the signature of the logic as follows:
• F = {senc /3, aenc /3, sdec /2, adec /2,pair /2, π1/1, π2/1,handlei /i}
• C = {key(int),pk(int), sk(int),nonce(int),name(int), var(int)}
• P = {=,wf}

Note that this restricts the class of protocols we study to be built only on
encryptions, decryptions and pairing. It would not be difficult, however, to
extend the tool to a larger set of functions or constants. Note that the handles
are functions, but as precised in the previous section, they will be considered
as constants when computing equalities. We will call the arguments of one
particular handle function the dependencies of the handle.

Let us now describe the set of axioms A we consider. First of all we have
axioms for the equational theory of encryption and pairing, let us call this
equational theory EF :

π1(pair(x, y)) = x
π2(pair(x, y)) = y

sdec(senc(x, key(i), y), key(i)) = x
adec(aenc(x,pk(i), y), sk(i)) = y

We obviously consider the reflexivity, transitivity, monotonicity and function-
ality axioms. As we do want to derive contradictions, we need the freshness
axiom:

¬X ⊲ x ‖ fresh(x,X)

94 CHAPTER 5. SCARY

We also consider the CCA versions of the secrecy and non-malleability ax-
ioms for asymmetric encryptions. We assume therefore that our cryptographic
scheme is IND-CCA and which key concealing.

X, {x}r
pk(i) ⊲ nonce(j) → X ⊲ nonce(j) ‖ usableCCA(sk(i), (X,x))

X ⊲ y X, adec(y, sk(i)) ⊲ nonce(i) →
∨

{x}r
pk(i)

∈st(X)

y = {x}r
pk(i) ‖ C

with C the conjunction of the following constraints:
• usableCCA(sk(i), X)
• nonce(i) only appears under encryption by X usable keys

Note that the non-malleability axiom does not comply to the form of axioms
considered in chapter 4. In the decision procedure we did not consider the
branching on the equality with honest encryptions. We believe however (and
it seems to be confirmed by experimental results) that this branching does not
harm the computation time too much as the number of honest encryptions with
one given key is usually much lower than the number of terms.

For symmetric encryption we use the secrecy and the integrity axioms, which
means that one should make sure that the encryption scheme used is IND-CPA,
INT-CTXT and which-key concealing. The secrecy axiom is as before:

X, {x}r
key(i) ⊲ nonce(j) → X ⊲ nonce(j) ‖ usableCCA(key(i), (X,x))

We use a weaker form of the integrity axiom which is a logical consequence of
the axioms of chapter 3. Recall the original integrity axiom:

X ⊲ y wf(sdec(y, key(i))) →
∨

{z}r
key(i)

∈st(X)

y = {z}r
key(i) ‖ usableCCA(key(i), X)

Now, let C be a context such that if ⊥ is the public failure constant, then
computationally C[⊥] evaluates to ⊥ (i.e. ¬(wf(x)) → C[x] = ⊥ is sound).
Then the following axiom is a logical consequence of the integrity axiom:

X ⊲ y Y,C[y] ⊲ z →

Y,⊥ ⊲ z ∨
∨

{z}r
key(i)

∈st(X)

y = {z}r
key(i) ‖ usableCCA(key(i), X)

Now note that as ⊥ is a public constant, then Y,⊥⊲z ↔ Y ⊲z is computationally
sound, therefore we can use the following integrity axiom:

X ⊲ y Y,C[y] ⊲ z →

Y ⊲ z ∨
∨

{z}r
key(i)

∈st(X)

y = {z}r
key(i) ‖ usableCCA(key(i), X)

Note that we use this axiom for a fixed list of possibly useful contexts satisfying
the condition. That allows us to prove most protocols and can be easily extended
if needed. As we do not want to fix any axiom for wf, the tool does not check
whether ¬wf(x)→ ¬wf(C[x]). In practice it means that if one wants to extend
this list of contexts, he should careful to check that this property is satisfied.

5.4. COMPUTING ON TERMS 95

5.4 Computing on terms

The decision procedure relies on a few algorithms on terms, that we describe
first. They solve the following problems:

1. Given a set of ground equations E, and two ground terms u, v, do we
have u =E∪EF

v?

2. Given a ground term u and a term v(x), is there a substitution σ such
that u =E∪EF

vσ with σ satisfying some constraints?

3. Decide the constraints from chapter 3

Both computing constraints and deciding equational theories are necessary
for deciding the axioms applications. We have to be careful: we are computing
modulo =E∪EF

.
Note that instead of dealing only with a ground equational theory, we add

equations for encryptions and pairs. While this is not strictly necessary as
we could only add the necessary ground instances of this equational theory
(as mentioned in the previous chapter), it simplifies the usage of this tool.
In particular we do not have to guess which equations are necessary to prove
security and which are not.

5.4.1 Equational theory

In order to decide these three problems, we transform the equational theory
into a flat convergent rewriting system. It will be made clear later how the
flatness condition simplifies both the unification problem and the computation
of constraints satisfaction.

In order to build a flat convergent rewriting system, let us introduce new
constants C0 = {const(i)|i ∈ N} to our alphabet. These constants “do not
count” for the solutions of constraints. More precisely, we compute constraints
up to the equational theory, and when doing so we disregard any representative
of a term involving one of these new constants.

The first phase is flattening equations. More precisely, for any subterm t in
E we add an equation t = ct for a fresh ct ∈ C0. That way we may assume that
all equations in E have one of the two following forms: either f(a1, . . . , an) = b
or a1 = b with f ∈ F and a1, . . . , an, b ∈ C ∪ C0.

We may now complete the system of equations with the following algorithm.
We start by orienting all equations according to a lexicographic path ordering
with F > C0 > C thus obtaining a rewriting system that we now need to
complete, together with EF . First of all note that (modulo equalities between
constants) any superposition of a ground flat equation with an equation in EF

yields a flat ground equation. The completion algorithm computes equivalence
classes of constants as follows: as long as a fix point is not reached,

• replace every constant in E with the smallest constant in its equivalence
class
• lexicographically sort the rules that have a non-constant left hand side
• for each pair of rules with the same left hand side, either remove one of

the two if their right hand side are equal, otherwise merge the classes of
their right hand side.

This algorithm is correct as it is simply aO(n2 logn) implementation of a Knuth-
Bendix completion.

96 CHAPTER 5. SCARY

We now explain how we compute matching modulo an equational theory.
We solve the following problem: given a ground term u and a term v(x), is
there a substitution σ such that u =E∪EF

vσ with σ satisfying some constraint
C. We make the assumption that v is linear. This assumption could easily be
dropped at the cost of an increased complexity of the procedure. However, as
all instances we have to consider in our tool are linear, this restriction has not
been a limitation so far.

