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ABSTRACT Interpretation of the reasoning process of a prediction made by a deep learning model is always

desired. However, when it comes to the predictions of a deep learning model that directly impacts on the

lives of people then the interpretation becomes a necessity. In this paper, we introduce a deep learning

model: negative-positive prototypical part network (NP-ProtoPNet). This model attempts to imitate human

reasoning for image recognition while comparing the parts of a test image with the corresponding parts of

the images from known classes. We demonstrate our model on the dataset of chest X -ray images of Covid-

19 patients, pneumonia patients and normal people. The accuracy and precision that our model receives is

on par with the best performing non-interpretable deep learning models.

INDEX TERMS Covid-19, pneumonia, image recognition, X -ray, prototypical part.

I. INTRODUCTION

The importance of deep learning algorithms stems from

the fact that they are capable of solving many social and

economic problems. However, most of the deep learning

algorithms work as a black-box, because they lack the trans-

parency of the reasoning process of their predictions. Hence,

the lack of interpretability/transparency of the reasoning pro-

cess of such deep learning models has become a key issue

for whether we can trust predictions that are coming from

these models. There have been cases where incorrect data

fed into black box models have gone unnoticed, leading to

unfairly long prison sentences (e.g., prisoner Glen Rodriguez

was denied parole due to an incorrect COMPAS score) [22]

and [36]. Our research question is to find an interpretable

method to do image classification so that we can tell why an

image is classified in a certain way. In this paper, we intro-

duce an interpretable deep learning model: negative-positive

prototypical part network (NP-ProtoPNet). NP-ProtoPNet is

closely related to prototypical part network (ProtoPNet) [3]

model, but it is strikingly different from ProtoPNet. Our

model considers both positive reasoning and negative reason-

ing to classify images, whereas ProtoPNet emphasizes only

on positive reasoning. In our work, prototype/prototypical
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part of an image will mean a patch of the image, and we will

use the words patch, prototype and prototypical part inter-

changeably. To classify an image, ProtoPNet model dissects

the (test) image, and compare its prototypical parts with some

patches of images from each class of images. Then ProtoPNet

accepts a class as the true class of the test image if some

patches of the test image match with some prototypical parts

of images from the class [3]. We call this type of reasoning

a positive reasoning. In addition to positive reasoning, our

model also uses the negative reasoning process of rejecting

the classes whose images do not have any prototypical part

that matches with any prototypical part of the test image.

The idea of using negative reasoning process is similar to the

idea of solving a multiple choice question, where it becomes

helpful to rule-out the options that are surely not an answer

of the question. We demonstrate our model on the dataset of

X -ray images of Covid-19 patients, pneumonia patients and

normal people. The accuracy and precision that our model

receives is on par with the best performing non-interpretable

deep learning models.

II. LITERATURE REVIEW

Some techniques have been developed to interpret the convo-

lution neural networks, such as: posthoc interpretability anal-

ysis and attention-based interpretability. In posthoc analysis

of a deep learning model, one interprets a trained convolution
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FIGURE 1. An X -ray image of a Covid-19 patient and how its parts look like or do not look like some learned
prototypical parts of X -ray images of Covid-19 patients, normal persons and pneumonia patients.

neural network after the predictions with the fitting expla-

nations of the reasoning behind classifications made by the

model. Posthoc analysis is made with various techniques,

such as: activation maximization [5], [13], [20], [24], [30],

[35], [43], deconvolution [45], and saliency visualization

[27], [30], [32], [33]. However, these posthoc visualization

methods fail to explain the actual reasoning process behind

the classifications made by the models.

Many models have been developed that build attention-

based interpretability, such as: class activation maps and

part-based models. An attention-based interpretability model

attempts to highlight the parts of an input image on which the

network focuses [6], [10], [11], [15], [26], [29], [34], [42],

[46]–[49]. Nevertheless, these models have serious drawback

of not pointing out the prototypical parts that are similar to

patches of the image on which the model focuses.

