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It has been shown by Novikov [Funct. Anal. Appl. 8, 236 (1974)], Dubrovin et al. [Russian
Math. Surveys 31, 59 (1976}], Lax [Commun. Pure Appl. Math. 28, 141 (1975)], McKean and
van Moerbeke [Inv. Math. 30, 217 (1975}], and others that the nonlinear evolution equations
which admit solitary waves also have spatially periodic exact solutions (“polycnoidal waves”)
which can be expressed in terms of multidimensional Riemann theta functions. Here, it is shown
that via Poisson summation, the Fourier series that define the theta functions can be
transformed into an infinite series of Gaussian functions. Because the lowest terms of the
Gaussian series generate the usual solitary waves, it is possible to intimately explore the
relationship between solitary waves and these spatially periodic “polycnoidal’” waves. Also, by
using the Gaussian series, one can perturbatively calculate phase velocities and wave structure
for the “polycnoidal” wave even in the strongly nonlinear regime for which the soliton (or
multisoliton) is the lowest order approximation. It is further shown that the Fourier series and
the complementary Gaussian series both converge so rapidly in the intermediate regime of
moderate nonlinearity that one may loosely state that a solitary wave is almost a linear wave, and
a linear wave almost a soliton. Thus, by using both series together, one can obtain a very
complete description of these stable, finite amplitude, periodic solutions. For expository
simplicity, this first discussion of the Gaussian series approach to “polycnoidal” waves will
concentrate on the most elementary example: the ordinary “cnoidal” wave of the Korteweg—de
Vries equation. The great virtue of the Poisson method, however, is that it extends almost
trivially to other equations (the Nonlinear Schrédinger equation, the Sine-Gordon equation, and
a multitude of others) and also to periodic solutions of these equations that are describable in
terms of higher dimensional theta functions (“polycnoidal” waves). The next to last section
proves a number of generalizations of the theorems of Hirota [Prog. Theor. Phys. 52, 1498
(1974)] applicable both to “cnoidal” and “polycnoidal” solutions without restriction, and

explains how these extensions will work.
PACS numbers: 02.60. + y

1. INTRODUCTION

The first exact, nonlinear, spatially periodic solutions to
an evolution equation of the class discussed here were ob-
tained by Korteweg and de Vries' 85 years ago for the equa-
tion that now bears their name. They showed that their equa-
tion, henceforth referred to by the abbreviation KdV, has
steadily translating waves that can be mathematically de-
scribed by the elliptic cosine function cn{x; m). Since it was
like a function whose abbreviation is “‘cn,” they called these
waves “‘cnoidal” waves. The nonlinear, spatially periodic so-
lutions discussed here are generalizations of these cnoidal
waves that, in the absence of any generally accepted termin-
ology, will be referred to as “polycnoidal” waves in the rest
of the paper. The reason that these generalized waves are
important is that it appears that any spatially periodic solu-
tion of the KAV equation—or a number of other equations in
the same class—can be approximated to any chosen degree
of accuracy for any chosen finite time interval by an appro-
priate “polycnoidal” wave. Thus, to understand these gener-
alized cnoidal waves is also to understand the general spa-
tially periodic solution to the Korteweg—de Vries and other
evolution equations.

The elliptic cosine depends on a parameter m (the “mo-
dulus”); Korteweg and de Vries showed that the limit m = 0
corresponds to a linear wave and the elliptic cosine reduces
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to the ordinary cosine. In the limit m—1, the spatial period
of the wave becomes infinite, the elliptic cosine becomes the
hyperbolic secant function, and the cnoidal wave becomes
the solitary wave discovered observationally in 1831 aniso-
lated, steadily translating, finite amplitude peak of perma-
nent form. Equivalently, if one rescales the variables so as to
keep the spatial period fixed, the solitary wave or “soliton”
corresponds to the limit of infinitely large amplitude (the
spatial structure of the soliton tends toward that of a delta
function) while the linear wave as usual is the limit of infini-
tesimal amplitude.

“Polycnoidal” waves also tend to linear waves and soli-
tons in appropriate limits, and the relationship between
these limits and the actual polycnoidal waves of intermediate
amplitude is one of the major themes of this paper. Before
discussing how we propose to explore these relationships, it
is appropriate (and necessary) to briefly review the major
developments in the theory of the Korteweg—de Vries
equation.

Most work on this equation has studied its solutions
subject to two different species of initial/boundary condi-
tions: (i) the unbounded problem in which x€[ — «, ] and
the initial condition is localized, i.e., is exponentially small
everywhere outside of a finite interval, and (ii) the spatially
periodic problem in which both the initial condition and the
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solution for all later times are required to be periodic func-
tions of x. Korteweg and de Vries were able to derive a solu-
tion for the unbounded problem (the solitary wave) as a limit
of their class of solutions for the periodic problem, but in
later work, these two problems have represented completely
separate lines of development.

Little progress with either was made until 1967, when
Gardner et al.® showed the unbounded problem, although
the KdV equation itself is nonlinear, could be solved exactly
through a sequence of solving only linear equations: the so-
called inverse scattering method. This procedure was to the
study of nonlinear equations what the Rosetta Stone was to
Egyptology, and it was subsequently extended to a large
class of other equations, including the Nonlinear Schro-
dinger equation, the sine-Gordon equation, and many oth-
ers. Although for simplicity, the discussion here will concen-
trate on the KdV equation, the ideas and techniques
explained here extend to all members of this class of “‘exactly
integrable” nonlinear equations.

The inverse scattering analysis showed that the general
solution to the KdV equation (and its fellows) consists of two
parts: a finite number of solitary waves or “solitons,” which
are permanent, isolated, finite amplitude waves, plus “radi-
ation,” which is used as a catch-all term to describe the mis-
cellaneous peaks and ripples that eventually disperse so that
the solitons are the sole asymptotic solution as #— . The
reason for the name “soliton,” with its connotation of parti-
clelike rather than wavelike properties, is that when solitons
collide, they eventually emerge from collision unchanged in
shape, size, or speed except for a phase-shift.

Unfortunately, although inverse scattering is so useful
for theoretical and qualitative purposes, researchers have
found that for obtaining quantitative results and case stud-
ies, the steps of the inverse scattering method are so cumber-
some that it is easier to numerically integrate the KdV equa-
tion directly using a conventional time-marching scheme.
Because of this clumsiness, Hirota*® introduced an alterna-
tive approach to the unbounded problem which is the direct
ancestor of the methods to be used here.

Hirota’s technique is based on a logarithmic transfor-
mation of the dependent variable to give a transformed ver-
sion of the KdV equation which, to avoid confusion, will be
referred to as the Hirota—Korteweg—de Vries equation or H-
KdV for short. Hirota showed that although the H-KdV
equation is nonlinear, it is possible to construct exact solu-
tions by adding finite sums of exponentials from which the
exact, multisoliton solutions of the KdV equation can be
obtained through the inverse transformation. Hirota’s meth-
od is very simple and involves nothing more exotic than dif-
ferentiation, logarithms, and exponentials, but it has the
weakness of excluding the “radiation” part of the general
KdV solution. However, for smooth, large-amplitude initial
conditions, almost all of the initial energy goes into the soli-
tons anyway (referred to as the principle of “soliton domi-
nance” in Boyd®), so this restriction is not fatal, and Hirota’s
method is still actively used in research today {for example,
Ma and Redekopp’) even when the exact inverse scattering
algorithm is known for the same equation (Ma®).

Meanwhile, independent groups of American® and
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Russian'®!! mathematicians have developed an analog of

the inverse scattering method for obtaining a class of gener-
alizations of the cnoidal waves for (ii), the spatially periodic
problem. Unfortunately, it is again true that the formal solu-
tion, which will be here called the “Hill’s spectrum method,”
is as cumbersome computationally as it is powerful
theoretically.