Input: E (ground, flat, convergent), t linear term without destructors (i.e. t
in T (F \ {adec , sdec , π1, π2}, {x1, . . . , xn})), C a constraint, u a ground
term

Output: Is there a ground substitution σ such that we have both tσ =E∪EF
u

and xiσ |= C for each xi in the domain of σ?

We solve this problem using the following algorithm: start by normalising t
and u (it preserves the existence of a solution)

1. If t is ground, check t = u

2. If t is a variable, check u |= C

3. If t = f(t1, . . . , tn), u = f(u1, . . . , un), recursively call the algorithm on
(t1, u1), ...(tn, un). If all calls succeeds then output true. This step is
correct as the term is linear, thus all calls are independent.

4. If t = f(t1, . . . , tn), and u = g(u1, . . . , um) with f 6= g, then u must
be a constant C (otherwise output false). In that case: for each rule
f(g1, . . . , gn)→ u, recursively call the algorithm on (t1, g1), . . . , (tn, gn).
Output true is for one of the rules all the calls succeed:

match(t, u) =
∨

f(g1,...,gn)→u

n∧

i=1

match(ti, gi)

Proof. The two base cases, cases 1 and 2 are clearly correct. Let us consider
case 3. If t = f(t1, . . . , tn) and u = f(t1, . . . , tn), assume tσ =E u. As u is
irreducible, we have tσ →∗

E u. As t does not contain the πi, sdec, adec symbols,
the equations of EF may not be applied to the head of the term. As the rewriting
system for E is flat, there is no rule of the form f(_, . . . ,_)→ u. We conclude
that tiσ = ui for i = 1, . . . , n.

In case 4, if u is not a constant, the considerations for the proof of case 3
ensure that there is no solution. If u is a constant and there exists a solution,
then there exists σ such that tσ →∗

E u. We therefore have one rewriting rule in
E such that f(v1, . . . , vn) →E u for some vi =E tiσ. We conclude that one of
the calls succeeds.

5.4.2 Constraints

We explain here how the satisfaction of the constraints involved in the axioms
of chapter 3 is computed. For a formal definition of these constraints see the
aforementioned chapter.

Answering the question “does t satisfy C?” for a term t and a constraint C
is quite simple. However, we have to answer the more complicated question “is
there a u =E t such that u satisfies C?” Solving this question involves searching
antecedents modulo the equational theory. Note that the constants const(_) we

5.4. COMPUTING ON TERMS 97

added at the flattening step are not part of the logic, therefore the constraints
are not defined on terms containing such constants. We then need to search for
an antecedent modulo E which does not involve constants in C0.

In the following section, given an equational theory E, as a shortcut we will
say that S1, . . . , Sn |= C(X1, . . . , Xn) if there exists S′

1 =E∪EF
S1, . . . S

′
n =E∪EF

such that S′
1, . . . , S

′
n |= C(X1, . . . , Xn).

Freshness

The freshness constraint is the simplest as there is no case disjunction on
the form of the term. Let us, in the following, assume that S is a set of ground
terms in normal form.

First of all, let us remark that S |= fresh(nonce(i), X) if for all t in S, we
have t |= fresh(nonce(i), X). Therefore solving the problem for one term is
enough. It is now sufficient to remark that nonce(i) is fresh in t if one of the
following conditions is satisfied:

1. t ∈ C with t 6= nonce(i) and t is not a handle

2. t = h with h handle and, if D are the dependencies of h, nonce(i) is fresh
in D

3. t = f(t1, . . . , tn) and nonce(i) is fresh in t1, . . . , tn

4. t ∈ C ∪ C0 and there is a rule f(t1, . . . , tn) → t in E with nonce(i) fresh
in t1, . . . , tn (if the first case does not apply).

Note that in order to force termination of this algorithm it is enough to
ensure that the same rewriting rule may not be applied indefinitely in case 4. In
order to achieve this, it is enough to make sure that we do not apply the same
rule twice when we start looking at antecedents with the equational theory.
Indeed, if a rewrite rule f(t1, . . . , tn) → t is applied once in case 4 then we
have to prove freshness of nonce(i) in t1, . . . , tn. Applying this case again with
the same rewrite rule would leave us with the task of proving that nonce(i) in
t1, . . . , tn again.

The only thing to prove for the correction of this algorithm is the fact that
we do not need to apply EF . This is clear as if n is not fresh in t, it is not
fresh either in π1(pair(t, x)). The same argument is valid for the equations of
encryption.

Key protection

We show here how to decide the key-usability constraint. As in chapter 3,
we start by computing key protection.

We will denote by maxkeyprotect(t,K) one maximal set of keys protected
by the set of keys K. More precisely, maxkeyprotect(t,K) returns a maximal
(for inclusion) element of

{
S|∀k ∈ S. protect(k,K, {t})

}

There might be several maximal elements of this set. We, however, never en-
countered such a case in the protocols we studied. In order to decide satisfaction
of the key protection constraint we would need to compute all these maximal
elements. For simplicity reasons, we settled here for an underapproximation of
this constraint choosing any maximal element.

98 CHAPTER 5. SCARY

In order to compute maxkeyprotect, we will need, as for the freshness con-
straint, to backtrack in the equational theory. The main problem here, as for
freshness, is termination, as a rule like f(c) 7→ c might be quite annoying. In
order to avoid this problem we will memoise the equations already encountered
in a list l. As every constant const(_) has an antecedent without any constants
in C0 as subterms the following algorithm is correct. We denote by K the set of
all keys. We compute maxkeyprotect recursively using the following rules:

maxkeyprotectl({m}r
k,K) =





K if k ∈ K
maxkeyprotectl(m,K) ∩maxkeyprotect(r,K) if k is a key and k 6∈ K

maxkeyprotectl(m,K) ∩maxkeyprotectl(k,K) ∩maxkeyprotect(r,K) otherwise

In the CPA case the decryption is treated as any other function, we can then
apply the following rule:

maxkeyprotectl(dec(m, k),K) = maxkeyprotectl(m,K)∩maxkeyprotectl(k,K)

In the CCA case, decrypting with a key is authorised, however we should be
careful as anything protected by the decryption key under the decryption might
be leaked. This leads to the following rule:

maxkeyprotectl(dec(m, k),K) =
{

maxkeyprotectl(m,K\k) if k is a decryption key
maxkeyprotectl(m,K ∩maxkeyprotectl(k,K)) ∩maxkeyprotectl(k,K)

