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Abstract

Stability and precision of sequential activity in the entorhinal cortex (EC) is crucial for encoding spatially guided
behavior and memory. These sequences are driven by constantly evolving sensory inputs and persist despite
a noisy background. In a realistic computational model of a medial EC (MEC) microcircuit, we show that intrin-
sic neuronal properties and network mechanisms interact with theta oscillations to generate reliable outputs.
In our model, sensory inputs activate interneurons near their most excitable phase during each theta cycle. As
the inputs change, different interneurons are recruited and postsynaptic stellate cells are released from inhibi-
tion. This causes a sequence of rebound spikes. The rebound time scale of stellate cells, because of an h–cur-
rent, matches that of theta oscillations. This fortuitous similarity of time scales ensures that stellate spikes get
relegated to the least excitable phase of theta and the network encodes the external drive but ignores recur-
rent excitation. In contrast, in the absence of theta, rebound spikes compete with external inputs and disrupt
the sequence that follows. Further, the same mechanism where theta modulates the gain of incoming inputs,
can be used to select between competing inputs to create transient functionally connected networks. Our re-
sults concur with experimental data that show, subduing theta oscillations disrupts the spatial periodicity of
grid cell receptive fields. In the bat MEC where grid cell receptive fields persist even in the absence of continu-
ous theta oscillations, we argue that other low frequency fluctuations play the role of theta.
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Significance Statement

The theta rhythm is a prominent oscillation in the brain and known to play a role in different forms of learning
and memory, for its association with movement and its disruption in some pathologies. Oscillations in gen-
eral, and theta in particular, are thought to coordinate the activity of distributed brain regions. Our study pro-
vides a mechanistic understanding of the role of theta oscillations in the generation of stable sequences of
activity and its transmission across brain regions. We model a specific microcircuit (stellate cells coupled
via inhibitory interneurons) based on the known architecture of the medial entorhinal cortex (MEC). This cir-
cuit motif occurs across various brain regions. Thus, mechanisms of spatiotemporal patterning observed in
the MEC are recapitulated in other circuits as well.

Introduction
The entorhinal cortex (EC) acts as a conduit between

hippocampal and cortical circuits (Witter et al., 2017).
Superficial layers of the EC receive multiple sensory in-
puts via the perirhinal and the postrhinal cortices and pro-
ject to all hippocampal subfields (Cappaert et al., 2015).

Given the diversity of inputs that arrive at the EC and its
role as a hub, entorhinal networks must necessarily pos-
sess two attributes. They must represent an external input
reliably and have mechanisms that allow them to flexibly
select between competing inputs. Neurons in the medial
EC (MEC) translate sensory input into temporally reliable
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and spatially confined representations (Hafting et al.,
2005; Sargolini et al., 2006; Solstad et al., 2008). For ex-
ample, grid cells in Layer II of the MEC fire at locations in
space that form a striking hexagonally symmetric pattern
(Hafting et al., 2005). The stability and precision of this
pattern is remarkable given many experimentally meas-
ured variables in the MEC, inputs to stellate cells and
local field potential oscillations, vary noisily as the animal
navigates its environment. How can a stable spatial repre-
sentation be built on such shaky ground? We discover
that the answer lies in the interplay between theta oscilla-
tions, a characteristic slow rhythm present in many brain
regions, and the intrinsic and network properties of the
MEC. Disrupting theta by inactivating the medial septum,
a prominent theta generator (Vertes and Kocsis, 1997),
perturbs the spatially periodic receptive fields of grid cells
(Koenig et al., 2011), and impairs the animal’s ability to
navigate (Bolding et al., 2018). Each traversal over a par-
ticular region in space fails to generate a reliable re-
sponse. The cumulative effect of this loss of reliability is
that the crystalline grid-like structure of the neuron’s spa-
tial receptive field dissipates into an amorphous pattern.
In addition to generating a reliable representation, theta
also plays a role in transiently coupling different brain re-
gions to form functional networks (Benchenane et al.,
2010; Takehara-Nishiuchi et al., 2012). This is evident in
lateral EC (LEC), which, in contrast to the allocentric spa-
tial response of the MEC, represents the location of ob-
jects in a particular context (Wilson et al., 2013) or
encodes the passage of time between events (Tsao et al.,
2018). The LEC forms part of a network including the me-
dial prefrontal cortex and the hippocampus that are
important in associative learning. Information transfer
across the nodes of this network is gated by theta oscilla-
tions and the degree of association between different re-
gions is reflected in the degree of theta synchrony
between them (Takehara-Nishiuchi et al., 2012).
In a biophysically realistic computational model of an

MEC microcircuit, we show that a stable grid pattern can
be generated by coupling the network to theta oscillations
from the medial septum (Vertes and Kocsis, 1997;
Gonzalez-Sulser et al., 2014). Theta oscillations create
periodic windows where the network is alternately recep-
tive or resistant to perturbations. If cortical input arrives
within the receptive window, it activates the correspond-
ing interneurons. Competitive interactions between inter-
neurons ensure that only those neurons receiving input

are active while the others are inhibited. As the input
changes, the locus of activity shifts. The rebound proper-
ties of stellate cells lead to spikes that mark the transition
in activity from one interneuron to another. However,
feedback excitation because of these spikes could trigger
activity in postsynaptic interneurons that could compete
with external inputs. The rebound time scale of stellate
cells is such that these spikes are relegated to the least
excitable phase of the interneurons. Theta oscillations cy-
clically order extrinsic inputs, inhibitory spikes by inter-
neurons and rebound spikes by stellate cells. This
ensures that the network listens only to extrinsic inputs
and ignores its own activity. Further, we argue that the
same mechanism, channeling relevant inputs only during
the receptive phase of theta while relegating distractors to
the resistant phases, is used by multiple brain regions to
form transient functionally connected networks.

Materials and Methods

Neuronmodels

Stellate cells and interneurons were modeled as con-
ductance based, single compartment spiking neuron
models. In addition to sodium, potassium and leak chan-
nels, model stellate cells were also endowed with voltage
dependent ion channels that were active at subthreshold
membrane potentials. These ion channels enabled the
neuron to produce sustained oscillations in response to a
constant depolarization (Dickson et al., 2000; Acker et al.,
2003; Rotstein et al., 2006). The model neurons share
many of the theta frequency tuning properties observed
in stellate cells. For example, when we drove the neu-
ron using a linearly increasing frequency, we found
that the amplitude of the oscillations was maximal for a
frequency within the theta band. Further, we know that
the slow time scale of the h–channel varies systemati-
cally along the dorsoventral axis of the MEC (Giocomo
et al., 2007). In addition, the conductance of the h–cur-
rent, the magnitudes of leak currents, persistent so-
dium currents, total amount of inhibition and unitary
inhibitory currents are some of the other factors that
vary along the dorsoventral axis of the MEC (Garden et
al., 2008; Beed et al., 2013). A combination of these
factors likely contributes to a systematic variation of
the resonance frequency of our model neurons. Similar
responses are seen in experimental recordings and
model studies (see Giocomo et al., 2007; their Fig. 1;
and Heys et al., 2010; their Fig. 4D).
The current balance equation for the equivalent circuit

model of the membrane is given by the following:
Stellate cell,

C
dV

dt
¼ Iexts � INa � IK � IL � Ih � INaP � ISyn � INoise; (1)

Interneuron,

C
dV

dt
¼ Iexti 1 Ipulse � INa � IK � IL � ISyn � INoise � Iu : (2)

Ionic currents were modeled as follows:
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Ix ¼ gxðv; tÞðv� ExÞ; (3)

where gxðv; tÞ ¼ maximal conductance� fðstate of gating
variablesÞ.
The gating variables followed first order kinetics. For ex-

ample, the gating variable,m was given by the following:

dm

dt
¼

�ðm�m1Þ

tm

; (4)

where both m1 and tm are functions of voltage.An equiv-
alent representation is

dm

dt
¼ amð1�mÞ � b mm; (5)

withm1 ¼ am=ðam1bmÞ; tm ¼ 1=ðam1tmÞ.
The functional form of each ionic current and the gating

variables, maximal conductances and reversal potentials
are provided in Tables 1, 2.

