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THETA LINE BUNDLES
AND THE DETERMINANT OF THE HODGE BUNDLE

ALEXIS KOUVIDAKIS

Abstract. We give an expression of the determinant of the push forward of
a symmetric line bundle on a complex abelian fibration, in terms of the pull
back of the relative dualizing sheaf via the zero section.

0. Introduction

Let f : X −→ B be a fibration of abelian varieties with a zero section s : B −→ X .
Let L be a symmetric line bundle on X , trivialized along the zero section, which
defines a polarization of type D = (d1, . . . , dg) on the fibration. A theorem of
Faltings and Chai ([4], Ch. 1, Theorem 5.1) states that 8d3 det f∗L = −4d4 s∗ωX/B,
where ωX/B is the relative dualizing sheaf of the fibration and d := d1 · · · dg. In
this note we show that in the complex analytic category, the above torsion factor
can be improved. More specifically, we have

Theorem A. Let f : X −→ B be a fibration of complex abelian varieties of rel-
ative dimension g, and let s be the zero section. Let L be a symmetric line bun-
dle on X, trivialized along the zero section, which defines a polarization of type
D = (d1, . . . , dg), where d1| · · · |dg are positive integers. Let d = d1 · · · dg. Then
8 det f∗L = −4d s∗ωX/B, except when 3|dg and gcd(3, dg−1) = 1, in which case
24 det f∗L = −12d s∗ωX/B.

Moreover, when L is totally symmetric (and therefore d is an even integer), we
have

Theorem B. Keeping the notation of Theorem A, assume in addition that L is a
totally symmetric line bundle on X and that g ≥ 3. Then det f∗L = − d2 s∗ωX/B ,
except when 3|dg and gcd(3, dg−1) = 1, in which case 3 det f∗L = −3 d2 s

∗ωX/B .

The theorems are proved by using a refinement of the theta transformation
formula, see Propositions 2.1 and 2.2, in order to construct transition functions for
det f∗(L), see Lemma 3.1.

In the last section, we apply Theorem B to the case of the universal Jacobian
variety fg−1 : J g−1 −→ Mg, where Mg denotes the moduli space of smooth,
irreducible curves of genus g ≥ 3, without automorphisms. This is an abelian
torsor which parametrizes line bundles of degree g−1 on the fibers of the universal
curve ψ : C −→Mg. On J g−1, there is a canonical theta divisor defined as the push
forward of the universal symmetric product of degree g − 1, via the Abel-Jacobi
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map. We denote by Θ the corresponding line bundle and let λ = detψ∗ωC/Mg
be

the determinant of the Hodge bundle. We then have

Theorem C. In the above notation, det fg−1 ∗(Θ⊗n) = 1
2n

g(n− 1)λ.

We also give an alternative way for proving Theorem C by utilizing special
properties of the universal Jacobian varieties.
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1. Abelian varieties and theta functions

We recall in this section some standard theory for complex abelian varieties and
theta functions. We follow the book by Lange and Birkenhake [5]. We denote by
X = V/Λ an abelian variety; V is a C-vector space of dimension g and Λ a 2g-lattice
of maximal rank in V .

Line bundles on abelian varieties. A line bundle on X is determined, up to
isomorphism, by an hermitian form H on V such that Im H(Λ,Λ) ⊆ Z, and by a
semicharacter χ : Λ −→ C1 ([5], Ch. 2, §2). We denote by L(H,χ) a line bundle,
up to isomorphism, given by the above data. If φ : X ′ = V ′/Λ′ −→ X = V/Λ is a
map of abelian varieties, we denote by φa : V ′ −→ V and φr : Λ′ −→ Λ the analytic
and the rational representation of φ respectively ([5], Ch. 1, §2). Given L(H,χ) on
X , we have that φ∗L(H,χ) = L(φ∗aH,φ

∗
rχ).

Let Bs be the symplectic base of Λ w.r.t. which the alternating form E := ImH is

represented by a matrix
(

0 D
−D 0

)
, where D, the polarization type, is an integral

diagonal matrix with elements d1| . . . |dg. Let Λ1 (resp. Λ2) be the lattice spanned
by the first (resp. last) g vectors of Bs. Then Λ = Λ1⊕Λ2, and we write λ = λ1 +λ2

for the corresponding decomposition of λ ∈ Λ. This induces a decomposition V =
V1⊕V2, where Vi = Λi⊗R, which is called decomposition of V for H . If v ∈ V , we
write v = v1 + v2 ∈ V1 ⊕ V2. We define Λ(H) := {v ∈ V : ImH(v,Λ) ⊂ Z}. Then
Λ(H) = Λ(H)1 ⊕ Λ(H)2, where Λ(H)i := Λ(H) ∩ Vi.

We choose a decomposition of V for H . Then we can define a distinguished
line bundle L(H,χ0), by setting χ0(λ) = e(πiE(λ1, λ2)). A characteristic of a line
bundle L(H,χ) is an element c ∈ V , unique up to translations by elements of Λ(H),
determined by the property L(H,χ) = T ∗c L(H,χ0), where Tc is the translation by
c (see [5], Ch. 3, §1).

Period matrices. Let hg denote the Siegel upper half space of dimension g. We
fix a polarization type D. A matrix Z ∈ hg determines a triple (XZ , HZ ,BsZ), where
XZ := Cg/ΛZ (with ΛZ := (Z,D)Z2g) is an abelian variety, HZ is an hermitian
form of type D with matrix (ImZ)−1 w.r.t. the standard base of Cg, and Bs is the
symplectic base spanned by the column vectors of the matrix (Z,D); see [5], Ch. 8,
§1.
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Canonical-classical factor of automorphy. A factor of automorphy is a holo-
morphic map f : Λ× V −→ C× satisfying

f(λ1 + λ2, v) = f(λ1, λ2 + v)f(λ2, v).

Two factors of automorphy f and f ′ are called equivalent if

f ′(λ, v) = f(λ, v)h(v)h(v + λ)−1

for some holomorphic function h : V → C×. We use the notation f ′ = f ?h for this
situation.

Given an hermitian form H , we denote by B the symmetric form on V associated
to H ([5], Ch. 3, Lemma 2.1). Given data (H,χ), we define by a(H,χ)(λ, v) :=
χ(λ) e(πH(v, λ)+ π

2H(λ, λ)) the canonical factor of automorphy and by e(H,χ)(λ, v)
:= χ(λ) e(π(H − B)(v, λ) + π

2 (H − B)(λ, λ)) the classical factor of automorphy.
When the semicharacter is χ0, we simplify the notation for the above factors of
automorphy to aH and eH .

Canonical-classical theta functions. A theta function corresponding to a factor
of automorphy f is a holomorphic function θ : V −→ C satisfying the functional
equation θ(λ + v) = f(λ, v)θ(v). Theta functions corresponding to the canonical
(resp. classical) factor of automorphy a(H,χ) (resp. e(H,χ)) are called canonical
(resp. classical) theta functions for L(H,χ). Let c be a characteristic of L(H,χ).
We define

θc(v) :=e(−πH(v, c)− π

2
H(c, c) +

π

2
B(v + c, v + c))

·
∑
λ1∈Λ1

e(π(H −B)(v + c, λ1)− π

2
(H −B)(λ1, λ1)).