Li et al. [21], proposed a deep learning architecture that

builds case-based reasoning into a neural network. Then

Chen et al. [3] along with the authors of the above paper

made a considerable improvement in their model ProtoPNet,

whereby the network makes prediction by comparing image

patches with the learned prototypes.

Typically a person has some physical features similar to his

parents and even to his siblings. We can say with some cer-

tainty that a person belongs to a given family if we remember

the faces of the person’s family members, because we can

compare eyes, nose, lips and some other physical features

of the person with those features of his family members.

Similarly, to classify an image we might focus on parts

of the image and compare them with prototypical parts of

images from a given class. This type of human reasoning is

accommodated by the ProtoPNet model, where comparison

of image parts with learned prototypes is integral to the

reasoning process of the model.

Recently, some deep learning/machine learning models

have been developed to classify theX -ray images of Covid-19

patients, normal people and pneumonia patients, see [1], [7],

[16], [17], [19], [25], [28], [44]. A survey article is also

written that summarizes the research works related to deep

learning applications on COVID-19 medical image process-

ing [2]. The survey paper also points out the issues related to

deep learning implementation on COVID-19 medical image

processing, including lack of reliable and adequate data.

Probably, the models in the above papers are developed with

an intention to reduce the menace of the pandemic Covid-19

by developing alternate method for detection of the disease

from X -ray images while there was shortage of test kits all

over the world. Unfortunately, the models developed in these

papers are not interpretable, unlike NP-ProtoPNet. However,

transparency of a deep learning model is important if it

directly impacts on the lives of people. In this work, we devel-

oped an interpretable model and experimented it over the

same dataset of medical images that is used in the above

Covid-19 related papers.

III. WORKING PRINCIPLE OF THE NP-ProtoPNet

For an X -ray image as in Figure 1, ProtoPNet model is able

to identify several parts of the image where it thinks that

this patch of the image looks like that prototypical part of

an image of some class. It makes its prediction based on

a weighted combination of the similarity scores between

patches of the test image and the prototypes (prototypes that
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are learned by the model during the training process) of

images from all classes [3]. Similarity scores between patches

of a test image and the learned prototypes are obtained

with minimization of the L2 (Euclidean) distances between

patches of the test image and the learned prototypes. How-

ever, in addition to the positive reasoning of ProtoPNet, our

model NP-ProtoPNet rejects the classes by identifying sev-

eral parts of the imagewhere it thinks that any of these parts of

the image do not look like those prototypical parts of images

from incorrect classes (classes other than the true class of the

image), and makes its prediction based on a weighted combi-

nation of the similarity scores between parts of the test image

and the learned prototypes. The similarity scores correspond-

ing to the correct class and incorrect classes are assigned the

weight of +1 and −1, respectively. In Figure 1, we see that

the model detects some patches of the test image that do not

look like the learned prototypical parts of some classes. The

novelty of our model NP-ProtoPNet is that it considers the

negative connection between similarity scores and incorrect

classes as well as positive connection between similarity

scores and correct class, whereas ProtoPNet emphasizes only

on positive connection with correct class. The consideration

of the negative connections of similarity scores with incorrect

classes accompanying positive connections with correct class

helped ourmodel to improve its performance in somemetrics,

such as: accuracy, precision, recall and F1-score, see Table 1.

IV. METHODOLOGY

In this section, we explain our architecture negative-positive

prototypical parts network, NP-ProtoPNet. We trained and

evaluated our network on the dataset of frontal chest X -ray

images of Covid-19 patients [8], pneumonia patients and

normal persons [18]. The dataset of chest X -ray images from

Kaggle database [18] has 3875 and 1341 training images

of pneumonia patients and normal persons, respectively.

Also, the dataset has 390 and 234 test images of pneu-

monia patients and normal persons, respectively. The other

database [8] has 930 medical images of Covid-19 patients.

