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Abstract. Unstructured grid ocean models are advantageous

for simulating the coastal ocean and river–estuary–plume

systems. However, unstructured grid models tend to be diffu-

sive and/or computationally expensive, which limits their ap-

plicability to real-life problems. In this paper, we describe a

novel discontinuous Galerkin (DG) finite element discretiza-

tion for the hydrostatic equations. The formulation is fully

conservative and second-order accurate in space and time.

Monotonicity of the advection scheme is ensured by using a

strong stability-preserving time integration method and slope

limiters. Compared to previous DG models, advantages in-

clude a more accurate mode splitting method, revised vis-

cosity formulation, and new second-order time integration

scheme. We demonstrate that the model is capable of sim-

ulating baroclinic flows in the eddying regime with a suite

of test cases. Numerical dissipation is well-controlled, being

comparable or lower than in existing state-of-the-art struc-

tured grid models.

1 Introduction

Numerical modeling of the coastal ocean is important for

many environmental and industrial applications. Typical sce-

narios include modeling circulation at regional scales, cou-

pled river–estuary–plume systems, river networks, lagoons,

and harbors. Length scales range from some tens of me-

ters in rivers and embayments to tens of kilometers in the

coastal ocean; water depth ranges from less than a meter

to kilometer scale at the shelf break. The timescales of the

relevant processes range from minutes to hours, yet typi-

cal simulations span weeks or even decades. The dynamics

are highly non-linear, characterized by local small-scale fea-

tures such as fronts and density gradients, internal waves, and

baroclinic eddies. These physical characteristics imply that

coastal ocean modeling is intrinsically multi-scale, which

imposes several technical challenges.

Most coastal ocean models solve the hydrostatic Navier–

Stokes equations under the Boussinesq approximation – a

valid approximation for mesoscale and submesoscale (1 km)

processes. Small-scale processes ( < 100 m) are, however,

inherently three-dimensional where non-hydrostatic effects

can be important, especially in areas with pronounced den-

sity structure and stratification (Marshall et al., 1997b; Ma-

hadevan, 2006). Non-hydrostatic modeling requires very

high horizontal mesh resolution, which is currently only fea-

sible in relatively small subregions (e.g., at the mouth of an

estuary; Shi et al., 2017) due to its high computational cost.

Historically, regional ocean models have used structured,

(deformed) rectilinear lattice grids. Although structured grids

offer better computational performance (Danilov et al., 2008;

Danilov, 2013), unstructured grids are generally preferred
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in coastal domains as they can better represent the complex

coastal topography and local features (Deleersnijder and Ler-

musiaux, 2008; Danilov, 2013; Piggott et al., 2013). Due to

the large geometrical aspect ratio of the oceans (length versus

depth), most models utilize computational grids that are lay-

ered in the vertical direction. Typical approaches include the

terrain-following sigma levels (Blumberg and Mellor, 1987),

equipotential z levels (Griffies et al., 2005), isopycnal coor-

dinates (Bleck, 1978), and their generalizations (e.g., Song

and Haidvogel, 1994; Bleck, 2002).

In this article, we focus on solving the hydrostatic equa-

tions on an unstructured grid. While many unstructured grid

models exist, their drawbacks tend to be excessive numer-

ical diffusion that smooths out important physical features

(Kärnä et al., 2015; Kärnä and Baptista, 2016; Ralston et al.,

2017) and/or high computational cost. To address these is-

sues, we propose a novel finite element solver for the hydro-

static equations, based on discontinuous Galerkin discretiza-

tion methods.

Maintaining high numerical accuracy is crucial in ocean

applications. The ocean is a forced dissipative system where

the mixing of water masses only takes place at the molecu-

lar level (Griffies, 2004). In practice, however, the finite grid

resolution and numerical schemes used by the model intro-

duce mixing rates of tracers and momentum that can be or-

ders of magnitude larger than physical mixing (Burchard and

Rennau, 2008; Rennau and Burchard, 2009; Hiester et al.,

2014). Such spurious, numerical mixing is often dominated

by the discretization of advection (Marchesiello et al., 2009;

Griffies et al., 2000), but it can arise from other components

as well, such as (implicit) time integration methods (Shchep-

etkin and McWilliams, 2005) or various filters introduced

to improve numerical stability (Danilov, 2012; Zhang et al.,

2016). In addition, wetting and drying schemes may intro-

duce additional dissipation in order to stabilize the barotropic

equation in the drying regime. We reserve consideration of

this important latter topic for a future publication.

