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Abstract

Tumor samples are typically heterogeneous, containing admixture by normal, non-cancerous cells and one or more

subpopulations of cancerous cells. Whole-genome sequencing of a tumor sample yields reads from this mixture,

but does not directly reveal the cell of origin for each read. We introduce THetA (Tumor Heterogeneity Analysis),

an algorithm that infers the most likely collection of genomes and their proportions in a sample, for the case

where copy number aberrations distinguish subpopulations. THetA successfully estimates normal admixture and

recovers clonal and subclonal copy number aberrations in real and simulated sequencing data. THetA is available

at http://compbio.cs.brown.edu/software/.
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Background

Cancer is a disease driven in part by somatic mutations,

which accumulate during the lifetime of an individual.

The clonal theory of cancer progression [1] states that

the cancerous cells in a tumor are descended from a

single founder cell and that descendants of this founder

cell acquired multiple mutations beneficial for tumor

growth through multiple rounds of selection and clonal

expansion. A tumor is thus a heterogeneous population

of cells, each cell potentially containing a different com-

plement of somatic mutations. These include both clo-

nal mutations from the founder cell or early rounds of

clonal expansion and subclonal mutations that occurred

after the most recent clonal expansion. Alternatively,

subclonal mutations may suggest that the tumor is poly-

clonal, consisting of subpopulations of cells that are not

all descended from a single founder cell [2].

High-throughput DNA sequencing technologies are

now giving an unprecedented view of this intra-tumor

mutational heterogeneity [3]. However, nearly all recent

cancer sequencing projects generate DNA sequence

from tumor samples consisting of many cells - including

both normal (non-cancerous) cells and one or more dis-

tinct populations of tumor cells. The tumor purity of a

sample is the fraction of cells in the sample that are

cancerous, and not normal cells. If a sample has a low

tumor purity, then the power to detect all types of

somatic aberrations in the cancer genomes is reduced.

For example, lower tumor purity attenuates copy num-

ber ratios or allele frequencies away from the values

expected with integral copy numbers. Methods to detect

somatic copy number aberrations or loss of heterozygos-

ity (LOH) from SNP array data or array comparative

genomic hybridization (aCGH) data must account for

this issue [4-9]. In addition, many algorithms for identi-

fying somatic single-nucleotide mutations from DNA

sequence reads implicitly or explicitly rely on an esti-

mate of tumor purity. For example, the VarScan 2 pro-

gram [10] uses an estimate of tumor purity as input to

calibrate the expected number of reads that contain a

somatic mutation at a locus.

Traditionally, tumor purity was assessed by visual ana-

lysis of tumor cells, either manually by a pathologist or

via image analysis [11]. Recently, methods such as

ASCAT [12] and ABSOLUTE [13] were introduced to

estimate tumor purity directly from SNP array data.

Both of these methods utilize the presence of copy

number aberrations in cancer genomes to estimate both

tumor purity and tumor ploidy, which is the number of

copies of segments of chromosomes or entire chromo-

somes. Tumor purity and tumor ploidy are intertwined;

for example, a heterozygous deletion of one copy of a
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chromosome in a 100% pure tumor sample (containing

one cancer genome) could also be explained as a homo-

zygous deletion in a 50% pure tumor sample (containing

one cancer genome). Thus, it is necessary to estimate

tumor purity and ploidy simultaneously, but this is a

subtle and difficult problem. ASCAT and ABSOLUTE

address this problem by estimating the average ploidy

over the entire cancer genome. These estimates of

tumor purity and average ploidy are then used in a sec-

ond step to derive copy number aberrations.

Both ASCAT and ABSOLUTE have been shown to

yield accurate estimates of tumor purity, achieving in

some cases better estimates than via pathology or other

techniques. However, these methods also have impor-

tant limitations. First, the mathematical models used by

ASCAT and ABSOLUTE are optimized for SNP array

data, as we detail below. While these methods may be

adapted to run on DNA sequencing data (for example,

for ABSOLUTE see [14] and for ASCAT see below), the

underlying mathematical model used by both methods

does not adequately describe the characteristics of

sequencing data. Second, both of these methods apply

various heuristics in their estimation procedures, such

as rounding copy numbers to the closest integer [12]

and do not directly infer integer copy numbers for each

segment of the genome during the estimation. Finally,

both methods do not explicitly identify multiple tumor

subpopulations, and instead infer only a single tumor

subpopulation. For example, ABSOLUTE [13] classifies

copy number aberrations as outliers if they are not clo-

nal, but does not refine these outliers into subpopula-

tions. If a tumor sample consists of multiple tumor

subpopulations, then considering only a single tumor

population may yield inaccurate estimates of tumor pur-

ity, as we show below.

High-throughput DNA sequencing data is much

higher resolution data than SNP arrays, and provides

the opportunity to derive highly accurate estimates of

both tumor purity and the composition of tumor subpo-

pulations. For example, the number of reads containing

a somatic single-nucleotide mutation at a locus provides

- in principle - an estimate of the fraction of cells in a

tumor sample containing this mutation. However, three

interrelated factors complicate this analysis: (1) The

number of reads supporting a somatic single-nucleotide

mutation has high variance, implying that an estimate of

the allele frequency will be highly unreliable at the mod-

est coverages (30× to 40×) employed in nearly all cur-

rent cancer sequencing projects. (2) Somatic mutations

may be present in only a fraction of tumor cells. (3)

Somatic copy number aberrations (nearly ubiquitous in

solid tumors) alter the number of copies of the locus

containing the mutation. While the first issue might be

addressed in part by clustering allele frequency estimates

across the genome [15-17], the second and third issues

complicate such a clustering. Recent methods for ana-

lyzing tumor composition from DNA sequencing data

either ignore copy number aberrations [17] or use itera-

tive approaches [18] or other approximations [12,13],

and do not formally model the generation of DNA

sequencing data from a mixture of integral copy num-

bers for each genomic segment.

Beyond the estimation of tumor purity and ploidy, it is

desirable to identify subclonal aberrations, which can

provide information on the age or history of the tumor

[19], and can yield further insight into tumors that fail

to respond to treatment or metastasize [19-21]. How-

ever, even with a pure tumor sample, characterizing

subclonal mutations is a challenge. Tolliver et al. [22]

infer subclonal copy number aberrations by comparing

aberrations across different individuals, thus assuming

that the progression of somatic copy number aberrations

is conserved across individuals. Gerlinger et al. [23]

recently demonstrated the extent of subclonal mutations

by sequencing multiple (spatially separated) samples

from a tumor, complementing earlier studies of hetero-

geneity using microarray-based techniques [24]. In

another approach, Ding et al. [17] used a targeted ultra-

deep sequencing (1,000 × coverage) approach to esti-

mate allele frequencies for relapse mutations in acute

myeloid leukemia (AML). In another recent study, Nik-

Zainal et al. [25] used a SNP array based estimate of

tumor purity [12] followed by extensive manual analysis

of somatic mutations to identify a clonal (majority)

population and a number of subclonal populations in

each of several breast cancer genomes. Ultimately, sin-

gle-cell sequencing techniques promise to provide a

comprehensive view of cancer heterogeneity [26-29], but

these techniques presently require specialized DNA

amplification steps, which can introduce artifacts and

also incur higher costs because they sequence many

cells. Thus, the problem of the simultaneous estimation

of and correction for tumor purity as well as the identi-

fication of clonal and subclonal mutations will remain a

challenge for the majority of cancer sequencing projects.

In this paper, we introduce Tumor Heterogeneity Ana-

lysis (THetA), an algorithm that infers the most likely

collection of genomes and their proportions from high-

throughput DNA sequencing data, in the case where

copy number aberrations distinguish subpopulations. In

contrast to existing methods, we formulate and optimize

an explicit probabilistic model for the generation of the

observed tumor sequencing data from a mixture of a nor-

mal genome and one or more cancer genomes, each gen-

ome containing integral copy numbers of its segments.

Specifically, we derive and solve the maximum likelihood

mixture decomposition problem (MLMDP) of finding a

collection of genomes - each differing from the normal
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genome by copy number aberrations - whose mixture

best explains the observed sequencing data. Thus, we

generalize the problem of estimating tumor purity to the

problem of determining the proportions of normal cells

and any number of tumor subpopulations in the sample.

Our formulation and solution of the MLMDP

leverages the fact that copy number aberrations create a

strong signal in DNA sequencing data: even relatively

small copy number aberrations cause deviations in the

alignments of thousands to millions of reads. Thus, in

contrast to single-nucleotide mutations, where there is

high variance in the number of reads at each position,

many measurements (reads) are perturbed for each copy

number aberration. Thus, each copy number aberration

provides many data points for deconvolution of the

tumor genome mixture. We show how to solve the

MLMDP as a collection of convex optimization pro-

blems. THetA is the first algorithm - to our knowledge

- that automatically identifies subclonal copy number

aberrations in whole-genome sequencing data from mix-

tures of more than two genomes. Moreover, in the case

of an admixture between a single (clonal) cancer popu-

lation and normal cells, THetA runs in polynomial time;

it is the first rigorous and efficient algorithm for simul-

taneously estimating tumor purity and inferring integral

copy numbers.