Note that in the previous case, K maxkeyprotectl(k,K) should be equal to K
in all reasonable cases as K should be included in maxkeyprotect(k,K). The
rule for the pair is the one we could expect:

maxkeyprotectl(pair(u, v),K) = maxkeyprotectl(u,K) ∩maxkeyprotect(v,K)

We consider the two cases where we have to backtrack according to the equa-
tional theory:

maxkeyprotectl(key(i),K) =

max({maxkeyprotectl::(t7→key(i))(t,K)|t→ key(i) ∈ E\l} ∪ (K\ key(i)))

maxkeyprotectl(sk(i),K) =

max({maxkeyprotectl::(t7→sk(i))(t,K)|t 7→ sk(i) ∈ E\l} ∪ (K\ sk(i)))

If m is a constant in C0, we should find an antecedent that has no subterm in
C0:

maxkeyprotectl(const(i),K) =

max{maxkeyprotectl::(t7→const(i))(t,K)|t 7→ const(i) ∈ E\l}

5.5. PREPROCESSING AND OPTIMISATIONS 99

If we are computing the maximal protected key set of a handle, it is the maximal
protected set of its dependencies, or, as a handle might be the right hand side
of a rewriting rule, the maximal protected key set of its antecedents. Let us
assume that the dependency set of handle(i) is S:

maxkeyprotectl(handle(i),K) = max{
⋂

t∈S

maxkeyprotect(t,K),

maxkeyprotectl::(t7→handle(i))(t,K)|t 7→ handle(i) ∈ E\l}

If c is constant in C that is not a (private) key or a handle, it protects all keys.
This observation yields the following rule:

maxkeyprotectl(c,K) = K if c ∈ C and c is not a key

Note that, as for freshness we do not have to consider the rule of EF . Having
shown how we can compute the maximal protected key set, it is enough to
remark that a key is plaintext fresh if and only if it is protected by ∅. With this
remark we can compute the pfresh constraint for free.

Key usability

In order to compute whether a key is usable or not, let us remark key usabil-
ity is an inductive definition. A key is usable if it is protected by keys that are
themselves usable. With these remarks, we compute the maximal set of usable
keys of a set of terms S by computing the least fixed point of the following
function:

FS(K) =
⋂

t∈S

maxkeyprotect(t,K)

Computing this least fixed point terminates, as there might be only a finite
number of keys that are not protected by a given set of terms.

5.5 Preprocessing and optimisations

In this section we present some simplifications of the original problem. First
we have to get rid of the two axioms that may not be expressed as inference rules,
namely the functionality and the reflexivity axiom. Indeed, these two axioms
yield an infinite number of clauses, therefore we make sure that we include only
the potentially useful instances, of which there are only finitely many.

5.5.1 Functionality and reflexivity

Besides computing a rewriting system for the equational theory, the pre-
processing phase consists of adding the relevant instances of the functionality
axiom. In the previous chapter, we do not consider neither functionality nor
reflexivity axioms for the cases with constraints. This is because it is difficult
to design a procedure when we have both constraints and such axioms. In this
chapter, we choose another approach. We simply generate all relevant instances
of functionality axioms: they involve only subterms of the equational theory or
of the atoms. Let us state this formally:

100 CHAPTER 5. SCARY

Proposition 5.1. Let RE be a flat convergent rewriting system and S be a
set of ⊲ atoms (normalised with respect to RE). Let us call F (S,RE) the set of
instances t1, . . . , tn⊲t of Fun such that t1, . . . , tn, t are subterms of S or RE.The
following statements are equivalent:

• S,RE , EF is inconsistent with Tr,Mon, Int,nm,Sec,Fresh,Refl and
Fun

• S, F (S,RE), RE , EF is inconsistent with Tr,Mon, Int,nm,Sec,Fresh

and Refl.

Proof sketch. Let t1, . . . , tn ⊲ t be an instance of Fun that is not in F . Let us
assume that t1, . . . , tn, t are in normal form for RE , EF . If t is a subterm of
S,RE , then so are t1, . . . , tn. Indeed, only the two following cases are possible:

• t = f(t1, . . . , tn) for some f and f(t1, . . . , tn) is irreducible. As t is a
subterm of S,RE , so are t1, . . . , tn.

• There is a rule f(t1, . . . , tn) → u in RE , and we already have t1, . . . , tn
are subterms of RE .

Note that the rightmost branch of the proof is necessarily rooted in an atom
in S ∪ F , as the only way to derive a contradiction is using either the Fresh

axiom of the nm axiom with an atom that has a constant as right hand side.
It is now enough to remark that all rules have the following property: the right
hand side of the left premise is a subterm of the left hand side of the right
premise. Indeed the nm, Int or Tr rules have the following form:

t1, . . . , tn ⊲ t C[t], u1, . . . , uk ⊲ v
Ψ

A

From this consideration and the fact that all Fun instances that are not in
F have a right hand side that is not a subterm of S,RE , we can conclude using a
simple induction that all terms involved in the proof are subterms of S,RE .

Using proposition 5.1, we can compute all useful instances of the function-
ality axiom. A similar argument allows to consider only instances t ⊲ t of Refl,
such that t ∈ st(S,RE). We call R(S,RE) the instances t ⊲ t of reflexivity such
that t is a subterm of S,RE . Note that we do need the reflexivity axiom as,
for example, an equational theory stating A = n where A is a name and n is
a nonce yields a contradiction. Indeed n ⊲ n is a contradiction because A is a
representative of n and fresh(n,A).

5.5.2 Optimisations

Unlike the decision procedure presented in chapter 4, the procedure imple-
mented in this tool is not in PTIME. This is due to the fact that keeping
track of constraints as presented in the previous chapter is not really practi-
cal. Moreover, we discovered during the experimentations with Scary that the
key-usability constraint is necessary if we want to prove key-exchange protocols.
However the soundness of the algorithm presented in chapter 4 relies heavily on
the constraint being monotone. Considering that the algorithm presented here
is not, in itself, particularly efficient, we need to make sure that we simplify the
problem as much as possible.

Let us remark that adding axioms of the form ∅ ⊲ A for all names A and
∅ ⊲ pk(i) for all public keys does not change the status of the problem. Indeed,

5.6. THE DECISION PROCEDURE 101

as public keys and names do not change the satisfaction of constraints, there is
a proof of contradiction from S,E if and only if there is a proof of contradiction
from S,E where S is the set of clauses obtained from S by removing all public
keys and names from the left hand side of ⊲ predicates. Adding the aforemen-
tioned axioms allows us to simplify the left hand side of ⊲ atoms, removing the
irrelevant information.