In global circulation models, numerical mixing is a major

bottleneck as (diapycnal) diffusion is very low in the deep

ocean basins and water masses can remain largely unchanged

for hundreds of years (Griffies, 2004; Griffies et al., 2000).

Numerical mixing can, however, be a major issue in coastal

domains as well: coastal oceans are characterized by strong

density gradients, fronts between water masses (e.g., in river

plumes), small-scale dynamics (e.g., internal waves and hy-

draulic jumps), and baroclinic eddies. An overly diffusive

model can, therefore, fail to capture many essential physi-

cal features of these domains: it can smear out fronts, un-

derestimate the intrusion of saline waters into embayments

(Burchard and Rennau, 2008; Hofmeister et al., 2010; Kärnä

et al., 2015; Ralston et al., 2017), or misrepresent mixing in

river plumes.

The most common spatial discretization scheme is the fi-

nite volume (FV) method, used in the MITgcm (Marshall

et al., 1997a), GETM (Burchard and Bolding, 2002), ROMS

(Shchepetkin and McWilliams, 2003, 2005), MPAS-Ocean

(Ringler et al., 2013; Petersen et al., 2015), UnTRIM (Ca-

sulli and Walters, 2000), FVCOM (Chen et al., 2003), SUN-

TANS (Fringer et al., 2006), FESOM2 (Danilov et al., 2017),

and others. The FV method is well suited for advection-

dominated problems, provides strict conservation of volume

and mass, and yields good computational performance. FV

methods are nominally only first-order accurate, but higher-

order approximations can be introduced by increasing the

size of the numerical stencil (e.g., in high-order advection

schemes; Shchepetkin and McWilliams, 1998).

Some unstructured grid models are based on the contin-

uous Galerkin finite element (FE) method or hybrid FE–FV

formulations. Such models include ADCIRC (Luettich and

Westerink, 2004), SELFE (Zhang and Baptista, 2008), and

SCHISM (Zhang et al., 2016), and the earlier version of FE-

SOM (Wang et al., 2014). The continuous FE method is ideal

for solving elliptic equations but requires stabilization for

advection (see Wang et al., 2008a, and references therein).

In addition, these methods involve solving a fully coupled

global system which is less efficient in parallel applications

compared to the FV method (Danilov, 2012; Danilov et al.,

2017).

In recent years, discontinuous Galerkin (DG) methods

have gained attention in geophysical modeling (Dawson and

Aizinger, 2005; Aizinger and Dawson, 2007; Blaise et al.,

2010; Comblen et al., 2010a; Kärnä et al., 2012, 2013). DG

discretization resembles the FV method because it is local

(i.e., elements are only connected by inter-element fluxes),

fully conservative, and well-suited for advective problems,

yet it offers higher-order accuracy. This article presents a DG

discretization for the hydrostatic equations. Our goal is to de-

sign an efficient unstructured grid solver where numerical ac-

curacy is not compromised. Specifically, we aim to meet the

following design criteria:

– a vertically extruded, layered mesh;

– accurate representation of free surface dynamics;

– a second-order accurate, monotone tracer advection

scheme;

– explicit time integration of 3-D variables (except for

vertical diffusion); and

– low numerical mixing.