We apply our THetA algorithm to simulated data and

to real DNA sequencing data from breast tumors

sequenced at approximately 188× and approximately 40×

coverage from [25]. We quantify the normal cell admix-

ture in each tumor, outperforming other algorithms for

this task. We also demonstrate that allowing only one

tumor subpopulation may lead to highly inaccurate

tumor purity estimates, and subsequent failure to detect

clonal and subclonal copy number aberrations. In the

188× sequenced tumor, we identify both clonal and sub-

clonal tumor cell populations, each containing unique

copy number aberrations. Our results recapitulate most

of the findings reported in [25] for this sample, but also

have some distinct differences, which are supported by

the sequencing data. In one of the 40× sequenced

tumors, we identified two previously unreported tumor

subpopulations, demonstrating the ability to identify

intra-tumor heterogeneity, in particular subclonal aberra-

tions, at the modest sequence coverages that are the cur-

rent standard in cancer sequencing studies.

Results

Maximum likelihood mixture decomposition problem

First, we will formulate the maximum likelihood mixture

decomposition problem of finding the most likely mixture

of tumor cell populations from a sequenced tumor sample.

We assume that sequenced reads from a tumor sample are

aligned to the reference human genome, the first step in

cancer genome sequencing analysis [30,31]. Typically, a

matched normal genome is also sequenced to distinguish

somatic mutations from germline variants. We focus on

copy number aberrations in order to estimate tumor purity

and subpopulations. Thus, we assume that a cancer gen-

ome differs from the reference genome by gains and losses

of segments, or intervals, of the reference genome. These

intervals are identified by examining the density, or depth,

of reads aligning to each location in the reference [32-34],

and/or by clustering discordant paired reads that identify

the breakpoints of copy number aberrations or other rear-

rangements [35-40]. Following this analysis, the reference

genome is partitioned into a sequence I = (I1, ..., Im) of

non-overlapping intervals. We represent a cancer genome

by an interval count vector c = (c1, ..., cm), where cj Î N is

the integer number of copies of interval Ij in the cancer

genome. From the sequencing of a tumor sample, we

observe a read depth vector r = (r1, ..., rm), where rj Î N is

the number of reads with a (unique) alignment within Ij.

A tumor sample is a mixture of cells that contain dif-

ferent collections of somatic mutations, and in particular

somatic copy number aberrations. We assume that the

tumor sample is a mixture of n subpopulations, includ-

ing a subpopulation of normal cells and one or more

subpopulations of cancer cells. Each subpopulation has

a distinct interval count vector representing the genome

of the subpopulation. Thus, we represent a tumor sam-

ple T by: (1) an m × n interval count matrix C = [cjh],

where cjh Î N is the number of copies of interval Ij in

the hth distinct subpopulation; and (2) a genome mixing

vector μ Î ℝ
n where μh is the fraction of cells in T

from the hth subpopulation. Given a read depth vector r

derived from the sequence of T , our goal is to identify

the underlying interval count matrix C and genome

mixing vector μ that best describe r (Figure 1). We for-

mulate the following problem.

Maximum likelihood mixture decomposition pro-

blem (MLMDP). Given an interval partition I of a

reference genome and an associated read depth vector r

derived from a tumor sample T , find the underlying

interval count matrix C and genome mixing vector μ

that maximize the likelihood P(r|C, μ).

In the Materials and methods section below, we derive

the probability P(r|C, μ) in the MLMDP. In brief, under

the usual assumptions for DNA sequencing, the probabil-

ity pj that a read that aligns to an interval Ij is equal to the

fraction of the total DNA in the sample originating from

interval Ij. Hence, the probability P(r|C, μ) of the observed

read depth vector r follows a multinomial distribution

determined by the interval count matrix C and genome

mixing vector μ. We emphasize that the multinomial dis-

tribution models the fact that the number of reads aligning

to each interval are not independent random variables, but

rather are dependent on the number of copies (ploidy) of
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each interval in the cancer genome(s) (please see Addi-

tional file 1, Section A). In contrast to our probabilistic

model for DNA sequencing data, other methods for esti-

mating tumor purity and ploidy [12,13] do not model the

data as an observation from an experiment. Rather, they

assume that the observed copy number ratio of an interval

(or probe) is the ratio of the expected value of the tumor

copy number and the expected value of the normal copy

number (please see Additional file 1, Section B). Thus,

they implicitly assume that the observed data is an average

over many experiments.

Solving the maximum likelihood mixture decomposition

problem

We now give an overview of our algorithm for solving

the instance of the MLMDP where P(r|C, μ) is the mul-

tinomial probability described above. Further details are

in the Materials and methods section.

Restricting the space of interval count matrices

In practice, the interval count matrix C is not allowed to

be any integer-valued matrix. There are three natural

constraints on the interval count matrix: (1) One com-

ponent of the tumor sample is the normal genome.

Thus, we set the first column c1 = (2, 2, ..., 2)T, the vec-

tor whose entries are all two. (2) The number n of sub-

populations is less than the number m of intervals. (3)

The copy numbers of the intervals are integers between

0 and k, inclusive, where k ≥ 2. We let Cm,n,k denote the

set of all matrices satisfying these properties.

A convex optimization algorithm

We wish to find the interval count matrix C ∈ Cm,n,k and

the genome mixing vector μ that maximize the multinomial

likelihood P(r|C, μ). However, this optimization problem is

not straightforward to solve because it contains both inte-

ger-valued variables (entries of C) and real-valued variables

(entries of μ). We show that a special coordinate transfor-

mation allows the MLMDP to be solved as a disjunction of

constrained convex optimization problems by enumerating

the possible interval count matrices and solving a separate

convex optimization problem for each such C (see Materi-

als and methods). Since the number of possible matrices C

grows exponentially with m and n, this brute-force strategy

approach will not scale well beyond small values of n sub-

populations and m intervals. In a special, but important,

case where a sample contains a single clonal tumor popula-

tion along with a normal admixture (that is, n = 2), we

show how to further restrict the space of possible interval

count matrices C, and obtain an efficient algorithm (poly-

nomial time in m) for the MLMDP. The runtime for our

algorithm depends on the number of intervals m and maxi-

mum copy number k in the input. Simulations with m = 39

and k = 3 (described below) run in 1 to 2 minutes on a

standard desktop, while increasing to k = 5 increases the

runtime to approximately 25 to 40 minutes.

Selecting a solution

Two additional issues to be addressed in deriving a solu-

tion are: (1) how to select from multiple optimal solu-

tions and (2) how to choose the number n of tumor

subpopulations in the mixture. We note that tumor

sequencing data alone does not distinguish between dif-

ferent optimal solutions with the same maximum likeli-

hood. In mathematical terms, this is because only the

parameter of the multinomial distribution is identifiable

from the observed read depth vector r. Thus, we cannot

distinguish between pairs (C, μ) and (C’, μ’) of interval

count matrices and genome mixing vectors that give the

Figure 1 Algorithm overview. A mixture of three subpopulations with two distinct genomes: a normal genome (represented here with one

copy of each interval for simplicity), and an aneuploid genome with a duplication of one interval (red). If reads are distributed uniformly over

the aggregate DNA in the sample, then the observed distribution of reads over the blue, red and yellow intervals will follow a multinomial

distribution with parameter Ĉμ. Here C is the interval count matrix giving the integral number of copies of each interval in each genome in the

mixture, and μ is the genome mixing vector giving the proportion of each subpopulation in the mixture. We find the pair (C, μ) that maximizes

the likelihood of the observed read depth vector r.
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same multinomial parameter. Our algorithm THetA has

options to return the complete family of optimal solu-

tions, or to limit to solutions with a baseline copy num-

ber of the clonal tumor population (see Materials and

methods).

Regarding the second issue, note that the likelihood P

(r|C, μ) increases as the number n of tumor subpopula-

tions in the mixture increases: indeed the observed read

depth vector can be fitted ‘perfectly’ by placing each

copy number aberration in its own tumor subpopula-

tion. However, mixtures with larger n also have greater

model complexity (that is, more parameters). We use a

model selection criterion based on the Bayesian infor-

mation criterion (BIC) to select a model with a balance

between higher likelihood and lower model complexity

in order to avoid overfitting.

Evaluation on simulated cancer genomes

Normal admixture: single cancer genome

Using two different sets of simulated data, we compared

our THetA algorithm to three other methods for esti-

mating tumor purity and ploidy: ASCAT [12], ABSO-

LUTE [13] and CNAnorm [18]. ASCAT and

ABSOLUTE jointly estimate tumor purity and ploidy,

and were originally designed for SNP array data. While

both can be adapted to run on DNA sequencing data,

they do not formally model this type of data, as noted

above. CNAnorm is designed for DNA sequencing data,

but rather than allowing tumor purity and tumor ploidy

to inform each other, it uses an iterative approach that

separately infers purity and copy numbers. In some

instances, CNAnorm relies on the user manually enter-

ing the most abundant ploidy.

As noted above, there are multiple optimal solutions

with the same maximum likelihood. CNAnorm [18] and

ASCAT [12] use ad hoc criteria to return only a single

purity estimate, and ABSOLUTE [13] uses external can-

cer karyotypes to select from multiple possible solutions.