Synapsemodel

Stellate cells were randomly connected to inhibitory inter-
neurons with an excitatory synapse. Interneurons sent inhibi-
tory connections to stellate cells as well as to other
interneurons. The inhibitory population was modeled as an all-
to-all connected network. The synapse was modeled as a
conductance with a gating variable modulated by the presyn-
aptic voltage.

Isyn ¼ gsynsðvpost � EsynÞ (6)

ds

dt
¼ FðvpreÞasð1� sÞ � b ss; (7)

where, FðvpreÞ ¼ ð11tanhðvpre=4ÞÞ=2, models the opening
of a synaptic ion channel in response to action potential
generated by the presynaptic neuron. The reversal poten-
tial determined the nature of synapse to be excitatory
(when set to 0mV), or inhibitory (when set to –80 mV).

Figure 1. Dynamics of an MEC motif. Gray trace in A shows the rebound spiking response of a stellate cell to a single inhibitory spike. The
time of the inhibitory spike is shown by the vertical line. In the absence of inhibition, the membrane potential of the stellate cell showed sub-
threshold oscillations. B, A supra-threshold input, DDC ( DC–Direct Current; It is shown (solid) with reference to a baseline (dashed), The dou-
ble-arrow shows the magnitude) applied to the inhibitory interneurons caused a rhythmic switching of activity in the network motif. Stellate
cells spiked (gray traces) when the inhibitory interneuron (black traces) transitioned from activity to silence. C, Switching failed in the absence
of excitatory input; continuous firing of one interneuron (black trace) passively recruited the stellate cell (in gray trace), while the other inter-
neuron (black trace) and corresponding stellate cell remained silent. D, In a winner-take-all regime, both the interneurons received depolariz-
ing inputs higher than that in B. Only one interneuron fired continuously, a transient pulse toggled the activity of the inhibitory interneurons
(black trace) and stellate cell spiked at the transition (top gray trace). E, A network motif that operates as an autonomous oscillator. F,
Increased input to the interneurons transformed the system into a bistable switch. G, Increasing the h-conductances transformed the system
back into an autonomous oscillator.

Research Article: Confirmation 3 of 18

May/June 2021, 8(3) ENEURO.0059-20.2021 eNeuro.org



Connectivity

The connectivity of the network motifs simulated here
draws from several studies that have progressively estab-
lished a detailed picture of the topology of the stellate
cells and inhibitory interneuron networks (for review, see
Witter et al., 2017). We modeled three network types. A
small network motif comprised of two stellate cells and
two interneurons (Fig. 1B), and two larger networks with
stellate cells and interneurons arranged on rings. In one of
the larger networks (Fig. 3B) with 40 stellate cells and 40
interneurons, the population of stellate cells and the pop-
ulation of interneurons were arranged on separate rings.
Each interneuron sent projections to five adjacent stellate
cells while each stellate cell sent projections to six ran-
domly chosen inhibitory interneurons. In the network si-
mulated in Figure 7, 80 interneurons were divided into two

subpopulations 40 interneurons each. Each subpopula-
tion connected to the common pool of stellate cells. The
neighboring interneurons on each ring connected to
neighboring stellate cells on the stellate cell ring. In all of
the three network types we simulated, the interneurons
were all-to-all connected.

External input to the network

Theta rhythmic input to the network was provided by
periodically modulating the excitability of interneurons
using a sinusoidally varying conductance,

Iu ¼ Asinð2pv t1f ÞðV � VthÞ; (8)

where, A is the amplitude of theta rhythm; v its fre-
quency in Hertz. Vth is the threshold voltage for the
theta drive.In addition to a constant depolarizing input,

Table 1. Functional form of conductances and gating variables

Ion channel Current and its kinetics Maximal conductance and reversal potential

Stellate cell

Sodium

INa ¼ gNam
3hðv� ENaÞ

am ¼ �0:1ðv123Þ=ðe�0:1ðv123Þ � 1Þ
bm ¼ 4e�ðv148Þ=18

ah ¼ 0:07eðv137:0Þ=20

b h ¼ 1=ðe�0:1ðv17Þ
11Þ

gNa ¼ 52mS=cm2

ENa ¼ 55mV

Potassium
IK ¼ gKn

4ðv� EKÞ
an ¼ �0:01ðv127Þ=ðe�0:1ðv127Þ � 1Þ
b n ¼ 0:125e�ðv137Þ=80

gK ¼ 11mS=cm2

EK ¼ �90mV

Persistent sodium
INaP ¼ gNaPmsðv� ENaÞ
tms ¼ 0:15
ms1 ¼ 1=ð11e�ðv138Þ=6:5Þ

gNaP ¼ 0:5mS=cm2

HCN

Ih ¼ ghð0:65mhf10:35mhsÞðv� EhÞ

mhs1 ¼ 1=ð11eðv12:83Þ=15:9Þ58

tmhs ¼ 5:6=ðeðv�1:7Þ=14
1e�ðv1260Þ=43ÞÞ11

mhf1 ¼ 1=ð11eðv179:2Þ=9:78Þ
tmhf ¼ 0:51=ðeðv�1:7Þ=10

1e�ðv1340Þ=52Þ11

gh ¼ 1:5mS=cm2

Eh ¼ �20mV

Interneuron
Sodium

INa ¼ gNam
3hðv� ENaÞ

am ¼ 0:1ðv135Þ=ð1� e�ðv135Þ=10Þ
bm ¼ 4e�ðv160Þ=18

ah ¼ 0:07eðv158Þ=20

b h ¼ 1=ðe�0:1ðv128Þ
11Þ

gNa ¼ 35mS=cm2

ENa ¼ 55mV

Potassium
IK ¼ gKn

4ðv� EKÞ
an ¼ 0:01ðv134Þ=ð1� e�0:1ðv134ÞÞ
b n ¼ 0:125e�ðv144Þ=80

gK ¼ 9mS=cm2

EK ¼ �90mV

Table 2. List of default network and input parameters

Parameter Symbol Value
Synapse

Maximal mutual inhibition conductance gii 1.0 mS/cm2

Maximal inhibitory conductance onto stellate cells gie 0.6 mS/cm2

Maximal excitatory conductance onto inhibitory interneurons gei 0.03 mS/cm2

Forward rate of inhibitory synapse as,inh 3.33 s�1

Reverse rate of inhibitory synapse b s,inh 0.11 s�1

Forward rate of excitatory synapse as,exc 100.0 s�1

Reverse rate of excitatory synapse b s,exc 0.33 s�1

Input
Constant external current to stellate cells Iexts �2.7 mA/cm2

Constant external current onto interneurons Iexti 0.2mA/cm2

Baseline pulse current for interneuron p_;i �0.05 mA/cm2

Maximum pulse current for interneuron p^;i 1.0mA/cm2

Amplitude of theta drive A 0.04 mS/cm2

Threshold voltage for theta drive Vth �80mV
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a sequential pulse like input was used to drive the in-
hibitory interneurons. The temporal profile of the tran-
sient external pulse for an interneuron i is given by the
following:

Iipulse ¼

pi
_ if t,tis;min

pi
^1ðpi

_ � pi
^Þe

ðt�ts;kÞ=t r if tis;k, ¼ t,tie;k
pi
^1ðpi

_ � pi
^Þe

ðt�te;kÞ=t f if t.tie;k

:

8

>

<

>

:

(9)

The baseline value of the pulse was set to pi
_. At time

tis;k, it rose to a maximum pi
^, with a rise time of t r. At tie;k,

the pulse was switched off and fell to the baseline value
with a fall time t f. During a simulation, if the neuron re-
ceived multiple pulses each was indexed by the variable
k. Successive pulse-like inputs were then given to neigh-
boring interneurons in successive theta cycles. The start
time of a pulse to the ith neuron was calculated using the
following prescription:

tis ¼ ftjt ¼ iT1kl ; k ¼ 0; 1; ::::g: (10)

T, the time between pulses to successive interneurons,
matched the period of the theta oscillation. The time be-
tween successive pulses to the same interneuron was
given by l . In the ring networks simulated here, the pulse
visited all the interneurons before arriving back at the
same neuron. Therefore, we set l = NT. The duration of
the pulse was set to pwidth. The end time,tie;k, of a kth pulse
to neuron i is

tie;k ¼ tis;k1pwidth: (11)

A similar sequence of pulses was given to the two rings
of interneurons in Figure 8A. The top ring received inputs
in a counterclockwise direction, while the order of inputs
to the bottom ring followed a clockwise direction. In addi-
tion, all neurons were driven by a conductance-based
noise drawn from a uniform distribution U(– 1,1). The re-
versal potential of the conductance was kept at –65 mV.