Based on the advection scheme requirements, we have cho-

sen to use linear discontinuous Galerkin elements for trac-

ers, combined with a slope limiter (Kuzmin, 2010) and a

strong stability-preserving (SSP) time integration scheme

(Shu, 1988; Shu and Osher, 1988; Gottlieb and Shu, 1998;

Gottlieb, 2005; Gottlieb et al., 2009). This choice ensures

that the scheme is second order in smooth areas, while

slope limitation combined with the SSP time integration
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scheme ensure monotonicity (i.e., no overshoots). The move-

ment of the free surface is taken into account with an arbi-

trary Lagrangian–Eulerian (ALE) formulation (Donea et al.,

2004), where the mesh moves in the vertical direction. The

ALE formulation guarantees strict local and global conserva-

tion of volume and tracers and allows for the use of generic

vertical grids (Petersen et al., 2015).

All numerical ocean models include some form of fric-

tion, either in the form of a numerical closure or a physi-

cal parameterization (Griffies and Hallberg, 2000). Numeri-

cal closure involves adding a sufficient amount of dissipation

to maintain numerical stability. There is a wealth of litera-

ture about stable finite volume (e.g., Danilov, 2012) and fi-

nite element discretizations (e.g., Hanert et al., 2003; Cotter

et al., 2009a, b; Comblen et al., 2010b; McRae and Cotter,

2014) for rotational shallow water equations. Most of these

schemes are stable for external gravity waves and hence do

not require any additional dissipation. Solving the 3-D hy-

drostatic equations under strong baroclinic forcing, however,

generates noise at the grid scale that does require dampen-

ing. A common approach is to add some form of viscosity

proportional to the grid Reynolds number (Griffies and Hall-

berg, 2000; Ilıcak et al., 2012). Griffies and Hallberg (2000)

argue that conventional Laplacian viscosity has too wide a

spectrum and tends to dissipate physically relevant (larger)

scales too much. They show that biharmonic viscosity dissi-

pates smaller scales more and is thus more appropriate for

removing noise at the grid scale. In contrast to numerical

closures, physical parameterizations aim to represent unre-

solved subgrid-scale processes, such as strong lateral mixing

near coasts or mixing at the bottom boundary layers. In this

article, we focus on numerical closures; the presented vis-

cosity schemes are mostly motivated by numerical stability

considerations.

In this article, we present an efficient DG implementation

of the three-dimensional hydrostatic equations. The model is

implemented in the Thetis project – an open-source coastal

ocean circulation model freely available online (see http:

//thetisproject.org, last access: 25 October 2018). Thetis im-

plements both a 2-D depth-averaged circulation model and a

full 3-D hydrostatic model, the latter of which is discussed

herein.

Thetis is implemented using the Firedrake finite element

modeling platform (https://www.firedrakeproject.org/, last

access: 25 October 2018; Rathgeber et al., 2016). We have

chosen Firedrake because of its flexibility and support for ex-

truded meshes (McRae et al., 2016; Bercea et al., 2016). Fire-

drake uses high-level abstractions for describing the weak

formulation of partial differential equations, specifically the

Unified Form Language (Alnæs et al., 2014), and automated

code generation to produce efficient C code (Homolya et al.,

2018; Luporini et al., 2017) and just-in-time compilation. As

such, it is an extremely flexible modeling framework that

does not sacrifice computational efficiency; it is also an ideal

platform for experimenting and benchmarking different dis-

cretizations. Automated code generation can also support

different target hardware architectures, making it attractive

for current and emerging high-performance computing plat-

forms. In addition, Firedrake can automatically derive the ad-

joint of the forward model (Farrell et al., 2013), permitting

inverse modeling applications such as parameter optimiza-

tion and data assimilation.

The governing equations are presented in Sect. 2, followed

by their DG finite element discretization in Sect. 3. The

second-order coupled time integration scheme is described

in Sect. 4. Numerical tests are presented in Sect. 5.

2 Governing equations

Let � be the three-dimensional domain that spans from the

sea floor z=−h(x, y) to the free surface z= η(x, y); the

bottom and top surfaces are denoted by Ŵb and Ŵs, respec-

tively. Total water column depth is thus H = η+h. The two-

dimensional horizontal domain is denoted by Ŵ0.