The second optimisation we present here relies on the two following obser-
vations:

• Using the functionality axiom and the Tr rule we easily see that

pair(u, v);X ⊲ t ↔ u; v;X ⊲ t

• A constraint is satisfied by pair(u, v);S if and only if it is satisfied by
u; v;S.

With these two observations, we know that replacing in pairs by their compo-
nents in the left hand side of ⊲ atoms is a sound simplification of the problem.
This allows us to further reduce the number of terms involved in S.

5.6 The decision procedure

In the following section, we consider a set of ⊲ atoms S, an equational theory
E (that we assume flat and convergent), and a set of disequations D that are
the inputs to the decision procedure. We will also assume that all terms are
in normal form with respect to the equational theory, and all constraints and
matchings will be computed modulo E.

As in the previous chapter, we see the axioms as inference rules. Let us give
the inference rules for the cryptographic axioms. We start by giving the rule
for the two versions of the secrecy axiom:

X, {x}r
key(i) ⊲ nonce(j)

usableCCA(key(i), (X,x)), fresh(r, (X,x))
X ⊲ nonce(j)

X, {x}r
pk(i) ⊲ nonce(j)

usableCCA(sk(i), (X,x)), fresh(r, (X,x))
X ⊲ nonce(j)

Given a ⊲ atom S, u ⊲ t and a key k, deciding whether this rule is applicable
amounts only to

• check whether t is a nonce or not: it is enough to choose and ordering
in which nonces are minimal to ensure that t is a nonce if and only if its
normal form is a nonce.
• check whether u can be matched by {x}y

k with the constraint usable(k, (S;x))
Let us now give the rules for integrity and non-malleability:

X ⊲ y X ′, adec(y, sk) ⊲ n
C∨

{x}r
pk

∈st(X)

y = {x}r
pk

with C the conjunction of the following constraints:
• usableCCA(sk,X)
• n only appears under encryption by X usable keys

102 CHAPTER 5. SCARY

Again, given two premises of this rule it is easy to check whether they match the
rule and compute the conclusion. The rule for non malleability is very similar:

X ⊲ y Y,C[y] ⊲ z
usableCCA(key(i), X)

Y ⊲ z ∨
∨

{z}r
key(i)

∈st(X)

y = {z}r
key(i)

Now, let us go into the decision procedure in itself. First of all, we need to
get rid of the functionality and transitivity rules. This is done thanks to the
preprocessing phase. We start by rephrasing the problem of deciding whether
S, E, D is consistent with A. Let us assume that S contains F (S,RE) and
R(S,RE). Thanks to proposition 5.1, the problem is equivalent to the existence
of S ′, E′, D′ such that

• S ⊆ S ′, E ⊆ E′, D ⊆ D′

• S ′, E′, D′ is invariant under application of the rules for transitivity,
secrecy, non-malleability and integrity.

• S ′ does not contain any S⊲t that satisfies the premises from the freshness
rule

• for all u 6= t in D′, we have ¬(u =E′ t)
In order to check whether such a S ′, E′, D′ exists, we complete a two steps

saturation procedure. We start by saturating with the secrecy and transitivity
axiom,

• for S ⊲ t atom in S, we add to S all possible consequences of the secrecy
axiom with premise S ⊲ t

• for every S1 ⊲ t1 and S2 ⊲ t2 in S we add S1; (S2\t1) ⊲ t2 to S (i.e. we
apply the transitivity rule)

For this first part, the equations and disequations are unchanged. Assuming
the problem is saturated with the first part of the algorithm, we saturate with
the non-malleability and unforgeability rules:

• let S1 ⊲ t1 and S2 ⊲ t2 be in S. If the non-malleability rule applies, let L
be the list of equations that conclude the rule. If there exists an equation
e in L such that e is a consequence of E, proceed to the following pair of
atoms in S. Otherwise for each equation e1 = e2 in L:
− if E ∪ (e1 = e2) is compatible with D, try to run the saturation with
S, E ∪ (e1 = e2), D. If it returns a model, then return this model and
escape the main procedure. Otherwise add e1 6= e2 to D

− otherwise add e1 6= e2 to D
if no model has been found, then S, E,D is inconsistent with the axioms,
return unsatisfiable.

• let S1 ⊲ t1 and S2 ⊲ t2 be in S. If the non-malleability rule applies, let L
be the list of equations that conclude the rule and S ⊲ t be the ⊲ atom
that concludes the rule. If there exists an equation e in L such that e is
a consequence of E, proceed to the following pair of atoms. Otherwise
for each equation e1 = e2 in L:
− if E ∪ (e1 = e2) is compatible with D try to run the saturation with
S, E ∪ (e1 = e2), D. If it return a model, then return this model and
escape the main procedure. Otherwise add e1 6= e2 to D

− otherwise add e1 6= e2 to D
if no model has been found, then add S ⊲ t to S

5.7. EXPERIMENTAL RESULTS 103

Note that this saturation procedure terminates since there is a bound on the
number of equations and a bound on the number of clauses that can be added.
Indeed all terms are subterms of the original S or E.

5.7 Experimental results

The first benchmark is the NSL protocol. We found automatically the attack
presented in [BAS12]. This attack on one honest session plus one session with
the attacker relies on an unusual identity. It works when the second projection of
a nonce n may be equal to the name of the intruder I. If we add the disequation
π2(n) 6= I, then NSL (when limited to two sessions) is proved secure with our
tool. A simplification of this trace is the one presented in section 5.2.

A → {nb}pkb

B ← {xn, I}pkb

B → {xn, n
′, B}pkI

A maybe more interesting point is the way we recover the actual attack from
the model. Let us give an excerpt of the output of Scary on this trace:

constant(0) = nonce(2)

pi2(nonce(2)) = name(3)

adec(handle(1),sk(2)) = nonce(2)

aenc(nonce(2),pk(2),nonce(123)) = handle(1)

From this, we clearly see that in the model found there is the equations π2(nb) =
I. We also see that the received message represented by handle(1) is indeed a
replay of the first message. With this observation, we can check that this is an
actual attack on the protocol. Indeed, if the equation π2(nB) = I, forwarding
the first message to B yields an attack.

We also tested our tool on various protocols (Wide Mouth Frog, BAN-
Yahalom, Andrew Secure RPC, NSL, Woo and Lam Pi, . . .) involving only
asymmetric encryption, which were proven secure (not finding new attacks).

