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Abstract

As we reach the limits of processor performance and architectural complexity in-

creases, more principled approaches to compiler optimization are necessary to fully

exploit the performance potential of modern architectures. Existing compiler opti-

mizations are typically heuristic-driven and lack a detailed model of the target archi-

tecture. In this proposal I develop the beginnings of a framework for a principled

backend optimizer.

Ideally, a principled compiler would consist of tightly integrated, locally opti-

mal, optimization passes which explicitly and exactly model and optimize for the

target architecture. Towards this end this proposal investigates two pivotal backend

optimizations: register allocation and instruction selection. I propose to tightly inte-

grate these optimizations in an expressive model which can be solved progressively,

approaching optimality as more time is allowed for compilation.

I present an expressive model for register allocation based on multi-commodity

network flow that explicitly captures the important components of register allocation

such as spill code optimization, register preferences, coalescing, and rematerializa-

tion. I also describe a progressive solution technique for this model that utilizes

the theory of Lagrangian relaxation and domain-specific heuristics to approach the

optimal solution and provide optimality-bound guarantees on solutions. As future

work, I discuss some improvements that can be made to this model and solution

technique to improve their performance and usefulness, and I sketch how I believe

this model and solution technique can be extended to incorporate instruction selec-

tion and present some preliminary results that indicate the benefit achievable from

such an integration.
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Chapter 1

Introduction

1.1 Motivation

As we reach the limits of processor performance and architectural complexity increases, more

principled approaches to compiler optimization are necessary to fully exploit the performance

potential of modern architectures. Existing compiler optimization frameworks are lacking in that

• many optimization passes use an extremely simplified model of the target architecture

• the various optimization passes are not tightly integrated, and

• not all optimization passes are internally optimal.

A more principled approach to compiler optimization must address all three of these points.

Many compiler optimization passes use a simplified model of the target architecture and, as a

result, may actually produce less optimized code. As an example, partial redundancy elimination

(PRE), which might be (falsely) considered a target-independent optimization, depends crucially

on the register resources of the target architecture. This architectural dependency is typically

simply modeled by a heuristic which crudely estimates the benefit of eliminating a redundant ex-

pression and the cost of introducing a long-lived temporary to hold the value of that expression.

As a result, the application of PRE can sometimes reduce performance. For instance, the PRE

pass of the GNU gcc version 3.4.4 compiler, which improves performance on some SPEC2000

benchmarks by as much as 4.3%, also decreases the performance of some benchmarks by as

much as 2% (overall, it provides an average improvement). These slowdowns are caused by

increased spilling within loops as a result of aggressive PRE. Even optimizations that are in-

trinsically linked to architectural features, such as register allocation, may use inappropriately

simple architectural models. For example, traditional register allocators were designed for regu-

lar, RISC-like architectures with large uniform register sets. Embedded architectures, such as the

68k, ColdFire, x86, ARM Thumb, MIPS16, and NEC V800 architectures, tend to be irregular,

CISC architectures. These architectures may have small register sets, restrictions on how and

when registers can be used, support for memory operands within arbitrary instructions, variable

sized instructions, or other features that complicate register allocation. The register allocator in

a principled compiler would need to explicitly represent and optimize for these features.

The importance of leveraging architectural features can be seen even in today’s compilers

by comparing the performance of code compiled for a generic x86 processor and code compiled
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to run specifically on a Pentium 4. The performance of SPEC2000 benchmarks improves by as

much as 33% using gcc 3.4.4 (although the overall average improvement is less than 1%) and as

much as 100% using the Intel compiler icc version 9.0 (with an average improvement of 14%).

The effect of simplistic architectural models and a lack of tight integration between compiler

passes is further highlighted by studies in adaptive and iterative compilation [7, 46, 53, 70, 88,

103] that search for better orderings and combinations of existing compiler optimizations. These

studies get between 5% and 20% average performance improvements on SPEC benchmarks,

with some SPEC benchmarks increasing in performance by as much as 75%, and can get up to

factors of four performance improvements on some numerical kernels.

The general optimization problem, finding a correct instruction sequence that results in the

shortest possible execution time, is clearly undecidable since such an optimizer could be used

to solve the halting problem. However, if instead of seeking a result that is optimal in the most

general case, we consider only the optimality of a specific optimization at performing its partic-

ular task, it potentially becomes tractable to design optimal algorithms. For example, dead-code

elimination may not be able to remove all code that is not executed for all inputs of a program,

but it can eliminate all code that is dead in a meets over all paths static analysis. In this sense

dead-code elimination can be thought of as internally optimal; given a restricted, but reasonable,

definition of the problem (remove all static dead code) it finds the optimal result. In contrast,

some compiler optimizations, such as register allocation and instruction scheduling, are prov-

ably NP-hard for even simple representations of the problem. In these cases it is unlikely that

internally optimal efficient algorithms exist. However, internal optimality can be approached and

the trade off between compile time and optimality made explicit through the use of progressive

compilation.

Progressive compilation bridges the gap between fast heuristics and slow optimal algorithms.

A progressive optimization algorithm quickly finds a good solution and then progressively finds

better solutions until an optimal solution is found or a preset time limit is reached. The use of

progressive solution techniques fundamentally changes how compiler optimizations are enabled.

Instead of selecting an optimization level, a programmer explicitly trades compilation time for

improved optimization.

The goal of the work in this proposal is to move towards a more principled compiler. Given

their substantial influence on all other optimizations, I plan to investigate the crucial backend

optimizations of register allocation and instruction selection. I propose to tightly integrate these

optimizations in an expressive model which can be solved progressively. Successfully achieving

this goal will result in compilers which can more capably exploit the performance potential of

modern architectures.

1.2 Problem Description

Register allocation and instruction selection are essential passes of any compiler backend. To-

gether they are responsible for finalizing a compiler’s intermediate representation of code into

machine executable assembly. As such, it is important to define what these passes entail and to

characterize their difficulty.
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v(R0) <- 1

w(R1) <- v(R0) + 3

x(R2) <- w(R1) + v(R0)

MEMw <- w(R1)

u(R0) <- v(R0)

t(R1) <- u(R0) + x(R2)

<- x(R2)

w(R2) <- MEMw
<- w(R2)

<- t(R1)

<- u(R0)

v <- 1

w <- v + 3

x <- w + v

u <- v

t <- u + x

  <-  x

  <- w

  <- t

  <- u

RARA

Figure 1.1: A simple example of register allocation. In this example there are only three registers. After

the definition of t there are four live variables, x, w, t, and u, so it is necessary to spill a variable to

memory, in this case w.

1.2.1 Register Allocation

The register allocation problem is to find a desirable assignment of program variables to memory

locations and hardware registers as illustrated by Figure 1.1. Various metrics, such as execution

speed, code size, or energy usage, can be used to evaluate the desirability of the allocation. Local

register allocation considers only the task of allocating a single basic block with no control flow.

Global register allocation finds an allocation for an entire function. Inter-procedural register

allocation is typically not done; instead, calling conventions dictate the use of registers across

function boundaries.

The register sufficiency problem, which is unfortunately often confused with the register al-

location problem, is to determine, for a particular function, if it is possible to find an assignment

of variables to only the available registers. That is, it is not necessary to spill, store to memory, a

variable. It is this problem that Chaitin et. al. [29] proved to be NP-hard for arbitrary control flow

graphs. However, later work has shown that program structure can be exploited to more easily

solve the register sufficiency problem [19]. For programs with bounded treewidth [16], which

includes all programs written in Java and goto-free C [51, 101], the register sufficiency prob-

lem can be solved in linear time (but exponential in the constant number of registers) [15, 90] or

constant factor approximation algorithms can be used [60, 101]. For programs that are in SSA

form, the register sufficiency problem is also readily solved [24, 52], although converting out of

SSA form remains difficult [92].

Although the register sufficiency problem is readily solved, there is much more to the prob-

lem of register allocation than register sufficiency. Other important components of the register

allocation problem are spill code optimization, rematerialization, coalescing, and register prefer-

ences. When program variables cannot be allocated solely to registers, it is necessary to generate

spill code which stores and loads values to and from memory. Determining the minimum number

of loads and stores needed is NP-hard even for the local case [38]. In some cases the register

allocator may be able to avoid spilling by rematerializing a know value. In addition, the register
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allocator may be able to improve code quality by allocating two variables to the same register.

For example, if the two variables are joined by a move instruction it may be possible to coalesce

the variables into the same register and eliminate the need for the move instruction. Optimal

coalescing is NP-hard, even for structured programs [18]. Many architectures, such as the x86

architecture, do not have uniform register sets. Instead, the operands of certain instructions pre-

fer or require specific registers. For example, the x86 div instruction always writes its result

to the eax and edx registers. Solving the register sufficiency problem, even in the local case,

in the presence of such constraints is NP-hard [107], although fixed parameter tractable in the

number of registers [14]. In order to generate quality code, a register allocator must take register

preferences into account.

The register allocation problem is an NP-hard problem consisting of several important com-

ponents. In order to generate quality code, a register allocator must not only perform register

assignment, but also optimize spill code, perform coalescing and rematerialization, and take reg-

ister preferences into account.

1.2.2 Instruction Selection

The instruction selection problem is to find an efficient conversion from the compiler’s target-

independent intermediate representation (IR) of a program to a target-specific assembly listing.

An example of instruction selection, where a tree-based IR is converted to x86 assembly, is

shown in Figure 1.2. In this example, and in general, there are many possible correct instruction

sequences. The difficulty of the instruction selection problem is finding the best sequence, where

best may refer to code performance, code size, or some other statically determined metric.

In the most general case, instruction selection is undecidable since an optimal instruction

selector could solve the halting problem (halting side-effect free code would be replaced by a

nop and non-halting code by an empty infinite loop). Because of this, instruction selection

selection is usually defined as finding an optimal tiling of the intermediate code with predefined

tiles of machine instructions. Each tile is a mapping from IR code to assembly code and has

an associated cost. An optimal instruction selection minimizes the total cost of the tiling. The

instruction selection problem is difficult even for basic blocks since straight-line code can be

represented as a directed acyclic graph (DAG) [3] and optimal tiling of DAGs is known to be NP-

complete even for simple machine models [25]. However, if the code is represented as a sequence

of expression trees (i.e., there are no common sub-expressions explicit in the representation), then

efficient optimal tiling algorithms exist [1].

Although optimal instruction selection algorithms exist for tree-based intermediate represen-

tations, the actual optimality of the result is limited by the accuracy of the costs associated with

each tile. If instruction selection is done independently from register allocation, these tile costs

are inherently inaccurate since spills, register preferences, and move coalescing may change the

instructions corresponding to a tile. For example, in Figure 1.2, which instruction sequence is

better is determined by the ability of the register allocator to coalesce certain variables and elim-

inate the cost of moves. An instruction selection algorithm that integrates with the register allo-

cator would be able to assign more accurate costs to tiles, but would also inherit the NP-hardness

of register allocation.
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+

+ +

MEM

p

xy1

(a)

+

+ +

MEM

p

xy1

(b)

movl (p),t1

leal (x,t1),t2

leal 1(y),t3

leal (t2,t3),r

(c)

movl x,t1

addl t1,(p)

movl y,t2

incl t2

movl t2,r

addl r,t1

(d)

movl (ecx),ebx

leal (edx,ebx),edx

leal 1(eax),eax

leal (edx,eax),eax

(e)

movl edx,edx

addl edx,(ecx)

movl eax,eax

incl eax

movl eax,eax

addl eax,edx

(f)

Figure 1.2: An example of instruction selection on a tree-based IR. Two possible tilings, (a) and (b), with

their corresponding instruction sequences, (c) and (d), are shown. Although sequence (c) is shorter, it is

possible that register allocation will be able to coalesce the move instructions in (d) resulting in an even

shorter sequence as illustrated by (e) and (f).
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Chapter 2

Related Work

Register allocation is a fundamental part of any compiler backend and has been extensively stud-

ied. The textbook [5, 8, 34, 83, 84] approach to register allocation is to represent the problem as

a graph coloring problem. Although many improvements to this technique have been proposed,

the graph coloring representation is fundamentally limited, especially when compiling for highly

constrained and irregular architectures such as the x86. Less limited methods of register allo-

cation which use more expressive models and find optimal allocations have been proposed but

are prohibitively slow. The progressive solution techniques of the thesis will bridge the gap be-

tween existing slow, but optimal, and fast, but suboptimal, allocators allowing programmers to

explicitly trade compilation time for code quality.