However, the author and Nakamura'? independently
realized that there is an alternative. The transformation that
relates the theta functions to the actual solution of the
Korteweg—de Vries equation is exactly that made by Hir-
ota—in other words, the theta functions are exact solutions
not of the KdV equation itself but rather of Hirota’s trans-
formed version, the H-KdV equation. This suggests what
Nakamura calls the “direct method”: computing nonlinear
phase speed corrections and theta function parameters via
direct substitution of the theta series into the H-KdV equa-
tion and matching of Fourier series coefficients. Thus, there
are now two approaches—the formal exact method based on
quantum mechanics potential theory and a more heuristic
but vastly simpler alternative based on solving Hirota’s
transformed equations—for both the infinite and periodic
spatial domains.

In later work, Nakamura, Hirota, Ito, and Matsuno'>-*5

have greatly extended this direct theta function procedure
and their papers are highly original and a treasurehouse of
useful information. However, they work exclusively with the
Fourier series representation of the theta functions and omit
all mention of what are the principal themes of this paper:
that a direct method using the Gaussian series representa-
tion is not only possible but is more useful than its Fourier
series counterpart.

The reason for the greater usefulness of the Gaussian
series is that one can obtain most of the information deriv-
able from the theta—Fourier series by directly attacking the
Korteweg—de Vries equation via the singular perturbation
technique known variously as the method of strained param-
eters or the method of multiple scales.'®'” Because the multi-
ple-scales approach is conceptually useful also in under-
standing precisely what a “polycnoidal” wave is, some
multiple scales calculations for polycnoidal waves are given
in Appendix B.

The Gaussian series representation, however, is directly
tied to the fact that the exact solutions of the H-KdV equa-
tion are theta functions, and it gives results that cannot be
reproduced by any conventional perturbation scheme. As a
consequence, the rest of the paper will concentrate upon the
Gaussian representation of the theta function, except for the
appendices.

Sections 2-5 describe the simplest example: the ordi-
nary cnoidal wave for the Korteweg—de Vries equation. De-
spite the fact that this was solved 85 years ago, the theta—
Gaussian method will nonetheless yield some new results.
Later sections of the paper and future work now in progress
will deal with polycnoidal waves and other evolution equa-
tions. But the point in beginning with this simple example is
that the ideas explained through it are the key to everything
else.
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2.THE HIROTA-KORTEWEG-DE VRIES EQUATION
AND THE THETA FUNCTION

The Korteweg—de Vries equation itself is
u, +uu, + t,,, =0. (2.1)

The transformation to the H-KdV equation is made in two
stages. First, set ¥ = p, and then integrate (2.1) once with
respect to x to obtain

P+ /202 +p,.. =4, (2.2)

where A4 is an arbitrary constant of integration. In deriving
the multiple soliton solutions, one can set 4 = 0 without loss
of generality, but as noted by Nakamura,'? this is absolutely
disastrous for the polycnoidal wave. Instead, 4 must be com-
puted as a function of the parameters in the same way as the
nonlinear phase speed. The second step is to introduce the
nonlinear transformation

p=12(InF),. (2.3)

Substituting (2.3) in (2.2), on finds that all third and fourth
degree terms in F identically cancel to leave the H-KdV
equation:

F(Ft +Fxxx)x —Fx(Ft +Fxxx)+3(F:2cx —Fxexx)=AF2
(2.4)

Hirota showed that (2.4} and indeed all his transformed
equations can be expressed more compactly by using certain
bilinear operators, but this alternative version of (2.4) will be
deferred until Sec. 6, where Hirota’s bilinear operators will
be useful in proving certain theorems. The solution of the
KdV equation is

u=12(InF),,, (2.5)

where F'is a theta function.
The argument of the theta function is

X=x—ct+¢, (2.6)

where ¢ is the phase speed and ¢ a constant phase factor. For
higher-dimensional theta functions, we have additional ar-
guments of the form ¥ = k,(x — c5t) + ¢,,
Z = ky{x — ¢35t ) + ¢, as one would anticipate from the fact
that the polycnoidal waves reduce to multiple solitary waves
in the appropriate limit. Since the N-soliton solution consists
of N distinct peaks each with its own width and phase speed,
it follows that a function of N variables of the form of X, ¥, Z,
etc., are necessary to provide a compact description of the
waves. By rescaling via a theorem proved in Sec. 7, one can
always set one of the wave numbers k equal to 1 without loss
of generality, and this has been done in (2.6).

For the one-dimensional case, one can take the theta
function to be

O4X;q) =1+ > (—1)g" cos(2nX), (2.7)
n=1

where g is a constant known as the “nome.” When working
with theta functions, the nome is a more convenient measure
of the “ellipticity” of the elliptic cosine than the modulus ;
the relationship between them is given in Appendix A. How-
ever, g has one thing in common with m: the limit g—0 again
gives the linear wave while g—1 gives the solitary wave.
From the form of the Fourier series in (2.7), one can show
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that it converges uniformly and absolutely for all ¢ < 1, but it
is self-evident that the rate of convergence becomes poorer
and poorer as the soliton limit is approached. Consequently,
itis the alternative Gaussian series for the theta function that
one must use to explore the relationship between solitons
and cnoidal waves.

Nonetheless, even from a perspective focused entirely
on Fourier series, the theta series (2.7) converges much more
rapidly than that for u(x) itself, which is

™ n—1
4 =12(In 6))yy =96¢ ¥ l”q —cos(2nX),  (2.8)
n=t1—¢q

as obtained by differentiating the known'® series for the loga-
rithmic derivative of the theta function. The elliptic cosine,
whose square gives u{x) (see Appendix A for details), is a
meromorphic function, and this alone'® is enough to prove
that the coefficients of the Fourier series must be asymptoti-
cally O (¢”) for some constant g, |g| < 1. [This, in fact, is true
for the hyperelliptic functions that give «(x, ¢ ) for the polyc-
noidal waves as well.] The theta functions, however, whether
in one or many dimensions, are entire functions. For 8,, we
see that the Fourier coefficients are O (¢™) so that 10 terms of
the theta Fourier series give the same accuracy as 100 terms
of the Fourier series for cn?. It is precisely this very rapid
convergence for the entire function as opposed to the mero-
morphic function that led C. G. Jacobi to introduce the theta
functions in the first place and build his entire approach to
elliptic functions around them. It is precisely because the
Gaussian series for the theta functions shares this same very
rapid convergence that it will be shown to be a powerful tool
for understanding strongly nonlinear, spatially periodic
waves.

Poisson summation®® of (2.7) gives the Gaussian series,
which may be written in either of the two forms:

04(X; g)

2s”2exp[ —st/ﬂ'] i g+ " cosh[(2n + 1)sX ]
n=0

= P (2.9
s2N exp[ — s(X — d#(2n + 1)2/7].
_E;o pl —stX — 4m( /7] (2.10)
where ¢', the “complementary nome,” and s are defined by
q:Eewz/ln q’ (211)
s= —n/lng. (2.12)

The relationships between ¢, g', and s can be expressed more
symmetrically in the form

g=e""", (2.13)

g =e" ™. (2.14)
As g—1, ¢'—0 and vice versa so that the Gaussian series
[(2.9) or (2.10)] and the Fourier series (2.7) are indeed com-
plementary, with one converging rapidly in the parameter
range where the other converges slowly.