To compare THetA to these other methods, we must

select a single pair (C, μ) from the set returned by

THetA as a representative sample reconstruction. For all

simulations, we chose the pair (C, μ) that maximizes the

total length of all genomic intervals in the tumor gen-

ome with copy number 2, the expected copy number of

the normal genome for humans. We note that this deci-

sion applies only to these simulations - for real sequen-

cing data the set of all equally like solutions is returned

by THetA from which a user may select one using addi-

tional information about the sample under considera-

tion. For further details about the other algorithms

please see Additional file 1, Sections K and L.

For our first set of simulations, we generated a cancer

genome consisting of chromosome arm copy number

aberrations. The copy number for each non-acrocentric

chromosome arm was chosen uniformly at random

from the range 0 (that is, homozygous deletion) through

k > 2 (amplification), up to a specified maximum copy

number k. While real cancer genomes may have copy

numbers larger than the maximum value (k = 7) consid-

ered in these simulations, such high amplitude amplifi-

cations are generally focal events. We emphasize that it

is not necessary to use all copy number aberrations to

infer the tumor composition; for example, if there are a

sufficient number of arm-level copy number aberrations,

these may suffice. We then created a random mixture of

this cancer genome and a ‘matched normal’ genome and

simulated a read depth vector r for the mixture, adding

noise according to the read depth estimation error �.

The parameter � models errors in the sequencing and

analysis process, and we estimated from real sequencing

data that � is in the range from 0.01 to 0.04 (please see

Additional file 1, Section J and Figure S3). Since the

ASCAT algorithm uses SNP array data, we also simu-

lated SNP array data from our mixture. Further details

of the simulations are in Additional file 1, Section I.

Table 1 shows how the four algorithms performed on

the simulated datasets with interval count matrix

C ∈ C39,2,k and mixing vector μ and read depth estima-

tion error � = 0.03. For each value of k, the maximum

copy number, 20 simulated datasets were generated.

The percentage correct C is the percentage of datasets

where the inferred interval count matrix C* exactly

equals the true simulated matrix C for the sample. The

copy number error is
1

m (n − 1)

∣∣C − C∗
∣∣
2
, that is the

average error per copy number estimate made, or per

entry in C, where error is the Euclidean distance

between C and C*. The purity error is
∣∣μ2 − μ∗

2

∣∣, that is

Table 1 Performance of the algorithms on simulated data with one tumor population (n = 2)

% correct C Copy number error (median) Purity error (median)

k THetA ASCAT CNAnorm ABSOLUTE THetA ASCAT CNAnorm ABSOLUTE THetA ASCAT CNAnorm ABSOLUTE

3 100.0 85.0 40.0 70.0 0.0 0.0 0.103 0.000 0.004 0.040 0.068 0.010

4 90.0 55.0 8.3 50.0 0.0 0.0 0.163 0.013 0.004 0.037 0.064 0.010

5 85.0 50.0 6.7 15.0 0.0 0.013 0.185 0.160 0.004 0.062 0.038 0.075

6 55.0 40.0 0.0 15.0 0.0 0.026 0.291 0.433 0.006 0.063 0.066 0.157

7 30.0 15.0 0.0 10.0 0.031 0.036 0.445 0.471 0.005 0.069 0.108 0.149
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the distance between the true and inferred tumor purity.

We only calculated results for CNAnorm where the

inferred purity was <100% (there were between 12 and

15 trials for each k). Additional file 1, Figure S4 illus-

trates the results obtained by each algorithm on one of

the datasets when k = 7.

For this first set of simulations, we found that our

THetA algorithm computes both C and μ very accu-

rately over a range of copy numbers k. In particular,

THetA outperforms CNAnorm, ABSOLUTE and

ASCAT despite the fact that ASCAT uses additional

information (allele frequencies) that THetA does not

consider. Even with high amplitude copy number aber-

rations (k = 7) THetA on average estimates tumor pur-

ity within 0.5% of the true purity, compared to 6.9%,

10.8% and 14.9% by ASCAT, CNAnorm and ABSO-

LUTE respectively. Even when THetA does not estimate

all copy numbers across the genome correctly, it esti-

mates most copy numbers correctly and estimates the

copy number correctly for more segments than the

other algorithms (see Additional file 1, Figure S4).

Further results comparing THetA to CNAnorm for dif-

ferent read depth estimation errors are in Additional file

1, Figure S5.

We also compared THetA, CNAnorm, and ABSO-

LUTE using a second set of simulated mixtures of

tumor and normal cells created using real sequencing

data from an AML tumor sample and matched normal

sample (TCGA-AB-2965) from The Cancer Genome

Atlas (TCGA) [41]. This sample was chosen due to its

high purity (approximately 95% pure) and lack of copy

number aberrations. We spiked 10 copy number var-

iants of length 2.5 Mb at random non-overlapping posi-

tions in Chr20 (excluding the centromere) into the

tumor genome. As in the first set of simulations, the

copy number for each variant was chosen uniformly at

random from the range 0 (that is, homozygous deletion)

through k > 2 (amplification), up to a specified maxi-

mum copy number k = 5. (We did not run ASCAT on

this simulated data since this algorithm was designed

only for microarray data.) We again found that THetA

outperforms both CNAnorm and ABSOLUTE on all

measures (Figure 2). In particular, THetA estimates the

sample purity with an order of magnitude better accu-

racy (using the root mean squared error as a metric of

comparison as was done for ABSOLUTE [13]), and con-

sistently identifies more true copy number aberrations

than the other algorithms across different purity values

and sequencing coverage. In particular, THetA identifies

7.4 and 2.2 more copy number aberrations, on average,

than ABSOLUTE and CNAnorm, respectively, across all

purity values at 30× sequencing coverage. Even when we

relax the requirement that a copy number aberration

must be predicted with the correct copy number, and

instead count any non-normal copy number as correct,

THetA still outperforms the other algorithms (see Addi-

tional file 1, Figure S7). Further details of the simula-

tions are in Additional file 1, Section I.

Mixture of tumor subpopulations

We next evaluated the performance of THetA on a

simulated mixture containing two subpopulations of

tumor cells with different copy number aberrations and

an admixture with normal cells. Thus, there were three

distinct subpopulations in the mixture (n = 3). Our

method for constructing the simulated data was the

same as for the first set of simulations, as described in

the previous section, with a fixed read depth estimation

error of � = 0.02 along with a few minor changes (see

Additional file 1, Section I).

Table 2 shows how the three algorithms performed on

the simulated datasets with interval count matrix C Î

Cm,3,3 and mixing vector μ and read depth estimation

error � = 0.02. The percentage correct C and copy

number error are defined as for Table 1. We defined the

purity error as the distance between the true and pre-

dicted fraction of tumor cells in the sample. Thus, pur-

ity error is
∣∣(1 − μ1) −

(
1 − μ∗

1

)∣∣
2
, as the proportion of

tumor cells in the sample is 1- μ1. Since CNAnorm and

ABSOLUTE are not able to infer multiple subpopula-

tions, their percentage correct C = 0, and we list only

their purity estimates. We only calculated results for

CNAnorm where the inferred purity was <100% (there

were between 14 and 18 trials for each m).

While the performance of THetA was less precise in esti-

mating all copy numbers (that is, the entries in C) exactly

than for the tumor with a normal admixture (n = 2),

THetA maintains a good level of accuracy as the estimates

are near the true interval copy numbers. THetA correctly

computes on average 94% of the copy numbers across all

subpopulations in the mixture when there are m = 12

intervals with varying copy number in the subpopulations.

THetA also estimates the tumor purity with good accuracy

(within 3.6% of the true purity when m = 12), whereas

both CNAnorm and ABSOLUTE gravely misestimate the

tumor purity by 30.1% and 54.7%, respectively. One possi-

ble explanation for these errors is that both of these meth-

ods do not account for multiple subpopulations in the

sample and therefore tend to report tumor purity as either

the fraction of the sample representing the largest subpo-

pulation, or as an average of the fractions of all tumor sub-

populations. Thus, THetA successfully recovers a complex

mixture of two tumor subpopulations and a normal cell

admixture directly from the observed read depth.

Results from breast cancer sequencing data

We analyzed Illumina paired-end sequencing data from

three breast cancer genomes and their matched normal

samples from [25]. We downloaded the data from the
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Figure 2 Comparison of THetA to CNAnorm and ABSOLUTE on simulated mixtures from real sequencing data. (A) Comparison of true

and inferred tumor purity by THetA, CNAnorm and ABSOLUTE on simulated mixtures of DNA sequencing data from an acute myeloid leukemia

sample and a matched normal sample. Gray dashed line indicates True Purity = Inferred Purity. Below each plot are the root mean squared

errors (RMSEs) for each method. (B) Comparison of the number of copy number aberrations correctly predicted (defined as 50% reciprocal

overlap in position and correct integral copy count) by each method for varying tumor purity and sequence coverage. Num TP is the number of

true positive copy number aberrations predicted. In most cases, THetA outperforms both CNAnorm and ABSOLUTE. Similar results counting

aberrations with correct position (with 50% reciprocal overlap) but allowing for difference between true and predicted copy number are in

Additional file 1, Figure S7. RMSE: root mean squared error.
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European Genome-phenome Archive (accession number

EGAD00001000138). This includes two samples that

were sequenced to a depth of approximately 40× cover-

age and one sample, PD4120a, that was sequenced with

approximately 188× coverage. We used the BIC-Seq seg-

mentation algorithm [32] to partition the 22 autosomes

into intervals according to read depth. We formed an

interval count vector from all intervals longer than 50

kb, focusing on these longer genomic intervals because

their observed read depth will have lower variance (see

Additional file 1, Figure S11). Most intervals removed in

this step are relatively short for the samples analyzed.