Although instruction selection by itself has been extensively studied, the integration of in-

struction selection with register allocation remains an open problem. Through the use of register

allocation aware instruction selection, the thesis will build on the existing body of knowledge to

more tightly integrate these two key compiler passes.

2.1 Graph Coloring Register Allocation

A traditional graph coloring allocator constructs an interference graph which is then labeled with

“colors” representing each of k available registers.

Build Simplify Potential Spill Select Actual Spill

Coloring Heuristic

Figure 2.1: The flow of a traditional graph coloring algorithm.
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2.1.1 Algorithm

The traditional optimistic graph coloring algorithm [20, 23, 28] consists of five main phases as

shown in Figure 2.1:

Build An interference graph is constructed using the results of data flow analysis. A node in

the graph represents a variable. An edge connects two nodes if the variables represented

by the nodes interfere and cannot be allocated to the same register. Restrictions on what

registers a variable may be allocated to can be implemented by adding precolored nodes to

the graph.

Simplify A heuristic is used to reduce the size of the graph. In the most commonly used heuristic

[61] any node with degree less than k, where k is the number of available registers, is

removed from the graph and placed on a stack. This is repeated until all nodes are removed,

in which case we skip to the Select phase, or no further simplification is possible. More

complicated heuristics [78, 104] can also be used to further simplify the graph.

Potential Spill If only nodes with degree greater than k are left, we mark a node as a potential

spill node, remove it from the graph, and optimistically push it onto the stack. We repeat

this process until there exist nodes in the graph with degree less than k, at which point we

return to the Simplify phase.

Select In this phase all of the nodes have been removed from the graph. We now pop the nodes

off the stack. If the node was not marked as a potential spill node then there must be a

color we can assign this node that does not conflict with any colors already assigned to this

node’s neighbors. If it is a potential spill node, then it still may be possible to assign it a

color; if it is not possible to color the potential spill node, we mark it as an actual spill and

leave it uncolored.

Actual Spill If any nodes are marked as actual spills, we generate spill code which loads and

stores the variables represented by these nodes into new, short lived, temporary variables

everywhere the variable is used and defined. Because new variables are created, it is nec-

essary to rebuild the interference graph and start over.

Note that the Simplify, Potential Spill, and Select phases together form a heuristic for graph

coloring. If this heuristic is successful, there will be no actual spills. Otherwise, the graph

is modified so that it is easier to color by spilling variables and the entire process is repeated.

This coloring heuristic is a “bottom-up” coloring [34]. A “top-down” coloring uses high-level

program information instead of interference graph structure to determine a priority coloring order

[30, 31] for the variables and then greedily colors the graph.

As an alternative to the iterative approach where the interference graph is rebuilt and reallo-

cated every time variables are spilled, a single-pass allocator can be used. A single-pass allocator

reserves registers for spilling. These registers are not allocated in the coloring phase and instead

are used to generate spill code for all variables that did not get a register assignment.

2.1.2 Improvements

A number of improvements to the basic graph coloring algorithm have been proposed. Four

common improvements are:
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Web Building [28, 59] Instead of a node in the interference graph representing all the live ranges

of a variable, a node can just represent the connected live ranges of a variable (called webs).

For example, if a variable i is used as a loop iteration variable in several independent loops,

then each loop represents an unconnected live range. Each web can then be allocated to a

different register, even though they represent the same variable.

Coalescing [23, 28, 47, 91] If the live ranges of two variables are joined by a move instruc-

tion and the variables are allocated to the same register it may be possible to coalesce

(eliminate) the move instruction. Coalescing is implemented by adding move edges to the

interference graph. If two nodes are connected by a move edge, they should be assigned

the same color. Move edges can be removed to prevent unnecessary spilling. Coalescing

techniques differ in how aggressively they coalesce nodes and when and how the decision

to coalesce is finalized.

Spill Heuristic [13] A heuristic is used when determining what node to mark in the Potential

Spill stage. An ideal node to mark is one with a low spill cost (requiring only a small num-

ber of dynamic loads and stores to spill) but one whose absence will make the interference

graph easier to color and therefore reduce the number of future potential spill nodes.

Improved Spilling [12, 23, 33] If a variable is spilled, loads and stores to memory may not be

needed at every read and write of the variable. It may be cheaper to rematerialize [22]

the value of the variable (if it is a constant, for example). Alternatively, the live range of

the variable can be partially spilled. In this case, the variable is only spilled to memory

in regions of high interference. Techniques that perform such live range splitting can be

applied before or during register allocation [33, 71, 87].

2.1.3 Limitations

The graph coloring model of register allocation has several fundamental limitations. The basic

graph coloring model is only effective at solving the register sufficiency problem. It must be

extended in an ad hoc fashion in order to incorporate other components of the register allocation

problem. The graph coloring model implicitly assumes a uniform register model and so must be

further extended to target irregular architectures [21, 23, 58, 69, 100]. However, as we shall see,

the graph coloring register allocation is not well suited for targeting irregular and constrained

architectures.

Simply solving the register sufficiency problem is not enough to obtain quality code. As

shown in Figure 2.2, architectures with limited registers sets, such as the Intel x86 architecture,

frequently do not have sufficient registers to avoid spilling. Since almost half of all the functions

in Figure 2.2 had to generate spill code, it is clearly important that the compiler explicitly opti-

mize spill code. The importance of components besides register sufficiency and the shortcomings

of the graph coloring model are further demonstrated in Figure 2.3, which shows the effect of re-

placing the heuristic coloring algorithm in a traditional graph coloring allocator with an optimal

allocator as described in [65]. The use of an optimal coloring algorithm substantially degrades

code quality unless additional components of register allocation are incorporated into the objec-

tive function of the optimal allocator. Since this is done in an ad hoc manner (no explicit cost

model is used), the results are mixed with the optimal-coloring based allocator performing more
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Figure 2.2: The percent of over 10,000 functions assembled from various benchmark suites for which no

spilling is necessary. Three architectures with different numbers of registers are evaluated. In these cases

a graph coloring based allocator successfully found an allocation without spilling. Note that all functions

are treated equally; no attempt is made to weight functions by execution frequency or size. Although these

results are for a heuristic allocator, the heuristic used fails to find a spill-free allocation when one actually

exists in only a handful of cases [65].

poorly on average than a purely heuristic based allocator. These results strongly suggest that de-

veloping a register allocator around the register sufficiency problem, as with the graph coloring

paradigm, and then heuristically extending it to incorporate the additional components of register

allocation is not the the best approach when targeting constrained and irregular architectures.

2.2 Alternative Allocators

Although graph-coloring based allocators are the textbook approach to register allocation, sev-

eral other approaches have been studied and implemented in production compilers. Several al-

locators, including gcc, separate the register allocation problem into global allocation and local

allocation, each of which is done separately, while other allocators attempt to exploit program

structure when performing allocation. Linear scan techniques focus on improving the speed of

the register allocator itself, usually in the context of a just-in-time compiler.

Although allocators which perform local and global register allocation separately may per-

form global allocation first [83], typically local allocation is performed first in order to take

advantage of fast and effective local register allocation algorithms [38, 56, 77]. In probabilistic

register allocation [95] and demand-driven allocation [96], the results of local allocation are used

by the global allocator to determine which variables get registers. In the gcc (as of version 3.4.4
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Figure 2.3: The effect of incorporating various components of register allocation into the coloring algo-

rithm. The coloring heuristic of a traditional graph allocator is replaced with an optimal coloring algo-

rithm. Results are shown for an algorithm that optimal minimizes the number of spilled variables, that

minimizes the total heuristic cost of spilled variables, and that minimizes total spill cost while preferring

allocations that are biased towards coalescing and register preferences.

[43]) allocator, the local allocator performs a simple priority-based allocation. The global allo-

cator then performs its own single-pass priority-based allocation. A final reload phase generates

the necessary spills for any variables that remain unallocated. When compilation time is at a

premium, the global pass, which must calculate a full interference graph, can be skipped.

Allocators which exploit program structure break the control flow graph into regions or tiles.

In hierarchical register allocation [26, 32] a tile tree corresponding to the control-flow hierarchy

is constructed. A partial allocation is computed in a bottom-up pass of the tile tree and then the

final register assignment is calculated on a second top-down pass. A similar technique can also be

used with regions derived from program dependence graphs [89]. Hierarchical allocation results

in a more control-flow aware allocation (for example, less spill code in loops), but decisions made

when fixing the allocation of a tile may have globally poor results. A graph fusion allocator [79]

avoids fixing an allocation at tile boundaries. Instead, tiles are “fused” together until the entire

control flow graph is covered by one fused tile. Each fusion operation maintains the invariant that

the interference graph of a fused tile is simplifiable (easily colored) by splitting live ranges and

spilling variables as necessary. Register assignment is then performed on the final interference

graph. Hierarchical allocators typical exhibit mixed results, with an average case improvement

over graph-coloring allocators. When these allocators perform poorly, it is usually because the

built-in heuristics fail and excessive spill and shuffle code is generated at tile boundaries.
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Linear scan allocators find a register allocation in a single sweep of the program code. They

are usually designed for just-in-time compilers and sacrifice code quality for compile-time speed.

Each variable is represented by a single linear lifetime range and registers are assigned to lifetime

ranges in a single quick pass [93]. This basic method can be extended to support holes in lifetime

intervals, the splitting of intervals and other efficient optimizations [102, 106]. Although these

improvements can result in significant benefits over the basic linear scan algorithm, linear scan

allocators remain inferior to more traditional allocators in terms of code quality.

2.3 Optimal Register Allocation

The NP-hard nature of register allocation makes it unlikely that a practical optimal register al-

location algorithm exists. However, several optimal or partially optimal approaches have been

investigated. Although these algorithms do not demonstrate practical running times, they provide

insight into what is achievable and, in some cases, suggest improvements to heuristic solutions.

The local register allocation problem has been solved optimally using a dynamic program-

ming algorithm that requires exponential space and time [56]. This algorithm has been extended

to handle loops and irregular architectures [67] and multi-issue machines [82]. Essentially, this

algorithm performs a pruned exhaustive search of all possible register allocations. The exponen-

tial part of the algorithm can be replaced by a heuristic to get an efficient local allocator that

outperforms other local allocators on average and is generally close to optimal. Local regis-

ter allocation can also be solved in polynomial space and exponential time using integer linear

programming techniques [77].

The global register sufficiency problem has been solved optimally [15, 90] or approximately

[101] by exploiting the bounded treewidth property of structured programs. The optimal solu-

tions include a constant factor that is exponential in the number of registers. While the ability of

these algorithms to exploit program structure is insightful, they do not actually solve the complete

register allocation problem.