These medical images include, frontal chest X -ray images,

CT-scan images, side X -ray images and few obscure (com-

pletely black or white) images. Among the medical images of

Covid-19 patients, we selected only 748 frontal chest X -ray

images. As compared to the number of chest X -ray images

of pneumonia patients and normal persons, the number of

chest X -ray images of Covid-19 patients was much lesser.

Therefore, to balance the data, a copy of the chest X -ray

images of Covid-19 patients was included to form a dataset

of 1496 images. The 1496 frontal chest X -ray images of

Covid-19 patients were divided into train and test sets of

1248 and 248 images, respectively. All these images form

the three classes, labeled as: Covid, Normal and Pneumonia.

We resized the images to dimension 224 × 224. A detailed

explanation of our model is provided below with the clas-

sification of a new X -ray image and explanations of the

reasoning process of its prediction.

A. NP-ProtoPNet ARCHITECTURE

An overview of the architecture of our NP-ProtoPNet model

is given in Figure 2. Our network consists of a regular con-

volutional neural network f , whose parameters are collec-

tively denoted by wconv, followed by a prototype layer gp
and a fully connected layer h with weight matrix wh and

no bias. The prototype layer gp is a generalized convolution

layer, [9], [23]. For the regular convolutional network f ,

our model uses the convolutional layers from models such

as VGG-16, VGG-19 [31], ResNet-34, ResNet-152 [12],

DenseNet-121 and DenseNet-161 [14] (initialized with fil-

ters pretrained on ImageNet [4]). Our model does not

have any additional convolution layer unlike ProtoPNet net-

work. In this work, we call the models VGG-16, VGG-19,

ResNet-34, ResNet-152, DenseNet-121 and DenseNet-161

base/baseline models.

For an input image x, the convolutional layers of a base

model extract useful features f (x) to use for prediction. The

shape of the convolutional output f (x) is 7× 7×D, where D

is the number of the output channels. The number of output

channels of the convolution layers of VGG-16, VGG-19,

Resnet-34, ResNet-152, DenseNet-121 and DenseNet-161

are 512, 512, 512, 2048, 1024 and 2208, respectively. Since

the prototype layer of our model is attached immediately after

the regular convolution layers, the depth of each prototype

is the same as that of the convolution output. Our network

learns m prototypes P = {pj}
m
j=1, whose shape is 1 × 1 × D,

where m = 30. For each class of X -rays, we choose 10

prototypes, and the selection of the number of prototypes is

arbitrary. These prototypes should capture sufficient relevant

patches for identifying images of a class. Since the depth of

each prototype is the same as that of the convolutional output

but the height and the width of each prototype is smaller

than those of the whole convolutional output, each prototype

will be used to represent some prototypical activation pattern

in a patch of the convolutional output, which in turn will

correspond to some prototypical image patch in the original

pixel space [3]. Hence, each prototype pj can be viewed as the

latent representation of some prototypical part of some X -ray

image.

The prototype p1 in Figure 2 corresponds to some patch

of the chest X -ray image of a Covid-19 patient, and the

prototype p11 and p30 correspond to some patch of the chest

X -ray image of a normal person and a pneumonia patient,

respectively. Given a convolutional output z = f (x), the

j-th prototype unit gpj in the prototype layer gp computes the

squared L2 distances between the j-th prototype pj and all

patches of z that have the same shape as pj, and inverts the

distances into similarity scores. The result is an activation

map of similarity scores whose value indicates how strong a

prototypical part is present in the image. The most activated

patch of an image is the patch of the image that gives the

highest similarity score. This activation map preserves the

spatial relation of the convolutional output, and can be upsam-

pled to the size of the input image to produce a heat map
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FIGURE 2. NP-ProtoPNet architecture.

that identifies which part of the input image is most similar

to the learned prototype [3]. The activation map can also be

used to draw rectangles on the source images to specify the

parts that correspond to prototypes. The activation map of

similarity scores produced by each prototype unit gpj is then

reduced using global max pooling to a single similarity score,

which can be understood as how strongly a prototypical part

is present in some patch of the input image. Then in the dense

layer h, the similarities scores produced by the prototype

layer gp are multiplied with the weight matrix wh to produce

logits, which are further normalized with softmax to get the

predictions for a given test image belonging to the classes

under consideration.