We have the following ([5], Ch. 3, §§1 and 2):
i) θc is a canonical theta function and θc(v) = e(−πH(v, c)− π

2H(c, c))θ(v + c),
where θ := θ0.

ii) Let θcw (v) := a(H,χ)(w, v)−1 θc(v+w), where w ∈ K(H) := Λ(H)/Λ. The set
〈θcw : w ∈ K(H)1 := Λ(H)1/Λ1〉 forms a base of the canonical theta functions.

Let Z ∈ hg and let D be a fixed polarization type. Let XZ := Cg/ΛZ be the
abelian variety corresponding to Z and let H = HZ . Given v ∈ Cg, we can write
uniquely v = Zv1 +v2, where vi ∈ Rg. If λ ∈ ΛZ then it can be written uniquely in
the form λ = Zλ1 +λ2, where λ1 ∈ Zg and λ2 ∈ DZg. Let L(H,χ) be a line bundle
on XZ of characteristic c w.r.t. the natural decomposition of Cg determined by Z.
We have the following (many of them can be found in [5], Ch. 8, §5; the rest is a
straightforward calculation):

1. H(v, w) = tv (ImZ)−1 w̄, B(v, w) = tv (ImZ)−1 w.
(H −B)(v, w) = −2i tvw1, E(v, w) = tv1w2 − tv2w1.

2. e(H,χ)(λ, v) = e(2πi ( tc1λ2 − tc2λ1)− πi tλ1Zλ1 − 2πi tvλ1). Also,

a(H,χ)(λ, v) = e(πi tλ1λ2 + 2πi ( tc1λ2 − tc2λ1) + π tv(ImZ)−1λ̄+
π

2
tλ(ImZ)−1λ̄).

It is e(H,χ) = a(H,χ) ? h, where h(v) = e(π2
tv(ImZ)−1v).

3. Let ZD denote the group ZD := Zd1 ⊕ · · · ⊕ Zdg . Then Λ(H)1 = {Zv1 | v1 ∈
D−1Zg}, Λ(H)2 = {v2 | v2 ∈ Zg} and K(H)1

∼= D−1ZD, K(H)2
∼= ZD.
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4. Let c = Zc1 + c2. Then

θ

[
c1

c2

]
(v, Z) := e(−π

2
B(v, v) + πi tc1c2) θc(v)

is a classical theta function and

θ

[
c1

c2

]
(v, Z) =

∑
λ1∈Zg

e
(
πi t(λ1 + c1)Z(λ1 + c1) + 2πi t(v + c2)(λ1 + c1)

)
.

The set 〈
θ

[
c1 +D−1m

c2

]
, m ∈ ZD

〉
forms a base of the classical theta functions.

5. Let c = Zc1 + c2 ∈ Cg, w = Zw1 + w2 ∈ Λ(H) and Zs1 ∈ Λ(H)1. Then:

a) θ

[
c1 + w1

c2

]
(v, Z) = e(−π2B(v, v) + πi tc1c2) θcw (v).

b) θ

[
c1 + w1

c2 + w2

]
(v, Z) = e(2πi t(c1 + w1)w2) θ

[
c1 + w1

c2

]
(v, Z).

c) θc
Zw1+w2 (v) = θc

Zw1 (v).
d) θc+w(v) = e(−πi tc2w1 + πi t(c1 + w1)w2) θcw (v).
e) θc+Zs

1

Zw1
(v) = e(−πi ts1c2) θc

Z(w1+s1)
(v).

Action of the symplectic group. Let D be a polarization type and let AD :=(
0 D
−D 0

)
and ID :=

(
I 0
0 D

)
. We set ΓD := {R ∈ M2g(Z), RAD tR =

AD} and GD := {M ∈ Sp2g(Q), M = I−1
D RID, for some R ∈ ΓD}. If R =(

A B
Γ ∆

)
∈ ΓD and M =

(
α β
γ δ

)
∈ GD, then α = A, β = BD, γ = D−1Γ,

δ = D−1∆D. We have AD t∆ − BD tΓ = D. Also, the matrices ΓD t∆, AD tB,
tAD−1Γ, t∆D−1B are symmetric and the matricesD tAD−1, D tBD−1, D tΓD−1,
D t∆D−1 are integral.

The group GD acts on hg by M(Z) := (αZ + β)(γZ + δ)−1 ([5], Ch. 8, §1).
Two abelian varieties XZ and XZ′ of type D are isomorphic if Z ′ = M(Z). The
isomorphism is given by φ(M) : XZ −→ XM(Z), so that the corresponding map
φ(M)r : ΛZ −→ ΛM(Z) has matrix R = tM−1 w.r.t. the canonical symplectic
bases defined by Z and M(Z). Let jZ : R2g −→ Cg be the isomorphism given by
x 7→ (Z, 1)x. We have the following diagram ([5], Ch. 8, §8):

R2g
jZ //

φ(M)r

��

Cg //

φ(M)a

��

XZ

φ(M)

��

R2g
jM(Z)

// Cg // XM(Z)

(1)

The map φ(M)a : Cg −→ Cg has matrix A−1, where A = t(γZ + δ), w.r.t. the
standard base of Cg. Moreover, φ(M)∗aHM(Z) = HZ . We define MZ(v) := A−1v (=
φ(M)a(v)).
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Factors of automorphy and line bundles. Sections and theta functions.
A factor of automorphy f : Λ × V → C× defines an action of Λ on V × C given
by λ(v, z) := (v + λ, f(λ, v)z). The quotient of V × C by this action defines a line
bundle L on X , the elements of which we denote by [v, z]. If f ′ = f ? h, then
for the corresponding line bundles L and L′ there exists a canonical isomorphism
Φh : L −→ L′ given by [v, z] 7→ [v, h(v)−1z]. Given a map of abelian varieties
φ : X ′ −→ X , we define φ∗f := (φr × φa)∗f , which is a factor of automorphy
for X ′. Then φ∗L is the line bundle on X ′ corresponding to φ∗f . If θ is a theta
function for f , then φ∗aθ (or φ∗θ in a simplified notation) is a theta function for
φ∗f .

Sections of the line bundle L correspond to theta functions θ : V → C satis-
fying the functional equation θ(λ + v) = f(λ, v)θ(v). The relation is the follow-
ing. Given a section s of L, let s(x) = [vs(x), zs(x)]. We then define θs(v) :=
f(v − vs(x), vs(x)) zs(x). Conversely, given a theta function θ for f , we define
s(x) := [v(x), θ(v(x))], where v(x) is an arbitrary vector which lies over x. If φ :
X ′ −→ X is a map as above and s ∈ H0(X,L) is a section corresponding to θ, then
the section φ∗s ∈ H0(X ′, φ∗L) corresponds to φ∗θ. Suppose f ′ = f ?h. Then given
a section s′ ∈ H0(X,L′) corresponding to θs′ , we have that s := Φ∗hs

′ ∈ H0(X,L)
corresponds to θs := h(v)θf ′(v).