For the two 40× coverage genomes changing this cutoff

to 10 kb resulted in the same partition as when 50 kb

was used. For the 188× genome we only removed nine

intervals from consideration when the threshold was 50

kb and seven when the threshold was 10 kb. The results

from THetA are identical for the two different sets of

intervals. We assume that most of the tumor genome

does not undergo copy number aberrations, and thus

the mode of the read depth vector is a normal baseline.

We set lower and upper bounds on the copy number

for each interval from this baseline. For further details,

see Additional file 1, Section N.

Breast tumor: 188× sequence coverage

We analyzed the 188× sequenced tumor PD4120a using

our THetA algorithm. We consider that the mixture

contains a normal admixture with a single tumor subpo-

pulation (n = 2) and a normal admixture with two dis-

tinct tumor subpopulations (n = 3). This sample was

extensively annotated by [25] and thus acts a positive

control for THetA.

Table 3 shows the tumor purity and copy number

aberrations identified by the various algorithms on the

188× coverage breast cancer genome (sample PD4120a).

Assuming a single tumor subpopulation admixed with

normal cells (n = 2), THetA’s estimate of tumor purity

(65.7%) and inferred copy number aberrations are very

close to those obtained by CNAnorm [18] (67.2%),

ASCAT (66.0%) [12] and ABSOLUTE (65%) [13]. How-

ever, all of these estimates are lower than the tumor

purity of 70% reported by [25], who identified a second

tumor subpopulation in the sample (see below). Because

ABSOLUTE, ASCAT, CNAnorm and THetA (with n =

2) do not model multiple tumor subpopulations, their

reported tumor purities are an average of the fraction of

aberrant cells amongst the different subpopulations in

the tumor sample, and thus generally smaller than the

tumor purity estimate obtained when we allow more

than one tumor subpopulation (see below). In addition,

we note that ASCAT used additional information (B-

allele frequencies), while THetA, CNAnorm and ABSO-

LUTE used only read depth. The identified aberrations

do not distinguish between those in different subpopula-

tions, but do include several previously reported in

breast cancer [42-47]. We also ran THetA using chro-

mosome arms as the intervals, rather than the BIC-Seq

intervals. Using chromosome arms, we estimated a simi-

lar sample purity of 61.7% and predicted the same set of

copy number aberrations as with the BIC-Seq intervals.

Assuming n = 3 subpopulations - normal cells plus

two distinct subpopulations of cancer cells - we analyzed

a subset of longer intervals that are most informative for

copy number analysis (Table 3). THetA’s estimate of

72% tumor purity is slightly higher than the 70%

reported by [25]. Moreover, THetA’s estimate of tumor

purity is higher than the approximately 65% to 67%

tumor purity given above for ABSOLUTE, ASCAT and

CNAnorm, three methods that assume only one tumor

subpopulation. Our BIC model selection chose this solu-

tion as a better representation of the data (Figure 3A),

than the solution that only considers a mixture of nor-

mal cells and a single tumor population. Using the n =

3 model we identified all copy number variants identi-

fied above for a single tumor population, plus some

additional aberrations including subclonal deletions of

chromosomes 8, 11, 12, 14 and 15 not identified under

that model (nor by the other algorithms). This demon-

strates THetA’s ability to identify copy number aberra-

tions in subpopulations of cells. While many of the

clonal and subclonal copy number aberrations found by

THetA are identical to those reported by [25], there are

several notable differences including: a clonal deletion of

16q and different classification of aberrations on chro-

mosomes 1 and 22 as clonal vs. subclonal. Table 3 dis-

plays the complete set of differences where aberrations

in bold indicate a difference between our predictions

and those reported by [25]. Aberrations reported by [25]

include several chromosomes not considered as part of

our analysis (2, 6, 7, 9, 18 and 21). In Table 3 italicized

aberrations were not input to the n = 3 THetA analysis,

and were inferred by examination of read depth ratios

corrected for normal admixture and tumor cell fractions

derived from THetA (see Additional file 1, Section Q).

We investigated further the following three differences

between our analysis and [25]: (1) clonal deletion of

chromosome 16q, (2) clonal vs. subclonal amplification

Table 2 Performance of the algorithms on simulated data

with two tumor populations (n = 3)

% correct C Copy number
error (median)

Purity error (median)

m THetA THetA THetA CNAnorm ABSOLUTE

6 35.0 0.118 0.081 0.202 0.458

8 45.0 0.075 0.052 0.276 0.477

10 35.0 0.071 0.055 0.177 0.434

12 45.0 0.059 0.036 0.301 0.547

Oesper et al. Genome Biology 2013, 14:R80

http://genomebiology.com/2013/14/7/R80

Page 8 of 21



of chromosome 1q and (3) clonal vs. subclonal deletions

in chromosome 22q. We analyzed these differences

using two complementary approaches. First, we analyzed

the distribution of tumor/normal read depth ratios in 50

kb bins across the genome. This distribution contains

distinct peaks corresponding to copy number aberra-

tions occurring in different subpopulations. After cor-

recting the read depth ratios for a normal admixture

using a linear scaling (see Additional file 1, Section O),

peaks corresponding to clonal aberrations will occur at

ratios divisible by 0.5, whereas peaks corresponding to

subclonal aberrations will not (Figure 3B). Second, we

analyzed a virtual SNP array that we constructed from

the read counts and the variant allele frequencies

derived from aligned reads at known germline SNPs

(see Materials and methods). Copy number aberrations

occurring in different subpopulations appear as distinct

clusters in a scatter plot of read count vs. variant allele

frequencies (Figure 3C).

The first difference we analyzed was our prediction of

a clonal deletion of chromosome 16q, which was not

reported by [25]. Visual inspection of the virtual SNP

array data for chromosome 4 (predicted to be a clonal

deletion by both methods) and chromosome 16q shows

three distinct clusters - one for regions of normal copy

(centered at a variant allele frequency of 0.5) and two

clusters (positioned symmetrically around a variant allele

frequency of 0.5) with a lower read count that indicate a

Table 3 Comparison of various algorithms on the 188× coverage breast cancer genome

Sample PD4120a

Algorithm % normal
admixture

Clonal
(% tumor purity)a

Subclonal (%)a

THetA, n = 2 34.3% Del: 1p, 4q, 13, 16q, 22q -

(segmentation) +1: 1q

(65.7%)

THetA, n = 2 (chromosome arms) 38.3% Del: 1p, 4q, 13, 16q, 22q -

+1: 1q

(61.7%)

CNAnormb

(chromosome arms)
32.8% Del: 1p, 4q, 13, 16q, 22q -

+1: 1q

(67.2%)

ASCATc 34% Del: 1p, 4q, 13, 16q, 22q -

(virtual SNP array) +1: 1q, 17q, 18, 19, 20

(66.0%)

ABSOLUTEd (segmentation) 35% (65.0%) -

THetA 28.0% Del: 1p, 4q, 16q, 22q12.2- Del: 13, 22q11.2-12.1

n = 3 13.3 +1: 1q

(72.0%) (61.9%)

Del: 8, 11, 12, 14, 15

(10.1%)

Del: 2, 7, 4p, 6,
9, 18, 21

Nik-Zainal et al. (2012) 30% Del: 4q Del: 13, t(1;22)

[25] +1: 1q (47.6%)

(70.0%) Tetraploid with:

Del(-2): 2, 7

Del(-1): 6, 8, 9, 11, 12,

14, 15, 18, 21

(9.8%)

a Entries in bold are differences between THetA and [25]. Entries in italics were not input to the n = 3 THetA analysis but were inferred using THetA’s output.
b When CNAnorm was run using BIC-Seq intervals the normal admixture was estimated at 6.7%, therefore we report results from CNAnorm using chromosome

arms. CNAnorm does not return integer copy numbers - and thus we report aberrations where the returned copy number was within 0.15 of the nearest integer,

other aberrations were considered inconclusive.
c For ASCAT we use virtual SNP array data as input. ASCAT performs its own segmentation; we list only the large aberrations.
d We report here the maximum likelihood solution returned by ABSOLUTE when considering only karyotypes. When considering only somatic copy number

aberrations or a combination, ABSOLUTE infers a tetraploid solution. For this sample, ABSOLUTE returns copy numbers for only a subset of the input intervals, so

we do not report specific copy number aberrations predicted.
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Figure 3 Analysis of the 188× coverage breast tumor PD4120a. (A) (Left) Read depth ratios (gray) and the copy number aberrations inferred

by our algorithm when n = 3 including the normal population (black), dominant (clonal) tumor population (blue) and subclonal tumor

population (red). (Right) A reconstruction of the tumor mixture with the inferred aberrations and estimated fraction of cells in each

subpopulation. (B) Read depth ratios in 50 kb intervals after centering so chromosome 3 has a mean of 1 and correcting for 28% normal

admixture using a simple linear scaling. (C) Virtual SNP array results showing distinct clusters of regions according to the number of reads

containing each SNP and fraction of reads supporting the variant allele. (D) Virtual SNP array data comparing variant allele fractions and read

counts for chromosomes 4 and 16. This data demonstrate that both chromosomes have undergone the same type of copy number aberration,

which we predicted to be a clonal deletion in 72% of cells in the sample. (E) Virtual SNP array data for chromosomes 13 and 22. Chromosome