The first form of the Gaussian series, (2.9), which can be
obtained from (2.10) by multiplying out the exponents in
(2.10), extracting the common factor of exp( — sX ?/), and
combining exponentials into hyperbolic cosines, is the one
that is most closely analogous to the Fourier series. Because
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¢’ appears explicitly in (2.9), this form is the one that is useful
for practical perturbative calculations.

The second form, (2.10), is more useful conceptually: it
shows that the theta function can be represented as a series of
Gaussians of identical size and shape spaced at intervals of 7
on the whole interval X€[ — «, oo]. For large ¢’ {small g), the
Gaussians overlap heavily and the shape is roughly that of an
ordinary cosine function with symmetrical crests and
troughs. For small ¢'—the near-soliton-limit—the Gaus-
sians are well separated and the theta function takes the form
of sharp, narrow peaks separated by broad, flat troughs.

In the limit ¢'—0, only the two Gaussians at
X = + #/2 are significant because the contributions of all
the other terms in the series are exponentially small on the
interval Xe[ — #/2, 7/2]. This suggests that—despite all ap-
pearances to the contrary—this limiting solution of two
Gaussians is somehow equivalent to the single soliton solu-
tion of Hirota, which is the sum of a constant plus an expo-
nential. In the next section, we shall see that this is indeed the
case and explore how the transition from soliton to cnoidal
wave is made.

3. THE BI-GAUSSIAN SOLITON AND THE PROBLEM OF
PERIODICITY
A. The bi-Gaussian soliton

By direct substitution, one can show
O (X) =e~ "/ cosh(sX ) (3.1)

is an exact solution of the Hirota—Korteweg—de Vries equa-
tion (2.4) for arbitrary values of s and L provided that

¢ = 4s% — 12L, (3.2)
A=2L(s*~3L), (3.3)

where ¢ is the phase speed, 4 the constant of integration in

the H-KdV equation, and X = x — ¢t + ¢ as defined by (2.6)
with ¢ arbitrary. © (X ) is?' the sum of two Gaussians with

peaks at X = + s/L, so it will be referred to as the bi-Gaus-
sian soliton solution. Taking the second logarithmic deriva-
tive gives

u(x,t) = — 12L 4+ 125* sech®[s(x — ct)]. (3.4)

As mentioned earlier, the theta functions of the pro-
ceeding section are functions of but a single parameter—and
so are the one-soliton solutions of the KdV equation in the
form usually given—whereas the bi-Gaussian @ (X;s, L )con-
tains fwo independent parameters. However, one can see
from (3.4) that the extra parameter corresponds merely to
the freedom {mathematically, if not physically!) to change
mean sea level in the Korteweg—de Vries equation. In math-
ematical terms, it is trivial to prove that if «(x — ct) is any
solution to the KdV equation, than

d=a + ulx — (c + a)t) (3.5)

is also a solution. Thus, cnoidal waves and the one-soliton
solution are really two-parameter families, but one of the
parameters, the constant a in (3.5), is trivial, and only the
nome g is significant. However, with the bi-Gaussian, we can
obtain the full two-parameter single-soliton family by vary-
ing sand L.
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Hirota’s solution is the special case L = O that gives
6 = cosh(sX ). (3.6}

This gives the usual soliton with zero mean sea level, but it is
not quite in standard form itself. However, one can show?*
that any solution of the H-KdV equation is still a solution if
multiplied by an arbitrary constant times an exponential
whose argument is linear in X. Multiplying {3.6) by 2 exp(sX )
gives

F =1+ exp{2sX), (3.7)
which is the form in which Hirota’s 1-soliton solution is usu-
ally given.

Unfortunately, to extend this bi-Gaussian function into
the infinite series for the cnoidal wave, we must take a nonze-
ro value of L. This in turn means accepting the annoying
complication of a shift in mean sea level via the term — 12L
in (3.4) and an identical shift also in the phase speed (3.2). To
have generalized Hirota’s one-parameter solution {3.7)to a
two-parameter one is not in itself a very useful accomplish-
ment. However, it is the bi-Gaussian—not (3.7)—that gener-
ates the cnoidal wave, so one must understand the shifts
introduced by L to make correct comparisons between exact
and approximate cnoidal wave solutions as shail be done in
Sec. 5.

B. Periodicity

If one approached the problem of computing approxi-
mate periodic solutions to the KdV equation with no knowl-
edge of theta functions—but a knowledge of solitons—one
heuristic approach would be to approximate the cnoidal
wave by an infinite series of evenly spaced hyperbolic secant
functions, i.e.,

ulx, t)=125" ) sech’(s(X — nm)). (3.8)
When s is large, the soliton peaks are narrow and well-sepa-
rated with little overlap, so (3.8), with ¢ given by the usual
soliton formula (3.2), is indeed a consistent first approxima-
tion to the cnoidal wave with an error which decreases ex-
ponentially fast as s increases.

The only problem is that there is no particularly good
way to calculate higher-order corrections—to explore pre-
cisely how the periodicity has altered the cnoidal wave from
the soliton. One could substitute (3.8) into the Korteweg—~de
Vries equation, but the inhomogeneous terms even at lowest
order would involve fourth powers of reciprocal hyperbolic
functions, and inverting the linear part of the Korteweg~de
Vries equation requires inverting a partial differential opera-
tor. Furthermore, the error in neglecting higher values of n
in the series (3.8} is an exponential function of s, but algebraic
powers of s would also appear. In short, perturbative theory
using (3.8) as the lowest approximation would be a horrible
mess, requiring great analytical ingenuity to obtain even the
first and second corrections. Furthermore, the shape of u as
a function of X, as well as the nonlinear phase speed ¢, would
both have to be corrected order-by-order.

If we apply this same heuristic philosophy to the
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UNBOUNDED PERIODIC
T — Repeat -
F Bi - Gaussian 9
Over All
Space

8 -Gaussian Series for H-KdV

Uu =12(log 8y

Cnoidal Wave for K-dV

Bi-Gaussian for H-KdV

UUHZ (iog F),

Soliton for K-dV

FIG. 1. Schematic diagram showing the relationship between the bi-Gaus-
sian and theta functions solutions to the H-KdV equation. The left side
shows the situation when the domain is unbounded: the solution to the H-
KdV equation has just two peaks on all of X[ — «, «], and the second
logarithmic derivative of this gives a single peak which is the usual solitary
wave. When bi-Gaussian pattern is repeated with even spacing over all X, it
generates the Gaussian series of the theta function. This, as shown on the
right, is a periodic solution of the H-KdV equation and its second logarith-
mic derivative gives the usual cnoidal wave.

H-KdV equation, using the bi-Gaussian soliton (3.1) with
L = (2/m)s, (3.9)

so that the peaks of the Gaussians are 7 units apart, we obvi-
ously obtain an infinite series of evenly spaced Gaussians as
indicated schematically in Fig. 1. But we have already seen
in the previous section that such a series of Gaussians is an
exact representation of the theta function. Consequently, by
taking the single soliton solution and repeating it with even
spacing over the whole spatial domain, we obtain the exact
solution for the spatially periodic problem—but only when
we work through the H-KdV equation, Hirota’s trans-
formed equation, rather than through the KdV equation it-
self. The series of hyperbolic secant functions in (3.8) is only
approximate.

The same strategy works equally well to generate peri-
odic extensions of the multiple soliton solutions. The double
soliton, for example, is given by the sum of four evenly
spaced Gaussians forming a square in the XY plane where
X=x—cit+ ¢, Y=kyx —c,t) + ¢,, and where each
Gaussian is now an exponential whose argument is a second-
degree polynomial in both X and Y. Repeating this basic
four-Gaussian unit over the whole XY plane with even spac-
ing gives the Gaussian series for the two-dimensional theta
function, and the second logarithmic derivative of this gives
the double cnoidal wave solution to the KdV equation.