2. Theta transformation formula

Let Z ∈ hg, and let L(HZ , χ) be a line bundle of characteristic c on the abelian
variety XZ . Let M ∈ GD and define Z ′ := M(Z) as in Section 1. Let ψ = ψ(M) :
XZ′ −→ XZ be the inverse of the map φ = φ(M) : XZ −→ XZ′ . The line bundle
ψ∗L(HZ , χ) has type ψ∗HZ = HZ′ , semicharacter χ′ = ψ∗χ and characteristic
M [c], with M [c]1 = δc1− γc2 + 1

2 (Dγ tδ)0 and M [c]2 = −βc1 +αc2 + 1
2 (α tβ)0 (see

[5], Ch. 8, Lemma 4.1, where there is an unfortunate omission of D in the expression
of M [c]1). (The ( )0 stands for the diagonal vector.)

Lemma 2.1. We have that

ψ∗e(HZ ,χ) = e(HZ′ ,χ
′) ? h

′,

where h′(v) = e(πi tv(γZ + δ)−1γv). Also,

φ∗e(HZ′ ,χ
′) = e(HZ ,χ) ? h,

where h(v) = e(−πi tv(γZ + δ)−1γv).

Proof. We have that a(HZ ,χ) = e(HZ ,χ) ? h1, where h1(v) = e(−π2 tv(ImZ)−1v)
(see item 2 in Section 1). Since ψ∗a(HZ ,χ) = a(HZ′ ,χ

′) and a(HZ′ ,χ
′) = e(HZ′ ,χ

′) ?

h′1, where h′1(v′) = e(−π2 tv′(ImZ ′)−1v′), by applying ψ∗ we get that h′(v) =
ψ∗h1(v)−1 h′1(v′), i.e., h′(v) = e(π2

tv(ImZ)−1v − π
2
tv′(ImZ ′)−1v′), where v′ :=

φa(v). A straightforward calculation gives the above form for h′. To prove the
second formula, we apply φ∗ to the first one.

The tuple BZ := 〈θc
ZD−1m

(v) ; m ∈ ZD〉 forms a base of the canonical theta

functions for L(HZ , χ) and the tuple BZ
′

:= 〈θM [c]

Z′D−1n
(v′) ; n ∈ ZD〉 forms a base

of the canonical theta functions for L(HZ′ , χ
′). On the other hand, the tuple

ψ∗BZ := 〈ψ∗aθcD−1m
(v) ; m ∈ ZD〉 also forms a base of the canonical theta functions

for L(HZ′ , χ
′), since ψ∗L(HZ , χ) = L(HZ′ , χ

′) and ψ∗a(HZ ,χ) = a(HZ′ ,χ
′).
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Proposition 2.1. Keeping the above notation, assume that the characteristic c ∈
1
2Λ(HZ). Then the matrix C, for which ψ∗BZ = C BZ

′
, is of the form C =

(det(γZ + δ))−
1
2 C(M), where C(M) depends on M and detC(M) = ζ8, except

when 3|dg and (dg−1, 3) = 1, in which case we have detC(M) = ζ24 (by ζm we
denote an m-root of unity).

Proof. Let Gint
D := GD ∩ Sp2g(Z). A matrix M belongs to Gint

D if

M =
(

I 0
0 D

)−1

R

(
I 0
0 D

)
,

where R =
(
A B
Γ ∆

)
∈ ΓD and Γ = DΓ1, Γ1 ∈ Mg(Z). Therefore, define

Γint
D := {R =

(
A B
Γ ∆

)
∈ ΓD, where Γ = DΓ1, Γ1 ∈ Mg(Z)}. We have the

following lemma:

Lemma 2.2. The group ΓD is generated by Γint
D and the matrix J :=

(
0 − I
I 0

)
,

and so the group GD is generated by Gint
D and the matrix

(
0 −D
D−1 0

)
.

Proof. We use results from [3]. LetK(D) = D−1ZD⊕ZD. A matrixR ∈ ΓD acts on

K(D) by multiplication by
(

I 0
0 D

)
tR

(
I 0
0 D

)−1

. By identifying K(D) with

ZD⊕ZD via the isomorphism given by the matrix
(
D 0
0 I

)
, the action of R ∈ ΓD

on K(D) is given by multiplication by D̄ tRD̄−1, where D̄ :=
(
D 0
0 D

)
. One can

define on K(D) an alternating form eD ([5], [3]), and the above action becomes a
symplectic action. Let Sp(D) be the symplectic group of K(D) with respect to eD.
We then have an exact sequence 0 −→ ΓD(D) −→ ΓD

π−→ Sp(D) −→ 0, where
π(R) := D̄ tRD̄−1 and ΓD(D) := {R ∈ ΓD | R = I + D̄A, A ∈M2g(Z)}. Note that
ΓD(D) ⊂ Γint

D . It suffices therefore to show that every element of Sp(D) has a lift
to an element of ΓD which is a product of the matrix J and elements of Γint

D .
Following the notation of [3], we have that A ∈ LD if D̄ tAD̄−1 ∈ ΓD, where LD

is defined in Section 2 of [3]. In [3], Theorem 2, it is shown that a matrix A ∈ Sp(D)
has a lift Ã ∈ LD which satisfies a relation(

I 0
c1 I

)(
U1 0
0 U2

)(
a Dy
−D d

)(
I b1
0 I

)
Ã =

(
I b2
0 I

)
,

where y is an integral diagonal matrix and all the matrices belong to LD. The

inverse of a matrix
(
a b
c d

)
in LD belongs to LD and is given by

D̄

(
td − tb
− tc ta

)
D̄−1.

Therefore A has a lift R in ΓD which is given by R = D̄ tÃD̄−1. But
(
I 0
c I

)
=

J

(
−I c
0 − I

)
J ; hence R = (JN1J)N2N3N4(JN5J), where Ni ∈ Γint

D .
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As in [7], Ch. II, §5, we can rewrite the formula we want to prove as

〈θc
ZD−1m

(v, Z) ; m ∈ ZD〉
√
dv1 ∧ . . . ∧ dvg

= C(M)〈θM [c]

Z′D−1n
(v′, Z ′) ; n ∈ ZD〉

√
dv′1 ∧ . . . ∧ dv′g ,

where v′ = t(γZ + δ)−1v and Z ′ = (αZ + β)(γZ + δ)−1. Note that if c ∈ 1
2Λ(HZ),

then M [c] ∈ 1
2Λ(HZ′). We observe that if the formula holds for M1, M2 ∈ GD,

then it also holds for M1M2. It suffices therefore to verify the proposition for the
generators. We express the relation ψ∗BZ = C BZ

′
in terms of classical theta

functions, and, by using Lemma 2.1, we get〈
θ

[
c1 +D−1m

c2

]
(v, Z) ; m ∈ ZD

〉
= e(−πi tM [c]1M [c]2 + πi tc1c2)

· e(−πi tv(γZ + δ)−1γv)(det(γZ + δ))−
1
2

· C(M)
〈
θ

[
M [c]1 +D−1n

M [c]2

]
(v′, Z ′) ; n ∈ ZD

〉
.