22q11.2-12.1 and chromosome 13 appear to be affected by the same type of aberration, which we predicted to be a subclonal deletion in

61.9% of cells in the sample. In contrast, 22q12.2-13.3 is different, and the data are consistent with a clonal deletion. See Additional file 1, Figure

S13 for further details.
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deletion (Figure 3D). These deletion clusters have vir-

tually identical locations in the scatter plot for chromo-

somes 4 and 16q - supporting the conclusion that these

deletions occur in the same fraction of the tumor sam-

ple. Comparing the difference between the observed and

expected read depth ratios in these deletions for differ-

ent aberration fractions (the percentage of the sample

containing the aberration) reveals that the optimal aber-

ration fraction for both deletions is very similar - addi-

tional evidence that these deletions occur in the same

fraction of the tumor sample (see Additional file 1, Sec-

tion Q and Figure S12). Given the strong evidence for

this chromosome 16 deletion, we suspect that its omis-

sion from [25] was an oversight rather than a deficiency

of the analysis.

The second difference is that we predicted chromo-

some 1q to be amplified in a subclonal population con-

sisting of 61.9% of the cells in the sample, whereas [25]

indicated that this aberration is clonal (occurring in 70%

of cells in the sample). Since this was the only large

amplification present in the sample, we were not able to

compare its variant allele frequencies to a different

amplification (as we did with chromosomes 4 and 16

above). Therefore, we examined the read depth data

more closely. Visual inspection of read depth ratios after

adjusting for our predicted 28% normal admixture

(Figure 3B) and the 30% normal admixture predicted by

[25] (see Additional file 1, Figure S11) shows that the

corrected read depth ratios for chromosome 1q do not

match a ratio of 1.5 well (as would be expected if there

was a clonal amplification with copy number 3) - an

indication that 1q is a subclonal aberration. Comparison

of read depth ratios for 1q to other clonal aberrations

supports our prediction that 1q is a subclonal deletion

(see Additional file 1, Figure S12).

The final difference involves chromosome 22q; we

predicted that it contains both clonal and subclonal

deletions, while [25] only reported subclonal events. In

particular, [25] reported that a deletion of a derivative

chromosome from a translocation between chromo-

somes 1 and 22 is the rearrangement responsible for the

subclonal deletion observed on 22q. We found that 1p

(see Additional file 1, Figure S12) and the distal portion

of 22q (cytogenetic bands 12.2-13.3) appear to be clonal

deletions, while the proximal portion of 22q (cytogenetic

bands 11.2-12.1) is a subclonal deletion. In particular,

the read-depth/variant-allele plot from the virtual SNP

array shows an oblong cluster for chromosome 22 that

only partially overlaps with the cluster for chromosome

13, a chromosome predicted by both methods to have

undergone a subclonal deletion (Figure 3E). This evi-

dence supports another possible sequence of rearrange-

ments: (1) A non-reciprocal translocation occurred

between chromosomes 1 and 22 (supported by the

output from the GASV algorithm [48] for clustering of

discordant reads as discussed in Additional file 1, Sec-

tion Q) resulting in the clonal loss of 1p and 22q12.2-

13.3. Following this translocation, two copies of

22q11.2-12.1 remained. (2) One of these remaining two

copies of 22q11.2-12.1 was deleted in a subclonal popu-

lation (see Additional file 1, Figure S13).

Breast tumor: 40× sequence coverage

We also analyzed two tumor samples from [25]

sequenced at approximately 40× coverage. For sample

PD4088a, the model of this mixture preferred by our

model selection procedure was a single clonal tumor

population with normal admixture fraction 41%. [25]

also reported this sample as clonal, although they did

not provide an estimate of tumor purity or copy number

aberrations. Further details of the analysis of this sample

are in Additional file 1, Section S and Figure S16.

We analyzed sample PD4115a, sequenced at approxi-

mately 40× coverage using THetA, again considering

the case where the mixture contains a normal admixture

with a single tumor subpopulation (n = 2) and a normal

admixture with two distinct tumor subpopulations (n =

3). Our BIC model selection chose the model where the

sample is a mixture of normal cells and two distinct

subpopulations of tumor cells (Figure 4A) over the

model where the sample contains a single tumor subpo-

pulation with a normal admixture. While [25] provided

some analysis of aberrations in this example, they did

not provide a complete tumor history as they did for

the 188× coverage genome. Complete information of

our analysis of this sample, when we consider it as a

mixture of a single tumor subpopulation along with a

normal admixture, is in Additional file 1, Section R and

Figure S14. For the model considering multiple tumor

subpopulations, we analyzed a subset of longer intervals

that are most informative for copy number analysis

(further details are in Materials and methods). We esti-

mated a normal admixture of 24% (tumor purity 76%)

and two tumor subpopulations of 43.3% and 32.7%. The

presence of these subclonal populations is apparent

from visual inspection of corrected read depth ratios

after centering the distribution (ratios in chromosome

20 - which is predicted to contain no copy number

aberrations - are translated to have a mean ratio of 1)

and correction for a normal admixture (Figure 4B). In

particular, a large peak near a corrected ratio of 0.5

represents clonal deletions (Figure 4C). In addition, two

overlapping, but distinct smaller peaks appear between

the clonal deletions and regions of normal copy (Figure

4D and 4E). These peaks represent two distinct subclo-

nal populations in the tumor sample. A statistical test of

the difference in read depth ratios between these peaks

supports the conclusion that these subclonal populations

are indeed distinct (see Additional file 1, Figure S15).
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Figure 4 Analysis of the 40× coverage breast tumor PD4115a. (A) (Left) Read depth ratios (gray) and the inferred copy number aberrations

calculated by our algorithm when n = 3 including the normal population (black), dominant (clonal) tumor population (blue) and subclonal

tumor population (red). (Right) A reconstruction of the tumor mixture with the inferred aberrations and estimated fraction of cells in each

subpopulation. (B) Distribution of read depth ratios over 50 kb intervals after centering and correction for 24% normal admixture using a simple

linear scaling. Several peaks fall near to expected corrected ratios (0.5, 1, 1.5, 2). Two overlapping but distinct peaks can be seen indicating

multiple subclonal deletions in similar proportions (labeled D and E). (C) (Top) Read depth ratios in 50 kb bins for chromosomes 5, 9 and 11,

each of which has a clonal deletion (purple). (Bottom) Distribution of read depth ratios after correction for the aberration fraction of 76% of the

sample. (D) (Top) Read depth ratios in 50 kb bins for chromosomes 3, 4 and 5, each of which has a subclonal deletion (blue). (Bottom)

Distribution of read depth ratios after correction for the aberration fraction of 43.3% of the sample. (E) (Top) Read depth ratios as in (D), but a

different subclonal deletion is highlighted (red). (Bottom) Distribution of read depth ratios after correction for the aberration fraction of 32.7% of

the sample.
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Virtual SNP array analysis of this sample was difficult

due to the lower sequence coverage. This leads to over-

lapping clusters in the read-count/variant-allele plot, as

well as distinct banding resulting from the integrality of

read counts (Figure 5A). The only clearly distinct clus-

ters are for highly amplified regions, which have corre-

spondingly higher read counts. Since our analysis for

this model used only a subset of chromosome intervals

to infer normal admixture and tumor subpopulations,

we were able to use the resulting genome mixing vector

to analyze other chromosomes that were not used in

computing the maximum likelihood solution. We ana-

lyzed several regions in chromosome 8 (Figure 5B), a

chromosome with a complicated amplification pattern.

Figure 5 Analysis of chromosome 8 in sample PD4115a. (A) Virtual SNP array data from this sample show few distinct clusters (compared

with the 188× sample in Figure 3A), with amplification of chromosome 8 (green) being the most prominent. (B) Read depth ratios for

chromosome 8 organized by genomic coordinate. (C) Histograms of read depth ratios for chromosome 8 corrected for 24% normal admixture,

indicating regions of copy numbers 2, 3 and 4 (cyan, orange and pink), with the latter two being clonal amplifications. (D) Variant allele

frequencies for chromosome 8. The region with copy number 4 (pink) has variant allele frequencies clustered around 0.5, suggesting duplication

of both chromosomal homologs, while the telomeric region with copy number 2 (cyan) has a loss of heterozygosity, suggesting a copy neutral

LOH event. LOH: loss of heterozygosity
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After correcting read depth ratios in 50 kb intervals in

this region for the estimated normal admixture of 24%,

three distinct peaks centered near ratios of 1, 1.5 and 2

were apparent, corresponding to integer copy numbers

of 2, 3 and 4, respectively, in the tumor sample (Figure

5C). The amplifications are clonal aberrations. Interest-

ingly, the variant allele frequencies for germline SNPs in

the regions corresponding to the peak at corrected ratio

2 (copy number 4) are centered at 0.5. This implies that

both homologs of chr8q13-21 are present at equal copy

number in this region; that is, there is a duplication of

both homologs (Figure 5D). In addition, we observed

that the variant allele frequencies for chromosome 8p

are centered at the values of 0 and 1, although this seg-

ment of the chromosome is inferred to have copy num-

ber 2. This indicates that there was a copy-neutral loss

of heterozygosity (LOH) in this region. LOH in 8p has

been previously reported in breast cancer [49,50] and

copy neutral LOH in 8p has been reported in cell line

data for other cancers [51].