Measure of reliability

To compare the reliability of the responses of the net-
work for a given sequence of inputs across noisy trials,
we used a measure of similarity between spike trains
termed SPIKE distance (Kreuz et al., 2013). This measure
can be calculated for each neuron across all pairs of trials
and averaged over time. This value was calculated for a
subset of neurons (N=8) that received input for all the
theta frequencies that were simulated. The distribution of
mean reliability across trials for each neuron is shown in
Figure 5C. The analysis were implemented using a Python
library, PySpike (Mulansky and Kreuz, 2016).

Code accessibility

All the simulations were performed using a home-grown
C11 library, in silico, that uses odeint, a boost C11 li-
brary to solve ordinary differential equations. The differen-
tial equations were integrated using Eulers method with a
time step of 0.01ms. Simulations were run on Linux serv-
ers with Intel Xeon E5-2670 processors running Ubuntu

18.04. The codes and the documentation required to run
the simulations and analyze the outputs are available in
the following GitHub repository linked here ( https://
github.com/arunneru/theta_gates_reliable_sequences_
mEC). The repository contains a Jupyter notebook that
documents and implements all the steps required to sim-
ulate the codes and generate figures.

Results

Oscillatory and bistable dynamics of anMEC network

motif

Layer II of the MEC consists of two distinct microcir-
cuits with characteristic patterns of connectivity within
and sparse connections across circuits (Witter et al.,
2017; Nilssen et al., 2018). Stellate cells and fast-spiking
parvalbumin positive (PV1) interneurons (Couey et al.,
2013; Buetfering et al., 2014) form one circuit while py-
ramidal cells and 5HT3A interneurons form the other
(Witter et al., 2017; Nilssen et al., 2018). This di-synaptic
circuit motif, where principal neurons interact via an inhib-
itory intermediary, is prevalent throughout the EC (Couey
et al., 2013; Fuchs et al., 2016; Nilssen et al., 2018). To
understand how a network’s architecture affects its dy-
namics we simulated a simple network motif (Fig. 1B), a
building block of the MEC, that consisted of biophysically
detailed models of stellate cells (Dickson et al., 2000;
Acker et al., 2003; Rotstein et al., 2006; Heys et al., 2010)
and inhibitory interneurons (Wang and Buzsáki, 1996).
Stellate cells generate characteristic subthreshold oscilla-
tions of their membrane potential in response to depola-
rizing inputs (Alonso and Klink, 1993). The frequency of
subthreshold oscillations and the resonant frequency vary
monotonically as a function of the magnitude and time
scale of the h–current (Ih; Garden et al., 2008; Giocomo
and Hasselmo, 2008; Heys et al., 2010). Here, we mod-
eled these properties using a hyperpolarization activated
depolarizing current (Ih; Dickson et al., 2000; Shay et al.,
2016) and an amplifying persistent sodium current (INaP;
Magistretti and Alonso, 2002) in addition to leak and spik-
ing currents (IL, INa, and IK). We modeled interneurons
using modified sodium and potassium currents that al-
lowed them to spike at high frequency (Wang and
Buzsáki, 1996). Both interneurons shown in Figure 1B re-
ceived supra-threshold input. However, since they inhibit
each other, only one of the neurons spiked while the other
remained silent. Successive inhibitory spikes from an in-
terneuron activated the depolarizing Ih current in the post-
synaptic stellate cell. This eventually drove the stellate cell
to spike. Excitatory drive from the stellate cell activated
the other interneuron of the pair that, in turn, silenced the
first one. The activity of this motif switched rhythmically.
The interneurons alternated between episodes of spiking
and quiescence, and oscillated out of step with each
other. Rebound spikes by stellate cells marked every tran-
sition from spiking to quiescence (Fig. 1B) and may serve
as a viable mechanism to generate periodic firing fields of
grid cells (Shay et al., 2016). Excitation because of re-
bound spiking caused rhythmic switching. When we re-
moved excitatory inputs from stellate cells to the
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interneurons, only one interneuron remained active (Fig.
1C). Transitions in the activity of inhibitory interneurons
can drive other stellate cells to fire, potentially leading to a
pattern of activity where different neurons are sequentially
activated. As the input to inhibitory interneurons in-
creased so did its spiking frequency (Wang and Buzsáki,
1996). At higher frequencies, the time between inhibitory
spikes was too short for the postsynaptic neuron to fire a
rebound spike and cause a switch in the activity pattern
(Fig. 1D). In this parameter regime, the network acted as a
bistable switch where one of the interneurons remained
active until a transient external perturbation toggled the
switch (Fig. 1D). When inhibitory input to one of the stel-
late cells ceased, it emitted a rebound spike that marked
the transition from one state of the network to the other
(Fig. 1D). Thus, depending on the parameter regime, the
motif simulated here can act as an autonomous oscillator
(Fig. 1B) or as a switch (Fig. 1D) whose state could be
toggled between activity and quiescence by a transient
external perturbation. Further, we found that systematic
changes to the h–channel conductance could predictably
shift the system between a bistable and an autonomous
oscillatory regime (Fig. 1E–G). Bistability is contingent on
two key parameters in the model: the amplitude of depo-
larizing input to the interneurons and the synaptic
strength. When we varied the input to the interneuron, we
found that the bistable regime persisted for a broad
swathe of inputs. Increasing the inhibitory synaptic con-
ductance broadened the extent of the bistable regime. As
the input to the inhibitory interneurons increased in mag-
nitude, the frequency at which they fired also increased
and tended to increase the threshold strength of an exter-
nal input required to switch it from an active to an inactive
state. We found that the dynamics of the motif simulated
here, a building block of the MEC network, is stable to
variation in some key model parameters. Despite our
model’s concurrence with experiments and stability along

some dimensions in parameter space, it is quite possible
that slight changes in other parameters can lead it into a
qualitatively distinct regime. Mittal and Narayanan (2018)
have looked at precisely this aspect in the MEC. They si-
mulated 150,000 variants of a stellate cell with diverse val-
ues of the channel parameters and found that 449 of
these simulated neurons, scattered across a 55-dimen-
sional parameter space, possessed electrophysiological
responses that matched experimentally recorded stellate
cells. Other neuron and network models also show similar
variations as a function of key parameters (Prinz et al.,
2004).