(2)

Matrices of the form
(

0 −D
D−1 0

)
. In this case e(−πi tv(γZ + δ)−1γv) =

e(−πi tvZ−1v) and det(γZ+δ) = detZ
d . We also have v′ = DZ−1v, Z ′ = −DZ−1D

and M [c]1 = −D−1c2, M [c]2 = Dc1. Relation (2) in this case becomes〈
θ

[
c1 +D−1m

c2

]
(v, Z) ; m ∈ ZD

〉
= e(−πi tvZ−1v)e(2πi tc1c2)(3)

·
(

detZ
d

)− 1
2

C(M)
〈
θ

[
−D−1c2 +D−1n

Dc1

]
(v′, Z ′) ; n ∈ ZD

〉
.

As in [7], we apply Fourier transform. Write

θ

[
c1 +D−1m

c2

]
(v, Z) =

∑
λ∈Zg

f(λ),

where

f(x) := e(πi t(x+ c1 +D−1m)Z(x+ c1 +D−1m)

+ 2πi t(v + c2)(x+ c1 +D−1m)).

Let f̂(x) :=
∫
Rg f(x) e(2πi txλ) dx. We then have

θ

[
c1 +D−1m

c2

]
(v, Z) =

∑
λ∈Zg

f̂(λ).

Using [7], Ch. II, Lemma 5.8, by substituting x′ = x+ c1 +D−1m we get

f̂(λ) = e(−2πi t(c1 +D−1m)λ) (det
Z

i
)−

1
2 e(−πi t(v + c2 + λ)Z−1(v + c2 + λ)).

Therefore

θ

[
c1 +D−1m

c2

]
(v, Z) = e(−πi t(v + c2)Z−1(v + c2)) (det

Z

i
)−

1
2

·
∑
λ∈Zg

e(−2πi t(c1 +D−1m)λ− 2πi t(v + c2)Z−1λ− πi tλZ−1λ).
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By substituting −λ = Dk + n, n ∈ ZD, we can rewrite the last sum as∑
n∈ZD

∑
k∈Zg

e
(
2πi t(c1 +D−1m)(Dk + n) + 2πi t(v + c2)Z−1(Dk + n)

−πi t(Dk + n)Z−1(Dk + n)
)
.

A straightforward calculation yields

θ

[
c1 +D−1m

c2

]
(v, Z) = e(−πi tvZ−1v) (det

Z

i
)−

1
2 e(2πi tc1c2)(4)

·
∑
n∈ZD

e(2πi tmD−1n) θ
[
−D−1c2 +D−1n

Dc1

]
(v′, Z ′).

Comparing relations (3) and (4), we deduce that the matrix C(M) we are asking
for has m,n entry equal to ( dig )−

1
2 e(2πi tmD−1n). Let d := detD. The matrix A =

(amn)m,n∈ZD , where amn := e(2πi tmD−1n), has determinant detA = ζ4d
d
2 . To see

this, we denote by C[Zdi ] the C-vector space of dimension di “corresponding” to the
group Zdi . Fix the natural base 〈m, m ∈ Zdi〉 and define the map φi : C[Zdi ] −→
C[Zdi ] by φi(m) :=

∑
n∈Zdi

e(2πind−1
i m)n. Let Ci be the matrix corresponding to

φi. Then detCi = ζ4d
di/2
i . Indeed, it is easy to see that det(C2

i ) = ±ddii . Observe
now that A is the matrix corresponding to the tensor product of the maps φi and
so, detA = detCd/d1

1 · · · detCd/dgg = ζ4d
d/2. To conclude this case, observe that

( dig )−
d
2 = ζ8d

− d2 and therefore detC(M) = ζ8.

Matrices in Gint
D . Let M ∈ Gint

D . Then M corresponds to an isomorphism ψ :
XZ′ −→ XZ which is a lift of an isomorphism of principally polarized abelian
varieties. In this case, the usual theta transformation formula holds ([5], Ch. 8,
§6). Let a = c + Zw1, c ∈ 1

2Λ(H), w1 = D−1w1 ∈ D−1Zg. We denote by M [ ]I
the transformation of the characteristic corresponding to the principal polarization
D = I. Note that M [c]I = M [c] + Z ′s1, where s1 := −D−I2 ( tγδ)0, and so s1 =
D−1s1, with s1 ∈ Zg. We have the following facts ([5], Ch. 8, §§4 and 6).

1. ψ∗θa(v, Z) = C(Z,M, a) θM [a]I (v′, Z ′).
2. C(Z,M, a) = C(Z,M, 0) e(πiE(M [0]I , A−1a)), where A = t(γZ + δ).
3. C(Z,M, 0) = k(M) e(πi tM [0]1IM [0]2I) det(γZ + δ)−

1
2 , where k(M) is a ζ8.

Note that M [a]1I = M [c]1I + δw1 and M [a]2I = M [c]2I − βw1. The above formulae
and the formulae in Section 1 yield that item 1 above becomes

e(−πi tc2w1)ψ∗θc
Zw1 (v, Z) = C(Z,M, 0) e(πiE(M [0]I , A−1a))

· e(−πi t(δw1)M [c]2I + πi tM [c]1I(−βw1) + πi t(δw1)(−βw1)) θM [c]I

Z′δw1
(v′, Z ′).

Item 5e) of Section 1 gives

θ
M [c]I

Z′δw1 (v′, Z ′) = e(−πi ts1M [c]2) θM [c]

Z′(δw1+s1)
(v′, Z ′).
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Also,

M [0]1I =
1
2

(γ tδ)0 ∈
1
2
Zg, M [0]2I =

1
2

(α tβ)0 ∈
1
2
Zg,

(A−1a)1 = δ(c1 + w1)− γc2, (A−1a)2 = −β(c1 + w1) + ac2,

M [c]1I = δc1 − γc2 +
1
2

(γ tδ)0 ∈
D−1

2
Zg,

M [c]2I = −βc1 + ac2 +
1
2

(α tβ)0 ∈
1
2
Zg.

We thus get

ψ∗θc
ZD−1w1

(v, Z)(5)

= k(M)e(πik)(πiλw1)e(−πi tw1 tδβw1) det(γZ + δ)−
1
2 θ
M [c]

Z′D−1(∆w1+s1)
(v′, Z ′),

where k = tM [0]1IM [0]2I + tM [0]1I(−βc1 + ac2)− tM [0]2I(δc
1− γc2)− ts1M [c]2 and

λ = − tM [0]1Iβ − tM [0]2Iδ − tM [c]2Iδ − tM [c]1Iβ + tc2. Observe now that k ∈ 1
4dg
Z

and λ ∈ 1
2Z.

Note that when γ ∈ Mg(Z), i.e. Γ = DΓ1 for some integral matrix Γ1, the
matrix ∆ acts as a permutation on ZD. Indeed, the relation ∆D tA− ΓD tB = D
implies ∆(D tAD−1) = I + Γ(D tBD−1) i.e. ∆(D tAD−1) = I + DΓ1(D tBD−1)
and so ∆A1 = I + DM for some integral matrices A1,M . Hence, ∆ induces an
epimorphism on ZD and so an automorphism.