The complete register allocation problem for both regular [44, 45, 50] and irregular [48,

68, 85, 86] architectures has been solved by expressing the problem as an integer linear pro-

gram (ILP) which is then solved using powerful commercial solvers. Although these tech-

niques demonstrate the significant reduction in spill code possible using optimal allocators, their

compile-time performance does not scale well as the size of the input grows. In particular, the

ILP solver is unable to find any solution (let alone the optimal solution) for most functions with

more than 1000 instructions [45].

As an alternative to ILP formulations, a simplified version of the register allocation problem

has been modeled as a partitioned boolean quadratic optimization problem (PBQP) [55, 98]. This

formulation can then either be solved optimally, but exponentially slowly, or with an efficient

polynomial-time heuristic which is competitive with graph coloring allocators.
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2.4 Instruction Selection

Instruction selection, or code generation, converts the compiler’s intermediate representation

(IR) of code into a target-specific assembly listing. Instruction selection and register allocation

are typically done as independent passes with instruction selection preceding register allocation.

However, particularly with irregular architectures such as the x86, the interaction between these

two passes can significantly impact code quality.

The textbook approach to instruction selection [5, 8, 34, 84] is to represent the problem as a

tiling problem. Each tile is a mapping from IR code to assembly code and has an associated cost.

An optimal instruction selection minimizes the total cost of the tiling. If the IR is a sequence

of trees, this tiling can be done optimally using dynamic programming [1, 4, 99, 105], even for

super-scalar machines [17]. Furthermore, code-generator generators based on this approach have

been developed [4, 27, 37, 40, 41, 49, 94] which simplify the construction and maintenance of

a compiler. If the IR consists of directed acyclic graphs (DAGs) then a simplified version of the

problem can be solved within a constant approximation ratio using heuristics [2].

An alternative method for tiling instruction DAGs that is particularly relevant when targeting

DSP [73] and SIMD [74] processors is to tile the IR as if it were a sequence of trees, but gener-

ate several possible tilings for each tree using partial tiles which my potentially be invalid. For

example, two tilings, by themselves, may be invalid because they both contain half of a SIMD in-

struction. A pass after tiling attempts to reconcile the invalid tilings. For example, the two halves

of the SIMD instruction would be combined to produce a valid tiling of the DAG. Unfortunately,

the reconcile phase is itself NP-hard. When evaluated on small DSP kernels, this technique suc-

cessfully increased the parallelism explicitly exposed to the processor, but, due to the use of an

optimal integer-programming based reconcile phase, the compile-times did not scale beyond tree

sizes of 40 operations.

Instruction selection on a DAG IR can also be represented as an instance of a binate covering

problem [75, 76]. The binate covering problem is to find an assignment of boolean variables

that satisfies a given set of logical clauses (consisting only of disjunctions of variables or their

complement) that minimizes a given cost function. Optimal branch-and-bound based solvers can

then be used to find solutions that are significantly better than optimal solutions that work on

sequences of trees. (Approximately a 10% size improvement on selected basic blocks). Unfortu-

nately, this technique does not scale well (several seconds are required to compile a single block

with fewer than 100 instructions).

An alternative method of instruction selection, which is better suited for linear, as opposed

to tree-like, IRs, is to incorporate instruction selection into peephole optimization [34, 36, 42,

63]. In peephole optimization [81], pattern matching transformations are performed over a small

window of instructions, the “peephole.” This window may be either a physical window, where

the instructions considered are only those scheduled next to each other in the current instruction

list, or it may be a logical window where the instructions considered are just those that are

data or control related to the instruction currently being scanned. When performing peephole-

based instruction selection, the peepholer simply converts a window of IR operations into target-

specific instructions. If a logical window is being used, then this technique can be considered

a heuristic method for tiling a DAG. Code-generator generators have also been developed using

the peephole method of instruction selection [35, 39].
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Several techniques that partially integrate instruction scheduling and register allocation have

been developed. A tree-tiling based instruction selector can be extended to incorporate the notion

of usable or efficient register classes into each tile [9, 105]. The AVIV retargetable code genera-

tor [54] performs instruction selection over a split-DAG, which additionally represents function

unit resource constraints, and inserts spills (sub-optimally) during instruction selection if neces-

sary to keep the number of live variables less than the number of registers. Similarly, instruction

selection, combined with instruction duplication, has been used to reduce register pressure re-

sulting in a better final register allocation [97]. Instruction selection and register assignment (no

spilling) have been performed using an exhaustive search with memoization of the search space

[62]. Due to the nature of instruction selection, if register allocation is performed, it is only a lo-

cal register allocation. Otherwise, the instruction selector produces code that is hopefully easier

to allocate and then the global register allocator runs independently.
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Chapter 3

Completed Work

3.1 Expressive Model

In this section we describe a model of register allocation based on multi-commodity network

flow. We first describe the general MCNF problem and show how to create an expressive model

of register allocation for straight-line code using MCNF. We then extend the MCNF model to

handle control flow. Finally, we discuss some limitations of the model. Overall, the our global

MCNF model explicitly and exactly represents the pertinent components of the register allocation

problem.

3.1.1 Multi-commodity Network Flow

The multi-commodity network flow (MCNF) problem is finding a minimum cost flow of com-

modities through a constrained network. The network is defined by nodes and edges where each

edge has costs and capacities. Without loss of generality, we can also apply costs and capaci-

ties to nodes. The costs and capacities can be specific for each commodity, but edges also have

bundle constraints which constrain the total capacity of the edge. For example, if an edge has

a bundle constraint of 2 and commodities are restricted to a single unit of integer flow, at most

two commodities can use that edge in any valid solution. Each commodity has a source and

sink node such that the flow from the source must equal the flow into the sink. Although finding

the minimum cost flow of a single commodity is readily solved in polynomial time, finding a

solution to the MCNF problem where all flows are integer is NP-complete [6].

Formally, the MCNF problem is to minimize the costs of the flows through the network:

min
∑

k

ckxk

subject to the constraints:
∑

k

xk
ij ≤ uij

0 ≤ xk
ij ≤ vk

ij

Nxk = bk
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where ck is the cost vector containing the cost of each edge for commodity k, xk is the flow

vector for commodity k where xk
ij is the flow of commodity k along edge (i, j), uij is the bundle

constraint for edge (i, j), vk
ij is an individual constraint on commodity k over edge (i, j), the

matrix N represents the network topology, and the vector bk contains the inflow and outflow

constraints (source and sink information).

3.1.2 Local Register Allocation Model

Multi-commodity network flow is a natural basis for an expressive model of the register alloca-

tion problem. A flow in our MCNF model corresponds to a detailed allocation of that variable. A

simplified example of our MCNF model of register allocation is shown in Figure 3.1. Although

simplified, this example demonstrates how our MCNF model explicitly represents spill costs,

constant rematerialization, and instruction register usage constraints and preferences.

The commodities of the MCNF model correspond to variables. The design of the network and

individual commodity constraints is dictated by how variables are used. The bundle constraints

enforce the limited number of registers available and model instruction usage constraints. The

edge costs are used to model both the cost of spilling and the costs of register preferences.

Each node in the network represents an allocation class: a register, constant class, or memory

space where a variable’s value may be stored. Although a register node represents exactly one

register, constant and memory allocation classes do not typically correspond to a single constant

or memory location. Instead they refer to a class of constants or memory locations that are all

accessed similarly (e.g., constant integers versus symbolic constants).

Nodes are grouped into either instruction or crossbar groups. There is an instruction group

for every instruction in the program and a crossbar group for every point between instructions.

An instruction group represents a specific instruction in the program and contains a single node

for each allocation class that may be used by the instruction. The source node of a variable

connects to the network at the defining instruction and the sink node of a variable removes the

variable from the network immediately after the last instruction to use the variable. The nodes

in an instruction group constrain which allocation classes are legal for the variables used by that

instruction. For example, if an instruction does not support memory operands, such as the load of

the integer constant one in Figure 3.1, then no variables are allowed to flow through the memory

allocation class node. Similarly, if only a single memory operand is allowed within an instruc-

tion, the bundle constraints of the instruction’s memory edges are set to 1. This is illustrated

in Figure 3.1 by the thin edges connecting to the memory node of the SUB instruction group.

Variables used by an instruction must flow through the nodes of the corresponding instruction

group. Variables not used by the instruction bypass the instruction into the next crossbar group.

This behavior can been seen in the behavior of variables a and b in Figure 3.1. The flows of these

variables bypass the first instruction but are forced to flow through the SUB instruction.

Crossbar groups are inserted between every instruction group and allow variables to change

allocation classes. For example, the ability to store a variable to memory is represented by

an edge within a crossbar group from a register node to a memory allocation class node. In

Figure 3.1 the variable a, which is assumed to start as a parameter on the stack, flows from the

memory node to r0, which corresponds to a load. The crossbar groups shown in Figure 3.1 are

full crossbars which means that for some allocations the use of swap instructions, instead of a
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d
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d
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crossbar omitted 
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r0 r1 mem MOVE c -> r0

c: -2

d

d

b

a

b

c

c

c

crossbar omitted 

for clarity

int example(int a, int b)

{

int d = 1;

int c = a - b;

return c+d;

}

Source code of example

MOVE 1 -> d

SUB a,b -> c

ADD c,d -> c

MOVE c -> r0

Assembly before register

allocation

MOVE STACK(a) -> r0

SUB r0,STACK(b) -> r0

INC r0

Resulting register allocation

Figure 3.1: A simplified example of the multi-commodity network flow model of register allocation.

Thin edges have a capacity of 1 (as only one variable can be allocated to a register and instructions only

support a single memory operand). A thick edge indicates that the edge is uncapacitated. For clarity, edges

not used by the displayed solution are in gray and much of the capacity and cost information is omitted.

The commodity and cost along each edge used in the solution are shown if the cost is non-zero. In this

example the cost of a load is 3, the cost of using a memory operand in the SUB instruction is 1, the benefit

(negative cost) of allocating c to r0 in the final MOVE instruction is 2 since the move can be deleted in this

case. Similarly, allocating d to a constant when it is defined has a benefit of 2. If an operand of the ADD

instruction is the constant one, then a benefit of 2 is accrued because the more efficient INC instruction

can be used. The total cost of this solution is -2.
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Figure 3.2: An example of anti-variables. The anti-variable of a, a′, is restricted to the memory subnet-

work (dashed edges). The edge r is redundant and need not be in the actual network. The cost of the

second store can be paid by the first edge. If the r edge is left in the graph, it would have a cost of three,

the cost of a store in this example. Multiple anti-variable eviction edges can also be used to model the

case where stores have different costs depending on their placement in the instruction stream.

simple series of move instructions, might be necessary. If swap instructions are not available

or are not efficient relative to simple moves, a more elaborate zig-zag crossbar structure can be

used.

The cost of an operation, such as a load or move, can usually be represented by a cost on

the edge that represents the move between allocation classes. However, this does not accurately

reflect the cost of storing to memory. If a variable has already been stored to memory and its

value has not changed, it is not necessary to pay the cost of an additional store. That is, values in

memory are persistent, unlike those in registers which are assumed to be overwritten.

In order to model the persistence of data in memory, we introduce the notion of anti-variables

which are used as shown in Figure 3.2. An anti-variable is restricted to the memory subnetwork

and is constrained such that it cannot coexist with its corresponding variable along any memory

edge. An anti-variable can either leave the memory sub-network when the variable itself exits

the network or the cost of a store can be paid to leave the memory sub-network early. There is

no cost associated with edges from registers to memory, but for these edges to be usable, the

anti-variable must be evicted from memory. The cost of evicting the anti-variable is exactly the

cost of a single store. In this way a variable may flow from registers to memory multiple times

and yet only pay the cost of a single store (of course, every transition from memory to a register

pays the cost of a load). An actual store is only generated for the first move to memory.
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Figure 3.3: The types of nodes in a global MCNF representation of register allocation. The merge/split

nodes not only modify the traditional flow equations with a multiplier, but also require uniformity in the

distribution of inputs/outputs.