Because only the nonlinear phase speed (or speeds) need
be corrected, it is trivial in principle (although the algebra
can become tedious) to calculate the cnoidal and polycnoidal
waves to any order. For the cnoidal wave, for example, one
obtains at each order two linear equations in two unknowns
which can be solved to obtain ¢ and 4 to that order, with the
expansion proceeding in powers of the complementary nome
q':in Sec. 4, we shall show how one can obtain the full infinite
series for ¢ almost trivially.
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Before we do this, however, one final point must be
made; Hirota’s single soliton solution for the H-KdV equa-
tion, (3.7), is spatially unbounded even though, thanks to the
magic of the logarithmic derivative, it gives the usual sech?
solution when the transformation back to the KdV equation
is made. Consequently, it is not possible to add evenly spaced
Hirota functions of the form of (3.7) to obtain any sort of
meaningful series. It was therefore absolutely necessary to
generalize Hirota’s solution to the bi-Gaussian so as to ob-
tain a form for the single soliton which would be spatially
bounded and localized for the Hirota~Korteweg—de Vries
equation, too. Only then would it be possible to repeat the
single-soliton solution over the whole domain with even
spacing to obtain a solution that is manifestly periodic and
solves the H-K.dV equation exactly.

It is the bi-Gaussian, and not the simple exponential
solution of Hirota, that is the proper generator of the cnoidal
wave.

4. THE RESIDUAL EQUATIONS AND THE EXACT
SOLUTION FOR THE CNOIDAL WAVE

A. The residual equations
The first step in obtaining the full series solution is to
rewrite the Gaussian series (2.9) as

i q:n2e2nsx’ (4 1)

— o

[half integers]
where the hyperbolic cosines have been broken up into pairs
of exponentials and where, in order to eliminate factors of 1,
the sum is taken over all the “half integers” {..., —3, — 3,1,
§, 3, 3,...]. Substituting this into the H-KdV equation gives
the residual

BX; g) =26~ K7

p=se" 25X/ i i qm2 + n"g (n _ n’, ¢, A )ez(n + Al (4'2)
[half integers]
We must solve for ¢ and 4 such that p=0.

One might expect that, since the H-KdV equation (2.4)
involves differentiations of up to fourth order with respect to
x and first order with respect to time, the Gaussian in (4.1)
would cause £ (n — n’; ¢, A ) to be a polynomial of fourth de-
gree in x and first degree in ¢. In fact, as shall be proven in
Sec. 6, because of cancellations { is independent of both x and
t, just as if we had substituted the Fourier series for 6, into
the H-KdV equation instead.

The second important property of {—also noted by Na-
kamura for its Fourier series equivalent—is that it is a func-
tion only of the difference (n — n’), and not of n and n’ sepa-
rately. This property, again proved in Sec. 6, is true for all of
Hirota’s transformed nonlinear evolution equations, and is
sufficient—without specification of the precise form of
§ (n — n'; ¢, A )—to prove that the residual is the sum of two
theta functions. Consequently, the exact definition of £ will
be deliberately postponed to the next subsection.

Keeping these two properties of { in mind, the next step
istodefinej = n + n’ and collect terms in exp(2js.X’ ) to obtain

_ 2 &, .
p = se " BXYm Z R; ¥, 4.3)
j= —
[integers]
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where

RjE 2

n= — e
{half integers)

The residual p vanishesif and only if all the R; = 0, where is
any integer, so we seem to have rather more equations (an
infinite number!) than we have unknowns (2, c and 4 ). How-
ever, it is easy to prove that all even R; are multiples of R,
and all the odd R; are multiples of R,.

For brevity, we shall deal only with the even R;. From

grr=TE2n —jie, A) (4.4)

(4.4)
Ry= 3 g¢"+"¢pin—J)). (4.5)
[h:l;‘—_in;gc:rs]
Defining
N=n-J (4.6)
gives
Ry = $  qWerew-srgpn (@)
[h:lfzim_ego:rs}
=¢ 3  g™ERN) (4.8)
[h:l:n;g:rs]
=q'¥’R, for all integers J. (4.9)
Similarly, one can show
Rysia =q'212+2.lR1' (4.10)

By using (4.1) and the equivalent series for ,(x; ¢)

[=0,(x + 7/2; ¢)], which is identical in form with (4.1) ex-
cept that the sum is taken over all integers instead of half
integers, one can rewrite {4.2) as

p = [Rof5(2X; ¢%) + R,842X; ¢°)]se =" (4.11)

Thus, the solution of the cnoidal wave has been reduced to
solving two equations in two unknowns

Ryc, 4)=0, (4.12)
R,c,A)=0. (4.13)

For the Korteweg—de Vries equations, these coupled equa-
tions are linear; for the Boussinesq equation of Nakamura,'?
these equations are quadratic in ¢, but can still be solved
explicitly.

B. Theta matrix doubling

One important aspect of (4.11) that is independent of the
nonlinear evolution equation is that all the quantities in-
volved—R,, R, the theta functions, ¢, and A—are functions
of ¢'? rather than ¢’. In particular, the series that define R,
and R,, are series in ¢'>”, and thus converge much more
rapidly than even the fast-converging series for the theta
functions themselves, whose coefficients are ¢, This same
phenomenon holds for the polycnoidal waves, too, where it
will be called “theta matrix doubling” for notational reasons
explained in Sec. 7. It is this very rapid convergence that
makes perturbative calculations for two- and three-dimen-
sional theta functions feasible.
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C. The exact solution for the Korteweg-de Vries
equation

For the Korteweg—de Vries equation, one can show by
direct substitution of (4.1) into the H-KdV equation (3.4) or
by using general theorems of Hirota’s bilinear operations
proved in Sec. 6 that

fn—n'yc, A)
2
- [48s —24+ i‘ﬁ] + 165%(n — nf
T T
3
~ 4¢es*(n —n') — 96 (n—n'y, (4.14)
which depends on » and n’ via
A={n—n), (4.15)
and (4.12) and (4.13) become the matrix equation
t:u Ap| € _ 2, (4.16)
21 A22 A ‘02 ’ )
where
4s & 2
A _ 2n
n= ( n=2~ 3 q )
half integers)
165 ( 3 nzq'z"’), (4.17)
h:lf=int—eg°:rs]
Ap= — 2( 3 q’z"z), (4.18)
h:l:nt—e;:rs]
& 3 245 2
0:166‘2 (______ n2 +16s2 n4)l2n’
\ ,.:z, = - [(n*] tn’l)e
[half integers] (4 19)

and where the elements of the second row (corresponding to
R,) are, after multiplication by g''/2, identical with those of
the first row except that (i) the sums are taken over the inte-
gers instead of the half integers and (ii) the terms n = 0 are
taken with a factor of § as in (4.15). A more compact descrip-
tion can be obtained by defining

1/2

' = ”2n? — T
Hg)l= ) 4¢"= g™ 640;4'%),  (4.20)
[half_integers]
I( /)= & rznz______Ll_/_z__e (0 l/2) (4 21)
q—‘AZ q _[lnq]'/z g '

integers]

where the right-hand sides of (4.20) and (4.21) follow by eval-
uating (4.1) and the corresponding series for 8, at X = 0 and
then using the usual relationship between g and ¢’, (2.11).
The fact that ¢ appears as g'/? is a consequence of the fact
that the series defining H (¢') and I (¢} are theta-function se-
ries in ¢’ rather than ¢ itself as explained in the previous
subsection. Letting a subscripted ¢’ denote differentiation
with respect to ¢', we have

A, = (4s/mH — 85°q'H,, (4.22)
A, = —2H, (4.23)
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.01 = 1682(111 - ‘I%Hq' + 432q’ [q’Hq' ]q')’ (4'24)

172
Ay =21 _s2qr, &, (4.25)
T T
Aypy=—2I +1, {4.26)
3 12sq' r 245%
”2 = 16.92(;2—1— —#—Iql + 4S2q [qlqr ]q) —_ 7—,
(4.27)
where s and ¢’ are related via ¢’ = exp( — 7).
One finally obtains
c= (01A22 - '{22A 12) (428)

A11A22 —-A IZAZI
and a similar expression for 4, which is not of physical
interest.