Entries of kth row of a weight matrix wh are connections

between similarity scores and logit of kth class, see Section V

for an example of a weight matrix.We fix entries of thematrix

wh to±1, unlike theweightmatrix of ProtoPNetmodel whose

entries are initially set to +1 and −0.5. Therefore, we set

the incorrect class connection to −1 instead of −0.5, unlike

ProtoPNet. Asmentioned above, our model equally considers

both the positive reasoning and negative reasoning to classify

an image. Hence, our model does not attempt to make the

negative connections −1 to 0 during the training process,

again unlike ProtoPNet.

The similarity scores between most activated patches of

the test image and prototypes of classes Covid, Normal and

Pneumonia form a columnmatrix a, see Section V. The logits

for the classes Covid, Normal and Pneumoina are obtained

by multiplying the first, second and third row of wh with the

matrix a, see Section V. In Figure 2, the test image is an

X -ray image of a Covid-19 patient. The prototypes p1 to p10,

p11 to p20 and p21 to p30 are the parts of X -ray images of

Covid-19 patients, normal persons and pneumonia patients,

respectively. The similarity scores between patches of the

test image and prototypes p1, p11 and p30 are 0.026534,

0.002618 and 0.002735, respectively. The full list of simi-

larity scores that we obtain from our experiments is given in

the matrix a, see Section V. Therefore, the logits for Covid,

Normal and Pneumoina classes are 0.217986,−0.272692 and

−0.257398, respectively.

B. MATHEMATICAL FORMULATION AND TRAINING

ALGORITHM

In ourmodel, mathematically, the prototype unit gpj computes

the following:

gpj (z) = max
z̃∈ patches(z)

log

(

||z̃− pj||
2
2 + 1

||z̃− pj||
2
2 + ǫ

)

. (1)

The above equation (1) tells us that if z̃ is the closer latent

patch to pj then ||z̃− pj||2 is smaller. Therefore, the function

gpj is monotonically decreasing with respect to ||z̃ − pj||2.

Hence, if the output of the j-th prototype unit gpj is large, then

there is a patch in the convolutional output that is very close

to the j-th prototype in the latent space, and this in turn means

that there is a patch in the input image that has a similar patch

to what the j-th prototype represents [3].

The training of our model is divided into two steps:

(1) stochastic gradient descent (SGD) of layers before the

last layer; (2) projection of prototypes. At the first step,

we aim to learn a meaningful latent space, where the most

important patches for classifying images are clustered around

semantically similar prototypes of the images’ true classes,

and the clusters that are centered at prototypes from different

classes are well-separated. To achieve this goal, we jointly

optimize the convolutional layers’ parameters wconv and the

prototypes P = {pj}
m
j=1 in the prototype layer gp using SGD,

while keeping the last layer weight matrix wh fixed. Let

D = [X ,Y ] = {(xi, yi)}
n
i=1 be the set of training images. The

optimization problem we aim to solve here is:

min
P,wconv

1

n

n
∑

i=1

CrsEnt(h ◦ gP ◦ f (xi), yi)+ λ1Clst+ λ2Sep,

(2)

where Clst and Sep are defined by

Clst =
1

n

n
∑

i=1

min
j:pj∈Pyi

min
z∈patches(f (xi))

||z− pj||
2
2; (3)

Sep = −
1

n

n
∑

i=1

min
j:pj 6∈Pyi

min
z∈patches(f (xi))

||z− pj||
2
2. (4)
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FIGURE 3. The reasoning process of our network in deciding the class of an X -ray image.

The increase in the cross entropy (CrsEnt) leads to

misclassifications on the training data, see the optimization

problem (2). The minimization of the cluster cost (Clst)

encourages each training image to have some latent patch

that is close to at least one prototype of its own class, while

the minimization of the separation cost (Sep) encourages

every latent patch of a training image to stay away from the

prototypes not of its own class [3], see the above equations (3)

and (4). We set the coefficient of the cluster cost λ1 and the

coefficient of the separation cost λ2 equal to 0.8.