The second experimental result, is that we discovered that the plaintext
freshness that was used in the original secrecy and integrity axioms were not
permissive enough to prove most symmetric protocols, as keys are sent around.
Typically the problem was that we want to use the integrity rule on S ⊲ t and
S′,dec(t, k) ⊲ n but, as t is not a nonce, we can not remove the encrypted
instances of k from S. We also modified the original integrity rule that was

X ⊲ x Y,dec(x, k) ⊲ n
C

X, Y ⊲ n ∨
∨

{z}r
k

∈st(X)

y = {z}r
k

by adding a context on top of dec(x, k) as we want to apply integrity even for
terms that may not be at top level and removing the Y in the conclusion.

104 CHAPTER 5. SCARY

The third experimental result is an attack we discovered on Andrew’s secure
RPC, when the shared key is used to encrypt a secret. Recall the protocol:

A → B : A, {Na}Kab

B → A : {succ(Na), Nb}Kab

A → B : {succ(Nb)}Kab

B → A : {K ′
ab, N

′
b}Kab

A → B : {s}K′ab

As we do not have a successor function, we encoded succ(x) as pair(x, x). The
attack relies on the fact that we may force an honest agent to encrypt a mes-
sage with the second projection of a nonce (for example). As the last message
containing the key is not related in any way with the rest of the session, the
adversary can replay the first message sent out by A, thus obtaining the en-
cryption of the secret with the first projection of a nonce, which might not be
secure. Such an attack is not found by classical symbolic protocol analysis.

5.8 Further work

Scary is still a work in progress. As the example of Andrew’s secure RPC
shows, it would be interesting to add free functions to our input syntax, in
order to model primitives like the successor function. Moreover, it would also
be interesting to add support for equational theories for these functions. Remark
that the algorithm we presented in section 5.4 could be extended to a larger class
of equational theories.

Adding new primitives and new axioms may yield significant modifications
of the strategies, in order to keep a reasonable efficiency. Though, as soon as the
axioms are proven sound, there is no obstacle to such extensions. For instance,
adding signatures should be easy.

Another important extension would be adding support for more properties
than simple secrecy. For example it is not difficult to add agreement properties.
This would not modify the core decision procedure on clauses. It would only
involve extending the module of the tool that generates clauses from a protocol.

Chapter 6

Conclusion

In this thesis we showed that the Computationally Complete Symbolic At-
tacker framework can be automated. Our first contribution is giving a simple
formulation of the computational semantics of first order logic, based on ideas
from Bana and Okada. This simpler formulation yields simpler soundness proofs
for the axioms. These proofs are also easier to check. We also provided, in chap-
ter 3, axioms that are strong enough to prove secure most protocols involving
symmetric and asymmetric encryption. These axioms are more general than the
ones presented in [BC12]. This generalisation is crucial for proving protocols
involving symmetric encryption in a non-trivial way. We also fixed a gap in the
proofs of the secrecy axiom. We therefore demonstrated that this model can be
made powerful enough to actually prove protocols secure. We should also note
that, compared to usual computational soundness proofs, the soundness proofs
of the axioms are much simpler.

In a second part in Chapters 4 and 5, we showed that it is theoretically and
practically feasible to automate this model. The PTIME decision procedure
proposed in chapter 4 shows that the first order satisfiability problems involved
in proving security with respect to the Computationally Complete Symbolic
Attacker are far from untractable if the axioms reflect either a secrecy property
or an integrity property. Our tool Scary provides with an implementation of (a
variant of) this decision procedure. While we loose the PTIME complexity in
this tool, we showed that it is still efficient enough to prove actual cryptographic
protocols. In addition we also found a new attack on the protocol Andrew’s
Secure RPC, and hope to find more attacks using this tool in the future.

Having demonstrated that this model is powerful enough to prove protocols
with very accurate assumptions and that it also is automatable leads us to
various lines of research.

6.1 Extend the model and tool

In this thesis we only considered two cryptographic primitives: symmetric
and asymmetric encryption. Having shown that this model leads to interesting
results with only these two primitives leads us to think that it would be feasible
and beneficial to extend it to other primitives. Extending the model to other
primitives would involve both finding relevant computationally sound axioms

105

106 CHAPTER 6. CONCLUSION

for these primitives and extending the decision procedure and the tool to cope
with such axioms.

The most widely used cryptographic primitive, besides encryption is signa-
ture. As signature ensures integrity, devising sound axioms for it and adding
it to Scary would be reasonably simple. Blind signature and homomorphic
encryption are two primitives that are usually hard to deal with in the symbolic
model. This is due to the fact that their equational theories are much more com-
plicated than the equational theory of encryption. However, the cryptographic
properties of these primitives are secrecy and integrity properties. Considering
that in the Computationally Complete Symbolic Attacker framework we may
add only the part of the equational theory that is relevant to the protocol proof,
we would not get the difficulties of other tools. Therefore it is also reasonable to
think that these primitives might be added to our model at a relatively low cost,
both in terms of proofs and of complexity of the decision procedure. Moreover,
this approach of adding only the necessary properties could let us cope with
XOR and overcome Backes and Pfitzmann’s impossibility result[BP05].

For other primitives like hash functions or zero-knowledge proofs, the task is
more complicated. However the model is permissive enough to allow us hope in
modelling these primitives. The hard part would be to extend the decision pro-
cedure to cope with such axioms. There is nonetheless hope that our approach
consisting of transforming axioms into inference rules would allow us to obtain
a decision procedure for such axioms.

6.2 Equivalence properties

A similar model has been introduced very recently in [BCL14], for equiv-
alence properties. The predicate symbol ⊲ is replaced there with an indistin-
guishability predicate. It remains however, for this logic, to design a library of
sound axioms (as we did in chapter 3) and to design and implement a verification
tool.

6.3 Compositionality

Another open question is the question of composition of protocols. If a
protocol P involves a key-exchange, it is reasonable to see the key exchange
protocol as a subroutine of the protocol. We would like to perform a proof of P
that does not rely on the particular key exchange used in the protocol but on
the fundamental properties that a key exchange should satisfy.

Note that the computational semantics of the Computationally Complete
Symbolic Attacker allows us to model the attacker’s power as we wish. There-
fore, we could consider doing a proof of P (without the key exchange) against an
attacker that has access to the key exchange protocol satisfying some property
Ψ as an oracle. The proof of P would then hold for any key exchange satisfying
this property Ψ. In other terms we would have to prove that:

• the key exchange K satisfies Ψ (with a PPT attacker)
• the protocol P satisfies the security property with an attacker accessing

an oracle for the key exchange

6.4. OTHER ATTACKER MODELS 107

in order to get the security of P (K) against a PPT attacker. This idea is quite
similar to the key usability notion proposed in [DDMW06].