5. COMPARISON OF THE EXACT AND APPROXIMATE
SOLUTIONS

The two series representations of the theta function are
complementary with the Fourier series converging more
rapidly for small ¢ and the Gaussian series more rapidly for
small ¢'. The worst possible case is when

9=q, (5.1)
because then both converge equally well or badly. Conse-

quently, we can limit our attention to this single, “worst
case” value of ¢’ which is

¢ =e~"=0.0432. (5.2)

The astonishingly small value of ¢’ makes one feel like
cheering. As noted earlier, the theta series converge much
faster than an ordinary geometric series because the terms
are proportional to ¢'" rather than ¢'”, but ¢' is so small that
even the lowest-order approximation is very accurate. The
approximate solution to O (¢%) is

u= —24s/m + 12 sech?(sX)[1 — 8¢'* cosh’(sX)

+ 1692 cosh*(sX )] + O(¢'), (5.3)

c= —24s/m + 4s* — 965%¢"?, (5.4)
where ¢’ = exp{ — ms) with

s=1latg=q =0.0432. (5.5)

The corresponding exact solution in terms of elliptic func-
tion is (at s = 1)

u= —3.81973 + 8.35918cn%(1.1804X; m = 4), (5.6)
c= —3.81973, (5.7)

where m is the modulus.?* Although we have been mostly
concerned with the Gaussian series, the Fourier series ap-
proximations are still sufficiently interesting to be included
in our comparisons and are

u=96g cos(2X ) + 192¢* cos(4X ) + O (¢°), (5.8)

c= — 4 + 9647, (5.9)
where the first follows from (2.8) and the second is derived in
Appendix A.

The lowest-order and second-lowest-order approxima-

tions to #(x, ¢ ) are compared in Figs. 2 and 3. The agreement
between the exact and approximate graphs is remarkable;
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| t t
/2 ~T/4 ] /4 /2

FIG. 2. A comparison of the lowest Fourier approximation (dotted lirie, a
simple cosine function) and the lowest Gaussian series-derived approxima-
tion (dashed line, a constant plus the hyperbolic secant squared) with the
exact cnoidal wave for g = ¢’ = 0.0432.

the lowest-order approximations would be acceptable for
most purposes and the second-order approximations are al-
most indistinguishable from the exact solution.

Similar remarks apply to phase speeds. The lowest-or-
der approximations and their errors are

el ian = — 24/ + 4= — 3.639, (5.10)
Absolute error = 0.181,

Relative error = 4.7%;

Chourier = — 4 (5.11)
Absolute error = — (.180,

Relative error = — 4.7%;

the second-order approximations are
e ian = — 3.81871, (5.12)

Absolute error = 0.00102,
Relative error = 0.027%;

-7}
-8 § 1 A
-7/2 -r/4 [¢] T/4 /2

FIG. 3. A comparison of the second Gaussian approximation (5.3) with the
exact cnoidal wave for the “‘worst case” ¢ = ¢’ = 0.0432. The second Four-
ier approximation is indistinguishable from the exact solution to within the
thickness of the curve.
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) ier = — 3.8207,
Absolute error = — 0.00100,
Relative error = — 0.026%.

(5.13)

It is amusing that even in this weakly nonlinear re-
gime—note that ¢t} ... is accurate to better than 5%—the
solitary wave formula (representing the strongly nonlinear
regime) is just as accurate. Thus, the two regimes strongly
overlap. It is in this sense that one can say that the solitary
wave is “almost a linear wave”: it yields an excellent ap-
proximation even when ¢ is small enough so that the lowest-
order Fourier approximation—a simple cosine function—
also gives an accurate approximation. In the same sense in
reverse, one can say that the linear wave is “almost a soliton”
in that it gives an accurate approximation when the nonlin-
earity is so strong the wave shape and speed are also accu-
rately given by those of the solitary wave.

This strong overlapping of the linear and solitary wave
regimes has two important implications. First, it suggests
that perturbation theory will yield useful, understandable
results for the *“‘polycnoidal” wave also. Obviously, if one
needed to carry the expansion to high order in & different
parameters, perturbation theory would be pointless, and one
would learn as much—or as little——with much less work by
staring at films of numerical integrations of the KdV equa-
tions. The accuracy and overlap of the expansions for the
ordinary cnoidal wave suggest that this will not be the case;
suggest instead that the lowest- or second-lowest-order per-
turbation theory will be more than adequate.

The other implication is conceptual. The phrase ‘“‘soli-
tary wave” has the obvious connotation of a single, isolated
wave peak. What has been shown here, however, is that a
wave that to the eye looks like an ordinary linear cosine func-
tion—and as Fig. 2 shows, is well approximated by a cosine
function—may nevertheless be accurately modeled by a soli-
tary wave. The isolation of a wave or a wave peak from its
fellows is not an essential ingredient either in the balance
between nonlinearity and dispersion, which allows the soli-
tary wave and cnoidal wave to exist as stable, permanent
forms, or in the mathematical approximation of the wave by
the characteristic sech? shape and speed of the soliton. Thus,
the intuitive equivalence of “solitary” with “isolated” has
been shown here to obscure the fact that such an isolated
peak and a not-very-steep cnoidal wave are essentially the
same thing.

6. HIROTA’S BILINEAR OPERATORS AND SOME
THEOREMS ABOUT THEM

Hirota* showed that his transformed nonlinear evolu-
tion equations could always be expressed in terms of the
bilinear operators defined by

DD (FG)
E[(ﬁ_ — i)"(-a_ - i)"'F(x, G, 1.
ax ax'/\ot o .

(6.1)
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where the notation indicates that x’ and ¢ * are to be replaced
by x and ¢ after the differentiations have been performed.
The Hirota-Korteweg—de Vries equation, for example, is

(D* + D D,)(F-F)=24F* [H-KdV], (6.2)

which is completely equivalent to (2.4).

Hirota proved a great many theorems and corollaries
about the action of these bilinear operators on.exponentials
with linear arguments. In particular

D:D :n(e(kx+ wl)‘e(k‘x—f w’t))
= (k — k'){w — w)melk + KW+ s wn (6.3)

Notice that the result depends only on the difference be-
tween k and k ' and between w and w’. When a theta function
Fourier series such as

6, = i q" exp(2min(kx + wt)] (6.4)
(imogers)

is substituted into (6.2), the result is to generate a doubly
infinite series of cross terms of the form of (6.3) so that the
residual is

p— —_ i i qnz + ,.'zér(n _ n,; ¢, A )ezm‘(n + n’iX’ (65)
with X = kx + wt, which is identical®® in form to (4.2) except
that it is a Fourier series instead of a Gaussian series. Hiro-
ta’s theorem (6.3) gives (w = — k¢)

E(n—n'c,A) = (2mik )*n — n')*
+ Qmik 2miw)n — n')2 — 24,  (6.6)

which is a function only of the differencen — n’. As shownin
Sec. 4, this property, that £ (or £ ) is a function only of n — n’,
is sufficient to prove that the vanishing of two (possibly non-
linear) equations in ¢ and 4 is sufficient to give p (or p)==0.
Nakamura has shown that this generalizes to higher-dimen-
sional theta functions, too—an N-dimensional Fourier series
yields 2" nonlinear equations in the phase speeds, 4 and the
parameters of the theta function series that are sufficient to
determine the whole solution. Furthermore, because the fact
that £ is a function only of the difference n — n' is a direct
consequence of the fact that the bilinear operators yield re-
sults that depend only on (k — k') and (w — w') as shown in
(6.3), it follows that the theta function solutions to all of
Hirota’s transformed equations expressed in terms of D, and
D, must also be reducible to 2" nonlinear algebraic equations
in the parameters.