Figure 3.4: A GMCNF based representation of an register allocation with a sample allocation shown with

the thicker line. Each block can be thought of as a crossbar where the cost of each edge is the shortest

path between a given merge and split node.

3.1.3 Global Register Allocation Model

Although the described MCNF model is very expressive and able to explicitly model many im-

portant components of register allocation, it is unsuitable as a model of global register allocation

since it does not model control flow. In order to represent the global register allocation problem,

boundary constraints are added to link together the local allocation problems. These constraints

are represented by split and merge nodes as shown in Figure 3.3.

Similar to normal nodes, split and merge nodes represent a specific allocation class. Merge

nodes denote the entry to a basic block. A variable with a flow through a specific merge node

is allocated to that allocation class at the entry of the relevant block. The merge property of the

merge node, as enforced by the flow equations in Figure 3.3, requires that a variable be allocated

to the same allocation class at the entry of a block as at the exit of all of the predecessors of the

block. Similarly, a split node requires that an allocation of a variable at the exit of a block match

the allocation at the entry to each of the successors to the block.

More formally, we add the following equality constraint for every commodity k and for every

pair (split, merge) of connected split and merge nodes to the definition of the MCNF problem
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given in Section 3.1.1:

xk
in,split = xk

merge,out

Note that split nodes are defined to have exactly one incoming edge and merge nodes to have

exactly one outgoing edge. We refer to these constraints as the boundary constraints. These

constraints replace the normal flow constraint between nodes for split and merge nodes.

A simplified example of a single allocation in the global MCNF model is shown in Figure 3.4.

In this example, the full MCNF representation of each basic block is reduced to a simple crossbar.

Unlike the local MCNF model, finding the optimal allocation for a single variable is not a simple

shortest path computation. In fact, for general flow graphs the problem is NP-complete (by a

reduction from graph coloring).

3.1.4 Limitations

Our global MCNF model can explicitly model instruction usage constraints and preferences,

spill and copy insertion, and constant rematerialization. In addition, our model can model a

limited amount of register-allocation driven instruction selection. For example, in Figure 3.1 the

model explicitly encodes the fact that if an operand of the ADD instruction is the constant one,

a more efficient INC instruction can be used. However, the model can not currently represent

inter-variable register usage preferences or constraints. That is, the model can not represent a

statement such as, “if a is allocated to X and b is allocated to Y in this instruction, then a 2 byte

smaller instruction can be used.” For example, on the x86 a sign extension from a 16-bit variable

a to a 32-bit variable b is normally implemented with a 3-byte movsxw instruction, but if both a
and b are allocated to the register eax then a 1-byte cwde instruction may be used with the same

effect. This saving in code size cannot be exactly represented in our model because edge costs

only apply to the flow of a single variable. If the instruction stream was modified so that a move

from a to b were performed before the sign extension and the sign extension had b as its only

operand, then the model would be capable of exactly representing the cost savings of allocating

b to eax with the caveat of requiring a more constrained instruction stream as input.

Another example where inter-variable register usage preferences are useful is in the model-

ing of the conversion of a three operand representation of a commutative instruction into a two

operand representation. Internally, a compiler might represent addition as c = a + b even though

the target architecture requires that one of the source operands be allocated to the same register as

the destination operand. Ideally, the model would be able to exactly represent the constraint that

one of the source operands, a or b, be allocated identically with c. Converting non-commutative

instructions into two operand form does not pose a problem for our model as these instructions

can be put into standard form without affecting the quality of register allocation.

On some architectures inter-variable register usage constraints might exist that require a

double-width value to be placed into two consecutive registers. The SPARC architecture, for

example, requires that 64-bit floating point values be allocated to an even numbered 32-bit float-

ing point register and its immediate successor. Our MCNF model currently is not capable of

representing such a constraint.

Our model does not explicitly represent the benefits of move coalescing. Instead, moves

are aggressively coalesced before register allocation; the model explicitly represents the benefit
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of inserting a move so there is no harm in removing as many move instructions as possible.

Inter-variable register usage preferences are necessary in order to exactly represent the move

coalescing component of register allocation.

An additional limitation of our model is that it assumes that it is never beneficial to allocate

the same variable to multiple registers at the same program point. This arises because there is

a direct correspondence between the flow of a variable through the network and the allocation

of the variable at each program point. The assumption that it will not be beneficial to allocate a

variable to multiple registers at the same program point seems reasonable for architectures with

few registers. If desired, this limitation can be removed by using a technique similar to how

anti-variables are used to model stores.

3.2 Progressive Solvers

In this section we present a progressive solver for the global MCNF problem. This solver quickly

finds a solution using heuristic allocators and then uses iterative subgradient optimization to find

the Lagrangian prices of the network. These prices are used in each iteration by heuristic alloca-

tors to find progressively better solutions. We first describe our use of the theory of Lagrangian

relaxation and then describe and discuss two heuristic allocators (additional heuristic allocators

are discussed in [64]).

3.2.1 Lagrangian Relaxation

Ideally, we would like to build a solution from simple shortest path computations. Each indi-

vidual variable’s shortest path would need to take into account not only the immediate costs

for that variable, but also the marginal cost of that allocation with respect to all other variables.

Lagrangian relaxation provides a formal way of computing these marginal costs.

Lagrangian relaxation is a general solution technique [6, 72] that removes one or more con-

straints from a problem and integrates them into the objective function using Lagrangian multi-

pliers resulting in a more easily solved Lagrangian subproblem. In the case of multi-commodity

network flow, the Lagrangian subproblem is to find a price vector w such that L(w) is maximal,

where L(w) is defined:

L(w) = min
∑

k

ckxk +
∑

(i,j)

wij

(

∑

k

xk
ij − uij

)

(3.1)

which can be rewritten as:

20



L(w) = min
∑

k

∑

(i,j)

(

ck
ij + wij

)

xk
ij −

∑

(i,j)

wijuij (3.2)

subject to

xk
ij ≥ 0

Nxk = bk

∑

i

xk
i,split =

∑

j

xk
merge,j

The bundle constraints have been integrated into the objective function. If an edge xij is over-

allocated, then the term
∑

k xk
ij − uij will increase the value of the objective function, making

it less likely that an over-allocated edge will exist in a solution that minimizes this objective

function. The wij terms are the Lagrangian multipliers, called prices in the context of MCNF.

The prices, w, are arguments to the subproblem and it is the flow vectors, xk, that are the free

variables in the minimization problem. The Lagrangian subproblem is still subject to the same

network and individual flow constraints as in the MCNF problem. As can be seen in (3.2), the

minimum solution to the Lagrangian subproblem decomposes into the minimum solutions of the

individual single commodity problems.

Unfortunately, in our global MCNF model the individual single commodity problem remains

NP-complete because of the boundary constraints. Fortunately, the boundary constraints can also

be brought into the objective function using Lagrangian multipliers:

L(w) = min
∑

k

∑

(i,j)

(

ck
ij + wij

)

xk
ij −

∑

(i,j)

wijuij +

∑

(split,merge)

wk
split,merge

(

xk
merge,out − xk

in,split

)

(3.3)

subject to

xk
ij ≥ 0

Nxk = bk

Since there are no normal flow constraints between split and merge nodes, the solution to (3.3)

is simply a set of disconnected single commodity flow problems.

The function L(w) has several useful properties [6]. Let L∗ = maxwL(w), then L∗ provides

a lower bound for the optimal solution value. Furthermore, a solution, x, to the relaxed sub-

problem which is feasible in the original MCNF problem is likely to be optimal. In fact, if the

solution obeys the complementary slackness condition, it is provably optimal. The complemen-

tary slackness condition simply requires that any edge with a non-zero price be used to its full

capacity in the solution.

We solve for L∗ using an iterative subgradient optimization algorithm. At a step q in the

algorithm, we start with a price vector, wq, and solve L(wq) for xk to get an optimal flow vector,

21



yk, by performing a multiple shortest paths computation in each block. We then update w using

the rules:

wq+1
ij = max

(

wq
ij + θq

(

∑

k

yk
ij − uij

)

, 0

)

wk
split,merge

q+1
= wk

split,merge

q
+ θq

(

yk
merge,out − yk

in,split

)

where θq is the current step size. This algorithm is guaranteed to converge if θq satisfies the

conditions:

lim
q→∞

θq = 0

lim
q→∞

q
∑

i=1

θi = ∞

An example of a method for calculating a step size that satisfies these conditions is the ratio

method, θq = 1/q. More sophisticated techniques to calculate the step size and update the prices

[10, 80] can also be used.

Although the iterative subgradient algorithm is guaranteed to converge, it is not guaranteed

to do so in polynomial time. Furthermore, L∗ does not directly lead to an optimal solution of

the original, unrelaxed global MCNF problem. However, the Lagrangian prices can be used

to effectively guide the allocation algorithms towards better solutions and to provide optimality

guarantees.

3.2.2 Progressive Solver

We combine the Lagrangian relaxation technique with allocation heuristics to create a progres-

sive solver. The solver first finds an initial solution in the unpriced network. Then, in each

iteration of the iterative subgradient algorithm, the current set of prices are used to find another

feasible solution. When finding solutions in the priced network, the allocation heuristics com-

pute shortest paths using edge and boundary prices in addition to edge costs. Global information,

such as the interference graph, is not used except to break ties between identically priced paths.

Instead, the allocators rely exclusively on the influence of the prices in the network to account

for the global effect of allocation decisions.

The heuristic allocators attempt to build a feasible solution to the global MCNF problem

whose cost in the priced network is as close as possible to the cost of the unconstrained solution

found during the update step of the subgradient algorithm. If the algorithm is successful and the

found solution obeys the complementary slackness condition, then the solution is provably opti-

mal. When selecting among similarly priced allocation decisions, we can increase the likelihood

that the solution will satisfy the complementary slackness condition by favoring allocations with

the lowest unpriced cost.

We present an iterative heuristic allocator, which attempts to find the best allocation on a

variable-by-variable basis, a simultaneous heuristic allocator, which attempts to find the best

allocation on a block-by-block basis, and a trace-based simultaneous allocator which extends the

simultaneous allocator to work on traces of basic blocks.
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Edges to/from

memory cost 3

Figure 3.5: An example of a step in the iterative heuristic allocator. The variables a and b have already

been allocated. The allocation for c is found through a shortest path computation. Note that the allocation

of b avoided using the last available register in the SUB instruction group to avoid preventing the allocation

of c.

Iterative Heuristic Allocator

The iterative heuristic allocator (Figure 3.5) allocates variables in some heuristically determined

order. A variable is allocated by traversing the control flow graph in depth first order and com-

puting the shortest path for the variable in the priced network of each block. Because the blocks

are traversed in order, the split nodes at the exit of a processed block will fix the starting point

for the shortest path in each successor block. Within each block we will always be able to find a

feasible solution because the memory network is uncapacitated. We constrain our shortest-path

algorithm to conservatively ignore paths that could potentially make the network infeasible for

variables that still need to be allocated. For example, if an instruction requires a currently unallo-

cated operand to be in a register and there is only one register left that is available for allocation,

all other variables are required to be in memory at that point.

The iterative heuristic allocator performs a shortest path computation for every variable v in

every block. This shortest path computation is linear in the number of instructions, n, because

each block is a topologically ordered directed acyclic graph. Therefore the worst case running

time of the algorithm is O(nv).