Let w
(k,j)
h be the (k, j)-th entry in weight matrix wh that

corresponds to the weight connection between the output of

the j-th prototype unit gpj and the logit of a class k . Let Pk be

the collection of prototypes of a class k . Given a class k ,

we set w
(k,j)
h = 1 for all j with pj ∈ Pk and w

(k,j)
h = −1

for all j with pj 6∈ Pk . More importantly, during the training

process, our model does not make these negative connec-

tions 0; whereas in ProtoPNet model w
(k,j)
h = −0.5 for

all j with pj 6∈ Pk , and even these negative values do

not remain fixed as ProtoPNet attempts to make negative

connections 0. Note that, similarity scores are nonnegative

numbers. Therefore, the positive connection between a pro-

totype of class k and the logit of class k means that similarity

to a prototype of class k should increase the predicted prob-

ability that the image belongs to class k . On the other hand,

if j 6= k then the negative connection between a prototype of a

class j and logit of class k means that similarity to a prototype

of class j should decrease class k’s predicted probability.

By fixing the last layer h in this way, we can force the network

to learn a meaningful latent space because if a latent patch of

a class k image is too close to a prototype of class j, it will

decrease the predicted probability that the image belongs

to class k and increase the cross entropy in the training

objective [3].

At the second step, to be able to visualize the prototypes

as training image patches, we project/push each prototype pj
onto the nearest latent training patch from the same class

as that of pj. In this way, we can conceptually equate each

prototypewith a training image patch [3].Mathematically, for

prototype pj of class k , i.e., pj ∈ Pk , we perform the following

update: pj←− minz∈Zj ||z− pj||2, where

Zj = {z̃ : z̃ ∈ patches(f (xi)) ∀i s.t. yi = k}.

C. SELECTION OF AN IMAGE PATCH AS A PROTOTYPE

The image patch of an image x that is highly activated by a

protype pj is used for the visualization of pj. Such a patch of

an image x on which pj has the strongest activation can be

found by forwarding x through a trained NP-ProtoPNet and

upsampling the activationmap produced by the prototype unit

gpj (before maxpooling) to the size of the image x. Then we

can visualize pj with the smallest rectangular patch of x that

encloses pixels whose corresponding activation value in the

upsampled activation map from gpj is at least as large as the

93rd-percentile of all activation values [3].

V. EXPLANATION OF THE REASONING PROCESS

Consider the three classes from where the images are taken

(listed in lexicographical order): Covid, Normal and Pneu-

monia. Among the six base models that we have used for
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our experiments, we choose the base model VGG-19 for the

experiments explained in this paper.

In Figure 3, the leftmost column has a test image, an X -ray

image of a Covid-19 patient. In the second column, the same

test images has rectangular boxes that enclose the pixels

that correspond to the pixels bounded by the boxes on the

source images of the prototypes in the same row and fourth

column. So, the bounded patches of the images in the second

column correspond to the bounded patches of the images in

the fourth column. The third column has prototypes obtained

from the corresponding source images in the fourth column.

The fourth column consists of source images of the proto-

types from the same rows. The bounded patch of the source

images are actually the parts from where the prototypes are

projected/pushed. In the fifth column, similarity scores are

calculated as described in Section IV-A. The similarity scores

are listed in the column matrix a, see below. The ith entry

of matrix a is the similarity score between ith prototype and

a patch of the test image. Therefore, the entries 1 to 10, 11

to 20 and 21 to 30 of matrix a are the similarity scores of

the prototypes of Covid class, Normal class and Pneumonia

class, respectively. In the sixth column, the class connec-

tions (weights) are given. The (k, j)-th entry w
(k,j)
h of weight

matrix wh is the weight connection between the output of

the j-th prototype unit gpj and the logit of class k . Therefore,

the weight matrix

wh =





1 . . . 1 −1 . . . −1 −1 . . . −1

−1 . . . −1 1 . . . 1 −1 . . . −1

−1 . . . −1 −1 . . . −1 1 . . . 1





where horizontal dots . . . represent missing eight columns

that are equal to the neighboring columns. The weights

corresponding to first (Covid), second (Normal) and third

(Pneumonia) classes are listed in the first, second and third

row of the weight matrix wh. The seventh column has the

points contributed to the Covid class that are obtained by

multiplying similarity scores with the corresponding weights.