Our goal in this section is to prove a generalization of
(6.3) which is applicable to Gaussian series. We shall find
that, just as for Fourier series, the action of D, and D, on a
pair of Gaussians depends only on the difference in their
arguments. This in turn immediately implies that when an
N-dimensional Gaussian theta function is substituted into
any of Hirota’s equations, the problem again reduces to 2V
nonlinear algebraic equations.

Before stating and proving the central result, it is im-
portant to note one powerful simplication: all terms in a giv-
en theta—Gaussian series have identical second degree argu-
ments in the exponentials, and thus differ only in the terms in
the exponentials which are /inear in x and t. This is because
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all the terms in the theta series are Gaussians of identical
shape, differing only in the location of the peak. Consequent-
ly, one can always factor out the common second-degree
exponential as was done explicitly for the one-dimensional
theta function in (2.9). The same will be done in the results
below.

Theorem: Let D, , D, be the usual Hirota bilinear opera-

tors defined by (6.1) above, and let

F=exp[ — (@/2)x* — Bxt — (y/2)t *]explkx + wt ),
(6.7)
G =exp[ — (@/2x* — Bxt — (y/2)t *lexplk 'x + w't);
(6.8)
then
(1)
D (FG)=a"H, [k = ]FG (6.9)

where H, (y) is the usual Hermite polynomial. D [{F-G ) is
given by (6.9) also with & replaced by ¥ and (k — k '} by
(w—w').
{id)
exp[6D, |(F-G) =exp[ — ad® + 8 (k — k)] FG. (6.10)
(iii) Defining
Q=D D(FG)

Q7 is determined by the recursion

(6.11)

Ortl= —2mR7_ +w—w)Q7 —2ymQ7 ", (6.12)
where the starting values are
Q7 '=0for all n, (6.13)
Q9 =a"H, [52-(1?% [as given by (i)]. (6.14)

Proof: The demonstration of (i) is inductive. Weuse Q'
as defined in (6.11) except that we do notset x' =x, t' =t
until after obtaining the general recursion. We also tempo-
rarily drop the superscript, which is understood to be 0.

Define

Qy=FG. (6.15)
By explicit differentiation
Q=D (FG)=[—alx—x)—-B(t—1)
+ (k— k')FG (6.16)

To proceed to the next order, we can use the Leibnitz prod-
uct-of-a-derivative rule after replacing FG by Q, to obtain

Q, =Di(FG)

=[—alx—~x)—Bt—t')+(k—k')]D,(Qo) (6.17)
+ 00D, [ —alx ~x) =Bt — 1)+ (k — k')]
=[—alx—x)-Bt—1t')+(k—k"]Q — 2aQ,
(6.18)
Let us now suppose that the recursion relation
Onii=[—ax—x)—B{t—1t)
+(k—k')1Q, —2naQ, _, (6.19)

holds for a given n; we have already shown that it is true for
n = 1. To demonstrate that it must also hold with n—n + 1,
again apply D, to (6.19) and invoke the Leibnitz rule to
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obtain
Qi =@ D[ —alx—x)—plt—1t)+(k—k')]
+[{—alx—x)—Bt—1t')+k—k')]D.Q,
—2naD,Q, . (6.20)
=—2aQ, +[—alx—-x)-Blt—-1)
+(k—k"1Q, . —2naQ,, (6.21)

which is identical with (6.19) except for the replacement of n
by n + 1. Therefore, by induction, the recursion (6.19) must
hold for all n. Setting x = x’ and ¢ = ¢’ simplifies it to

Qi1 =k—k'Q, —2naQ, .. (6.22)
The Hermite polynomials H, (y) satisfy the recursion
relation

H,,  ,=2%H, —2nH, . (6.23)
It is trivial to show that
k—k'
Qn = a"’zH,, [W (624)

satisfies (6.22) and the starting values (6.15) and (6.16} by
directly substituting (6.24) into (6.22) and then employing
the Hermite recursion (6.23) with the starting values H, = 1
and H, = 2.
Part (ii) is derived by interpreting the exponential of an
operator as the power series
= &"'D’
exp [5Dx ]-—ngo n! ’

applying (i) term by term, and then equating the result to the
generating function of the Hermite polynomials

Z H(V)

n=0n
witht =8a'?andy = (k —k')/2a',

An alternative proof can be obtained by using Hirota’s
result*thatexp(6D, ) (F-G ) = F (x + 8)G (x — 8)forany F, G,
and specializing it to the case when F and G are both
Gaussians.

Part (iii) is proved by induction and use of the Liebnitz
rule exactly as for (i) with the addition of the identity of dH , /
dy =2nH, _ |, so details will be omitted. A simple, closed
form solution for (6.12) has not been found; however, since
Hirota’s various evolution equations involve only first or
second mixed derivatives, such a general solution is not real-
ly needed for the theory of polycnoidal waves.

(6.25)

i+ 2y

e (6.26)

7. MULTIDIMENSIONAL THETA FUNCTIONS

The general Riemann theta function of “reduced half
integer characteristic’” and dimension & is defined by

) [ ‘,](5, T)

=Sewpln| ¥ ST ( )

i=1j=1

x(nj+€2f)+2‘§|(n ¥ )(; + )“ (.1)

T is the N X N symmetric square matrix, called the “theta
matrix,” with positive definite imaginary part whose ele-

John P. Boyd 383



ments are written T7;. § is the N-dimensional vector of depen-
dent variables; in applications to polycnoidal waves

& kix —ct)+ ¢,
= 5:2 _ kylx — C':zt) + ¢, , (7.2)
N kyx —cyt) + @y

where the k; are wave numbers, the ¢; phase speeds, and the
#; are constant phase factors. The quantity [¢ ] consists of
two N-dimensional row vectors written one above the other,
where each element is either 1 or O and is known as the
“‘characteristic” of the theta function,

4] (e. & - eN)
el \e & « e/
Since there are a total of 2NV matrix elements in the charac-
teristic, each of which can independently take 2 values, there
are a total of 4" linearly independent theta functions with
reduced half-integer characteristics. Note that it is conven-
tional to define the multidimensional theta function so that it
is periodic with period 2 versus the period of 7 that is con-
ventional for the one-dimensional Jacobian theta functions
6, and 6,.

Fortunately, it is always sufficient to take © [§ }(G; T) as
the solution of any of Hirota’s differential equations, where 0
is the N-dimensional vector whose elements are 0. Hirota
and Ito' have shown that when the Fourier series of & [§ ]
(€, T) is substituted into one of the evolution equations, the
result is a residual of the form

5= 620 g‘;o - ZOR (€0 [;](2; 2T),

There are a total of 2" reduced half-integer theta functions
with €'=0, and thus there are 2" terms in (7.4) and 2" nonlin-
ear equations

(7.3)

(7.4)

R, € ..., 65)=0, €, =00r1 (7.5)

that must be solved to obtain the N phase speeds ¢, the
constant of integration 4 in the H-KdV equation, and the
N{N — 1)/2 off-diagonal theta elements. (Recall T;; = T,.)
For N33, this gives more equations than unknowns; Hirota
and Ito'* have shown numerically that for N = 3, one of the
eight equations (7.5) is redundant, and that one must solve
seven equations in seven unknowns. Presumably something
similar happens for large NV although an analytical proof is
lacking.