Input-driven sequences in the MEC network

The EC receives sensory inputs from multiple cortical
sources (Witter et al., 2017). Neurons in the deeper layers
of the MEC, many of which are also grid cells, project to
superficial layers, and innervate both the excitatory princi-
pal cells and inhibitory interneurons of Layer II. Almost
half of these connections are targeted at the inhibitory in-
terneurons (Ohara et al., 2018). Here, we examine the out-
put of a model MEC network in response to a transient
input that sequentially stimulates different interneurons in
the network. Input was modeled as a brief pulse that
lasted 40ms; 85ms later, we stimulated a different, ran-
domly chosen interneuron. The onsets of successive
pulses occurred 125ms apart, the period of an 8-Hz theta
oscillation.
In Figure 2A, all the inhibitory interneurons were con-

nected to each other. The stellate cell received inputs
from five randomly chosen interneurons. Our simulations
compared two scenarios, one where there was no recur-
rent excitation from the stellate cells to the inhibitory inter-
neurons (Fig. 2A) and another where each stellate cell
randomly connected to six interneurons (Fig. 2B). In the
absence of recurrent excitation from stellate cells, the in-
terneuron that received external input generated spikes

Figure 2. Stability of input driven sequences. A, Network with sequential suprathreshold depolarizing pulses (temporal order of the
input is shown by the red arrows) driving a subset of interneurons that were connected to a single postsynaptic stellate cell (filled
gray circle). The response of the interneurons over 10 trials is shown as a raster plot in C. The stellate cell (bottom raster shaded in
gray) responded reliably over multiple trials. When feedback excitation from the stellate cell to a randomly selected subset of inter-
neurons (B) was introduced, the response of the interneurons to the sequential input was perturbed and stellate cells did not spike
reliably. The duration of the inputs is marked by the colored boxes in C, D.
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that inhibited all the other interneurons. When the pulse
moved to a different interneuron, the locus of activity also
shifted (Fig. 2C) and a rebound spike in postsynaptic stel-
late cells marked this shift. Since the stellate cell received
inputs from multiple inhibitory interneurons, successive
shifts from one interneuron to another elicited multiple re-
bound spikes from the stellate cell (Fig. 2C, bottom raster
in gray background). Sequential activation of inhibitory in-
terneurons and activation of stellate cells occurred reliably
over multiple trials (Fig. 2C). Different trials were distin-
guished by continuous noise trains to stellate cells and in-
terneurons with a mean amplitude that was 10% of the
amplitude of the input to interneurons. When we intro-
duced random excitatory connections from stellate cells
to inhibitory interneurons (Fig. 2B), the response of the
MEC network did not consistently follow the external
drive (Fig. 2D). Interneurons received competing depola-
rizing inputs, one from the transient external drive and the
other because of stellate cell spikes. The background
noise and the history of activation determined which inter-
neuron won this competition and silenced all others. This
led to unreliable switching and considerable trial-trial vari-
ability in the activity of inhibitory interneurons. Therefore,
the firing of stellate cells, that mark the shifts in interneur-
on activity, was also unreliable across trials (Fig. 2D, bot-
tom trace in gray background).

Theta oscillations reduce trial-trial variability of MEC

responses

Feedback excitation from stellate cells stimulated post-
synaptic interneurons in a manner that interfered with its
response to an external input. Here, we sought to under-
stand whether theta oscillations can attenuate the effects
of excitation on the response of inhibitory interneurons.

Constraints on MEC network structure
As in the previous section, we simulated a model MEC

network that consisted of stellate cells and fast spiking in-
hibitory interneurons. In what follows, we describe some
of the features of the responses of grid cells in vivo that
provide clues to constrain the topology of the MEC net-
work. The receptive fields of different grid cells form an
overlapping patchwork that covers space (Hafting et al.,
2005; Fig. 3A). Within a localized region of the MEC, grid
cell receptive fields share the same spatial frequency and
orientation, but are phase-shifted with respect to each
other. We assumed, since stellate cells in our model were
activated by inhibition, neurons with overlapping spatial
receptive fields that can fire in close temporal proximity,
and with similar response patterns, must also receive
overlapping inhibitory input (Fig. 3B). What are the conse-
quences of this assumption? If receptive field overlap is
indeed a reflection of the overlap of input connections to
stellate cells, it must also constrain the responses of
the system in different, independent environments.
Environmental and experiential changes to the receptive
field of one grid cell must be correlated to similar changes
in other cells such that the spatial phase relationships are
preserved. Changes in distal environmental cues change
the orientation of a grid cell’s receptive field. Changes in

the shape of the enclosure can deform the receptive field
(Krupic et al., 2015). As an animal becomes familiar with
the environment, the scale of grid cell receptive fields
shrink (Barry et al., 2012). Despite these transformations,
the phase relationship between the receptive fields of two
grid cells, remains invariant (Wernle et al., 2018), suggest-
ing that the spatial contiguity of receptive fields must be a
consequence of the topology of the underlying network. A
recent study found a mapping between the spatial perio-
dicity of the receptive fields of grid cells and their physical
location in the MEC (Gu et al., 2018). Grid cells with similar
phases were arranged close to each other. This phase
pattern repeated anatomically in a lattice that resembled
the grid-like receptive fields of individual neurons. Further,
the direction of movement of the animal was accompa-
nied by a directed spread of grid cell activity in a local
anatomic neighborhood. A similar topographic mapping
between the behavioral states (head direction) and neuro-
nal network structure (ring attractor) is found in the
Drosophila central complex (Seelig and Jayaraman,
2015). More recently, the activity of the mammalian head
direction circuit has been mapped to a low dimensional
ring attractor (Chaudhuri et al., 2019). These observations
are consistent with the architecture of attractor models, a
class of theoretical models used to explain how grid cell
receptive fields emerge from a network of neurons.
Attractor networks typically possess a periodicity (or sym-
metry) that allows the component neurons to fire in a spa-
tially periodic manner. For example, periodic activity may
arise because of the radial symmetry of the connectivity
kernel that leads to a hexagonally symmetric stable solu-
tion (Burak and Fiete, 2009). In other models (Guanella et
al., 2007; Navratilova et al., 2012), the periodic structure
of network leads to periodic patterns of activity.
Figure 3A shows the overlapping receptive fields of four

stellate cells. The receptive fields have the same spatial
period, but are phase-shifted with respect to each other.
From the responses of these four neurons, one cannot
identify a unique point where the animal would be located.
The locus of points where the activity of the neurons is
identical lie at the vertices of a triangular grid. Given the
symmetry of grid cell responses, all equivalent locations
in space can be mapped to a single point on a torus
(Shilnikov and Maurer, 2016). Any straight-line trajectory
along a primary grid axis generates a periodically repeat-
ing pattern of activity that can be mapped to a circle
(Yoon et al., 2016; Fig. 3A). In keeping with our assump-
tion that overlapping responses are generated by stellate
cells with overlapping inputs, we modeled the stellate-in-
terneuron network as a ring where “neighboring” stellate
cells that fire in close spatial and temporal proximity re-
ceived inputs from overlapping groups of interneurons
(Fig. 3B). The strength of synaptic input from an interneur-
on to the stellate cell layer followed a Gaussian profile.
The interneurons were all–to–all connected in this network
(Fig. 3B). The neighborhood relationship between inter-
neurons was therefore inherited from the inputs that
drove the interneurons and their connections onto the
stellate cell layer. In contrast to the structured and local
connectivity from interneurons to stellate cells, feedback
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Figure 3. Theta mediated stability of an MEC network. A schematic representation of the overlapping grid-like receptive fields of
four grid cells is shown in A, left panel. As the rat traveled along a primary grid axis (marked in the figure as straight-line paths), the
grid field repeated periodically (A, middle panel). This can be mapped to a circle (A, right panel). Stellate cells in the network (B,
gray filled circles) received inhibitory input from the interneuron layer (colored circles). The strength of the inhibitory input followed a
Gaussian profile (distribution shown in B). Each stellate cell connected to a randomly selected group of interneurons. The response
of the stellate cells in the absence of theta drive to the inhibitory interneuron layer is shown as a raster plot in C. When theta oscilla-
tions (8Hz) were present, stellate cells evoked a reliable response over ten trials (D). The mean firing rate convolved with a moving
Gaussian window is shown in E, when theta oscillations were present (solid line) or absent (dashed line). The schematic below
shows the grid fields of a rat running at a uniform velocity. The temporally periodic spiking pattern of stellate cells appears as a spa-
tially periodic response.
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excitation onto the inhibitory layer was random. We mod-
eled the trajectory of the animal by sequentially activating
neighboring inhibitory interneurons with a transient input.
In our simulations, we assumed that inhibitory interneur-
ons received the same input every time the animal was at
a particular location. Each vertex of the hexagonal recep-
tive field of a particular grid cell showed the summed spik-
ing activity of the neuron at that location. Therefore, the
ability to reliably follow the input (how the cell responded
in time) translated to the ability to respond in a grid like
pattern. The raster plots (Fig. 3C) show the response of a
subset of 20 stellate cells to a temporally varying input.
Predictably, the response of the network was not reliable
across trials as it did not always follow the input. The ac-
tivity of one of the neurons, averaged across 10 trials, is
shown in Figure 3E. Because of the ring like topology of
the network, the neuron periodically received a supra-
threshold input. The neuron was just as likely to fire when
an input was present as when it was absent (Fig. 3E,
dashed line).