The logit for Covid class is the total of the points con-

tributed to the Covid class. Another words, the logit for

the Covid class is obtained by multiplying first row of the

weight matrix wh and the similarity score matrix a. Sim-

ilarly, the logits for Normal class and Pneumonia classes

are obtained by multiplying the second row and third row

of wh with the matrix a, respectively. Therefore, the logits

(up to six decimal places) for Covid, Normal and Pneu-

monia classes are 0.217986, −0.272686 and −0.257396,

respectively.

In Figure 4, the test image belongs to the Normal class.

For the test image of the Normal class, the similarities scores

(that we obtained from our experiments) between the test

image and prototypes (up to six decimal places) for the

Covid class, Normal class and Pneumonia class are entries

of the matrix b as given below. Therefore, logits for Covid

class, Normal class and Pneumonia class are obtained by

multiplying the first, second and third row of the weight

matrix wh with the similarity score matrix b, respectively.

To save space, we do not write the weights in the fig-

ure, but the weights are given in the weight matrix wh.

Therefore, the logits for Covid class, Normal class and

Pneumonia class are −0.145744, 0.046204 and −0.085446,

respectively.

In Figure 5, the test image belongs to the Normal class.

For the test image of the Normal class, the similarities scores

(up to six decimal places) are entries of the matrix c as given

below. Therefore, the logits for Covid class, Normal class and

Pneumonia class are obtained by multiplying the first, second

and third row of the weight matrix wh with the similarity

scorematrix c, respectively. Similar to Figure 4, to save space,

we do not write the weights in the figure. The logits for Covid

class, Normal class and Pneumonia class are −0.546797,

−0.280923 and 0.221254, respectively.

The following are the similarity score matrices a, b

and c for the test images used in figures 4, 5 and 6,

respectively.

a =

















































































































0.026534

0.026643

0.026534

0.026235

0.026584

0.026634

0.026574

0.026534

0.026534

0.026235

0.002618

0.002618

0.002618

0.001633

0.001633

0.001633

0.001633

0.001536

0.001536

0.002247

0.002339

0.002741

0.002805

0.002805

0.002770

0.002749

0.002736

0.002835

0.002835

0.002735




























































































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.

VI. THE METRICS TO MEASURE THE PERFORMANCE

To compare the performance of our model with ProtoPNet

and baseline models, we used some most commonly used

metrics, such as: accuracy, precision, recall and F1-score.

We also used confusion matrix to the describe the perfor-

mance of our model with the six baseline models.
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FIGURE 4. The reasoning process in deciding the class of an X -ray.

FIGURE 5. The reasoning process in deciding the class of an X -ray image
of a normal person. image of a pneumonia patient.

True positive (TP) is the number of items correctly labelled

as belonging to the positive class, that is, the items are

predicted to belong to a class when they actually belong to

that class. True negative (TN ) measures the proportion of

FIGURE 6. Confusion matrix with baseline VGG-16.

negatives that are correctly identified as negatives, see [41].

False positive (FP) is the number of items incorrectly labelled

as belonging to the positive class, that is, the items are pre-

dicted to belong to a class when they actually do not belong

to that class. False negative (FN ) is the number of items

incorrectly labelled as not belonging to the positive class, that

is, the items are predicted to not belonging to a class when

they actually belong to that class, see [38].

Accuracy is the proportion of correct predictions (both true

positives and true negatives) among the total number of cases

examined [37], that is:

Accuracy =
number of correct predictions

total number of cases
.