6.4 Other attacker models

One consequence of the freedom that the Computationally Complete Sym-
bolic attacker leaves for specifying the attacker’s power is that it would not be
too hard to consider more powerful attackers. More precisely one could con-
sider attacker having access to side channels, for example timing channels or
power consumption channels. Modelling such side channels would involve some
changes in the model as these side channels depend on the run of the protocol
and not only on the messages that are sent out. However, extending the ob-
servations of the attacker to the tests performed during a run of the protocol
leaves some hope of extending the model to an attacker that has access to side
channels.

In a broader perspective, we believe that ideas from the Computationally
complete symbolic attacker could be used for proving security in much more
diverse context. For example security against fault injection attacks. Indeed
the approach of specifying the minimal properties that an attacker may not
break, and trying to prove that these are inconsistent with the negation of
the security property is quite general. Moreover, the computational semantics
presented in chapter 2 could easily be extended for various attacker models.

108 CHAPTER 6. CONCLUSION

Bibliography

[ABB+05] Alessandro Armando, David A. Basin, Yohan Boichut, Yannick
Chevalier, Luca Compagna, Jorge Cuéllar, Paul Hankes Drielsma,
Pierre-Cyrille Héam, Olga Kouchnarenko, Jacopo Mantovani, Se-
bastian Mödersheim, David von Oheimb, Michaël Rusinowitch,
Judson Santiago, Mathieu Turuani, Luca Viganò, and Laurent Vi-
gneron. The AVISPA tool for the automated validation of internet
security protocols and applications. In Kousha Etessami and Sri-
ram K. Rajamani, editors, Computer Aided Verification, 17th In-
ternational Conference, CAV 2005, Edinburgh, Scotland, UK, July
6-10, 2005, Proceedings, pages 281–285. Springer, 2005.

[ACC+08] Alessandro Armando, Roberto Carbone, Luca Compagna, Jorge
Cuéllar, and M. Llanos Tobarra. Formal analysis of SAML 2.0
web browser single sign-on: breaking the saml-based single sign-on
for google apps. In Vitaly Shmatikov, editor, Proceedings of the
6th ACM Workshop on Formal Methods in Security Engineering,
FMSE 2008, Alexandria, VA, USA, October 27, 2008, pages 1–10.
ACM, 2008.

[AF01] Martín Abadi and Cédric Fournet. Mobile values, new names, and
secure communication. In Chris Hankin and Dave Schmidt, edi-
tors, Conference Record of POPL 2001: The 28th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages,
London, UK, January 17-19, 2001, pages 104–115. ACM, 2001.

[AG99] Martín Abadi and Andrew D. Gordon. A calculus for cryptographic
protocols: The spi calculus. Inf. Comput., 148(1):1–70, 1999.

[AR02] Martín Abadi and Phillip Rogaway. Reconciling two views of cryp-
tography (the computational soundness of formal encryption). J.
Cryptology, 15(2):103–127, 2002.

[BAS12] Gergei Bana, Pedro Adão, and Hideki Sakurada. Computation-
ally complete symbolic attacker in action. In Deepak D’Souza,
Telikepalli Kavitha, and Jaikumar Radhakrishnan, editors, IARCS
Annual Conference on Foundations of Software Technology and
Theoretical Computer Science, FSTTCS 2012, December 15-17,
2012, Hyderabad, India, pages 546–560. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2012.

[BC12] Gergei Bana and Hubert Comon-Lundh. Towards unconditional
soundness: Computationally complete symbolic attacker. In Pier-
paolo Degano and Joshua D. Guttman, editors, Principles of Secu-

109

110 BIBLIOGRAPHY

rity and Trust - First International Conference, POST 2012, Held
as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2012, Tallinn, Estonia, March 24 - April 1,
2012, Proceedings, pages 189–208. Springer, 2012.

[BCL14] Gergei Bana and Hubert Comon-Lundh. A computationally com-
plete symbolic attacker for equivalence properties. In Proc. ACM
Conference on Computers and Communications Security, 2014.

[BCW13] Florian Böhl, Véronique Cortier, and Bogdan Warinschi. Deduction
soundness: prove one, get five for free. In Ahmad-Reza Sadeghi,
Virgil D. Gligor, and Moti Yung, editors, 2013 ACM SIGSAC
Conference on Computer and Communications Security, CCS’13,
Berlin, Germany, November 4-8, 2013, pages 1261–1272. ACM,
2013.

[BFCZ12] Karthikeyan Bhargavan, Cédric Fournet, Ricardo Corin, and Eugen
Zalinescu. Verified cryptographic implementations for TLS. ACM
Trans. Inf. Syst. Secur., 15(1):3, 2012.

[BG01] David A. Basin and Harald Ganzinger. Automated complexity
analysis based on ordered resolution. J. ACM, 48(1):70–109, 2001.

[BGHB11] Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and Santi-
ago Zanella Béguelin. Computer-aided security proofs for the work-
ing cryptographer. In Phillip Rogaway, editor, Advances in Cryptol-
ogy - CRYPTO 2011 - 31st Annual Cryptology Conference, Santa
Barbara, CA, USA, August 14-18, 2011. Proceedings, pages 71–90.
Springer, 2011.

[BGLB11] Gilles Barthe, Benjamin Grégoire, Yassine Lakhnech, and Santi-
ago Zanella Béguelin. Beyond provable security verifiable IND-
CCA security of OAEP. In Aggelos Kiayias, editor, Topics in
Cryptology - CT-RSA 2011 - The Cryptographers’ Track at the
RSA Conference 2011, San Francisco, CA, USA, February 14-18,
2011. Proceedings, pages 180–196. Springer, 2011.

[BHO13] Gergei Bana, Koji Hasebe, and Mitsuhiro Okada. Computation-
ally complete symbolic attacker and key exchange. In Ahmad-
Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, 2013 ACM
SIGSAC Conference on Computer and Communications Security,
CCS’13, Berlin, Germany, November 4-8, 2013, pages 1231–1246.
ACM, 2013.

[BKY01] Enrico Buonanno, Jonathan Katz, and Moti Yung. Incremental
unforgeable encryption. In Mitsuru Matsui, editor, Fast Software
Encryption, 8th International Workshop, FSE 2001 Yokohama,
Japan, April 2-4, 2001, Revised Papers, volume 2355 of Lecture
Notes in Computer Science, pages 109–124. Springer, 2001.