Simultaneous Heuristic Allocator

As an alternative to the iterative allocator, we describe a simultaneous allocator (Figure 3.6)

which functions similarly to a second-chance binpacking allocator [102] but uses the global

MCNF model to guide eviction decisions. The algorithm traverses the control flow graph in depth

first order. For each block, it performs both a forwards and backwards shortest-path computation
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memory cost 3

Figure 3.6: An example of a step in the simultaneous heuristic allocator. The variables a, b, and d have

all been allocated up to the point before the SUB instruction. The definition of c requires that a variable

be evicted from a register. Since it is cheapest to evict a, its allocation is changed to go through memory

and c is allocated to r1.

for every variable. These paths take into account that the entry and exit allocations of a variable

may have been fixed by an allocation of a previous block. Having performed this computation,

the cost of the best allocation for a variable at a specific program point and allocation class

in a block can be easily determined by simply summing the cost of the shortest paths to the

corresponding node from the source and sink of the given variable.

After computing the shortest paths, the algorithm scans through the block, maintaining an

allocation for every live variable. The allocations of live-in variables are fixed to their alloca-

tions at the exit of the already allocated predecessor blocks. At each level in the network, each

variable’s allocation is updated to follow the previously computed shortest path to the sink node

of that variable (the common case is for a variable to remain in its current location). If two vari-

ables’ allocations overlap, the conflict is resolved by evicting one of the variables to an alternative

allocation.

When a variable is defined, the minimum cost allocation is computed using the shortest path

information and a calculation of the cost of evicting any variable already allocated to a desired

location. The cost of evicting a variable from its current location is computed by finding the

shortest path in the network to a valid eviction edge (an edge from the previous allocation to a

new allocation). In computing this shortest path we avoid already allocated nodes in the graph.

That is, we do not recursively evict other variables in an attempt to improve the eviction cost.

The shortest path is not necessarily a simple store immediately before the eviction location. For

example, if the defining instruction of the variable being evicted supports a memory operand,

it might be cheaper to define the variable into memory instead of defining it into a register and

performing a more costly store later. When a variable is evicted to memory the cost of the

corresponding anti-variable eviction is also computed and added to the total eviction cost. When
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Figure 3.7: A example control flow graph (left) decomposed into traces (right). The bold edge is an

example of control flow internal to a trace that complicates allocation.

choosing a variable to evict we break ties in the eviction cost by following the standard practice

and choosing the variable whose next use is farthest away [11, 77].

Only intra-block evictions are allowed; the earliest a variable can be evicted is at the begin-

ning of the current block. Because of this limitation, this allocator performs more poorly as the

amount of control flow increases since poor early allocation decisions can not be undone later in

the control flow graph.

The simultaneous heuristic allocator, like the iterative algorithm, must compute shortest paths

for every variable v in every block. Unlike the iterative algorithm, the simultaneous allocator

does not need to compute each path successively and instead can compute all paths in the same

pass. However, although this results in an empirical performance improvement, the worst case

asymptotic running time remains O(nv).

Trace-Based Simultaneous Allocator

In an attempt to improve upon the simultaneous allocator we have developed a trace-based simul-

taneous allocator. Instead of processing each basic block independently, the trace-based allocator

decomposes the control flow graph into linear traces of basic blocks, which may contain inter-

nal and external control flow, and allocates each trace similarly to how a single basic block is

allocated by the simultaneous allocator. To construct our traces we simply find the longest pos-

sible traces using depth first search while ensuring that loop headers start a new trace (as in the

example in Figure 3.7).

The presence of control flow within each trace creates some complications. When computing

shortest paths care must be taken to take the correct edge spanning basic blocks within a trace

(there may be holes in a trace where a variable is not live). When an allocation decision is made

at a block boundary, that decision must be propagated to all connected blocks within the trace.

For example, the exit allocation of block 1 in Figure 3.7 fixes the starting allocation of both

blocks 5 and 7 and the exit allocation of block 6 in the same trace. Similarly, it may not be

straightforward to evict a variable across block boundaries if doing so affects other blocks in the

trace.
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We consider two techniques for propagating boundary allocation decisions within a trace.

The first, easy-update, does the minimal amount of recomputation necessary for correctness.

Only blocks directly effected by the boundary allocation have their shortest path computations

redone. For example, in Figure 3.7, after allocating block 1, only block 6 would have to be

recomputed as its exit allocations have changed. Although these recomputations result in extra

work compared to the original simultaneous allocator, they are necessary for the correct alloca-

tion of the trace. The second technique, full-update, recomputes the shortest paths for all unal-

located blocks prior to and including the blocks effected by the boundary allocation. The full-

update technique is computationally more expensive (potentially quadratically more updates) but

provides more up-to-date information for the simultaneous allocator in blocks not immediately

affected by the boundary allocation. For example, in Figure 3.7, if a variable were to spill to

memory and then be loaded back into a register in block 5, it would likely be best for the variable

to be loaded into the same register it was allocated to at the exit of block 1 (to avoid a move into

that register before the exit of block 6). With full-update the allocator would be aware of this

cost since both blocks 5 and 6 would have been recomputed after the allocation of block 1.

3.2.3 Allocation Difficulties

There are several factors that prevent the allocation algorithms from finding the optimal solution

given a priced network. Until the iterative subgradient method has fully converged, the prices in

the network are only approximations. As a result, we may compute a shortest path for a variable

that would not be a shortest path in a network with fully converged prices. The simultaneous

allocators are less sensitive to this effect since they can undo bad allocation decisions. However,

the values of the boundary prices are critical to the performance of the simultaneous allocators

as allocation decisions get fixed at block or trace boundaries.

A potentially more significant impediment to finding an optimal solution is that the lower

bound computed using Lagrangian relaxation converges to the value of the optimal solution of

the global MCNF problem without integer constraints. If the difference between the value of the

solution to the integer problem and the linear problem is nonzero, we will not be able to prove

the optimality of a solution. Fortunately, it has been shown empirically that this difference is

rarely nonzero [66].

Even given perfectly converged prices and an a priori knowledge that the integrality gap is

not problematic, the allocation problem remains difficult. The allocators must choose among

identically priced allocations, not all of which may be valid allocations in an optimal solution.

Again, the simultaneous allocators are somewhat insulated from this difficulty since they can

undo bad decisions within a block, but they still must rely upon the value of the boundary prices

to avoid locally good, globally poor, allocation decisions.

The challenges faced by the allocators in converting a priced network into an optimal register

allocation are not unexpected given the NP-completeness of the problem. However, as we shall

see, as the iterative subgradient algorithm converges, the quality of solutions found by the allo-

cation heuristics improve and the lower bound on the optimal solution value increases resulting

in provably optimal or near-optimal solutions.
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Figure 3.8: Code size improvement with our easy-update trace-based simultaneous allocator compared

to a standard iterative graph coloring allocator. All benchmarks were compiled using the -Os optimiza-

tion flag. Note the improvement over time with our allocator. The benchmark qsort had the largest

improvement with a size improvement of 18.28% after 1000 iterations.

3.3 Results

3.3.1 Implementation

We have implemented our global MCNF allocation framework as a replacement for the register

allocator in gcc 3.4.4 when targeting the Intel x86 architecture. Before allocation, we execute

a preconditioning pass which aggressively coalesces moves and translates instructions that are

not in an allocable form. For example, the compiler represents instructions as three operand

instructions even though the architecture only supports two operand instructions. If all three

operands are live out of the instruction, it is not possible to allocate these three variables to

distinct registers and still generate an x86 two operand instruction. The preconditioning pass

translates such instructions so that two of the three operands are the same variable.

We next build a global MCNF model for the procedure. In our model, crossbars are repre-

sented as zig-zags since gcc does not support the generation of the x86 swap instruction. We

simplify the network by only permitting loads and stores of a variable to occur at block bound-
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Figure 3.9: Code size improvement with our easy-update trace-based simultaneous allocator compared

to the default allocator of gcc. All benchmarks were compiled using the -Os optimization flag. Our al-

locator outperforms the default allocator on all benchmarks after 100 iterations. The benchmark pegwit

had the largest improvement with a size improvement of 10.78% after 1000 iterations.

aries and after a write to the variable (for a store) or before a read of the variable (for a load).

This simplification does not change the value of the optimal solution.

We use code size as the cost metric in our model. This metric has the advantage that it can be

perfectly evaluated at compile time and exactly represented by our model. We assume a uniform

memory access cost model. Specifically, we assume that spilled variables will always fit in the

128 bytes below the current frame pointer unless this space is already fully reserved for stack

allocated data (such as local arrays). As a result, for some large functions that spill more than 32

values the model is inaccurate. We only model constant rematerialization for integer constants.

Although it is not required by the architecture, gcc requires 64-bit integer values to be allocated

to consecutive registers. Since our model currently does not support such constraints, we ignore

such values (resulting in all such variables being allocated to memory and fixed up by the reload

pass).

We run both the iterative and trace-based simultaneous allocators on the initial unpriced net-

work and then for each step of the iterative subgradient algorithm we apply only the trace-based

simultaneous allocator to the priced network. In addition to being faster, the trace-based simulta-
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Figure 3.10: Average code size improvement over all the benchmarks relative to the graph allocator.

The highly tuned default allocator outperforms both the graph allocator and our initial allocation, but, on

average, when a trace-based allocator is used, our progressive allocator outperforms the default allocator

after only 10 iterations.

neous allocator generally performs better than the iterative allocator once the Lagrangian prices

start to converge. However, the iterative allocator does better on the unpriced graph because it

allocates variables in order of decreasing priority. Unless otherwise specified, we use the easy-

update technique for our trace-based allocator.

After running our solver, we insert the appropriate moves, stores, and loads and setup a

mapping of variables to registers. The gcc reload pass is then run which applies the register

map and modifies the instruction stream to contain only references to physical registers. This

pass will also fix any illegal allocations that our allocator might make if the model of register

preferences and usage constraints is not correct by generating additional fixup code (this is not

common).

3.3.2 Code Quality

We evaluate our global MCNF model and progressive allocators on a large selection of bench-

marks from the SPEC2000, SPEC95, MediaBench, and MiBench benchmark suits. Combined,

these benchmarks contain more than 10,000 functions. We evaluate the quality of our solutions

in terms of code size. Because our concern is with evaluating our model and our solver, all size

results are taken immediately after the register allocation pass (including gcc’s reload pass) to

avoid noise from downstream optimizations.
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We compare our allocators to the standard iterative graph coloring allocator that can be en-

abled by passing -fnew-ra to gcc. This allocator implements standard graph coloring register

allocation [23] with iterative coalescing [47] and interference region spilling [12]. The graph al-

locator generally does not perform as well as the highly-tuned default allocator. The default gcc

register allocator divides the register allocation process into local and global passes. In the local

pass, only variables that are used in a single basic block are allocated. After local allocation,

the remaining variables are allocated using a single-pass graph coloring algorithm. Although the

default allocator is algorithmically simple, it benefits from decades of development and improve-

ment.

As shown in Figure 3.8 and Figure 3.10, our initial heuristic allocator, which runs both the

iterative and trace-based simultaneous allocators and takes the best result, outperforms the graph

allocator on all but one benchmark with an average improvement in code size of 3.57%. As

expected, as more time is alloted for compilation, our easy-update trace-based simultaneous al-

locator does progressively better with average code size improvements of 4.17%, 6.18%, and

6.96% for ten, 100, and 1000 iterations respectively. As shown in Figure 3.9, our allocator does

not initially do as well as the default allocator; at first we outperform the default allocator on

only twelve benchmarks. However, we outperform or match even the default allocator on all 44

benchmark when we run our algorithm for 100 iterations. On average, we surpass the perfor-

mance of the default allocator with only ten iterations. Figure 3.10 shows the advantage of using

traces of blocks with our simultaneous allocator. Although the full-update trace-based allocator

outperforms the easy-update allocator on a per iteration basis, as demonstrated in Figure 3.12,

because of its worst-case quadratic complexity, it is not as beneficial on a per time unit basis.