Relation (5) implies that the matrix C(M) of the proposition has in the w1,∆w1+
s1-entry the value k(M)e(πik)e(πiλD−1w1)e(−πi tw1

t∆D−1Bw1) and any other
entries in the w1 row and ∆w1 + s1 column are zero. To find its determinant, we
first note that

∏
w1∈ZD

e(πiλD−1w1) = e(πi
g∑
i=1

λi
di

∑
w1∈ZD

w1,i) = e(πi
g∑
i=1

λi
di

d

di

di(di − 1)
2

).

(6)

The above sum belongs to 1
4Z, and so the product is a ζ8. Also, the matrix

t∆D−1B = D−1(D t∆D−1)B is symmetric; let αij = aij
di
, aij ∈ Z be its ij-entry.

Then∏
w1∈ZD

e(−πi tw1
t∆D−1Bw1)(7)

= e

−πi g∑
i=1

aii
di
d

(di − 1)(2di − 1)
6

− 2
∑

1≤i<j≤g

aij
di
d

(di − 1)(dj − 1)
4

 .

The above sums belong to 1
2Z, and so the product is a ζ4, except when 3|dg and

(dg−1, 3) = 1, in which case it belongs to 1
6Z and the product is a ζ12. To con-

clude, we have detC(M) = ζ8, except when 3|dg and (dg−1, 3) = 1, in which case
detC(M) = ζ24.

Next, for the case of a totally symmetric bundle, note first that such a bundle
always has characteristic in Λ(H). Moreover, in Lemma 2.1, if L(HZ , χ0) has
characteristic in Λ(H), then ψ∗L(HZ , χ0) has also characteristic in Λ(H). Indeed,
in the case of an “even” polarization, we always have that χ0 = 1, and so ψ∗rχ0 =
1 = χ′0.
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Proposition 2.2. Keeping the notation of Proposition 2.1, we assume in addition
that L is totally symmetric and that g ≥ 3. Then the matrix C, for which ψ∗BZ =
C BZ

′
, is of the form C = (det(γZ + δ))−

1
2 C(M), where C(M) depends on M

and detC(M) = 1, except when 3|dg and (dg−1, 3) = 1, in which case we have
detC(M) = ζ3.

Proof. The proof is a modification of the proof of Proposition 2.1:

At the end of the subsection “Matrices of the form
(

0 −D
D−1 0

)
”: For g ≥ 3

the number d
di

is a multiple of 4, and so detC
d
di

i = d
d
2
i . Therefore detA = d

d
2 . Also,

for g ≥ 3 we have ( dig )−
d
2 = d−

d
2 Therefore, detC(M) = 1.

At the end of the subsection “Matrices in Gint
D ”: The sum in relation (6) is

an even integer, and so the product is 1. For g ≥ 3, the right summand in relation
(7) is an even integer. The left summand is an even integer, except when 3|dg and
(dg−1, 3) = 1, in which case it belongs to 2

3Z. Therefore the product is 1, except
when 3|dg and (dg−1, 3) = 1, in which case it is ζ3. Also k(M)d = 1. Thus, to
show that detC(M) = 1 (resp. ζ3), it suffices to show that the permutation of ZD
induced by the action of ∆ followed by the addition by the vector s1 has sign 1.

We show first that sgn(∆) = 1. Indeed, let di = 2kimi, with 1 ≤ k1 ≤ k2 ≤ · · · ≤
kg and m1|m2| · · · |mg odd integers. Define Zev := Z2k1⊕· · ·⊕Z2kg , a group of order
nev, and Zodd := Zm1 ⊕ · · · ⊕ Zmg , a group of order nodd. Then ZD = Zev ⊕ Zodd.
Let φ : ZD −→ ZD be an automorphism. Then φ(Zev) = Zev and φ(Zodd) = Zodd.
We denote by φev (resp. φodd) the restriction of φ to Zev (resp. to Zodd). If
we interpret φ as a linear automorphism of C[ZD], then φ = φev ⊗ φodd, and so
sgnφ = sgnφnodd

ev sgnφnev
odd. But nev is an even number; hence it suffices to prove the

result for ZD = Zev.
Let E be the matrix which corresponds to the automorphism φev. We call

elementary transformations of Zev those which correspond to left or right multi-
plication by a matrix of one of the following types: 1 in the diagonal and aij ∈ Z
in some ij-entry with j ≥ i; or 1 in the diagonal and 2ki−kjaij , aij ∈ Z, in some
ij-entry with j < i (and zero everywhere else). We then claim that by multi-
plying the matrix E = (eij) with the above type of matrices, we can produce
a matrix with all the elements of the last row, except the diagonal one, equal
to zero mod2kg and the i-th element of the last column, with 1 ≤ i < g, zero
mod2ki . Indeed, we may first assume that egg is an odd integer: the determi-
nant of E is an odd number since E defines an automorphism, and so some of
the elements of the last row must be odd. If egg is even, let egj0 , j0 < g, be the
odd element. But then, using an elementary transformation, we can add the j0-th
column to the last one, and so the gg-entry becomes odd. Since D−1ED is an
integral matrix, we have that egj = 2kg−kjmgj , mgj ∈ Z. But now the equation
2kg−kjeggx ≡ −2kg−kjmgj mod2kg has a solution, and therefore by multipling the
matrix E on the right by the elementary matrix which has 2kg−kjx in the gj-entry,
we get that the gj-entry of the product is zero mod2kg . On the other hand, by
multiplying on the left by an elementary matrix which has x in the ig-entry, where
x is the solution of cggx ≡ −cig mod2ki , we get that the ig-entry of the product is
zero mod2ki .

A matrix like the one we produced corresponds to an even permutation of Zev.
Indeed, by writing Zev as a direct sum of two groups, the second of which is the Z2kg ,
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we get the action is a direct sum of actions. We thus get that the signature of the
permutation is one, since both groups are of even order. A similar argument yields
that the action is given by the elementary matrices induces an even permutation
(here we have to use the hypothesis g ≥ 3). We therefore get that the permutation
given by φev is an even one.

Finally, the matrix of the permutation of ZD induced by addition of the vector
s1 is the tensor product of the matrices corresponding to the permutation of Zdi
induced by addition of s1

i . Since the size of all those matrices is an even number,
the determinant of the tensor product is 1. This concludes the proof.

3. Abelian fibrations

Everything we have stated which holds for a fixed abelian variety X = V/Λ
can be transferred easily over a fibration X −→ U of abelian varieties of type D,
with base U a simply connected Stein manifold (such as hg). In this case, the
universal covering X̃ of X will take the place of V and the homotopy group π1(X)
the place of Λ. When the base is the space hg, there exists a universal family
X −→ hg, with fiber over Z the abelian variety XZ . It is defined as the quotient
of Cg × hg by the action of ΛD = Zg ⊕ DZg given by l(v, Z) = (v + jZ(l), Z).
We have π1(XD) = ΛD and X̃D = Cg × hg. Suppose (c1, c2) ∈ Rg ⊕ Rg and
let c(Z) = Zc1 + c2. For each such c = c(Z), we have on XD a line bundle LcX
corresponding to the classical factor of automorphy ec : ΛD × (Cg × hg) −→ C× of
characteristic c, given by ec(l; v, Z) = e(2πi( tc1λ2− tc2λ1)−π i tλ1Zλ1−2π i tvλ1),
where l = (λ1, λ2) ∈ ΛD = Zg ⊕DZg. Note that ec, as well as Lc

X
, depends only

on the class (c1, c2) mod(D−1Zg ⊕ Zg).