[Bla01] Bruno Blanchet. An efficient cryptographic protocol verifier based
on Prolog rules. In 14th IEEE Computer Security Foundations
Workshop (CSFW-14 2001), 11-13 June 2001, Cape Breton, Nova
Scotia, Canada, pages 82–96. IEEE Computer Society, 2001.

[Bla06] Bruno Blanchet. A computationally sound mechanized prover for
security protocols. In 2006 IEEE Symposium on Security and Pri-

BIBLIOGRAPHY 111

vacy (S&P 2006), 21-24 May 2006, Berkeley, California, USA,
pages 140–154. IEEE Computer Society, 2006.

[BMU12] Michael Backes, Ankit Malik, and Dominique Unruh. Computa-
tional soundness without protocol restrictions. In Ting Yu, George
Danezis, and Virgil D. Gligor, editors, the ACM Conference on
Computer and Communications Security, CCS’12, Raleigh, NC,
USA, October 16-18, 2012, pages 699–711. ACM, 2012.

[BN08] Mihir Bellare and Chanathip Namprempre. Authenticated encryp-
tion: Relations among notions and analysis of the generic compo-
sition paradigm. J. Cryptology, 21(4):469–491, 2008.

[BP04] Michael Backes and Birgit Pfitzmann. Symmetric encryption in a
simulatable Dolev-Yao style cryptographic library. In 17th IEEE
Computer Security Foundations Workshop, (CSFW-17 2004), 28-
30 June 2004, Pacific Grove, CA, USA, pages 204–218. IEEE Com-
puter Society, 2004.

[BP05] M. Backes and B. Pfitzmann. Limits of the cryptographic realiza-
tion of Dolev-Yao style XOR. In Proc. 10th European Symposium
on Research in Computer Security (ESORICS), 2005.

[BR94] Mihir Bellare and Phillip Rogaway. Optimal asymmetric encryp-
tion. In Alfredo De Santis, editor, Advances in Cryptology - EU-
ROCRYPT ’94, Workshop on the Theory and Application of Cryp-
tographic Techniques, Perugia, Italy, May 9-12, 1994, Proceedings,
pages 92–111. Springer, 1994.

[BRS02] John Black, Phillip Rogaway, and Thomas Shrimpton. Encryption-
scheme security in the presence of key-dependent messages. In
Kaisa Nyberg and Howard M. Heys, editors, Selected Areas in
Cryptography, 9th Annual International Workshop, SAC 2002, St.
John’s, Newfoundland, Canada, August 15-16, 2002. Revised Pa-
pers, volume 2595 of Lecture Notes in Computer Science, pages
62–75. Springer, 2002.

[CC08] Hubert Comon-Lundh and Véronique Cortier. Computational
soundness of observational equivalence. In Peng Ning, Paul F.
Syverson, and Somesh Jha, editors, Proceedings of the 2008 ACM
Conference on Computer and Communications Security, CCS
2008, Alexandria, Virginia, USA, October 27-31, 2008, pages 109–
118. ACM, 2008.

[CCD10] Vincent Cheval, Hubert Comon-Lundh, and Stéphanie Delaune.
Automating security analysis: Symbolic equivalence of constraint
systems. In Jürgen Giesl and Reiner Hähnle, editors, Automated
Reasoning, 5th International Joint Conference, IJCAR 2010, Edin-
burgh, UK, July 16-19, 2010. Proceedings, pages 412–426. Springer,
2010.

[CCS12] Hubert Comon-Lundh, Véronique Cortier, and Guillaume Scerri.
Security proof with dishonest keys. In Pierpaolo Degano and
Joshua D. Guttman, editors, Principles of Security and Trust -
First International Conference, POST 2012, Held as Part of the
European Joint Conferences on Theory and Practice of Software,

112 BIBLIOGRAPHY

ETAPS 2012, Tallinn, Estonia, March 24 - April 1, 2012, Proceed-
ings, pages 149–168. Springer, 2012.

[CHKS12] Hubert Comon-Lundh, Masami Hagiya, Yusuke Kawamoto, and
Hideki Sakurada. Computational soundness of indistinguishability
properties without computable parsing. In Mark Dermot Ryan,
Ben Smyth, and Guilin Wang, editors, Information Security Prac-
tice and Experience - 8th International Conference, ISPEC 2012,
Hangzhou, China, April 9-12, 2012. Proceedings, pages 63–79.
Springer, 2012.

[Cre08] Cas J. F. Cremers. The scyther tool: Verification, falsification, and
analysis of security protocols. In Aarti Gupta and Sharad Malik,
editors, Computer Aided Verification, 20th International Confer-
ence, CAV 2008, Princeton, NJ, USA, July 7-14, 2008, Proceed-
ings, pages 414–418. Springer, 2008.

[CT97] Hubert Comon and Ralf Treinen. The first-order theory of lex-
icographic path orderings is undecidable. Theor. Comput. Sci.,
176(1-2):67–87, 1997.

[DDM+05] Anupam Datta, Ante Derek, John C. Mitchell, Vitaly Shmatikov,
and Mathieu Turuani. Probabilistic polynomial-time semantics for
a protocol security logic. In Luís Caires, Giuseppe F. Italiano,
Luís Monteiro, Catuscia Palamidessi, and Moti Yung, editors, Au-
tomata, Languages and Programming, 32nd International Collo-
quium, ICALP 2005, Lisbon, Portugal, July 11-15, 2005, Proceed-
ings, pages 16–29. Springer, 2005.

[DDMW06] Anupam Datta, Ante Derek, John C. Mitchell, and Bogdan Warin-
schi. Computationally sound compositional logic for key exchange
protocols. In 19th IEEE Computer Security Foundations Work-
shop, (CSFW-19 2006), 5-7 July 2006, Venice, Italy, pages 321–
334. IEEE Computer Society, 2006.

[DY83] Danny Dolev and Andrew C. Yao. On the security of public key
protocols. IEEE Transactions on information theory, 29(2):198–
208, 1983.

[Fit70] Melvin Fitting. An embedding of classical logic in S4. J. Symb.
Log., 35(4):529–534, 1970.

[FKS11] Cédric Fournet, Markulf Kohlweiss, and Pierre-Yves Strub. Mod-
ular code-based cryptographic verification. In Yan Chen, George
Danezis, and Vitaly Shmatikov, editors, Proceedings of the 18th
ACM Conference on Computer and Communications Security,
CCS 2011, Chicago, Illinois, USA, October 17-21, 2011, pages 341–
350. ACM, 2011.

[FOPS04] Eiichiro Fujisaki, Tatsuaki Okamoto, David Pointcheval, and
Jacques Stern. RSA-OAEP is secure under the RSA assumption.
J. Cryptology, 17(2):81–104, 2004.