The diagonal elements play a role analogous to that of
the nome for ordinary elliptic functions. In one dimension

g=em", (7.6)

where T, is positive imaginary. In more dimensions, one
can define “nomes” via

g=e¢ 4 j=1, o N (1.7)

and obtain perturbative solutions in the form of an N-dimen-
sional power series in the g;.
The “theta constants” are defined by

o[cJermelJon

wiTy

(7.8)
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Hirota and Ito,'® without calling attention to the fact, show
that the residual equations (7.5) can be expressed entirely in
terms of theta functions of the wave numbers &, ..., ky
{when the Hirota equation involves exp(6D, )] and the theta
constants 6 [§ ](2T) and their derivatives with respect to the
diagonal matrix elements. This is analogous to Sec. 4 where
the solution for the cnoidal was expressed in terms of the
functions H (¢') and I (¢')—which effectively are theta con-
stants—and their first two derivatives with respect to ¢'. In
general, if the highest power of DD " is m + n = J, the
residuals R (e) will involve differentiations with respect to T,
of up to order J /2; note that only even values of (m + n)
occur in Hirota’s equations.

The significance of this {besides the fact that it provides
a simple and compact description of the residuals) is that it
implies that one can apply Poisson summation directly to the
residuals R (€) to transform them into nonlinear equations in
the complementary nomes ¢',, ¢',, etc.

The only flaw with this is that “theta-matrix doubling”
occurs; the theta constants will appear in the residual equa-
tions R (€) have double the theta matrix of the theta function
that solves the H-KdV equation. In terms of the nomes, this
means that the perturbation series forc,, ..., ¢y and soon are
functions of the squares of g, q,, ..., 4 rather than the nomes
themselves. This implies very rapid convergence, of course,
and is the reason that the first and second approximations to
¢ in the one-dimensional case were seen in Sec. 5 to give such
remarkable accuracy.

However, the Poisson summation for the theta function
is given by

ofofee m - g olof e

which shows that doubling the theta matrix halves that of
the Poisson sum. In other words, by applying Poisson sum-
mation directly to the residual equations R (e}, we pay for the
rapidly-converging series in ¢* by obtaining slowly-conver-
gent series in (¢')'/2 upon Poisson summation. Equations
{4.20) and (4.21) show that exactly the same happens in re-
verse when we attempt to write theta constant series in ¢’
directly in terms of those in g.

. Thus, the best approach is to substitute separately the
Fourier series and the Gaussian series into the H-KdV equa-
tions and its fellows, to obtain a series for ¢ in q2 from the
Fourier series and another in ¢'* from the Gaussian series.

When performing this direct substitution for the Gaus-
sian series, it is convenient to use the freedom to shift the
phasefactorsin¢,, &, ..., £ toreplace 8 [§ ](§, T) by
8 [9](6, T) = 6 [5 1(§ + 4, T) because this has the simpler

Poisson sum

NERE

(7.9)

|detT|"2

XECXP{ - .21121 (; t )(gj R )Su],
(7.10)

where the sum is taken over all possible half integers { — oo,
w—3% —% — k43 o} ineachof the Nsum variables
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n,, ..., ny, and where
S=1I_(T™"). (7.11)

In one dimension, 8 [§ ](§, T) = 6,(x; ), which was what we
used in Secs. 2-5.

Again, however, the substitution of the series reduces
the problem—after using the theorems of Sec. 6—to solving
2" nonlinear equations in N?/2 4 N /2 + 1 unknowns, im-
plying some redundancy in the residual equations, just as
when the theta Fourier series was used. Again, these equa-
tions can be solved perturbatively in the N complementary
nome variables defined by

g =e " (7.12)

The lowest 2V terms in (7.10), those with # ;= + 1/2forallj,
generate the N-soliton solution of the KdV equation just as
the bi-Gaussian (V = 1) was shown to generate the single
soliton in Sec. 3. For N = 2, we have a “tetra-Gaussian”
whose four peaks form a rectangle in the £,-£, plane; for
N =3, an “octo-Gaussian” whose eight centers form the
corners of a cube in §,—{,—{; space. And so it goes.

We close with two elementary theorems which simplify
the calculations and have already been used above.

Theorem:

W) IfU (s &y -or &) is a solution of the KdV equation
where §; = k;(x —¢;t) + ¢; as in (7.2), then

Vix,t)=p+ UG, & s En) (7.13)
is also a solution of the KdV equation provided
fj(kp ¢j’ cj)=§j(kj’ ¢j!cj +p) (7.14)

for all j where p is an arbitrary constant.
(ii) If u(x, t) is a solution of the KdV equation, then

Bx, t)==A 2u(Ax, 1 3t) (7.15)

is also a solution.

The proofs are elementary and are not given here. The
first theorem allows one to choose “mean sea level,” i.e.,
§™2 ,u(x, t) dx, to be whatever one wishes. Note that the
theta-function solution normally picks its own ‘“‘mean sea
level,” which is generally different from zero.

The second theorem allows us to take the periodicity
interval to be 7 or 2 or whatever is convenient. It also permits
us to set one of the wave numbers k, = 1 without loss of
generality.

8. CONCLUSIONS AND SUMMARY

The theory of polycnoidal waves for the Korteweg—de
Vries and other evolution equations is built upon four funda-
mental ideas. The first was the recognition by Lax and Novi-
kov that the KdV equation had a class of generalized cnoidal
wave solutions, here dubbed polycnoidal waves, that could
be used to approximate an arbitrary, spatially-periodic ini-
tial condition and that could be formally calculated from the
spectrum of Hill’s equation. The second was the indepen-
dent discovery by Akira Nakamura and the author that Hir-
ota’s “direct method” was just as useful for polycnoidal
waves as for the multiple-soliton solutions of which they are
generalizations. Nakamura, Hirota, and Ito subsequently re-
fined the “direct method” using Fourier series to a high art.

The third is the discovery, first presented here, that the
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direct method can also be applied using the alternative Gaus-
sian series for the theta functions to make it possible to ex-
plore strongly nonlinear polycnoidal waves and their rela-
tionship with multiple solitary waves.

The fourth, also presented here for the first time, is that
by using these two different series—the theta Fourier expan-
sion and the theta Gaussian expansion—in a complementary
way, the former for small amplitude and the latter for large
amplitude, one can obtain rapidly convergent perturbation
series—a couple of terms are enough—to approximate the
polycnoidal waves over the whole range of parameter space.

There are some additional complications, such as the
way soliton phase shifts enter the formalism, which arise for
polycnoidal waves of dimension N »2. Since this present
work is already lengthy, the actual polycnoidal wave calcu-
lations will be described in a later work. Here, however, the
full mathematical machinery to perform these calculations
has been presented with a very thorough discussion of the
ordinary cnoidal wave to illustrate both how to use the for-
malism and also why perturbation theory should be useful
even for the more complicated cases. As we saw in Sec. 5, just
two terms of the perturbation series in g (derived from the
theta Fourier series) and two terms of the series in g’ (derived
from the theta Gaussian series) were sufficient to give the
cnoidal wave phase speed ¢ to within a relative error of
0.027% for all possible values of g and ¢'.