Precision is the proportion of true positive predictions

among the positive (true positive and false positive) predic-

tions [38], that is:

Precision =
TP

TP+ FP
.

Recall is the proportion of true positive predictions among

the true positive predictions and false negative predictions

[38], that is:

Recall =
TP

TP+ FN
.

F1-score is the harmonic mean of precision and recall [39],

that is:

F1-score =
2

Precision−1 + Recall−1
.

Therefore,

F1-score = 2×
Precision× Recall

Precision+ Recall
.

A confusion matrix is a table that is used to describe the

performance of a classification model on a set of test data

for which the true values are known [40]. The confusion

matrices for three classes Covid, Normal and Pneumonia are

given in Section VII. For further discussion on the metrics

and confusion matrices readers are directed to [37]–[41] and

references therein.
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VII. THE PERFORMANCE DESCRIPTION WITH

CONFUSION MATRICES

In this section, we describe the performance of our model in

some metrics. In figures 6 through 11, the confusion matri-

ces give the visualization of the performance of our model

with the baseline models VGG-16, VGG-19, ResNet-34,

ResNet152, DensNet-121 and DenseNet-161, respectively.

Let C be any of the following six confusion matrices. Let

C[i][j] be the (i, j) entry of the matrix C . Then C[0][0] is

the TP for the Covid class. Also, C[0][1] + C[0][2] and

C[1][0] + C[2][0] are the FP and FN for the Covid class.

As mentioned in Section IV-A, the number of test images

for the classes Covid, Normal and Pneumonia are 248, 234,

390, respectively. Therefore, the total number of test images

is 872. For the baselinemodel VGG-16, the number of correct

predictions of our model are 738(= 246 + 105 + 387),

see Figure 6. Therefore, the accuracy for our model with

the baseline model VGG-16 is 84.63% The FP and FN for

our model with the baseline model VGG-16 are 7 and 2,

respectively, see Figure 6. Thus, the precision and recall for

our model with the baseline model VGG-16 are 0.97 and

0.99, see Section VI for the formulas. Hence, F1-score for

our model with the baseline model VGG-16 is 0.98. Simi-

larly, all the metrics (accuracy, precision, recall and F1-score)

for our model with the other baseline models (VGG-19,

ResNet-34, ResNet-152, DenseNet-121 and DenseNet-161)

can be calculated from the confusion matrices depicted in

Figures 7-11. However, these metrics are also given

in Table 1.

VIII. COMPARISON OF NP-ProtoPNet WITH BASELINE

MODELS AND ProtoPNet MODEL

Both NP-ProtoPNet and ProtoPNet models can be con-

structed over convolution layers of many regular neural net-

works, such as: series of VGG, ResNet andDenseNet models.

However, as mentioned in Section IV-A, we experimented

our model over the X -ray datasets [8], [18] with the six base-

line models: VGG-16, VGG-19 [31], ResNet-34, ResNet-152

[12], DenseNet-121 and DenseNet-161 [14]. ProtoPNet with

the six baseline models is also experimented over the same

dataset. We trained and tested NP-ProtoPNet and ProtoPNet

for 500 epochs with the above mentioned baseline models.

Also, the baseline models themselves were trained and tested

for 500 epochs. In Table 1, the measure of the performance

of each of the three models NP-ProtoPNet, ProtoPNet and the

baseline models are given in the metrics: accuracy, precision,

recall and F1-score.

The Table 1 is explained with the description of the

performance of NP-ProtoPNet and ProtoPNet with only

one baseline model VGG-16, though the performance of

NP-ProtoPNet and ProtoPNet model with the other baseline

models is also given in the Table 1.

For example, the measures of the performance of our

model with the baseline model VGG-16 in the metrics accu-

racy, precision, recall and F1-score are 84.63, 0.97, 0.99

and 0.97, respectively. The accuracy, precision, recall and

FIGURE 7. Confusion matrix with baseline VGG-19.

FIGURE 8. Confusion matrix with baseline ResNet-34.