The horizontal momentum equation reads

∂u

∂t
+∇h · (uu)+

∂(wu)

∂z
+ f ez ∧u+

1

ρ0
∇hp

=∇h · (νh∇hu)+
∂

∂z

(
ν
∂u

∂z

)
, (1)

where u= (u, v) and w denote the horizontal and vertical

velocity, respectively; ∇h is the horizontal gradient operator;

∧ denotes the cross product operator; f is the Coriolis pa-

rameter; ez is the vertical unit vector; p is the pressure; and

νh and ν are the horizontal and vertical diffusivity, respec-

tively. Water density is defined as ρ = ρ0+ρ′(T , S, p), where

T and S stand for temperature and salinity, respectively, and

ρ0 is a constant reference density.

Under the hydrostatic assumption, the horizontal pressure

gradient can be written as a combination of external, internal,

and atmospheric pressure gradients:

1

ρ0
∇hp = g∇hη+ g∇hr +

1

ρ0
∇hpatm, (2)

where patm is the atmospheric pressure acting on the sea sur-

face, and

r =
1

ρ0

η∫

z

ρ′dz′ (3)

is the baroclinic head. For brevity, the internal pressure gra-

dient field is denoted as F pg = g∇hr .

Neglecting atmospheric pressure, the full horizontal mo-

mentum equation reads

∂u

∂t
+∇h · (uu)+

∂(wu)

∂z
+ f ez ∧u+ g∇hη+F pg

=∇h · (νh∇hu)+
∂

∂z

(
ν
∂u

∂z

)
. (4)
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Vertical velocity w is diagnosed from the continuity equa-

tion:

∇h ·u+
∂w

∂z
= 0. (5)

Water temperature and salinity are modeled with an

advection–diffusion equation of the form

∂T

∂t
+∇h · (uT )+

∂(wT )

∂z
=∇h · (µh∇hT )+

∂

∂z

(
µ

∂T

∂z

)
, (6)

where µh and µ stand for the horizontal and vertical (eddy)

diffusivity, respectively.

At the bottom boundary, we impose quadratic bottom

stress:
(

νhnh ·∇hu+ νnz

∂u

∂z

)∣∣∣∣x∈Ŵb =
τ b

ρ0
, (7)

τ b

ρ0
= Cd|ubf|ubf, (8)

where Cd is the drag coefficient, and ubf is the velocity in

the middle of the bottommost element. n= (nx , ny , nz) is

the outward normal vector, and nh = (nx , ny , 0) its horizon-

tal projection. The bottom boundary condition is treated im-

plicitly; Eq. (8) is linearized by keeping the magnitude |ubf|
fixed at the “old” value while solving for u (and ubf). Typ-

ically, Cd is computed from the logarithmic law of the wall

(e.g., Kärnä et al., 2013).

2.1 Mode splitting

Following Higdon and de Szoeke (1997), we split the

horizontal velocity field into depth-averaged u and devia-

tion u′ = u−u components. The depth-averaged momentum

equation is then defined as

∂u

∂t
+ f ez ∧u+ g∇hη =G, (9)

where G is a forcing term used to couple the 2-D and 3-

D modes. This equation is complemented with the depth-

averaged continuity (free surface) equation:

∂η

∂t
+∇h · (Hu)= 0. (10)

The 2-D system (Eqs. 9–10) contains the fast-propagating,

rotational surface gravity waves. The corresponding equation

for u′ is obtained by subtracting Eq. (9) from Eq. (4) (Higdon

and de Szoeke, 1997):

∂u′

∂t
+∇h · (uu)+

∂(wu)

∂z
+ f ez ∧u′+F pg

=∇h · (νh∇hu)+
∂

∂z

(
ν
∂u

∂z

)
−G. (11)

Note that the advection and viscosity terms are included in

Eq. (11) without splitting, based on the assumption that these

processes are slow enough to be captured with long time

steps. The Coriolis term, on the other hand, only contains

the slow modes. The vertical velocity w only appears in the

advection term, which is not split, and thus there is no need

to split w.