3.1. Line bundles on abelian fibrations. Let f : X −→ B be a fibration of
abelian varieties and L a symmetric line bundle on X , trivialized along the zero
section, which defines a polarization of type D on each fiber. We denote by s :
B −→ X the zero section and let S := s(B).

We denote by B̃ the universal covering of B. There exist a period map p : B̃ −→
hg and a representation ρ : π1(B) −→ GD of B. The choice of p and ρ is unique, up
to the action by a fixed element of GD. Let Y := XD ×hg B̃, and f̃ : Y −→ B̃ the
induced map. There is a canonical map π1 : Y −→ X which makes the following
diagram commutative:

X

f

��

Y
π1oo t //

f̃
��

HD

fun

��

B B̃
πoo

p
// hg

(8)

For each b̃ ∈ B̃ and σ ∈ π1(B), the period map p satisfies p(σb̃) = ρ(σ) · p(b̃),
where · denotes the action of GD on hg. We use Z(b̃) to denote the matrix p(b̃). If
M = ρ(σ), then the above relation translates to Z(σb̃) = M(Z(b̃)), as defined in
Section 1.

The group ΛD acts on B̃×Cg by l (b̃, v) = (b̃, v+jZ(b̃)(l)). The quotient of B̃×Cg

by this action, the elements of which we denote by [b̃, v], is naturally isomorphic to
Y , and the canonical map B̃×Cg/ΛD −→ B̃ is identified with f̃. The group π1(B)
acts on Y by σ [b̃, v] = [σb̃,MZ(b̃)(v)], where M = ρ(σ). The action is free and
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properly discontinuous, the quotient is isomorphic to X , and the canonical map
Y −→ Y/π1(B) is identified with π1. The above action defines an isomorphism
φσ : Yb̃ −→ Yσb̃. When we identify Yb̃ with XZ(b̃) and Yσb̃ with XM(Z(b̃)), the above
map becomes the map φ(M).

Let π∗1L be the pull back of the line bundle L to Y . A symmetric line bundle
L(H,χ) always has characteristic c ∈ 1

2Λ(H) w.r.t. any decomposition of H , since
χ(λ) = ±1 for all λ ∈ Λ. Therefore, a characteristic of the restriction of π∗1L
to the fiber over b̃, w.r.t. the decomposition induced by the period map p, is of
type c = Z(b̃)c1 + c2, where (c1, c2) ∈ 1

2 (D−1Zg ⊕ Zg), and, by continuity, the
class (c1, c2) mod(D−1Zg ⊕ Zg) is independent of the choice of b̃. Note that when
LX is totally symmetric, then (c1, c2) ∈ D−1Zg ⊕ Zg. For each σ ∈ π1(B), the
pull back of the isomorphism φσ defines an isomorphism of the total space of π∗1L.
If M = ρ(σ), then φσ = φ(M), and so, M “preserves” the characteristic, i.e.
(M [c]1,M [c]2) = (c1, c2) mod(D−1Zg ⊕ Zg).

The group ΛD acts on B̃ ×Cg ×C by l (b̃, v, z) = (b̃, v + jZ(b̃)(l), ec(l; v, Z(b̃))z).
The quotient L̃c is a line bundle on Y , the elements of which we denote by
[b̃, v, z]. By construction, L̃c = t∗LcX. The group π1(B) acts on L̃c by σ [b̃, v, z] =
[σb̃,MZ(b̃)(v), h(v)−1z], where M = ρ(σ) and h is the function introduced in Lemma
2.1, and its value is taken w.r.t. the element Z(b̃) ∈ hg and the matrix M . To see
that the action is well defined, one has to use Lemma 2.1, combined with the fact
that the action of π1(B) “preserves” the characteristic.

Let φσ : Yb̃ −→ Yσb̃ be the map defined above. We fix the identification
(π1(Yb̃), Ỹb̃) ∼= (ΛD,Cg) via the map p. Then, the line bundle L̃c|Yb̃ corresponds to
the factor of automorphy ec and the line bundle φ∗σ(L̃c|Yσb̃) corresponds to φ∗σec.
From Lemma 2.1 we have that φ∗σec = ec ? h. The action of σ on L̃c then induces
an isomorphism Φσ : L̃c|Yb̃ −→ φ∗σ(L̃c|Yσb̃), which is the canonical isomorphism Φh
defined in Section 1.

We claim that the quotient of the line bundle L̃c by the above action of π1(B)
is a line bundle Lc on X isomorphic to L. This is a consequence of the see-saw
principle. Indeed, the restrictions of L and Lc to the fibers of f are isomorphic,
since they have the same characteristic. Also, by definition, L is trivial on the zero
section S; the same holds for Lc since, if S̃ is the lift of S on Y , then the restricted
action of π1(B) on S̃ is given by σ[b̃, 0, z] = [σb̃, 0, z] and therefore the quotient is
the trivial bundle. In the following, we identify L with Lc. Finally, the action of σ
defines an isomorphism Ψσ of H0(Yb̃, L̃c|Yb̃) with H0(Yσb̃, L̃c|Yσb̃), which is induced
by the map Φ∗σφ

∗
σ. Next we determine the matrix C̃σ(b̃) of Ψσ in terms of given

bases.

The functions θ
[
c1 +D−1m

c2

]
(v, Z(b̃)), m ∈ ZD, are theta functions for the

classical factor of automorphy ec : ΛD×(Cg×p(B̃)) −→ C×, and the line bundle L̃c
corresponds, by construction, to ec. Let s̃m denote the section of L̃c corresponding
to the above theta function. The set Bb̃ := 〈s̃b̃m := s̃m|Yb̃ ,m ∈ ZD〉 forms a base
of sections of H0(Yb̃, L̃c|Yb̃) for every b̃ ∈ B̃. Let Bσb̃ := 〈s̃σb̃n := s̃n|Yσb̃ , n ∈ ZD〉
be the corresponding base for H0(Yσb̃, L̃c|Yσb̃). Let Bb̃1 := 〈Φ∗σφ∗σ s̃σb̃n , n ∈ ZD〉; this
is also a base for H0(Yb̃, L̃c|Yb̃). Then the matrix C̃σ(b̃) of Ψσ in the above bases
satisfies the relation Bb̃1 = C̃σ(b̃) Bb̃.
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Let Z := Z(b̃), Z ′ := M(Z(b̃)) and v′ := MZ(b̃)(v). The section Φ∗σφ∗σ s̃σb̃m

corresponds to the theta function h(v) θ
[
c1 +D−1n

c2

]
(v′, Z ′). The above relation

of bases becomes

h(v)
〈
θ

[
c1 +D−1n

c2

]
(v′, Z ′), n ∈ ZD

〉
(9)

= C̃σ(b̃)
〈
θ

[
c1 +D−1m

c2

]
(v, Z), m ∈ ZD

〉
.