The path for future research is to simply follow up this
initial success by explicit calculations for N»2, concentrat-
ing particularly on the Gaussian series approach that is the
central theme of this work. For the Fourier series results of
Nakamura and Hirota can be obtained another way as ex-
plained in Appendix B—an even more direct method than
Hirota’s. However, at present there seems to be no alterna-
tive to the theta Gaussian series for exploring strongly non-
linear polycnoidal waves and their close relationship with
multiple solitons.
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APPENDIX A: THE EXACT SOLUTION FOR THE
CNOIDAL WAVE

By using identities 17.2.13 and 17.2.11 of the NBS
Handbook,?* one can show that

12(In 6,] xx = & + €cn®*(2K (m)X /m; m), (A1)
where K {m)is the complete elliptic integral with m related to
g by

g=e~ KU -m/Kim (A2)
and with the phase speed ¢ given by (X = x — ¢t)

c=086+ [(2m — 1)/3m]e, (A3)
with

§=[—48K(m)/m*][(m — 1)K (m) + E(m)], (A4)

€=—48mK *m)/m. (A5)

The phase speed is obtained by substituting the right-hand
side of (A1) directly into the KdV equation and using elliptic
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function identities.”” For small g, one has the
approximations

m = 164(1 — 8¢ + 44¢°), (A6)
K (mlg))=(m/2)(1 + 4q + 4¢°), (A7)
E (m(g))=(m/2)(1 — 4q + 20¢°). (A8)

Substituting these small ¢ approximations into (A4) and (A5)
gives the approximation for ¢ given by (5.9). The correspond-
ing approximation for large g is derived directly by solving
the residual equations in Sec. 4, and then Taylor-expanding
(4.28), which is actually a rational function of ¢".

When carrying out the analysis in terms of theta func-
tions, it is convenient to take g or ¢’ as the perturbation pa-
rameter. In analyzing observations or laboratory experi-
ments, one would probably take € as the fundamental
quantity since this is what is most easily measured. (It is the
difference between the peak and the trough.) In applying
multiple-scales perturbation theory to the KdV equation as
in Appendix B, one would normally fix the Fourier coeffi-
cient of cos(2nx) (the linear wave) at a certain value @ and use
that as the perturbation parameter.

Fortunately, it is easy to relate these different measures
of the nonlinearity of the wave to each other by using the
Fourier series for u(x, t) = 12(In 6,),, given earlier:

n—1

upx, 1) =96g 5 1”" — cos(2nx). (A9)
n=1 - q
The coefficient of cos(2x) is
a=96g/(1 —¢%, (A10)

which is trivially solved to give ¢ as a function of a. Since
€ = u(0, 0) — u(m/2, 0), we can evaluate (A9) at these values
of x and subtract to obtain

0 2n
5=192qz 2n+ g™ (A11)

22n+ 1)’
which can be easily reverted term-by-term to give a series
expansion for g(e).

APPENDIX B: THE METHOD OF MULTIPLE SCALES
AND POLYCNOIDAL WAVES

In the near linear regime, one can bypass the use of the
Fourier series for the theta functions by using a much more
general technique'®'” known variously as the “method of
strained parameters” or “method of multiple scales,” which
can be applied directly to Korteweg—de Vries equation. The
amplitude of the lowest harmonic, g, is assumed to be a small
parameter. It is further assumed that (i) the wave is steadily
translating at a phase speed ¢ and (ii) that u(x — ct) can be
expanded as a power series in a. One can then substitute the
power series into the differential equation, match powers of a
and solve the perturbation equations order-by-order. How-
ever, there is one modest complication: the phase speed c is
usually altered by the nonlinearity, so it is necessary to as-
sume ¢ can also be expanded in a power series in a. The
technique is very similar to the usual Rayleigh-Schrodinger
perturbation theory of quantum mechanics with ¢ playing
the role of the eigenvalue. A full description with many,
many examples and problems is given in the texts by Nay-
feh'® and Bender and Orszag.'” It is not exactly a new idea;
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Stokes applied it to water waves in 1847.

Because this algorithm is so straightforward, it is not
only easy to do by hand but also simple to program for a
computer. Using the algebraic manipulation language RE-
DUCE 2, which can explicitly multiply and differentiate
Fourier series and manipulate trigonometric identities, a
short program was written by the author to calculate single
and double cnoidal waves. For the expenditure of $1.50
{(about 8 sec of CPU time on the University of Michigan
Amdabhl), the following was obtained to fifth order for the
single cnoidal wave (X =x — ¢t ):

¢= —4+a%/96 +a*/884 736, (B1)
u(x, t) = a cos(2X ) + (a*/48 — a*/221 184) cos(4X)

+ (@*/3072 — a®/9 437 184) cos(6x)

+ (@*/221 184) cos(8X)

+ (54°/84 934 656) cos(10X ). (B2)

By Taylor-expanding the relationship between a and
the elliptic function nome ¢, which was shown in Appendix
A to be

a=96¢/(1—g’) = 96q(1 + ¢* + ¢* + -, (B3)
one can recast the expansion in powers of g and thus dupli-

cate the results of the *‘direct Fourier series” method of Na-
kamura, Hirota, and others:

c= — 449647 + 288¢° + -, (B4)
ulx, t) = 96¢[(1 + ¢* + ¢*) cos(2x)

+ 2q cos(4x) + 3¢* cos(6x)

+ 4g° cos(8x) + 54° cos(10x)]. (BS)

In the body of this paper, only terms through g* were kept
because these give more than enough accuracy; the expan-
sions have been carried to higher order here simply to make
the point that it is easy to calculate Fourier series via the
method of multiple scales and that a theta function approach
is not really needed except in the opposite near-soliton re-
gime of strong nonlinearity.

In a similar way, one can calculate double cnoidal
waves by starting with the lowest order approximation

u(x, t)=alcos(2X ) + b cos(MY)), (B6)

where again a is a small parameter and b is O (1), with

X=x—cit+¢, (B7)
Y=x—c;t+ ¢, (B8)

M may take on any constant value; however, unless M /2isa
rational number, the wave will be “almost periodic” in x in
the formal mathematical sense of the word as opposed to
truly periodic. But Novikov'® and Dubrovin et al.'! have
emphasized that the polycnoidal wave may indeed be almost
periodic in space.

The most reasonable value of M, however, is M = 4 so
that the second component is the second harmonic of the
first. Unless the initial condition is rather peculiar, the sec-
ond harmonic is usually the largest Fourier component after
the fundamental. Consequently, in applying the double cnoi-
dal wave to model events in a laboratory tank or the real
world, M = 4 is the case in which one would be chiefly inter-
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ested. For simplicity, the results below are therefore con-
fined to this case. The computer program, however, can
solve the double cnoidal wave with M as a purely symbolic
parameter with no numerical value specified.
One obtains
¢, = — 4+ d*/96, (B9)
¢, = — 16 +a*h?/384, (B10)
u{x, t) = a[cos(2X ) + b cos(4Y)]
+ a*[(1/48) cos(4X ) + (b>/192) cos(8Y )
+ (b /48) cos(2X + 4Y) — (b /48) cos(2X — 4Y)]
+ a*[{1/3072) cos(6X ) + (b>/49152) cos(12Y)
+ (b /2592) cos(4X + 4Y)
+ (25b%/165888) cos(2X + 8Y)
— (62/2048) cos(2X — 8Y)].
(B11)
This run also cost a mere $1.50. [t is trivial to generalize
the algorithm to triple and higher cnoidal waves; in point of
fact, the same program with changes in only two statements
was used to compute both the single and double cnoidal
wave results given above.
The message is clear. The theta Fourier series is not
essential in understanding spatially periodic solutions of the

KdV and other evolution equations; it is the theta Gaussian
series that contains treasure.
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