Discussion
We introduce Tumor Heterogeneity Analysis (THetA),

an algorithm that infers the most likely collection of

genomes and their proportions from high-throughput

DNA sequencing data, in the case where copy number

aberrations distinguish subpopulations. We show that

THetA outperforms three other methods, CNAnorm

[18], ASCAT [12] and ABSOLUTE [13], for inferring

tumor purity and identifying copy number aberrations

in the case of a single tumor cell population admixed

with normal (non-cancerous) cells. Moreover, we

demonstrate that THetA successfully estimates tumor

purity even at low purity (10%) and with modest

sequence coverages (approximately 30×) on both real

and simulated data. In contrast to other recent methods

[12,13] that first infer average ploidy across the genome,

THetA simultaneously estimates tumor purity and com-

putes the integral copy number of each genomic seg-

ment/interval. These advantages result from THetA

exploiting the large number of data points (reads) that

measure copy number aberrations in high-throughput

sequencing data - information that is not available from

SNP arrays.

We also demonstrate that THetA successfully decon-

volves a tumor sample into a normal population and

multiple tumor subpopulations, inferring the proportion

of each subpopulation in the mixture, and partitioning

copy number aberrations into clonal and subclonal

populations. Other existing methods, such as ASCAT

[12], ABSOLUTE [13] and CNAnorm [18], do not

directly infer multiple subpopulations. Further, we show

that these methods can produce highly inaccurate esti-

mates of tumor purity on samples containing multiple

subpopulations, and are sometimes unable to identify

some copy number aberrations that occur in subpopula-

tions of tumor cells. In addition, THetA reports all pos-

sible solutions of interval count matrices C and genome

mixing vectors μ with the same maximum likelihood,

allowing users to explore different maximum likelihood

solutions. Thus, THetA is an attractive alternative to

these methods.

We demonstrated the advantages of THetA using

three breast cancer genomes sequenced in [25]: one

sequenced at approximately 188× coverage and two at

approximately 40× coverage. Nik-Zainal et al. [25]

showed how a large amount of information about a

tumor’s evolutional history can be derived by analyzing

clonal and subclonal mutations in high-coverage

sequencing data. Our THetA algorithm automates

some of the manual analysis involved in such recon-

structions. For the 188× genome, our results are lar-

gely concordant with the extensive analysis and

annotation of this sample in [25]. THetA automatically

recovered nearly all of the copy number aberrations

reported in [25], but with some differences in the clas-

sification of aberrations as clonal or subclonal. Allele

data not used by THetA provides external evidence

that support the THetA results in several cases. On

one of the 40× coverage genomes, we identified two

previously unreported tumor subpopulations in nearly

equal proportions, as well as a 24% normal admixture.

These results are supported by statistical comparisons

of read depth ratios, and also allowed us to identify

copy-neutral LOH on chromosome 8q. Thus, we

demonstrated that it is possible to identify multiple

tumor populations successfully in a single sample by

considering a subset of genomic intervals. Further, we

did so for an approximately 40× sequenced tumor,

demonstrating the ability to identify intra-tumor het-

erogeneity at sequence coverages that are the current

standard in cancer sequencing studies.

THetA uses only read depth for inferring intra-tumor

heterogeneity, in contrast to other methods [12,13,17,25]

that use allele frequencies of heterozygous germline

SNPs and somatic mutations. Since copy number aberra-

tions - even those of a modest size - affect a large number

of reads, THetA is able to infer multiple tumor subpopu-

lations directly from sequencing data. However, THetA

also has some limitations. First, the reliance on copy

number aberrations means that THetA is unable to iden-

tify tumor subpopulations that do not contain copy num-

ber aberrations. As copy number aberrations are

ubiquitous in many types of cancers, particularly solid

tumors, we expect that THetA will prove useful for ana-

lyzing a wide range of different cancer samples. Second,

while the mathematical model used by THetA allows for

any number of subpopulations, in practice the number of
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subpopulations that can be correctly inferred depends on

having at least one copy number aberration that distin-

guishes every subpopulation. Finally, THetA’s computa-

tion time increases with an increasing number of

subpopulations.

Our focus in the development of THetA was to

address rigorously the difficult problem of analyzing

tumor purity and subclonal copy number aberrations

from DNA sequencing data. A logical next step is to use

the output from THetA to help predict single-nucleotide

mutations in tumor samples and/or assess the clonality

of somatic mutations, both challenging problems in

their own right. Carter et al. [13] and Nik-Zainal et al.

[25] show that once tumor purity is correctly estimated,

then this value can be used to analyze the clonality/sub-

clonality of somatic mutations. Incorporating the addi-

tional signal of variant allele frequencies into the

probabilistic model, as well as extending the model to

allele-specific copy number changes [52], are important

directions for future work. Ultimately, a desirable goal is

to integrate into a single probabilistic framework the

detection of all types of somatic aberrations (single

nucleotide, copy number and rearrangements) with the

estimation of tumor purity and the derivation of tumor

subpopulations. Finally, further algorithmic improve-

ments in THetA would help in the analysis of more

complicated tumor samples that have more intervals

(for example, smaller copy number aberrations), higher

amplitude copy number aberrations, more subpopula-

tions or more complicated rearrangements; for example,

due to breakage/fusion/bridge (B/F/B) cycles [53], chro-

mothripsis [54] or extrachromosomal amplifications

[55]. THetA runs in polynomial time for a mixture of

two genomes with intervals of equal weight, but the

question of the complexity of the MLMDP for n > 2

remains open.

A number of other techniques have recently been used

to study intra-tumor heterogeneity. For example [56]

uses expression profiles across different individuals to

identify differentially expressed genes with respect to

healthy cells at the cancer site of origin. Single-cell

sequencing and multi-region sequencing from a primary

tumor are alternative strategies that have been success-

fully employed [23-29]. As these technologies improve

they will likely further contribute to our understanding

of intra-tumor heterogeneity. However, sequencing of

primary tumor samples as well as matched tumor/

metastasis samples will remain a dominant protocol for

some time. Thus, algorithms, such as THetA, ABSO-

LUTE, ASCAT and others, that can derive information

about intra-tumor heterogeneity from DNA sequencing

of tumor samples are a useful complement to other

technologies and techniques for tumor heterogeneity

studies.

Conclusions

Tumors are highly heterogeneous with individual cells

in a tumor typically having different complements of

somatic mutations. Highly accurate estimates of tumor

purity and tumor subpopulation frequencies are neces-

sary for investigating intra-tumor heterogeneity from

single tumor samples. We introduce THetA, an algo-

rithm that infers the most likely collection of genomes

and their proportions from high-throughput DNA

sequencing data, in the case where copy number aberra-

tions distinguish subpopulations. We show the power of

THetA with both simulated and real sequencing data -

demonstrating the ability to identify intra-tumor hetero-

geneity (in particular subclonal copy number aberra-

tions) at modest sequence coverages (approximately

40×) that are the current standard in cancer sequencing

studies.

Materials and methods

Intervals and counts: probability model

In this section we derive the probability P(r|C, μ) in the

maximum likelihood mixture decomposition problem

(MLMDP).

Single genome

Following the usual assumptions (for example, the

Lander-Waterman model), we assume that the starting

positions of reads in a cancer genome are uniformly dis-

tributed over its length. The probability of a read from a

cancer genome aligning to an interval Ij in the reference

genome depends on: (i) the number of copies of the

interval in the cancer genome, (ii) the length of the

interval and (iii) possible difficulties in aligning reads to

Ij due to repetitive sequence or other effects. We first

describe the model under the simplifying assumption

that there are no alignment difficulties and all the inter-

vals in I are of equal length, which without loss of gen-

erality we set to length 1. Below we show how to

remove these restrictions by incorporating an interval

weight vector w into the model, which assigns a weight

to each interval in proportion to its length or mappabil-

ity. Let c = (cl, ..., cm) be the (unknown) number of

copies of each interval in the cancer genome. Then the

probability pj that a read aligns to Ij satisfies:

pj =
cj

|c|1

where |c|1 =
∑m

j=1 cj is the l1-norm of c. We use the

notation:

x̂ =
x

|x|1

to denote a normalized vector. Thus, the observed read

depth vector r is the result of r =
∑m

j=1 rj independent
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draws from a multinomial distribution with parameter

p = ĉ; that is, r ∼ Mult
(
r;ĉ

)
.