Inputs to MEC are modulated by theta oscillations
Reliable responses of principal neurons in the EC and

the hippocampus are often contingent on the presence of
theta. Some spatial inputs come packaged in bursts
locked to theta oscillations. One source of theta to the
MEC is a central pattern generator in the medial septum
(Vertes and Kocsis, 1997) that extends GABAergic con-
nections to the inhibitory interneurons and periodically
modulates their firing rate (Gonzalez-Sulser et al., 2014).
GABAergic orchid neurons in the medial septum fire
bursts of spikes in each theta cycle (Viney et al., 2018).
Head direction cells in the MEC are typically clustered in
the deeper layers and send inputs to patches in Layer II
where grid cells are found. These neurons also fire spikes
in a theta cycle-by-cycle manner (Burgalossi et al., 2011;
Brandon et al., 2013). Further, the phase of stellate cell
spikes are consistently shifted with respect to head direc-
tion cells in each theta cycle (Brandon et al., 2013).
Pyramidal cells extensively innervate all neuron types of
the MEC except head direction cells. Brief optogenetic
activation of pyramidal cells during each theta cycle dis-
rupts coherent firing of grid cells at the vertices of a hex-
agonal pattern only within a small window of the theta
cycle. The system regains its ability to fire precisely at grid
fields in the remaining window of the theta cycle (Zutshi et
al., 2018). This observation suggests that path-integrated
inputs essential for reliable grid formation arrive as affer-
ent input to the grid cell network. Otherwise, the effect of
disrupting path integration in one cycle would cascade
over successive cycles. Head direction cells remain un-
touched when pyramidal neurons are optogenetically ac-
tivated (Zutshi et al., 2018) and form an important
component of the path integration signal. Further,
changes in speed lead to predictable changes in medial
septum theta oscillations. Therefore, inputs required for
path integration, namely, speed and direction, are, at
least partially, represented in theta frequency (Jeewajee
et al., 2008) and input from head direction cells (Taube et
al., 1990a,b), respectively. A significant part of this input

drives inhibitory interneurons in a theta cycle dependent
manner.
We implemented theta rhythmic modulation of the MEC

network by periodically (6–12Hz) driving the entire popula-
tion of inhibitory interneurons. The pulse like input that
was used to drive the neurons remained the same as in
earlier simulations (Fig. 2; Materials and Methods).
Neighboring interneurons were recruited in successive
cycles of the theta oscillations (125ms apart). As neigh-
boring inhibitory interneurons provided input to overlap-
ping groups of stellate cells, the same stellate cell was
repeatedly released from inhibition and in successive
cycles. A combination of conductances in stellate cells
endowed them with the ability to generate rebound spikes
when inhibitory input abruptly ceased (Ferrante et al.,
2017). Our model shows, as others have (Shay et al.,
2016), that phasic inhibitory inputs can depolarize stellate
cells. We found that the presence of theta oscillations en-
sured that only those neurons receiving an external input
fired and suppressed the activity of all the other interneur-
ons. The output generated in response to a sequential
input pattern was stable across noise trials (Fig. 3D). The
firing rate map (Fig. 3E, solid line) calculated for one neu-
ron as an animal traversed a linear track (Fig. 3E, sche-
matic) is shown. Assuming that the animal moved at a
uniform velocity, it encountered each grid field (alter-
nately, received an external input) after a fixed interval of
time and reliably generated a sequence of spikes in re-
sponse to the input. Note that uniform velocity is not a
prerequisite for stable stellate cell responses. Changes in
velocity are accompanied by changes in the frequency of
theta oscillations (Jeewajee et al., 2008). Our simulations
show that stable sequences are generated despite dy-
namic changes in the frequency of theta that can speed
up or slow the onset of activity in successive neurons (Fig.
5D).
Our model network consisted of an equal number of

stellate cells and inhibitory interneurons. This is in con-
trast to Layer II of the MEC where stellate cells are known
to vastly outnumber interneurons. However, this does not
pose a problem for our model, provided the distribution of
inhibitory inputs to stellate cells is maintained. The stellate
cells and inhibitory interneurons are organized in a ring
network. Neighboring stellate cells received inputs from
overlapping sets of inhibitory interneurons. Therefore,
neighboring stellate cells also possess highly overlapping
receptive fields. Adding more stellate cells in our model
would result in denser overlap of receptive fields. This is
evident in responses seen in the raster plot shown in
Figure 3D.