We write the matrix M in the form M =
(
α β
γ δ

)
. Let c1 := M [c]1 + s1 and

c2 := M [c]2 + s2, where s1 = D−1s1 and s2 = s2, with s1, s2 ∈ Zg. Then item 5b)
in Section 1 yields

θ

[
c1 +D−1n

c2

]
(v′, Z ′) = θ

[
M [c]1 +D−1(n+ s1)

M [c]2 + s2

]
(v′, Z ′)

= e(2πi ts2(M [c]1 +D−1(n+ s1)) θ
[
M [c]1 +D−1(n+ s1)

M [c]2

]
(v′, Z ′).

Using relation (2), we now get

h(v) θ
[
c1 +D−1n

c2

]
(v′, Z ′)(10)

= e(2πi ts2(M [c]1 + s1) + πi tM [c]1M [c]2 − πi tc1c2) (det(γZ + δ))
1
2

·
∑
m∈ZD

e(2πi ts2D−1n)C(M)−1
s1+n,m θ

[
c1 +D−1m

c2

]
(v, Z).

The number inside the first exponential is of the form 2πik, where k ∈ 1
4dg
Z.

A similar calculation as in relation (6) yields that the matrix A, with Anm :=
e(2πi ts2D−1n)C(M)−1

s1+n,m, has determinant detA = ζ2 detC(M)−1. Compar-
ing relations (9), (10) and using Proposition 2.1, we conclude that det C̃σ(b̃) =
ζ8 (det(γZ + δ))

d
2 , except when 3|dg and gcd(3, dg−1) = 1, in which case we have

det C̃σ(b̃) = ζ24 (det(γZ + δ)
d
2 .

In the totally symmetric case we have
∏
n∈ZgD

e(2πi ts2D−1n) = 1, and the sign
of the permutation of ZD induced by the action “addition of s1” is 1. Hence, detA =
detC(M)−1 = 1. We therefore get that det C̃σ(b̃) = (det(γZ + δ))

d
2 , except when

3|dg and gcd(3, dg−1) = 1, in which case we have det C̃σ(b̃) = ζ3 (det(γZ + δ))
d
2 .

3.2. Proof of Theorems A and B. We cover B by small open analytic sets
Ua. We choose W a to be a lift of Ua on B̃. Let πa : W a −→ Ua be the natural
isomorphism. For a point s ∈ Ua, we denote by wa(s) its preimage in W a. For
s ∈ Ua, we define Za(s) := Z(wa(s)). Let 〈Ua, λa1(s), . . . , λa2g(s)〉 be the choice of
a symplectic base on the fibers of Xa := f−1(Ua), induced by the restriction of the
period map p on W a. For each a, b with Uab := Ua ∩ U b 6= ∅, there is a matrix

Mab =
(
αab βab

γab δab

)
∈ GD relating the two symplectic bases. This matrix has

the following interpretation. Given s ∈ Uab, there exists a unique σab ∈ π1(B)
such that σab wa(s) = wb(s) and Mab = ρ(σab). Let C̃ab(b̃) be the matrix C̃σab(b̃)
defined in Section 3.1 above. The vector bundle f∗L then has transition matrices
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gv
ab : Uab −→ GL(d), where d = detD, defined by gv

ab(s) := C̃ab(wa(s)). We have
thus proven:

Lemma 3.1. Let f : X −→ B be a fibration of abelian varieties of relative di-
mension g. Suppose L is the symmetric (resp. totally symmetric and g ≥ 3) line
bundle on X, and {Ua} is the trivialization of B given above. Then, the transition
functions of the line bundle det f∗L are given by gabL (s) = ζ8(det(γabZa(s) + δab))

d
2

(resp. gabL (s) = (det(γabZa(s) + δab))
d
2 ), except when 3|dg and gcd(3, dg−1) = 1,

in which case we have that gabL (s) = ζ24(det(γabZa(s) + δab))
d
2 (resp. gabL (s) =

ζ3(det(γabZa(s) + δab))
d
2 ).

The proof of Theorems A and B is now a consequence of the above Lemma 3.1
and the following Lemma 3.2.

Lemma 3.2. Let f : X −→ B be a fibration of abelian varieties and s : B −→ X the
zero section. Let ΩX/B denote the relative cotangent bundle. Then ΩX/B ∼= f∗E,
where E ∼= s∗ΩX/B is the vector bundle on B defined by the transition matrices
gabE := (γabZa(s) + δab)−1. In particular, for the relative dualizing sheaf of f we
have that ωX/B ∼= f∗µ, where µ ∼= s∗ωX/B is the line bundle on B defined by the
transition functions gabµ (s) = det(γabZa(s) + δab)−1.

Proof. The period matrix Za(s) of Xa
s satisfies

〈λa1(s), . . . , λag(s)〉 = 〈λag+1(s), . . . , λa2g(s)〉Za(s).

ΛD acts onCg×Ua by l(v, s) := (v+jZa(s)(l), s), where jZa(s)(l) := Za(s)λ1+λ2 and
l = (λ1, λ2). There is a canonical isomorphism φa : Xa −→ (Cg ×Ua)/ΛD (fibered
over Ua) defined on the level of universal coverings by φ̃a(λag+i(s)) = (ei, s) ∈
Cg×Ua, i = 1, . . . , g, where 〈e1, . . . , eg〉 is the standard base of Cg. Let 〈z1, . . . , zg〉
denote the standard coordinates of Cg. Then dzi is the dual to ei. Let zai :=
φ̃∗a(zi × id). Then 〈dza1 , . . . , dzag 〉 defines at each point of Xa a base of sections
of the fiber of ΩX/B |Xa , and dza1 ∧ . . . ∧ dzag defines a (nowhere zero) section of
ωX/B|Xa . This is because dz1 ∧ . . . ∧ dzg defines a (nowhere zero) section of the
relative dualizing sheaf of the fibration (Cg × Ua)/ΛD −→ Ua.

We have that 〈λb1, . . . , λb2g〉 = 〈λa1 , . . . , λa2g〉 tMab. Therefore

〈λbg+1, . . . , λ
b
2g〉 = 〈λag+1, . . . , λ

a
2g〉 t(γabZa(s) + δab).

By taking dual bases and applying determinants we get that

dzb1 ∧ . . . ∧ dzbg = det(γabZa(s) + δab)−1 dza1 ∧ . . . ∧ dzag .