We emphasize that the number of reads aligning to each

interval are not independent random variables. As the total

number of reads becomes extremely large, the multinomial

distributions will converge to independent Poisson distribu-

tions in each interval. However, even with the millions to

billions of reads produced by high-throughput DNA

sequencing, the effects of using a finite number of reads are

an issue in cancer genome sequencing. This is because

large copy number changes - including the gain and loss of

whole chromosomes - are common in cancer genomes. A

large deletion or duplication will affect the number of reads

observed in other intervals; for example, if we consider the

22 autosomes, a homozygous deletion of chromosome

1 will reduce the effective length of the cancer genome by

8.65%, altering the expected number of reads observed

in other intervals (see Additional file 1, Figure S1).

Mixture of genomes

Now suppose we sequence a tumor sample T and align

the obtained reads to the reference genome, observing a

read depth vector r = (r1, ..., rm) Î N
m. Let C = [cjh] be

the (unknown) interval count matrix and μ be the

(unknown) genome mixing vector for the tumor sample.

Here μ is required to be an element of the unit (n - 1)-

simplex �n−1 =

{
(μ1, . . . , μn)

T ∈ Rn|

n∑

h=1

μh = 1, and μh ≥ 0 for all h

}
.

Then the probability pj that a read aligns to Ij is the

ratio of DNA in T from Ij compared to the total

amount of DNA in the sample. That is:

pj =
(Cμ)j

|Cμ|1

Therefore, r is the result of r =
∑m

j=1
rj draws from a

multinomial distribution with parameter (Figure 1):

p = Ĉμ =
Cμ

|Cμ|1

That is r ∼ Mult
(
r; Ĉμ

)
.

Solving the maximum likelihood mixture decomposition

problem

We show here how to solve the MLMDP as a disjunc-

tion of separate convex optimization problems. The

negative log-likelihood of r as a function of the generic

multinomial parameter p ∈ �m−1 is:

Lr (p) = − log (P (r|p)) = − log

⎛
⎜⎜⎜⎜⎝

(
m∑

j=1

rj

)
!

m∏
j=1

rj!

m∏

j=1

(
pj

)rj

⎞
⎟⎟⎟⎟⎠

= −

m∑

i=1

ri log
(
pi

)
+ α (1)

where a is a constant, depending only on r. Finding

the multinomial parameter p that minimizes this nega-

tive log-likelihood function is straightforward. Using a

Lagrange multiplier to encode the constraint p ∈ �m−1,

one determines that the (unique) value p* maximizing

Lr(p) satisfies:

p∗
i =

ri

m∑
j=1

rj

Moreover, if the entries of r are integers (as they will

be for read counts) and C is permitted to be any inte-

ger-valued matrix, then the (unconstrained) solution:

p∗
i =

ri

m∑
j=1

rj

can be written in the form p = Ĉμ (see Additional file 1,

Section C). Thus, a solution of the MLMDP is obtained by

maximizing the multinomial likelihood over all p ∈ �m−1.

Constraints on C

In the Results section above, we described three natural

constraints on the interval count matrix C. We define

Ωm,n to be pairs (C, μ) where C satisfies the first two of

those conditions:

�m,n =
{
(C, μ) |c1 = 2m, cj ∈ Nm for j > 1, μ ∈ �n−1

}
(2)

Similarly, we define Ωm,n,k ⊆ Ωm,n to be the pairs (C,

μ) where C satisfies all three of the conditions:

�m,n,k =
{
(C, μ) |c1 = 2m, cj ∈ {0, . . . , k}m for j > 1, μ ∈ �n−1

}
(3)

In the following, we will use Ω to refer to either Ωm,n

or Ωm,n,k, as appropriate. Given a pair (C, μ) Î Ω, we

define the negative log-likelihood of the observed read

depth vector r using the multinomial model to be:

Lr (C, μ) = − log (P (r|C, μ)) = −

m∑

i=1

ri log
((

Ĉμ
)
i

)
+ α (4)

For an observed r, our goal is to find the C and μ that

minimize (4). We define the following optimization pro-

blem where the domain of (C, μ) can be either of the

domains Ω defined above:

(
C∗, μ∗

)
= argmin(C,μ)∈�Lr (C, μ) = argmin(C,μ)∈�Lr

(
Ĉμ

)
(5)

Since all entries of C are positive integers and all μj
are positive reals, (5) is a mixed integer problem. In gen-

eral, mixed integer linear programming (MILP) pro-

blems are NP-hard to solve [57]. In our case, the

objective function is a non-linear function of C and μ,

meaning that even sophisticated MILP solvers are unli-

kely to be much benefit for this problem.
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A coordinate transformation

Rather than attempting to solve the optimization pro-

blem (5) as a generic MILP, we derive a coordinate

transformation that allows us to solve this problem as a

constrained optimization problem in ℝ
m. First, note that

a pair (C, μ) Î Ω defines a probability distribution Ĉμ.

We define P� =
{
Ĉμ| (C, μ) ∈ �

}
to be the space of all

such probability distributions for all (C, μ) Î Ω. Note

that only Ĉμ, and not (C, μ), is identifiable from the

observed data r. We prove the following theorem in

Additional file 1, Section D.

Theorem 1. Suppose p Î PΩ, so p = Ĉμ, for some (C,

μ) Î Ω. Then there exists μ’ Î ∆n - 1 such that p = Ĉμ′

where Ĉ = (ĉ1, . . . , ĉn).

Now suppose the interval count matrix C is fixed, and

let H (C) =
{
Ĉμ|μ ∈ �n−1

}
denote the set of convex

combinations of the normalized column vectors in C.

Then (5) reduces to the problem of finding argmin p Î

H(C) Lr(p). Since the objective function Lr(p) is separ-

able convex (see Additional file 1, Section F) and the

domain H(C) is convex, this problem is easy to solve

using standard convex optimization routines.

Let Cm,n,k =
{
C| (C, μ) ∈ �m,n,k

}
be the set of interval

count matrices C appearing in Ωm,n,k. Considering all

interval count matrices C ∈ Cm,n,k gives the following

optimization problem:

minLr (p) subject to p ∈ ∪C∈Cm,n,k
H (C) (6)

Figure 6 illustrates the geometry of this optimization

problem. Since in general a union of convex sets is not

convex, the constraint set in (6) is not convex. A brute-

force approach to this problem is to enumerate all C Î

Ĉμ, but the number of such matrices is exponential in

m and n. Note that in the Results section, THetA

demonstrates improved performance in computing C

and μ when the number m of intervals increases in the

case where n = 3. This is expected from the convex geo-

metry used by our algorithm: for a fixed interval count

matrix C, each value Ĉμ, defines a 2-plane in ∆m - 1

(see Additional file 1, Figure S2). These planes become

more sparse in ∆m - 1 as m increases, and thus our algo-

rithm is less prone to overfitting. In the next section, we

show that in the n = 2 case we can restrict the space of

C matrices to a number that is polynomial in m.

A more efficient algorithm for the MLMDP

We derive an algorithm to solve the MLMDP (as formu-

lated in (6)) that is polynomial time in m when n = 2.

This algorithm relies on the observation that it is neces-

sary to consider only a subset of interval count matrices

C whose entries satisfy ordering constraints imposed by

the read depth vector r. We say that two vectors a =

(a1, ..., am) and b = (b1, ..., bm) Î ℝ
m have compatible

order if for all 1 ≤ i, j ≤ m, ai ≤ aj if and only if bi ≤ bj.

Note that the vector x = (s, ..., s) Î ℝ
m for any s Î ℝ

has compatible order with all vectors in ℝ
m.

Theorem 2. Suppose p∗ = Ĉ∗μ∗ = argminp∈P�m,n,k
Lr (p).

Then we have the following:

1. p* and r have compatible order.

2. If n = 2 and μ2
* > 0, then r and c2

* have compatible

order.

Figure 6 Convex geometry of the MLMDP used in the THetA algorithm. (Left) For a single cancer genome with normal admixture, the

interval count vector c2 of the cancer genome and tumor purity μ define a collection of rays Cμ, for μ Î 0[1]. (Here we show the space Ω3,2,3).

(Right) Normalizing these rays, we obtain the parameter p = Ĉμ, used in the multinomial likelihood. These parameters are embedded in the

simplex ∆m - l(gray triangle with a black outline) because their entries sum to one. (This is the space P�3,2,3.) For a fixed interval count matrix C

= (c1, c2) a blue ray (left) defined by Cμ is mapped to the corresponding red/green ray (right) connecting ĉ1 to ĉ2 (right), the normalized

columns of C, as described in Theorem 1. For n > 2, hyperplanes are mapped to hyperplanes (see Additional file 1, Figure S2). We show p∗ = r̂,
the maximum likelihood solution when interval counts are not constrained to be integers. Note that this point is not on any of the rays defined

by interval count matrices. Rays that satisfy the ordering constraint from Theorem 2 are in green. MLMDP: maximum likelihood mixture

decomposition problem
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Theorem 2 (proof is in Additional file 1, Section E)

leads to a more efficient algorithm where we evaluate

only matrices C = (c1, c2) ∈ Cm,2,k where c2 has compati-

ble order with r. The number of such matrices is O(mk)

and enumeration of these matrices is O(mk+1) (see Addi-

tional file 1, Section E). Note that if n ≥ 3, that is, there is

more than one cancer genome in the mixture, then the

ordering constraints do provide some restrictions on the

entries of C (see Additional file 1, Section E). The reduc-

tion is not enough to make the space have polynomial

size (in m), but the restrictions are useful in practice.