Mechanism of theta-induced reliability

How do theta oscillations affect the network such that it
responds selectively to an external input and not to dis-
tractors, namely, competing excitatory spikes from stel-
late cells? The networks simulated in Figure 3 operated in
a regime where a transient drive or an excitatory spike
can cause a perturbation that toggles the activity of the in-
terneurons (Fig. 1C). To understand the effect of theta os-
cillations on the network, we first simulated a simple
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Figure 4. Mechanism of theta-induced reliability. A, Membrane potential of inhibitory interneurons when they received different suprathres-
hold inputs. The neuron receiving the higher input fired continually (bottom trace) while the other remained silent (top trace). B, The same
network motif as (A; stellate cells not shown) was simulated. A weak transient pulse was given to the interneuron receiving the lower DC
(Direct current) input (B, top panel). The stimulated interneuron (top trace) did not switch. A strong pulse caused a successful switch (bottom
two traces). C, Theta rhythmic drive was given to both the interneurons. A weak pulse (duration of the pulse is marked by the gray bar)
caused a switch when it occurred in some phases of the theta oscillation (bottom gray trace) but not during others. D, Raster plot showing
the reliable response of a subset of 20 interneurons (red line) and 20 stellate cells (black lines) from a larger network of 80 neurons, to an ex-
ternal input (marked as a gray bar in the magnified raster plots). The response of the same network in the absence of theta oscillations is
shown in E. Each row in D, E shows the response of a neuron across 10 trials which are plotted between the horizontal lines in the raster
plots. F, left, Raster plot shows the phase (with respect to the theta oscillation) at which stellate cells (black lines) and interneurons (red
lines) spiked. The gray area marks the phase of the oscillation when the stimulus was present. Right, Polar plot showing a histogram of the
phases where spikes occurred. The external input is marked in gray. G, Response of the network when theta oscillations were absent. The
phase was defined in terms of the input pulse that sequentially and periodically stimulated neighboring interneurons.
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network (Fig. 4A) where the two interneurons received dif-
ferent constant depolarizing inputs. The neuron receiving
the higher input continually spiked while the other neuron
was quiescent. In order to toggle the activity of this net-
work, we stimulated the quiescent neuron with a transient
pulse. For sufficiently strong pulses, the neuron’s activity
switched for the duration of the input (Fig. 4B, bottom
traces). Weaker pulses, on the other hand, did not evoke
a transient switching response (Fig. 4B, top traces). Here,
the network motif was simulated in the bistable regime
(Fig. 1D). Stellate cells can also generate autonomous
periodic spiking (for a detailed phase response analysis,
see Acker et al., 2003). Next, we stimulated the interneur-
ons with a periodic theta drive that modulated the firing
rate of the interneurons. Interneurons were maximally de-
polarized at the trough of theta and were most likely to
spike then. When a weak pulse arrived at the quiescent
neuron during the depolarizing phase of the theta oscilla-
tion, it successfully toggled the network. However, inputs
that arrived at other phases did not cause a switch (Fig.
4C). Therefore, theta created periodic temporal windows
where the activity of the network could be switched from
one interneuron to another. In a larger network, we found
that when the input arrived at the receptive phases of
theta, the stimulated interneurons responded reliably to
the input and the locus of activity of the network followed
the input (Fig. 4D). However, merely creating periodic win-
dows where external inputs can drive the network is not
sufficient to generate reliable activity. Excitatory spikes
from stellate cells can also occur during this receptive
phase and perturb the response of the network to an ex-
ternal input. We found that when theta oscillations were
present, the stellate cell spikes were tightly synchronized
(Fig. 4D). These spikes always followed a burst of activity
in the presynaptic interneurons (Fig. 4D, inset, F). The in-
terneurons were locked to the trough of theta oscillations
while stellate cell spikes occurred at a later phase be-
cause of the time taken to generate a rebound spike when
released from inhibition. The stellate cell spikes occurred
when the interneurons were hyperpolarized and were im-
pervious to feedback excitation from stellate cells (Fig.
4D,F). The input-triggered response of the network segre-
gated inhibitory interneuron spikes from the stellate cell
responses (Fig. 4D). When theta was present and the ex-
ternal input occurred at a receptive phase, it was followed
by a reliable burst of interneuron spikes, followed by the
activity of stellate cells. In the absence of theta, stellate
cells fired after each burst of interneuron spikes (Fig. 4E,
inset). However, the stellate cell spikes were broadly dis-
tributed throughout the time between successive inputs
to the network (Fig. 4E,G). Thus, in the absence of theta,
stellate cells could effectively perturb the activity of the
network to act as a “distractor” that derailed network’s re-
sponse to an external drive. Earlier studies have looked at
the oscillatory mechanisms that separate target network
responses from distractors (for review, see Lengyel et al.,
2005). For example, Hopfield (1995) used oscillations to
create concentration-invariant odor representations that
could be read out by follower networks using time-delay
lines to separate the target pattern from distractors. Work
by Li and Dayan (1999) consider the case of pattern

recognition by selective amplification. They showed that
excitatory-inhibitory networks tended to fall into spurious
attractors termed “hallucinations.” The ability of the sys-
tem to elude these spurious attractors improved when the
network autonomously generated oscillations. These
studies, like ours, use oscillations to construct noise-free
representations. However, the mechanism we employ is
different from that used in earlier studies. We show that
inputs that arrive within a window of theta oscillations can
elicit a response from stellate cells, while those that do
not arrive within the receptive phase window, have a high-
er threshold to elicit a similar response. Distractors (recur-
rent excitation within the MEC network) get relegated to
the hyperpolarized phase of the theta oscillations. This
temporal organization of stellate cell and inhibitory inter-
neuron spikes with respect to a theta clock ensure that
the network listens to external inputs while ignoring its
own recurrent excitatory activity.

Theta-induced reliability persist despite qualitative

changes in topology of feedback excitation

Stellate cells excite inhibitory interneurons (Couey et al.,
2013; Buetfering et al., 2014). We modeled feedback exci-
tation as random inputs from stellate cells to the inhibitory

Figure 5. Theta-induced reliability persists despite qualitative
changes in topology of feedback excitation. A, Network topol-
ogy. The stellate cells are arranged in the top layer and inter-
neurons in the bottom layer. Each interneuron projects to its
postsynaptic stellate cells with the weights that follow a
Gaussian profile. Each single stellate cell projects to local post-
synaptic interneurons with a Gaussian connectivity profile in-
stead of random connections used in the previous simulations
(shown in Fig. 3B). The Gaussian connectivity profile of the stel-
late neuron was asymmetrically shifted with respect to the cen-
tral position occupied by the neuron in the ring. B, Raster plot
showing the response of a subset of neurons across trials in the
presence (left) and absence (right) of theta rhythmic input to
interneurons.
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layer. Here, we ask the following: are the disruptive effects
of feedback excitation a consequence of the the specific
network topology? To address this question, we simu-
lated a network of stellate cells and interneurons arranged
on a ring as we did in previous simulations. However, in-
stead of introducing broad random feedback excitation to
the inhibitory interneurons, we chose local asymmetric in-
puts from each stellate cell (Fig. 5A). Figure 5B shows the
response of the network to sequential input. In the ab-
sence of theta rhythmic drive, the network activity re-
flected influences from both the sequential input pattern
and the intrinsic dynamics of the network. The asymmetry
of connections dictated the direction along which the ac-
tivity of the network spread. However, it did not reliably
represent the input. In contrast, when theta oscillations
were present, and the inputs arrived in a theta phase-
locked manner, the output of the network faithfully fol-
lowed the input (Fig. 5B, left panel). We show, regardless
of the specific form of recurrent excitation, patterns of ac-
tivity were disrupted when theta oscillations were absent.
Therefore, recurrent excitation perturbs the response of
the network to dynamic input and its effects are not an ar-
tifact of the specific connectivity profile.

Theta-induced reliability persists over a range of

frequencies

Theta oscillations span a range of frequencies from 6 to
12Hz in rodents. Do changes in theta frequency compro-
mise the reliability of the network responses? As theta fre-
quency increased, the time between inhibitory bursts and
rebound spikes remained nearly the same since this was
determined by the time scale of the rebound kinetics of
stellate cells. Therefore, the phase at which stellate cell
spikes occurred started to shift systematically as the fre-
quency increased (Fig. 6A). As the distribution shifted
rightward (Fig. 6A), it became more likely that stellate cell
spikes would invade the receptive phases of the theta os-
cillation (Fig. 4C) and interfere with the ability of the net-
work to follow an external input. We calculated the
reliability across trials measured as the pairwise dissimi-
larity between spike trains (see Materials and Methods).
This measure showed greater reliability (Fig. 6B, lower
spike distance, circles) for theta between 6 and 12Hz
compared with a network that was not driven by theta os-
cillations (Fig. 6B, triangles in the box plot). Here, we si-
mulated the network for a particular value of the time
scale of the h–current, t , that varies along the dorsoven-
tral axis of the MEC. Given the broad range of theta over
which the network remains reliable, we anticipate that
other values of t would also give us a reliable response.
However, dorsoventral gradients in t can shift the regime
where the network is reliable. Changes in theta frequency
can signal changes in the animal’s behavior. For example,
theta frequency is linearly related to the animal’s velocity
(Jeewajee et al., 2008) and can change dynamically with
changes in velocity. As the animal’s velocity increased, it
encountered grid fields more rapidly. This translated in
our model as an increased rate at which external pulses
arrived at neighboring interneurons. We found that the

network responded reliably to external inputs despite ve-
locity dependent changes in frequency (Fig. 6C).