4. The Jacobian fibration

We now apply the above considerations to the Jacobian fibration f : J −→Mg,
where J denotes the universal Jacobian parametrizing line bundles of degree zero
on the fibers of the universal curve ψ : C −→Mg. The Picard group ofMg is freely
generated over the integers by the line bundle λ := detψ∗ωC/Mg

[1]. Due to the

description of the Jacobian of a curve C as J0(C) ∼= H0(C,ωC)∨

H1(C,Z) , one deduces that
λ has the same transition functions as s∗ωJ /Mg

; see e.g. [2], Ch. III, Prop. 17.1,
where a slightly different notation is used. Hence λ ∼= s∗ωJ /Mg

.
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On the Jacobian fibration J , there is a totally symmetric line bundle L which
restricts to a line bundle of class 2θ on the fibers and is trivial along the zero
section. It is defined as the pull back of the Poincaré bundle under the natural
map. Theorem B yields that

Corollary 4.1. With the above notation,

det f∗(L⊗n) ∼= −
(2n)g

2
detψ∗ωC/Mg

.

Remark 4.1. One can also prove Corollary 4.1 by using Theorem 5.1 in [4]. The
torsion factor in that theorem can be canceled, due to the above mentioned fact
about the generator of the Picard group ofMg.

4.1. Proof of Theorem C. Let fg−1 : J g−1 −→ Mg be the Jacobian fibration
of degree g − 1. We use the following result from [8], [9]. Let α : M̃g −→ Mg

denote the covering of even theta characteristics in J g−1. It is a covering of degree
2g−1(2g + 1). The theta divisor Θ in J g−1 intersects M̃g transversely, and the (set
theoretic) intersection projects birationally, via α, to a divisor in Mg which has
class 2g−3(2g + 1) c1(λ). On the other hand, the generic point of the intersection
corresponds to a line bundle with two sections. By the description of the singu-
larities of the theta divisor, we have that, on such a point, the theta divisor has
a singularity of multiplicity 2. Therefore the push-forward, by α, of the (scheme
theoretic) intersection of Θ with M̃g is a divisor of class 2g−2(2g + 1) c1(λ). We
use the following commutative diagram:

J

f

��

J̃
γ

oo
φ

//

f̃ ��
@@@@@@@@ J̃ g−1

δ //

f̃g−1||zzzzzzzz
J g−1

fg−1

��

Mg M̃g
αoo α //Mg

(11)

In the diagram we denote by J̃ and J̃ g−1 the pull back of J and J g−1 on M̃g.
By φ we denote the etale map of degree 22g which sends L ∈ J̃ , sitting over the
point [C, η] ∈ M̃g, to L⊗2 ⊗ η ∈ J̃ g−1. Let s̃ : M̃g −→ J̃ be the zero section and
σ : M̃g −→ J̃ g−1 the section which sends [C, η] 7→ η.

Let Θ̃ be the line bundle corresponding to the theta divisor on J̃ g−1. Then
Θ̃ = δ∗Θ, and so α∗c1(̃fg−1 ∗Θ̃⊗n) = 2g−1(2g + 1)c1(fg−1 ∗Θ⊗n). Let λ̃ be the
determinant of the Hodge bundle of the fibration f̃. Then λ̃ = α∗λ, and so α∗c1(λ̃) =
2g−1(2g + 1)c1(λ). If µ̃ := σ∗Θ̃, then α∗c1(µ̃) = 2g−2(2g + 1) c1(λ). Let L̃ be the
canonical line bundle on J̃ of Corollary 4.1. Then L̃ = γ∗L. One can see that
c1(̃f∗φ∗Θ̃⊗n) = 22gc1(̃fg−1 ∗Θ̃⊗n). This is an application of the GRR theorem. One
can also see that the restrictions of φ∗Θ̃ and L̃⊗2 on the fibers of the map f̃ are the
same. This can be proved by using Proposition 3.5 of Ch. 2 in [5] and Riemann’s
constant theorem. Therefore, by the see-saw principle, the line bundles L̃⊗2 and
φ∗Θ̃ are isomorphic up to tensor by the pull back of a line bundle from M̃g. Since
s̃∗L̃⊗2 ∼= O and s̃∗φ∗Θ̃ ∼= µ̃, we have L̃⊗2n ⊗ f̃

∗
µ̃⊗n ∼= φ∗Θ̃⊗n. By applying f̃∗

and taking c1, we have c1(̃f∗L̃⊗2n) + (4n)gnc1(µ̃) = 22gc1 (̃fg−1 ∗Θ̃⊗n). Now apply
α∗ to get

− 2g−1(2n)g 2g−1(2g + 1)c1(λ) + (4n)gn 2g−2(2g + 1)c1(λ)

= 22g 2g−1(2g + 1)c1(fg−1 ∗Θ⊗n).
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Therefore c1(fg−1 ∗Θ⊗n) = 1
2n

g(n− 1)c1(λ). Since PicMg is freely generated by λ
[1], this concludes the proof of Theorem C.

4.2. Alternative proof of Theorem C. This is an application of the GRR the-
orem; see also Appendice 2 in [6] for a similar calculation. We keep the notation
of section 4.1. In the above diagram (11), let φ be the map which sends L ∈ J̃ ,
sitting over the point [C, η] ∈ M̃g, to L ⊗ η ∈ J̃ g−1. By Lemma 3.2 we have
ΩJ̃ /M̃g

∼= f̃
∗
s̃∗ΩJ̃ /M̃g

, and since φ is an isomorphism, we get

ΩJ̃ g−1/M̃g

∼= f̃
∗
g−1σ

∗ΩJ̃ g−1/M̃g
.

We apply GRR to the fibration f̃g−1 : J̃ g−1 −→ M̃g. It is

ch(̃fg−1 !(Θ̃⊗n)) = f̃g−1 ∗(ch(Θ̃⊗n) · td(Ω∨J̃ g−1/M̃g
)).

We get

c1(̃fg−1 ∗Θ̃⊗n) =
ng+1

(g + 1)!
f∗c

g+1
1 (Θ̃)− ng

2
c1(λ̃).

The vanishing of the terms on the right hand side containing the “factor” ck1 , with
k ≤ g − 1, in the expansion of ch(Θ̃⊗n), is a consequence of the projection formula
and the fact that ΩJ̃ g−1/M̃g

∼= f̃
∗
g−1E, where E is a vector bundle; see Lemma 3.2.

The form of the term containing the “factor” cg−1
1 is due to the Poincaré formula.

The appearance of λ̃ is a consequence of Corollary 4.1.
Now suppose that, say, c1(fg−1 ∗Θ⊗n) = a(n)c1(λ) and fg−1 ∗c

g+1
1 (Θ) = bc1(λ),

where a(n), b ∈ Z [1]. Then c1(̃fg−1 ∗Θ̃⊗n) = a(n)c1(λ̃) and f̃g−1 ∗c
g+1
1 (Θ̃) = bc1(λ̃).

We get a(n) = ng+1

(g+1)!b−
ng

2 . For n = 1, the above gives that b = (g+ 1)!(a(1) + 1
2 ).

But a(1) = 0, because the line bundle f̃g−1 ∗Θ̃ has by definition a nowhere zero
section, and so it is the trivial bundle. Hence b = (g+1)!

2 , and so c1(fg−1 ∗Θ⊗n) =
1
2n

g(n− 1)c1(λ).
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7. Mumford D.: Tata Lectures on Theta I. Progress in Mathematics, vol. 28, Birkhäuser, 1983.
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