3.3.3 Solver Performance

Progressiveness

The behavior of our progressive solver for a single function (quicksort) is shown in Fig-

ure 3.11. As expected, as the Lagrangian prices converge (resulting in a better lower bound),

the quality of the allocation improves (the amount of register allocation induced overhead de-

creases). However, as the rate of convergence decreases, so does the progressive improvement

of the best allocation.

Ideally, a progressive allocator would be competitive with both existing fast heuristic alloca-

tors and existing slow optimal allocators. In Figure 3.12 we compare several of our progressive

allocators with gcc’s two allocators and an allocator that uses CPLEX version 10 [57] to solve

our global MCNF problem. Our progressive allocators perform best in the absence of control

flow; for the squareEncrypt function, which is a single basic block, our initial allocation

is better than that of gcc’s heuristic allocators and we find a provably optimal allocation much

more quickly than it takes CPLEX to solve the same problem. However, in control-flow inten-

sive functions, such as quicksort, we aren’t as competitive with gcc’s allocators initially,

and, although we get close, we do not find an optimal solution.

Although our progressive allocator may not always be strictly better than heuristic allocators

initially, or strictly better than optimal allocators eventually, our progressive allocator has the
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Figure 3.11: The behavior of our allocator on the quicksort function. Although the quality of the solution

found by our allocator oscillates, as the lower bound computed using Lagrangian relaxation converges to

the optimal value the value of the best solution progressively improves.

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 0  100  200  300  400  500  600  700  800

R
e

g
is

te
r 

a
llo

c
a

ti
o

n
 o

v
e

rh
e

a
d

 (
b

y
te

s
)

Time (s)

Progressive iterative allocator
Progressive simultaneous trace-based allocator

Default allocator
Graph allocator

CPLEX 10
Optimal

 200

 250

 300

 350

 400

 450

 500

 550

 600

 650

 0  20  40  60  80  100  120

R
e

g
is

te
r 

a
llo

c
a

ti
o

n
 o

v
e

rh
e

a
d

 (
b

y
te

s
)

Time (s)

Progressive iterative allocator
Progressive simultaneous allocator

Progressive simultaneous trace-based allocator
Progressive simultaneous trace-based allocator (full update)

Default allocator
Graph allocator

CPLEX 10
Optimal

Figure 3.12: The behavior of our heuristic allocators as the Lagrangian prices converge executed on

a 2.8Ghz Pentium 4 with 2GB of RAM. The squareEncrypt function from the pegwit benchmark

consists of a single basic block and has 378 instructions, 150 variables, and an average register pressure

of 4.99. The quicksort function is spread across 57 blocks, has 236 instructions, 58 variables, and

an average register pressure of 3.14. Approximately a third of the final size of both functions is due to

register allocation overhead. The iterative allocator performs better initially, but as the Lagrangian prices

converge the simultaneous allocator performs better. In the case of the squareEncrypt function, which

has no control flow, the simultaneous allocator find a better initial solution than both of gcc’s heuristic

allocators and finds an optimal solution in about a quarter of the time it takes the CPLEX solver. The use

of traces has no effect on the performance of the allocator in this case since there is only one basic block.

None of our allocators succeeded in finding an optimal allocation for quicksort before CPLEX found

the optimal solution at 107 seconds. The trace-based allocators clearly outperform both the block-based

allocators, although as the prices converge the advantage of using traces decreases.
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Figure 3.13: The proven optimality of solutions as the progressive allocator executes more iterations.

The found solution is provably within 5% of optimal for 45.18%, 63.21%, 91.74%, and 99.06% of the

functions after 1, 10, 100, and 1000 iterations respectively.

distinct advantage of successfully connecting these two extremes: decent solutions can be found

quickly and optimality can be approached as more time is alloted for compilation.

Optimality

Ideally, a progressive solver is guaranteed to eventually find an optimal solution. Although our

solver has no such guarantee, the Lagrangian relaxation technique lets us prove an upper bound

on the optimality of the solution. As the iterative subgradient algorithm used to solve the La-

grangian relaxation converges, both a better lower bound on the optimal value of the problem

is found and the quality of the solutions found by the Lagrangian-directed allocator improves.

Consequently, as shown in Figure 3.13, as more iterations are executed, a larger percentage of

compiled functions are proven optimal. After 1000 iterations, we have found a provably optimal

register allocation for 82.74% of the functions and 99.06% of the functions have a solution that

is provably within 5% of optimal.

Compile Time Performance

The worst case running time of O(nv) of our heuristic solvers combined with the early develop-

mental stage of our implementation leads us to expect that our allocator will not perform as well

as existing allocators in terms of compilation time. Indeed, as shown in Figure 3.14, allocating

with just one heuristic solver is almost ten times slower than the graph allocator, and a single iter-

ation is clearly more expensive than an entire allocation in the graph allocator. These slowdowns
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Figure 3.14: The slowdown of our register allocator relative to the graph allocator. On average, we take

about 10 times longer than the graph allocator to find a solution.

are relative to the time spent by the graph allocator which accounts for between 10.5% and 46%

of the total compile time (27.5% on average). The graph allocator is, on average, about four

times slower than the default allocator. Although it is likely that these results will improve when

we optimize our implementation, because our allocators solve a fundamentally harder problem

than existing fast heuristics, it is unlikely that it is possible to be faster than existing allocators.
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Chapter 4

Proposed Work

4.1 Model Improvements

Although the current global MCNF model successfully captures the pertinent features of register

allocation, there remains room for improvement. The current model is not always 100% accu-

rate and is needlessly expressive when modeling uninteresting program regions and representing

uniformly accessed registers.

The existing model accurately models the costs of register allocation most of the time, as

shown in Figure 4.1. We measure the accuracy of the model by comparing the predicted size

of a function after ten iterations of our progressive algorithm to the actual size of the function

immediately after register allocation. Approximately half of the compiled functions have their

size exactly predicted and more than 70% of the functions have their size predicted to within 2%

of the actual size.

I propose to improve the accuracy of the model. The biggest cause of under-prediction is the

uniform memory cost model. Most of the severely under-predicted functions spill more variables

than fit in the first 128 bytes of the frame resulting in incorrectly predicted costs in the model

for memory operations. It is possible to exactly represent such behavior by using two memory

allocation classes, one of which is capacitated, although it is not clear that the improved model

accuracy is worth the increased model complexity. The biggest cause of the most severe over-

predictions is gcc’s instruction-sizing function inaccurately reporting the size of certain floating

point instructions prior to register allocation. This should be easily fixed by modifying the pre-

register allocation code size analysis.

The current global MCNF model is uniformly expressive. I propose to modify the current

model to be adaptively expressive; at each program point the model will be only as expressive as

it needs to be. Reducing the size of the model in this way will result in better solver performance

and memory efficiency. The most obvious cases where simplification is possible is in a local

region of no register pressure as in Figure 4.2. In this case, it may be possible to summarize

the entire region as a single meta-instruction group. This is straightforward to do in any region

where the allocation on entry can be proven to be identical to the allocation on exit and where the

constraints of the region can be represented by the normal instruction constraints. It may also be

worthwhile to summarize more complex regions using more elaborate summary representations.
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Figure 4.1: An evaluation of the accuracy of the global MCNF model that compares the predicted size

after register allocation to the actual size.

I propose to implement a separate model simplification pass that runs after the creation of the

full model. Although this approach is not as efficient as modifying the model creation routines

to directly build a simplified model, it will make it easier to investigate different simplification

techniques. In particular, it will be easier to compare safe simplification techniques, which reduce

the expressiveness of the model only if doing so is guaranteed not to change the optimal solution,

with aggressive simplification techniques, which may sacrifice some optimality for reductions in

model complexity.

Further model simplification may be possible when targeting architectures with more uniform

register files. The existing model implementation represents each register as its own allocation

class. While this is useful and necessary for the x86 architecture, for RISC architectures such as

the PowerPC, and even CISC architectures such as 68k/Coldfire (which has 8 uniformly accessed

data registers and 8 uniformly accessed address registers), assigning each register its own alloca-

tion class increases the size of the model (especially in the crossbar groups where the number of

edges is quadratic with the number of allocation classes). Unfortunately, this level of expressive-

ness is not completely unnecessary when performing global register allocation. As illustrated by

Figure 4.3, in the presence of control flow the register assignment problem cannot be decoupled

from the rest of register allocation.

I propose to investigate model simplification in the presence of uniformly accessed register

sets. Such simplification will likely be necessary in order to efficiently support RISC-like archi-

tectures. I will investigate the need for such simplification in the presence of more general model

simplifications as well as consider the impact of a less detailed model that does not directly solve

the register assignment problem.
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mem

1

a

r0 r1 mem

r0 r1 mem
c

r0 r1

r0 r1 mem

a b

mem

2

a

summarization

Figure 4.2: An example of model simplification. The ADD and SUB instructions and their intervening

crossbar can be summarized as a single meta-instruction group without changing the value of the solution.

The purpose of the thesis is to investigate, develop, and evaluate new algorithms and ap-

proaches for performing register allocation and instruction selection. Code size is used as a

metric of code quality since it can be precisely evaluated at compile time and, as a result, allows

for noise-free evaluation of the register allocator and instruction selector. The techniques in this

thesis should be equally valid for any code quality metric that can be evaluated at compile time.

However, formulating other precise and accurate statically evaluatable code quality metrics, such

as for speed and energy usage, is considered beyond the scope of this thesis. As a result, I pro-

pose to investigate only a straightforward speed metric where the cost of each operation is simply

its predicted cycle time multiplied by its predicted execution frequency.

4.2 Solver Improvements

An ideal progressive register allocator would be able to quickly find an allocation that is as

good as or better than allocations found by existing heuristic allocators and then progressively

improve upon this solution until an optimal solution is found, ideally in less time than a standard

optimization package. Although in terms of local register allocation the current allocator appears

to meet or exceed this standard, it is unclear how closely this standard can be approached with

global register allocation.

I propose to further investigate improvements to the current solver that either improve the

initial solution or improve the quality of the solution as the prices converge. I do not propose

to add a guarantee that the solver will eventually find the optimal solution since, unless P = NP,
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b ← …

  ← a

c ← …

  ← b

a ← …

  ← c

b

a

c

Figure 4.3: An example where register assignment cannot be decoupled from the rest of register alloca-

tion. In this example, if there are two uniformly accessed registers r0 and r1 making up some register

class R, then while it is possible to allocate each variable to R such that at no point more than two vari-

ables are allocated to R (at most two live ranges overlap at any point), it is not possible to assign r0 and

r1 to the three variables (the interference graph is a triangle).

such a guarantee would require the implementation of a branch and bound search which I view

as an uninteresting extension of the work.

Although I do not intend to provide an optimality guarantee, it is likely that some theoretical

bound on solution quality can be obtained. The current best approximation algorithm for local

register allocation on a RISC-like machine is a 2x approximation [38]. I propose to investigate

the approximation properties of my solution technique. At a minimum, I expect to be able to

duplicate the existing 2x result within the context of the MCNF model of the problem.

4.3 Integrating Register Allocation and Instruction Selection

Instruction selection is an essential part of the compiler backend. Although optimal algorithms

exist for tiling expression trees and heuristic algorithms exist for tiling expression DAGs, these

algorithms rely on the accuracy of the assessments of the costs of each instruction pattern tile.