Theta oscillations gate the transmission of competing

inputs

When theta oscillations were present the network reli-
ably followed external inputs that arrived at the receptive
phase of theta. Here, we examine the response of the net-
work when competing external inputs occur at different
phases of the theta cycle. We simulated a network con-
sisting of two groups of interneurons connected to the
same pool of stellate cells. All the interneurons were
coupled to each other. Each group of interneurons ex-
tended inhibitory connections to the stellate cells forming
two separate ring networks (Fig. 7A). The upper ring of in-
terneurons received a transient pulse that traveled in a
counterclockwise direction while the lower ring received
an input that traveled clockwise. The two rings were cho-
sen to distinguish different input streams. The clockwise
and counterclockwise streams competed to elicit a re-
sponse in the same pool of stellate cells. We kept the am-
plitude of both the inputs constant and varied their phase
relationship with respect to an external common theta
oscillation.
In the first of the cases tested (Fig. 7B), one of the inputs

(clockwise) arrived when the interneurons were near
their most hyperpolarized phase while the second input
(counterclockwise) arrived at the depolarizing phase.
Predictably, the second input succeeded in eliciting a se-
quence of spikes in the upper ring of interneurons that en-
trained the stellate cells and inhibited all the other
neurons. We then varied the phase of the clockwise input
such that the pulse occurred progressively closer to the
phase of the counterclockwise input (Fig. 7B,D,E). When
the input crossed a particular phase of the theta oscilla-
tion (Fig. 7B, bottom row, E), it elicited spikes in inhibitory
interneurons of the lower ring. This inhibited all the other
interneurons including the neurons on the upper ring of
the network. Therefore, although the counterclockwise in-
puts occurred during a depolarized phase of theta, the re-
sponse of the network followed the clockwise inputs
because it occurred earlier and also during the depolar-
ized phase of the theta cycle. Thus, the mechanism
whereby the network selects between inputs is deter-
mined, not only by coherent theta gain modulation of in-
puts, but also by the temporal order and the phase at
which the inputs occur. Thus, theta oscillations can serve
as a gate that permits a particular temporal ordering of
stellate cell responses while prohibiting a different tempo-
ral ordering in the same group of cells.
Several studies have shown that theta oscillation

coherence plays an important role in interregional interac-
tions. However, few studies have looked at how this can
be implemented in different brain networks. Akam and
Kullmann (2010) was the first study that provided a mech-
anistic understanding of how oscillations can be used to
separate different streams of inputs in brain networks
(termed demultiplexing). The form of demultiplexing im-
plemented in our model is termed time division multiplex-
ing by coherent gain modulation (Akam and Kullmann,
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2014), where a periodic drive to the decoding circuits may
be used to separate the inputs arriving at different phases
of the drive. We used theta oscillations to modulate the
gain and amplify inputs arriving at some phases while at-
tenuating the effect of others.

Discussion
We showed that the MEC interneurons are receptive to

external inputs only within cyclic windows defined by
theta oscillations. Further, theta oscillations corralled stel-
late cells to spike synchronously at a phase where inhibi-
tory interneurons were hyperpolarized and less receptive
to excitatory inputs. This prevented stellate spikes from
depolarizing randomly connected postsynaptic inhibitory
interneurons that could compete with external inputs to
other neurons. This mechanism to generate reliable se-
quences can also be harnessed to ensure that the EC se-
lectively gates inputs such that some inputs that arrive at
specific phases are transmitted to postsynaptic targets
while others are blocked. Note that the sequences con-
sidered here are distinct from theta sequences (Foster

and Wilson, 2007), where the neurons are aligned within a
cycle of theta to form a compressed representation.

Tuning properties of interneurons

Inhibitory interneurons in Layer II of the MEC are broadly
tuned to spatial location and, unlike grid cells, do not show
periodic firing fields (Buetfering et al., 2014). Subsequent
studies have further emphasized that PV1 interneurons are
necessary to form grid-like receptive fields. Selectively turn-
ing off PV1 interneurons eliminates grid-like receptive fields
while preserving the receptive fields of other spatially tuned
neurons. They found that the phases of grid cells providing
input to a particular interneuron were uncorrelated and sug-
gested that this may be why interneurons had broad and
aperiodic firing fields. These observations present a chal-
lenge to attractor models in general that predict, hexago-
nally symmetric patterns of activity in the activity of grid cells
would be reflected in the activity of inhibitory interneurons
as well. We argue that these concerns may be addressed in
our model (and in some attractor models) by requiring that

Figure 6. Reliability across a range of theta frequencies. A, Histogram showing the distribution of phases of stellate cell spikes for a
range of theta frequencies from 6 to 15Hz. The green marker locates the mean of the distribution (B) box plot of the SPIKE distance
(Kreuz et al., 2013) in the presence (filled circles) and absence (triangles) of theta as a function of the rate at which input pulses
stimulated successive interneurons. C, Raster plot showing the response of the neurons (40 stellate cells, black lines; 40 interneur-
ons, red lines) across ten trials (as in Figs. 4D,E, 5B). The instantaneous frequency of the theta oscillation was varied from 6.0 to
12.0Hz in a periodic manner (blue trace shows the instantaneous frequency of the theta oscillation). A magnified version of the ras-
ter plot on the left shows spikes against a background of theta oscillation. Notice the theta frequency decreases in a manner indi-
cated by the blue trace above.
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the effective or summed inhibition to each grid cell must be
spatially periodic, while allowing individual neurons to be
broadly spatially tuned (Roudi and Moser, 2014). A plausible
architecture where broadly tuned interneurons with aperi-
odic spatial receptive fields can provide spatially periodic
input to stellate cells is shown in Figure 8. Each stellate cell
receives inputs from a pool of inhibitory interneurons. Each
neuron in this pool has a spatial receptive field that is cen-
tered around one or multiple peaks of the periodic receptive
field of the stellate cell it innervates. While the receptive
fields of each inhibitory interneuron shown in Figure 8 is
non-periodic, the summed input of all the interneurons is
periodic. Since our model depends on external inputs to
drive the activity of inhibitory interneurons and stellate cells,
this scheme can be easily implemented. In attractor models
recurrent excitatory input must follow a local and uniform ar-
chitecture. In contrast, in our model, each interneuron re-
ceives input from several randomly selected stellate cells,
an architecture that appears to be closer to that described
in Buetfering et al. (2014). Since these recurrent excitatory
inputs to the interneurons are relegated to the resistant
phase of the theta oscillations, they do not affect the re-
sponse of the network to external drive.

Stability in the absence of theta oscillations

Our model suggests that stable sequential activity is
contingent on the presence of theta oscillations. In the ab-
sence of theta, multiple traversals over a given region of

space failed to evoke a reliable response that is required
to form grid-like receptive fields. However, recordings
from Egyptian fruit bats show that grid-like receptive
fields can be formed in the absence of continuous theta
oscillations (Yartsev et al., 2011). This seems at odds with
our model and experiments in rodent MEC where excising
theta reversibly perturbs the grid-like structure of the re-
ceptive fields of MEC neurons (Koenig et al., 2011). One
way to reconcile these contradictory observations is to
assume that the MEC network in bats receives large am-
plitude inputs compared with smaller amplitude inputs in
rodents. This can lead to a stable response even in the ab-
sence of theta oscillations (Fig. 4B, bottom traces).
However, given that the MEC is a hub that receives multi-
ple inputs, relying only on the amplitude of the input
would impair its ability to selectively respond to some in-
puts while ignoring others that are equally salient. An ad-
ditional layer of control can multiplex between similar
inputs. Several lines of evidence suggest that theta oscil-
lations might indeed be playing this role in rats. Despite its
prominence in rodents, phase dependent gain modulation
does not require a continuous fixed frequency oscillation.
Interestingly, although bats lack a persistent oscillatory
signal like theta in rats, they generate fluctuating low fre-
quency local field potentials to which a significant propor-
tion of principal cells are locked (Eliav et al., 2018). Can
our model network use these low frequency inputs to gen-
erate a reliable output? We showed that reliability of our
model network responses progressively deteriorates in