Intervals of unequal length and mappability

Thus far, we made the simplifying assumptions that all

intervals in I are of equal length and that reads are

aligned to each interval without any biases from the

DNA sequence of the interval. Now we consider the

general case where each interval Ij has an associated

positive weight wj. These weights can model both inter-

val lengths as well as different mappability of intervals -

that is, the probability of reads aligning uniquely to an

interval in the reference genome can depend on the

repeat content of the interval [58]. Let w = (w1, ..., wm)

be the interval weight vector. In practice, we use the

read depth vector over I for the paired normal sample

as w, which allows us to implicitly incorporate informa-

tion on interval length, mappability and GC content

into the model.

Consider a single cancer genome where c = (c1, ..., cm)

is the number of copies of each interval in the cancer

genome. Then the probability pj of a read aligning to

interval Ij in the reference genome is:

wjcj

m∑
i=1

wici

=
wjcj

|Wc|1

where W is a diagonal matrix such that Wj,j = wj.

Therefore, the observed read depth vector r is obtained

by r =
∑m

j=1 rj independent draws from a multinomial

distribution with parameter:

p =

(
w1c1

|Wc|1
, . . . ,

wmcm

|Wc|1

)

We define the linear transformation F: ℝm
® ℝ

m to

be �(v) = Ŵv. Thus, p = F(c) and r ~ Mult(r; F(c)).

As in the unweighted case above, if the entries in c are

allowed to be arbitrary positive integers, then for any

integer read depth vector r and non-negative weight

vector w we can always find the maximum likelihood

solution to the corresponding weighted MLMDP (see

Additional file 1, Section G).

Similarly, if we consider a tumor mixture T with

interval count matrix C and genome mixing vector μ,

the probability pj of a read aligning to interval Ij satis-

fies:

pj =
wj(Cμ)j

m∑
i=1

wi(Cμ)i

=
(WCμ)i

|WCμ|1
= �(Cμ)

Given a read depth vector r and an interval weight

vector w, we formulate the analogous maximum likeli-

hood mixture decomposition problem of identifying the

underlying interval count matrix C and genome mixing

vector μ that maximize the multinomial likelihood Mult

(r|F(Cμ)).

Theorem 3 (see Additional file 1, Section G for the

proof) relates the optimal (C, μ) in the cases of equal

and unequal weighted intervals.

Theorem 3. Let F-1 : ℝm
® ℝ

m be �−−1
(v) = Ŵ−1v.

We have the following set equality:

argmin(C,μ)∈�m,n
Lr (� (Cμ)) = argmin(C,μ)∈�m,n

L�−1(r)

(
Ĉμ

)

Using this theorem, we find the optimal solution in

the weighted interval case by solving the unweighted

interval case; for example, using the techniques above.

As stated, Theorem 3 applies to the case where (C, μ) Î

Ωm,n (that is, the entries of C are unbounded). However,

we can still leverage the logic behind this result when

we add a restriction that C ∈ Cm,2,k. While we do not

expect that argmin(C,μ)∈�m,2,k
Lr (� (Cμ)) is equal to

argmin(C,μ)∈�m,2,k
L�−1(r)

(
Ĉμ

)
, we may assume that a

solution to argmin(C,μ)∈�m,2,k
Lr (� (Cμ)) will satisfy the

same order constraints as L�−1(r)

(
Ĉμ

)
. Namely, we

expect that the optimal solution will have compatible

order with F
-1(r) (Theorem 2). This is because: (1) the

unconstrained optima (when (C, μ) Î Ωm,n) for the two

likelihood functions are equal, (2) the objective function

Lr(p) is well behaved (separable convex) and (3) the

transformation F is linear. Thus, the optima in the con-

strained weighted case cannot deviate too much from

the optima in the constrained unweighted case, where

the ordering conditions hold. Thus, we need only to

consider C ∈ Cm,2,k where c2 has compatible order with

F
-1(r) to find an optimum. We verified this statement

empirically over a variety of simulations (see Additional

file 1, Section H).

Model selection

We use the Bayesian information criterion (BIC) to

make a selection from different sized models (that is,

different values of n) and their corresponding sets of

maximum likelihood solutions. The standard form of

the BIC is -2 log(L) + a log(b) where L is the likelihood

of a solution, a is the number of free parameters in the

model and b is the number of data points. We add a
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slight modification to this, which is similar to a modifi-

cation used by the segmentation algorithm BIC-Seq [32]

that allows use of more stringently penalized solutions

with more free parameters using a new parameter g.
The motivation is that the BIC tends to be too liberal

when the model space is large [59] - as is the case here.

Values of g above 1 will penalize models that have more

distinct tumor populations more strongly. That is,

increasing this parameter will more strongly encourage

solutions with fewer subpopulations. The default value

of g is 10, and was chosen because we expect to recover

a small number of distinct subpopulations from sequen-

cing data - thus making penalization of models with

more subpopulations attractive. Additionally, changing g
in either direction (by up to 4) from this default value

yields consistent results on the datasets analyzed. Our

modified BIC is -2 log(L) + ga log(b), where a = (m + 1)

(n - 1) and b is the total number of reads in the inter-

vals for both the tumor and normal samples. Since we

often run the n = 3 version of the algorithm on a subset

of the intervals used in the n = 2 algorithm, we use the

following steps to determine which value of n to select.

(1) Run the algorithm for n = 2 and n = 3 using the

subset of intervals and the lower and upper bounds

used for n = 3 and obtain respective likelihood values.

(2) Compute the modified BIC for both values of n and

choose the one with the lowest value.

Sets of maximum likelihood solutions

If (C, μ), (C’, μ’) Î Ω such that Ĉμ = Ĉ′μ′, then for any

observed read depth vector r, the likelihood of observing

the r will be identical between these two solutions. That

is, Lr

(
Ĉμ

)
= Lr

(
Ĉ′μ′

)
. By default THetA will always

output the complete set of maximum likelihood solu-

tions to the MLMDP given the input parameters (for

example, the maximum copy number k to consider).

However, THetA has several options that allow a user

to input additional information, like sample ploidy,

which may be known in advance. One option allows a

user to supply an expected ploidy for a sample (for

example, 4 in the case of a tetraploid genome), and the

lower and upper bounds considered for all intervals are

rescaled to reflect this expected ploidy. Another option

allows a user to set lower and upper bounds on copy

numbers directly for all intervals in the genome. In

either case, THetA will still output the complete set of

maximum likelihood solutions that reflect the options

supplied by the user.

Code availability

The THetA software is available for download from our

website [60]. For a copy of the software at the time of

publication please see Additional file 2, although we

recommend that the latest version of THetA be down-

loaded from [60].

Analysis of breast cancer genomes

Here we provide additional details of the analysis of the

breast cancer samples.

Breast tumor: 188× sequence coverage

For the n = 2 analysis of sample PD4120a, we used all

genomic intervals derived following BIC-Seq segmenta-

tion (l = 100) after removal of all intervals less than 50

kb in length. For the n = 3 analysis, we selected a subset

of these intervals by choosing: (1) all chromosomes that

BIC-Seq partitioned into a single interval and (2) all

intervals >22 Mb that were reported as having an abnor-

mal copy number (≠ 2) in the n = 2 analysis. We used

only the longest such interval per chromosome if the

number of such intervals was large. We later added all

intervals from chromosome 22 to this subset in order to

resolve differences between our results and those pre-

sented in [25]. Since the results for both subsets were

extremely similar, we present here the results for the lar-

ger subset (including chromosome 22). Results for the

smaller subset are given in Additional file 1, Figure S9.

Breast tumor: 40× sequence coverage

For the n = 2 analysis of sample PD4115a, we used all

genomic intervals derived from BIC-Seq segmentation (l
= 200) after removal of all intervals 50 kb in length. We

found that PD4115a contains many apparent copy number

aberrations with the segmentation containing 102 intervals

(compared to only 69 intervals for sample PD4120a

above). In addition, this sample also includes several highly

amplified regions, and no chromosome was segmented

into a single interval. Thus, we ran THetA for n = 3 on a

subset of the longest intervals in the BIC-Seq partition,

and set lower and upper bounds on the copy number for

each interval (see Additional file 1, Section N).

Virtual SNP arrays

To compare those of our predictions that differed from

those presented in [25], we looked at known germline

SNP allele frequencies derived directly from the sequen-

cing data - a virtual SNP array. We emphasize that this

data was not used by our THetA algorithm for comput-

ing tumor heterogeneity, and therefore this provides

independent data for validation. We looked at read cov-

erage and variant allele frequency for the 907,693 SNP

positions on the 22 autosomes tested by the Affymetrix

6.0 SNP array (SNP positions and major and minor

alleles for hg19 determined using the UCSC genome

browser [61]). The read coverage for a SNP position is

the number of concordant reads with mapping quality

>30 that have an alignment containing either the major

or minor allele at the SNP position. The variant allele

fraction, or BAF, is the fraction of such reads that con-

tains the minor allele.
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Additional material

Additional file 1: Figures and text describing additional information

such as proofs of theorems or additional experimental results.

Additional file 2: THetA software package at the time of

publication. In general, it is recommended that the latest version of

THetA be downloaded from [60].
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