These tile costs are inherently inaccurate since spills, register preferences, and move coalesc-

ing may change the instructions corresponding to a tile. For example, the shorter instruction

sequence of Figure 4.4(e) may actually be worse than that of Figure 4.4(d) if the extra register

pressure it introduces results in spill code. A principled backend optimizer requires a greater

37



int foo(int a, short b) { return a*4+b; }

(a)

*

+

(int)

a

b

4

eax

move a:32 -> t1:32

ashift t1:32,2 

-> t2:32

plus b:16, t2:32 

-> t3:16

sign_extend t3:16 

-> t4:32

move t4:32 -> eax

(b)

*

+

(int)

a

b

4

eax

move a:32 -> t1:32

plus 

(mult t1:32, 4), 

t2:32 

-> t3:32

sign_extend b:16 

-> t2:32

move t3:32 -> eax

(c)

size
4 movl 4(%esp), %eax

3 sall $2, %eax

4 addl 8(%esp), %eax

1 cwtl

1 ret

(d)

size
5 movswl 8(%esp),%edx

4 movl 4(%esp), %eax

3 leal (%edx,%eax,4), %eax

1 ret

(e)

Figure 4.4: Two possible instruction tilings for the code snippet shown in (a). Under ideal conditions

(no register pressure), both tilings produce code of the same size, but (b) results in a longer instruction

sequence, (d). Alternatively, (c) results in code, (e), which requires an additional register. In the presence

of register pressure, it is not clear which tiling is better. The tiling (c) requires two registers, but (b) results

in larger code if the eax register is not used preventing the generation of the efficient cwtl instruction.
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(int)

x:16

y:32

(a)

sign extend x → y

x\y eax edx · · · mem

eax cwtl(1) movsx(4)
edx movsx(4) movsx(4)
...

mem movsx(5) movsx(5)

(b)

Figure 4.5: A register allocation aware tile for sign extension. The tile (b), matches the IR operation (a).

The cost of the tile (here determined by code size) depends on the eventual allocation of the input (x) and

output (y) of the operation. In some cases multiple instructions might be necessary. For example, if both

x and y are in memory, a store instruction has to be generated. However, the register allocator is assumed

capable of generating this store, and so the tile need not represent this case.

*

+

4
x:32

y:32

z:32

(a)

plus (mult x,4), y → z
z :eax
x\y eax edx · · · mem

eax leal(3) sall;addl(6)
edx leal(3)
...

mem

plus (mult x,4), y → z
z :edx
x\y eax edx · · · mem

eax leal(3)
edx leal(3) sall;addl(6)
...

mem
...

(b)

Figure 4.6: A register allocation aware tile (a) for a more complicated expression tree (b). In this case

it is impossible for x and y to be allocated to the same register since their live ranges overlap, but if y is

in memory and x and z are allocated to the same register then y can be directly accessed with the addl

instruction. Although this code sequence is no smaller than loading y into a register and using the leal

instruction, it does require one less register. In RA2ISE, the register allocator makes the final decision as

to which sequence to generate.
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degree of integration between the instruction selection phase and register allocation. Towards

that end I propose Register Allocation Aware Instruction SElection (RA2ISE).

In RA2ISE, instruction selection is not finalized until the register allocation phase. Instead of

tiling the expression trees with fixed cost (inaccurate) tiles, instruction selection uses variable-

cost register allocation aware tiles (RAATs) whose final instruction sequence and cost depends

upon the allocation of the tile’s inputs and outputs. For example, the sign extension RAAT in

Figure 4.5 explicitly encodes the benefit of both operands being in eax (a smaller instruction

can be used) and the cost of the input operand being in memory (an additional byte is necessary

to store the stack offset). Larger RAATs that potentially resolve to multiple instructions can

also be used, as shown in Figure 4.6. Instruction selection is partially performed using RAATs.

The information in these tiles is then incorporated into the expressive model used by the register

allocator. The allocation found by the register allocator is then used to finalizes the instruction

sequence.

In order to support the RA2ISE framework, the current global MCNF model of register allo-

cation needs to be extended to support inter-variable register usage preferences and constraints

so that the register allocation aware instruction tiles can be exactly expressed in the model. Cur-

rently, the model can only exactly represent tiles if the cost of an allocation decision is determined

solely by an individual variable’s allocation. For example, in the tile 4.5(b) the cost of allocating

x to memory can be represented but the cost of allocating x to eax can not be modeled exactly

since this cost is determined by the allocation of y.

I propose to increase the expressiveness of the current global MCNF model to exactly express

the costs and constraints represented by RAATs by adding side-constraints, which constrain the

flows of variables with respect to each other. After adding support for side-constraints to the

model, I will determine the necessary extensions to the existing solution algorithms to solve a

model with side-constraints and evaluate their effectiveness. I will first use these side-constraints

to exactly represent gcc’s existing instruction tiles and then implement a more general frame-

work for specifying and generating RAATs.

I propose to investigate various algorithms for generating a tiling of RAATs. I will explore

simple extensions of existing tiling algorithms that simply assign a fixed cost to each RAAT. For

example, a RAAT might optimistically be assigned its minimum possible cost, its median cost, or

a cost that is a heuristic function of the register pressure at that point. In addition, I will consider

feedback directed algorithms where instruction selection and register allocation are performed

multiple times, each time providing feedback for the next iteration.

4.3.1 Preliminary Results

In order to demonstrate the benefits of adding side constraints to our model we consider one

straightforward application of side constraints: move coalescing. The goal of the NP-hard [18]

move coalescing problem is to remove as many move instructions as possible by allocating the

source and destination of the move instruction to the same register. In our current allocator we

aggressively and greedily coalesce as many moves as possible prior to allocation. Our allocator is

then capable of reinserting moves into the instruction stream if doing so aids allocation. However,

as shown in Figure 4.7, it is not always possible to coalesce all available moves and the moves

which our aggressive coalescing algorithm chooses may not be optimal.
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a ← …

b ← a

c ← …

c ← a

b ← …

 ← b

 ← c

Figure 4.7: An example of a coalescing decision. Both the move from a to b and the move from a

to c are candidates for coalescing, but since b and c conflict only one of the moves can be coalesced.

Aggressive coalescing arbitrarily picks one of the moves, but the best move to coalesce depends on the

register pressure properties within the various blocks.
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Figure 4.8: Size improvement using different coalescing methods relative to no coalescing. Results are

computed using the CPLEX optimizer; results for functions where no solution could be found within 10

minutes are omitted.
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96.1%

1.8%

2.1%

3.9%

Solved by CPLEX

No coalescing not solved by CPLEX

Move coalescing not solved by CPLEX

Figure 4.9: Percent of functions for which CPLEX could find an optimal solution within a 10 minute time

limit. In some cases CPLEX found a solution for the no coalescing problem within the time limit but not

for the full coalescing problem.

The move coalescing component of register allocation is easily added to our existing model

through the use of side constraints. The allocation of the move source is simply required to

be equal to the allocation of the move destination. Put another way, the RAAT for the move

instruction would have a cost table with a diagonal of zeroes.

We have implemented move coalescing side constraints within the integer linear program-

ming representation of our model. We evaluate four methods of coalescing:

No Coalescing Absolutely no coalescing is performed. Move instructions where both operands

have the same allocation remain in the instruction stream.

Opportunistic Coalescing Coalescing is not performed until after the register allocation prob-

lem has been solved. The register allocation problem solved does not have a move coa-

lescing component. Move instructions where both operands have the same allocation are

removed from the instruction stream.

Aggressive Coalescing As many move instructions as possible are coalesced prior to solving

the register allocation problem, which works on this modified instruction stream. The

variables being coalesced become a single variable. This is the method currently used by

our allocator.

Full Coalescing The move coalescing component of register allocation is incorporated into our

model using side constraints. The current implementation has the side effect of forcing

both variables of the move to be in a register. This is because we assume every variable has

a unique location on the stack and memory to memory moves are not allowed by the x86
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architecture. In contrast, the aggressive coalescing technique would allocate both variables

to the same stack location allowing for the coalescing of a move when both operands are

in memory. In this uncommon case it is possible for the aggressive coalescing technique

to outperform our full coalescing technique.

We find the cost of the optimal register allocation using all four of these coalescing tech-

niques by solving each problem using version 10 of the ILOG CPLEX optimizer [57]. The

size improvement of each method relative to a baseline of no coalescing is shown in Figure 4.8.

Relative to no coalescing, opportunistic coalescing, aggressive coalescing, and full coalescing

improve code size on average by 0.10%, 0.17%, and 0.25% respectively. The addition of side

constraints made some problems harder to solve. As shown in Figure 4.9, CPLEX could find

an optimal solution to the problem without side-constraints but not with the side-constraints for

2.1% of the functions compiled. In some cases, such as the quicksort function, the addition

of side-constraints resulted a two orders of magnitude slowdown in CPLEX solution time.

4.4 Evaluation

In order to determine the benefit of using an expressive model and progressive solver it is nec-

essary to perform a comprehensive evaluation. I propose to evaluate the allocator for both code

size and speed on a wide variety of benchmarks. In order to evaluate the value of progressive

optimization in normal use, I will modify the compiler driver to accept a time limit for opti-

mization (as opposed to the current iteration count limit). In addition, in order to demonstrate

the generality and applicability of the allocator, I propose to evaluate it on multiple architectures:

x86, which is a highly irregular architecture with only eight registers; 68k/ColdFire which has 16

registers divided equally between differently accessed address and data registers; and PowerPC

which has 32 uniform registers.
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Chapter 5

Contributions and Timeline

5.1 Expected Contributions

The expected contributions of the final thesis are:

• Register Allocation Aware Instruction Selection (RA2ISE) which consists of

register allocation aware tiles (RAATs) which explicitly encode the effect of register

allocation on an instruction sequence,

algorithms for performing instruction selection using RAATs,

an expressive model for global register allocation that operates on RAATs and ex-

plicitly represents important components of register allocation such as spill code in-

sertion, register preferences, copy insertion, and constant rematerialization,

a progressive solver for this model that quickly finds solutions comparable to existing

approaches and approaches optimality as more time is allowed for compilation,

algorithms for encorporating feedback from register allocation into instruction selec-

tion to more fully exploit the expressiveness of RAATs.

• A comprehensive evaluation of RA2ISE

implemented in a production quality compiler (gcc),

targeting different architectures (x86, 68k/ColdFire, PowerPC), and

compiling for both the code size and code performance optimization metrics.

Overall, the thesis aims to improve the state of the art in backend compiler optimization by

creating a new, principled, optimization framework that replaces the existing ad hoc heuristic

approaches with expressive and explicit models coupled with progressive solution techniques.
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5.2 Timeline

Fall 2006

• add simple speed metric option to model

• begin model simplification work

• improve model accuracy and solver performance

Winter 2006

• finish model simplification work

• add side-constraints to model

• implement existing gcc tiles as RAATs

• improve model accuracy and solver performance

Spring 2007

• finish implementation of side-constraints and gcc RAATs

• begin work on RA2ISE infrastructure

• create gcc-independent set of RAATs for x86

• improve model accuracy and solver performance

Summer 2007

• finish work on RA2ISE

• investigate and develop tiling algorithms

• improve model accuracy and solver performance

Fall 2007

• add 68k/ColdFire and PowerPC targets

• investigate uniform register set simplifications

• improve model accuracy and solver performance

Winter 2007
• begin writing thesis

• work on improving compile time performance

Spring 2008 • finish writing thesis
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[37] H. Emmelmann, F.-W. Schröer, and L. Landwehr. Beg: a generation for efficient back ends. In

PLDI ’89: Proceedings of the ACM SIGPLAN 1989 Conference on Programming language design

and implementation, pages 227–237, New York, NY, USA, 1989. ACM Press. ISBN 0-89791-306-

X. 2.4

[38] Martin Farach and Vincenzo Liberatore. On local register allocation. In SODA ’98: Proceedings of

the ninth annual ACM-SIAM symposium on Discrete algorithms, pages 564–573, Philadelphia, PA,

USA, 1998. Society for Industrial and Applied Mathematics. ISBN 0-89871-410-9. 1.2.1, 2.2, 4.2

[39] C. W. Fraser and A. L. Wendt. Automatic generation of fast optimizing code generators. In PLDI

’88: Proceedings of the ACM SIGPLAN 1988 conference on Programming Language design and

Implementation, pages 79–84, New York, NY, USA, 1988. ACM Press. ISBN 0-89791-269-1. 2.4

[40] Christopher W. Fraser, David R. Hanson, and Todd A. Proebsting. Engineering a simple, efficient

code-generator generator. ACM Lett. Program. Lang. Syst., 1(3):213–226, 1992. ISSN 1057-4514.