Figure 7. Theta gates transmission of competing inputs. A, Topology of the network. Two sets of interneurons arranged on different
rings (top and bottom empty circles) inhibit the same stellate cell population (middle ring with filled circles). Two separate input
pulse trains (red and green bars) are given to the two inhibitory population. The input to upper ring followed a counterclockwise ac-
tivity pattern while input to the lower ring followed a clockwise sequence. B, The phase of each input within a single cycle of theta
for three different cases. The response of the network to these patterns of input are shown in C–E. The peak of the oscillation corre-
sponds to the maximally hyperpolarized phase of theta. C, The input arriving at the depolarizing phase (red) elicited a spike (gray
line) in the postsynaptic stellate cell while the one arriving during the hyperpolarized phase elicited none (this case corresponds to
the top trace in B). D, Both the inputs arrive at the depolarizing phase. The input that caused a maximum depolarization (red) elicited
a successful response (this case corresponds to the middle trace in B). E, Inputs to both the clockwise and the counterclockwise
rings were shifted. This switched the stellate cell from following the counterclockwise input to following the clockwise input.
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the high theta frequency regime (.11 Hz; Fig. 6B). At
low frequencies, the interneurons fire over a longer
duration corresponding to a widened window of depolariza-
tion. The hyperpolarizing phase of the theta oscillation tends

to shut the response of the interneurons and triggers a re-
bound excitation in stellate cells (Fig. 9A). Stellate cell spikes
continue to occur during the hyperpolarizing phase of theta
oscillations (Fig. 9B) and do not perturb the inhibitory

Figure 9. Response of the network to a slow oscillation (2Hz). The input (shown in gray) toggles the activity of interneurons that
continue to generate a burst of spikes (A). Rebound spikes by stellate cells occurred at a phase that did not perturb the sequence.
B, Histogram of the phase at which the stellate cells (dark bars) and the inhibitory interneurons (red bars) generate spikes.

Figure 8. Aperiodic inputs to stellate cells. Stellate cell receives input from three inhibitory interneurons. The gray traces
show the periodic receptive field of the stellate cell. The colored traces show the receptive fields of the inhibitory interneur-
ons. The summed input from the inhibitory interneurons is periodic while individual interneurons possess broad and aperi-
odic spatial receptive fields.
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network. Therefore, network responses to low frequency os-
cillations are reliable.
Bats show a large variability in the frequency of local

field potential fluctuations unlike theta oscillations in ro-
dents that vary over a smaller range. In our model network
the input driven switch from one interneuron to another is
rapid because of inhibitory competition between fast-
spiking interneurons and occurs within a single theta
cycle. Therefore, the network activity can respond to fluc-
tuations in a cycle-by-cycle manner, relegating distractors
to a hyperpolarized phase despite variations in instanta-
neous frequencies. Changes in instantaneous frequency
that occur on a slower time scale than the switching time
scale have little impact on perturbing the input driven dy-
namics of the network. Thus, the slow local field fluctua-
tions seen in bats may be sufficient to evoke a reliable
response in stellate cells.

Role of neuromodulation in gating sequences

We showed that theta oscillations can gate the trans-
mission of information between different brain regions.
Mechanisms ranging from a cellular scale to that of popu-
lations of neurons can lead to coherent oscillations
(Tiesinga and Sejnowski, 2009, 2010). One can selectively
couple two regions by ensuring that the phase of theta is
coherent across these regions and information is trans-
mitted during a restricted phase window of theta.
Interregional interactions via oscillatory phase coherence
is not restricted to circuits including MEC, but widespread
across many cortical and subcortical structures (Kay,
2005; Colgin, 2011, 2013; Kim et al., 2011; Liebe et al.,
2012; Fries, 2015). A number of behaviors depend on re-
cruiting a broad network of regions. For example, hippo-
campal and amygdalar circuits show theta coherence
when animals are exposed to anxiety inducing situations
(Adhikari et al., 2010). Working memory in rodents (Jones
and Wilson, 2005) recruits hippocampal and medial pre-
frontal cortex via theta synchrony. Many adaptive behav-
iors coincide with an enhanced coherence in the phase of
the local field oscillations between different brain regions
(Reinhart et al., 2015; Tendler and Wagner, 2015).
Memories at various stages of encoding, consolidation
and retrieval invoke different configurations of brain re-
gions that are dynamically assembled by theta phase co-
herence across these regions. During the early phases of
learning an association between a conditioned and an un-
conditioned stimulus, the hippocampal-LEC coupling is
characterized by phase synchronized theta oscillations.
As learning progresses, the phase synchrony between the
hippocampus and LEC decreases with a concomitant in-
crease in LEC-medial prefrontal cortex synchrony
(Takehara-Nishiuchi et al., 2012). Theta synchrony is a
read-out of increased information transfer across brain
regions.
However, finer control over the input during each

theta cycle is required to ensure that MEC networks
selectively listen to or ignore incoming inputs. What
are the mechanisms that ensure the right inputs arrive
at the right phase of theta? Inhibitory interneurons that
participate in generating and maintaining hippocampal

theta rhythms broadcast rhythmic inhibition that tar-
gets inhibitory interneurons in other areas (Gonzalez-
Sulser et al., 2014). These, in turn, synchronize princi-
pal neurons. The effectiveness of inhibition onto prin-
cipal neurons can alter the degree of synchronization and
the phase of principal neuron spikes. In the hippocampal-me-
dial prefrontal cortex circuit, this is likely controlled by neuro-
modulators like dopamine (Benchenane et al., 2010) that can
effectively shift the phase of principal neuron spikes with re-
spect to a theta oscillation and selectively couple it to brain
regions downstream.Modulatory control can therefore create
transient functional networks that flexibly serve different be-
havioral contingencies.

Effects of synaptic plasticity on sequences

Our simulations operated in a regime where the system
responded to a sequential external drive and moved the
locus of activity from one neuron to another. Stellate cells
spiked and registered the temporal location of this transi-
tion. In the MEC network, GABAergic connections onto
the principal neurons show spike timing dependent plas-
ticity that enhances the weights of inhibitory connections
for those synapses where the postsynaptic stellate cell
spikes after the inhibitory interneuron (Haas et al., 2006).
Repeated sequential activation of the same network will
therefore lead to changes in synaptic weight that intro-
duce asymmetries in the network architecture (Mehta et
al., 1997). Asymmetries become particularly relevant in
the parameter regime where the network motif simulated
in Figure 1B operates as an autonomous oscillator. Here,
we simulated a simple network with two pairs of stellate
cells and inhibitory interneurons that were symmetrically
coupled. If this motif were extended to a chain of units
with a directional asymmetry embedded in the chain, then
the activity would propagate reliably along this asymme-
try. These sequences may appear as episodes where the
activity of the network is replayed (Ólafsdóttir et al., 2018)
in the absence of any external inputs. Any brain region
that is involved in flexible sequence learning must deal
with a conflict between the intrinsic dynamics of the net-
work, a consequence of asymmetries in the network that
emerge from recent experiences, and a new sequential
pattern representing novel experience. To learn the novel
sequential pattern, the activity of the local circuits should
be enslaved to the external input since many plasticity
mechanisms are activity dependent. If local circuits are
predisposed to dynamics dictated by internal asymme-
tries, the response to external input patterns would be
perturbed by these internal dynamics. In the hippocam-
pus a switch between initial encoding (listening to external
input) and consolidation (or a reactivation across
strengthened connections) is mediated by acetylcholine
(Hasselmo et al., 1996; Káli and Dayan, 2000). In the MEC
microcircuit, we propose that theta rhythmic inputs can
effectively silence the intrinsic dynamics. In contrast,
when external inputs are absent, intrinsic asymmetries
take over and feed-forward excitation propagates reliable
sequences along the network. The dynamics of the sys-
tem is most likely a combination of driven and autono-
mous attractor-like dynamics. We speculate that the
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animal switches between using external cues to navigate
and internal representations when external cues are ab-
sent or to consolidate memories of recently traversed
trajectories.
In sum, our study highlights the central role of theta os-

cillations in generating reliable sequences and forming
transient functionally connected networks. This is possi-
ble because of the fortuitous similarity between the time
scales of theta oscillations and conductances of stellate
cells together with the architecture of the MEC network.
Note Added in Proof: The codes and the documentation

required to run the simulations and analyze the outputs
are also available as the Extended Data 1.
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