[Gam85] Taher El Gamal. A public key cryptosystem and a signature scheme
based on discrete logarithms. IEEE Transactions on Information
Theory, 31(4):469–472, 1985.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J.
Comput. Syst. Sci., 28(2):270–299, 1984.

BIBLIOGRAPHY 113

[HMA+08] Naofumi Homma, Atsushi Miyamoto, Takafumi Aoki, Akashi
Satoh, and Adi Shamir. Collision-based power analysis of modular
exponentiation using chosen-message pairs. In Elisabeth Oswald
and Pankaj Rohatgi, editors, Cryptographic Hardware and Embed-
ded Systems - CHES 2008, 10th International Workshop, Wash-
ington, D.C., USA, August 10-13, 2008. Proceedings, pages 15–29.
Springer, 2008.

[Koc96] Paul C. Kocher. Timing attacks on implementations of diffie-
hellman, rsa, dss, and other systems. In Neal Koblitz, editor, Ad-
vances in Cryptology - CRYPTO ’96, 16th Annual International
Cryptology Conference, Santa Barbara, California, USA, August
18-22, 1996, Proceedings, pages 104–113. Springer, 1996.

[KR05] Steve Kremer and Mark Ryan. Analysis of an electronic voting
protocol in the applied pi calculus. In Shmuel Sagiv, editor, Pro-
gramming Languages and Systems, 14th European Symposium on
Programming,ESOP 2005, Held as Part of the Joint European Con-
ferences on Theory and Practice of Software, ETAPS 2005, Edin-
burgh, UK, April 4-8, 2005, Proceedings, pages 186–200. Springer,
2005.

[Low95] Gavin Lowe. An attack on the Needham-Schroeder public-key au-
thentication protocol. Inf. Process. Lett., 56(3):131–133, 1995.

[McA93] David A. McAllester. Automatic recognition of tractability in in-
ference relations. J. ACM, 40(2):284–303, 1993.

[MW04] Daniele Micciancio and Bogdan Warinschi. Completeness theorems
for the Abadi-Rogaway language of encrypted expressions. Journal
of Computer Security, 12(1):99–130, 2004.

[NR01] Robert Nieuwenhuis and Albert Rubio. Paramodulation-based the-
orem proving. In John Alan Robinson and Andrei Voronkov, ed-
itors, Handbook of Automated Reasoning (in 2 volumes). Elsevier
and MIT Press, 2001.

[NS78] Roger M. Needham and Michael D. Schroeder. Using encryption
for authentication in large networks of computers. Commun. ACM,
21(12):993–999, 1978.

[Poi05] David Pointcheval. Advanced Course on Contemporary Cryptology,
chapter “Provable Security for Public-Key Schemes”, pages 133–
189. Advanced Courses CRM Barcelona. Birkhäuser Publishers,
Basel, 2005.

[RDM07] Arnab Roy, Anupam Datta, and John C. Mitchell. Formal proofs of
cryptographic security of diffie-hellman-based protocols. In Gilles
Barthe and Cédric Fournet, editors, Trustworthy Global Com-
puting, Third Symposium, TGC 2007, Sophia-Antipolis, France,
November 5-6, 2007, Revised Selected Papers, pages 312–329.
Springer, 2007.

[RS91] Charles Rackoff and Daniel R. Simon. Non-interactive zero-
knowledge proof of knowledge and chosen ciphertext attack. In
Joan Feigenbaum, editor, Advances in Cryptology - CRYPTO ’91,
11th Annual International Cryptology Conference, Santa Barbara,

114 BIBLIOGRAPHY

California, USA, August 11-15, 1991, Proceedings, volume 576 of
Lecture Notes in Computer Science, pages 433–444. Springer, 1991.

[Sat89] Mahadev Satyanarayanan. Integrating security in a large dis-
tributed system. ACM Trans. Comput. Syst., 7(3):247–280, 1989.

[Sho02] Victor Shoup. OAEP reconsidered. J. Cryptology, 15(4):223–249,
2002.

[Sin99] Simon Singh. The Code Book: The Evolution of Secrecy from Mary,
Queen of Scots, to Quantum Cryptography. Doubleday, New York,
NY, USA, 1st edition, 1999.

[SPO14] Spore — security protocols open repository.
http://www.lsv.ens-cachan.fr/Software/spore/index.html,
2014. [Online; accessed 8-October-2014].

[THG99] F. Javier Thayer, Jonathan C. Herzog, and Joshua D. Guttman.
Strand spaces: Proving security protocols correct. Journal of Com-
puter Security, 7(1):191–230, 1999.

[War03] Bogdan Warinschi. A computational analysis of the Needham-
Schröeder-(Lowe) protocol. In 16th IEEE Computer Security Foun-
dations Workshop (CSFW-16 2003), 30 June - 2 July 2003, Pacific
Grove, CA, USA, page 248. IEEE Computer Society, 2003.

[wik14] Cryptanalysis of the enigma — wikipedia, the free encyclopedia.
http://en.wikipedia.org/w/index.php?title=Cryptanalysis_of_the_Enigma,
2014. [Online; accessed 8-October-2014].

	Introduction
	Some context
	State of the art
	The symbolic models
	The computational model

	Comparison and critic of existing models
	Symbolic models vs. computational model
	Computational soundness
	The computationally complete symbolic attacker
	Other symbolic models for a computational attacker

	Our contribution

	Formal setting
	First order semantics
	Constraints
	Semantics

	Kripke semantics
	Samplings, functions and constants

	The execution model
	Conclusion

	Axioms and soundness proofs
	Core axioms
	Reflexivity, transitivity and monotonicity
	Functionality
	Freshness

	Cryptographic axioms
	Cryptographic properties
	Syntactic constraints for key usability
	Simple secrecy axiom(s)
	Key usability and full secrecy axioms
	Integrity and non-malleability axiom(s)

	Conclusion

	Decision procedure
	Overview of the results and proofs
	Tractability of deducibility axioms
	Adding equality
	Adding a function axiom

	More clauses using the deducibility predicate
	Adding other predicate symbols
	Adding equality

	The general case
	Proof of Theorem 6

	Conclusion

	SCARY
	Overview of the tool
	Input syntax and trace computation
	The logic
	Computing on terms
	Equational theory
	Constraints

	Preprocessing and optimisations
	Functionality and reflexivity
	Optimisations

	The decision procedure
	Experimental results
	Further work

	Conclusion
	Extend the model and tool
	Equivalence properties
	Compositionality
	Other attacker models

	Bibliography