2.4

[41] Christopher W. Fraser, Robert R. Henry, and Todd A. Proebsting. Burg: fast optimal instruction

selection and tree parsing. SIGPLAN Not., 27(4):68–76, 1992. ISSN 0362-1340. 2.4

[42] Christopher W. Fraser and Alan L. Wendt. Integrating code generation and optimization. In SIG-

PLAN ’86: Proceedings of the 1986 SIGPLAN symposium on Compiler construction, pages 242–

248, New York, NY, USA, 1986. ACM Press. ISBN 0-89791-197-0. 2.4

[43] GNU Compiler Collection (GCC) Internals. Free Software Foundation, Boston, MA, 2006. URL

http://gcc.gnu.org/onlinedocs/gccint/. 2.2

48

http://gcc.gnu.org/onlinedocs/gccint/


[44] Changqing Fu and Kent Wilken. A faster optimal register allocator. In Proceedings of the 35th

annual ACM/IEEE international symposium on Microarchitecture, pages 245–256. IEEE Computer

Society Press, 2002. ISBN 0-7695-1859-1. 2.3

[45] Changqing Fu, Kent Wilken, and David Goodwin. A faster optimal register allocator. The Journal

of Instruction-Level Parallelism, 7:1–31, January 2005. URL http://www.jilp.org/vol7.

2.3

[46] G.G. Fursin, M.F.P. O’Boyle, and P.M.W. Knijnenburg. Evaluating iterative compilation. In Proc.

Languages and Compilers for Parallel Computers (LCPC), pages 305–315, 2002. 1.1

[47] Lal George and Andrew W. Appel. Iterated register coalescing. ACM Trans. Program. Lang. Syst.,

18(3):300–324, 1996. ISSN 0164-0925. 2.1.2, 3.3.2

[48] Lal George and Matthias Blume. Taming the ixp network processor. In PLDI ’03: Proceedings of

the ACM SIGPLAN 2003 conference on Programming language design and implementation, pages

26–37, New York, NY, USA, 2003. ACM Press. ISBN 1-58113-662-5. 2.3

[49] R. Steven Glanville and Susan L. Graham. A new method for compiler code generation. In POPL

’78: Proceedings of the 5th ACM SIGACT-SIGPLAN symposium on Principles of programming

languages, pages 231–254, New York, NY, USA, 1978. ACM Press. 2.4

[50] David W. Goodwin and Kent D. Wilken. Optimal and near-optimal global register allocation using

0-1 integer programming. Software: Practice and Experience, 26(8):929–965, 1996. 2.3

[51] Jens Gustedt, Ole A. Mæhle, and Jan Arne Telle. The treewidth of java programs. In ALENEX ’02:

Revised Papers from the 4th International Workshop on Algorithm Engineering and Experiments,

pages 86–97. Springer-Verlag, 2002. ISBN 3-540-43977-3. 1.2.1

[52] Sebastian Hack. Interference graphs of programs in ssa-form. Technical Report ISSN 1432-7864,

Universitat Karlsruhe, 2005. 1.2.1

[53] M. Haneda, P. M. W. Knijnenburg, and H. A. G. Wijshoff. Automatic selection of compiler options

using non-parametric inferential statistics. In PACT ’05: Proceedings of the 14th International Con-

ference on Parallel Architectures and Compilation Techniques (PACT’05), pages 123–132, Wash-

ington, DC, USA, 2005. IEEE Computer Society. ISBN 0-7695-2429-X. 1.1

[54] Silvina Hanono and Srinivas Devadas. Instruction selection, resource allocation, and scheduling in

the aviv retargetable code generator. In DAC ’98: Proceedings of the 35th annual conference on

Design automation, pages 510–515, New York, NY, USA, 1998. ACM Press. ISBN 0-89791-964-5.

2.4

[55] Ulrich Hirnschrott, Andreas Krall, and Bernhard Scholz. Graph coloring vs. optimal register allo-

cation for optimizing compilers. In JMLC, pages 202–213, 2003. 2.3

[56] Wei-Chung Hsu, Charles N. Fisher, and James R. Goodman. On the minimization of loads/stores

in local register allocation. IEEE Trans. Softw. Eng., 15(10):1252–1260, 1989. ISSN 0098-5589.

2.2, 2.3

[57] ILOG. ILOG CPLEX. http://www.ilog.com/products/cplex. 3.3.3, 4.3.1

[58] Sven-Olof Nyström Johan Runeson. Retargetable graph-coloring register allocation for irregular

architectures. Lecture Notes in Computer Science, 2826:240–254, October 2003. 2.1.3

[59] Mark S. Johnson and Terrence C. Miller. Effectiveness of a machine-level, global optimizer. In

SIGPLAN ’86: Proceedings of the 1986 SIGPLAN symposium on Compiler contruction, pages

99–108, New York, NY, USA, 1986. ACM Press. ISBN 0-89791-197-0. 2.1.2

49

http://www.jilp.org/vol7
http://www.ilog.com/products/cplex


[60] Sampath Kannan and Todd Proebsting. Register allocation in structured programs. In Proceedings

of the sixth annual ACM-SIAM symposium on Discrete algorithms, pages 360–368. Society for

Industrial and Applied Mathematics, 1995. ISBN 0-89871-349-8. 1.2.1

[61] A. B. Kempe. On the geographical problem of the four colours. American Journal of Mathematics,

2(3):193–200, September 1879. 2.1.1

[62] Christoph Kessler and Andrzej Bednarski. Optimal integrated code generation for clustered vliw

architectures. In LCTES/SCOPES ’02: Proceedings of the joint conference on Languages, com-

pilers and tools for embedded systems, pages 102–111, New York, NY, USA, 2002. ACM Press.

ISBN 1-58113-527-0. 2.4

[63] Robert R. Kessler. Peep: an architectural description driven peephole optimizer. In SIGPLAN ’84:

Proceedings of the 1984 SIGPLAN symposium on Compiler construction, pages 106–110, New

York, NY, USA, 1984. ACM Press. ISBN 0-89791-139-3. 2.4

[64] David Koes and Seth Copen Goldstein. A progressive register allocator for irregular architectures.

In CGO ’05: Proceedings of the International Symposium on Code Generation and Optimization

(CGO’05), pages 269–280, Washington, DC, USA, 2005. IEEE Computer Society. ISBN 0-7695-

2298-X. 3.2

[65] David Koes and Seth Copen Goldstein. An analysis of graph coloring register allocation.

Technical Report CMU-CS-06-111, Carnegie Mellon University, March 2006. URL http:

//reports-archive.adm.cs.cmu.edu/anon/2006/abstracts/06-111.html.

2.1.3, 2.2

[66] David Ryan Koes and Seth Copen Goldstein. A global progressive register allocator. In PLDI

’06: Proceedings of the 2006 ACM SIGPLAN conference on Programming language design and

implementation, pages 204–215, New York, NY, USA, 2006. ACM Press. ISBN 1-59593-320-4.

3.2.3

[67] David J. Kolson, Alexandru Nicolau, Nikil Dutt, and Ken Kennedy. Optimal register assignment

to loops for embedded code generation. ACM Transactions on Design Automation of Electronic

Systems., 1(2):251–279, 1996. URL citeseer.nj.nec.com/kolson96optimal.html.

2.3

[68] Timothy Kong and Kent D. Wilken. Precise register allocation for irregular architectures. In Pro-

ceedings of the 31st annual ACM/IEEE international symposium on Microarchitecture, pages 297–

307. IEEE Computer Society Press, 1998. ISBN 1-58113-016-3. 2.3

[69] Akira Koseki, Hideaki Komatsu, and Toshio Nakatani. Preference-directed graph coloring. In

PLDI ’02: Proceedings of the ACM SIGPLAN 2002 Conference on Programming language design

and implementation, pages 33–44, New York, NY, USA, 2002. ACM Press. ISBN 1-58113-463-0.

2.1.3

[70] Prasad Kulkarni, Wankang Zhao, Hwashin Moon, Kyunghwan Cho, David Whalley, Jack David-

son, Mark Bailey, Yunheung Paek, and Kyle Gallivan. Finding effective optimization phase se-

quences. In LCTES ’03: Proceedings of the 2003 ACM SIGPLAN conference on Language, com-

piler, and tool for embedded systems, pages 12–23, New York, NY, USA, 2003. ACM Press. ISBN

1-58113-647-1. 1.1

[71] Steven M. Kurlander and Charles N. Fischer. Zero-cost range splitting. In PLDI ’94: Proceedings

of the ACM SIGPLAN 1994 conference on Programming language design and implementation,

pages 257–265, New York, NY, USA, 1994. ACM Press. ISBN 0-89791-662-X. 2.1.2

50

http://reports-archive.adm.cs.cmu.edu/anon/2006/abstracts/06-111.html
http://reports-archive.adm.cs.cmu.edu/anon/2006/abstracts/06-111.html
citeseer.nj.nec.com/kolson96optimal.html
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[106] Christian Wimmer and Hanspeter Mössenböck. Optimized interval splitting in a linear scan register

allocator. In VEE ’05: Proceedings of the 1st ACM/USENIX international conference on Virtual

execution environments, pages 132–141, New York, NY, USA, 2005. ACM Press. ISBN 1-59593-

047-7. 2.2

[107] Thomas Zeitlhofer and Bernhard Wess. Optimum register assignment for heterogeneous register-

set architectures. In ISCAS ’03. Proceedings of the 2003 International Symposium on Circuits and

Systems, volume 3, pages III–252–III–244, May 2003. 1.2.1

53

http://www.jilp.org/vol7
http://www.jilp.org/vol7

	1 Introduction
	1.1 Motivation
	1.2 Problem Description
	1.2.1 Register Allocation
	1.2.2 Instruction Selection


	2 Related Work
	2.1 Graph Coloring Register Allocation
	2.1.1 Algorithm
	2.1.2 Improvements
	2.1.3 Limitations

	2.2 Alternative Allocators
	2.3 Optimal Register Allocation
	2.4 Instruction Selection

	3 Completed Work
	3.1 Expressive Model
	3.1.1 Multi-commodity Network Flow
	3.1.2 Local Register Allocation Model
	3.1.3 Global Register Allocation Model
	3.1.4 Limitations

	3.2 Progressive Solvers
	3.2.1 Lagrangian Relaxation
	3.2.2 Progressive Solver
	3.2.3 Allocation Difficulties

	3.3 Results
	3.3.1 Implementation
	3.3.2 Code Quality
	3.3.3 Solver Performance


	4 Proposed Work
	4.1 Model Improvements
	4.2 Solver Improvements
	4.3 Integrating Register Allocation and Instruction Selection
	4.3.1 Preliminary Results

	4.4 Evaluation

	5 Contributions and Timeline
	5.1 Expected Contributions
	5.2 Timeline

	Bibliography