FIGURE 9. Confusion matrix with baseline ResNet-152.

F1-score for ProtoPNet with baseline model VGG-16 are

79.73, 0.87, 0.92 and 0.89, respectively. The accuracy, pre-

cision, recall and F1-score of baseline model VGG-16 itself

(Base only) are 82.45, 0.97, 0.98 and 0.97, respectively. The

comparison of the performance of NP-ProtoPNet and ProtoP-

Net models over other baseline models (VGG-19, ResNet-34,

ResNet-152, DenseNet-121 and DenseNet-161) is also given

in Table 1.

The performance of our model in the metrics is bet-

ter than the performance of ProtoPNet with all the base-

line models, see Table 1. However, the performance of our

model in accuracy is better than the performance of only

two baseline models (Base only): VGG-16 and VGG-19.
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FIGURE 10. Confusion matrix with baseline DenseNet-121.

The performance of the other baseline models ResNet-34,

ResNet-152, DenseNet-121 and DenseNet-161 in the metrics

is better than the performance of our model. Nevertheless,

the accuracy of our model is at most 1.63% lesser than

accuracy of these models. Since the baseline models are not

interpretable as our model, the loss of accuracy is compen-

sated with the interpretability.

IX. GRAPHICAL COMPARISON OF THE ACCURACIES

In this section, we graphically compare the accuracies of

NP-ProtoPNet, ProtoPNet and the baseline models over

FIGURE 11. Confusion matrix with baseline DenseNet-161.

the training epochs. In the figures 12-17, the curves of

yellow, blue and brown colors represent the accuracies of

NP-ProtoPNet, ProtoPNet and the baseline model, respec-

tively. In each of these figures, the accuracies given by

NP-ProtoPNet and ProtoPNet are compared with the same

baseline model whose convolution layers are used to con-

struct them. Thus, in figures 12 through 17, the accuracies

given by NP-ProtoPNet and ProtoPNet are compared with the

baseline models VGG16, VGG-19, ResNet-34, ResNet152,

DenseNet-121 and DenseNet-161, respectively. Note that,

the accuracy given by each model (NP-ProtoPNet, ProtoPNet

TABLE 1. Comparison of metrics of our model with ProtoPNet and baseline models.
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FIGURE 12. Accuracy comparison with baseline VGG-16.

FIGURE 13. Accuracy comparison with baseline VGG-19.

FIGURE 14. Accuracy comparison with baseline ResNet-34.

and Baseline) stabilizes after about the same number of

epochs, because they are constructed over the same baseline

FIGURE 15. Accuracy comparison with baseline ResNet-152.

FIGURE 16. Accuracy comparison with baseline DenseNet-121.

FIGURE 17. Accuracy comparison with baseline DenseNet-161.

models. The comparison of the accuracies of the models is

depicted in the figures 12-17 only for 200 epochs to make the

VOLUME 9, 2021 41491



G. Singh, K.-C. Yow: These do not Look Like Those: Interpretable Deep Learning Model for Image Recognition

shape more clearer in the beginning. However, we trained and

tested these models for 500 epochs.

In each of the above figures 12-17, the curve representing

the accuracy given by NP-ProtoPNet is higher than the curve

representing the accuracy given by ProtoPNet. Therefore,

NP-ProtoPNet has better performance over ProtoPNet.

X. CONCLUSION

Our model is closely related to ProtoPNet model but strik-

ingly different from the latter. ProtoPNet model imitate the

positive reasoning of humans (this looks like that). However,

our model equally uses the positive reasoning (this looks

like that) and the negative reasoning (these do not look like

those) to make predictions. The use of both positive and neg-

ative reasoning helped our model to improve its performance

over ProtoPNet model. The performance of our model in the

metric accuracy is better than the performance of ProtoPNet

model while we experimented it on the dataset of chest X -ray

images of Covid-19 patients [8], normal people and pneumo-

nia patients [18]. The performance our model is on par with

the non-interpretable models.
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