2.2 Coupling 2-D and 3-D modes

The 2-D and 3-D modes are coupled using the additional

term G (Higdon and de Szoeke, 1997; Ringler et al., 2013).

First, the 3-D momentum equation (Eq. 11) is solved with

G= 0, resulting in a velocity field u′ that has a non-zero

depth average, generated by the advection and viscosity

terms (that depend on u). We then compute the depth-

averaged u′ and apply a correction:

G= u′/1t, (12)

u′← u′−G1t (13)

to enforce zero depth average. By definition, the field G is

a constant over the vertical, and it will be used as a forcing

term in the 2-D momentum equation (Eq. 9) in the subse-

quent solve. This procedure ensures that Eqs. (9) and (11)

sum up to Eq. (4) and
∫
u′dz0.

2.3 Equation of state

In this paper, a linear equation of state is used:

ρ(T ,S)= ρ0−αT (T − T0)+βS (S− S0) , (14)

where αT and βS are the thermal expansion and saline con-

traction coefficients, respectively, and T0 and S0 are refer-

ence temperature and salinity. In all the test cases presented

herein, salinity does not contribute to water density (βS = 0).

Thetis also implements a full non-linear equation of state

(Jackett et al., 2006).

2.4 Viscosity and turbulence closure

Baroclinic flows require some form of viscosity to filter out

grid-scale noise. In this paper, we only consider Laplacian

horizontal viscosity, set to a constant νh = U1x/Reh cor-

responding to the velocity scale U , horizontal mesh resolu-

tion 1x, and the desired grid Reynolds number Reh. Here,

the velocity scale U is taken as a global constant specific to

each test case. Unless otherwise specified, the horizontal dif-

fusivity of tracers is zero.

In most test cases, vertical viscosity is set to a constant. In

certain cases, we use the gradient Richardson number depen-

dent parameterization by Pacanowski and Philander (1981):

ν =
ν0

(1+αRi)n
+ νb,

µ=
ν

1+αRi
+µb, (15)
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Table 1. Prognostic and diagnostic variables and their function

spaces.

Field Symbol Equation Function space

Prognostic variables

Water elevation η (23) P DG
1

Depth av. velocity u (24) [P DG
1 ]

2

Horizontal velocity u′ (25) [P DG
1 ×P DG

1 ]
2

Water temperature T (26) P DG
1 ×P DG

1

Water salinity S (26) P DG
1 ×P DG

1

Diagnostic variables

Vertical velocity w (31) P DG
1 ×P DG

1

Water density ρ′ (14) P DG
1 ×P DG

1

Baroclinic head r (32) P DG
1 ×P2

Int. pressure grad. F pg (33) [P DG
1 ×P DG

1 ]
2

where Ri=N2/M2 is the gradient Richardson number, N is

the buoyancy frequency, and M is the vertical shear fre-

quency. The background values are set to νb = µb = 2×
10−5 m2 s−1, while maximum viscosity is set to ν0 = 2×
10−2 m2 s−1; the dimensionless parameters are α = 10 and

n= 2 (Wang et al., 2008b). More sophisticated turbulence

closures will be addressed in future work.

3 Finite element discretization

This section describes the spatial discretization of the gov-

erning equations. In Sect. 3.1, we define the finite element

function spaces, followed by the weak forms of the underly-

ing equations.

3.1 Function spaces

The prognostic variables of the coupled 2-D–3-D system

(Eqs. 9, 10, 11, 6) are η, u, u′, T , and S. Diagnostic vari-

ables include the vertical velocity w, water density ρ′, baro-

clinic head r , and internal pressure gradient F pg. The choice

of function spaces where these variables reside is crucial for

numerical stability and accuracy.

Our discretization is based on the linear discontinuous

Galerkin function space, P DG
1 . The 2-D system is discretized

with a P DG
1 −P DG

1 velocity–pressure finite element pair: wa-

ter elevation and both components of the depth-averaged ve-

locity are approximated in P DG
1 space, i.e., η ∈H2-D = P DG

1 ,

u ∈ U2-D = [P DG
1 ]

2. When embedded with appropriate Rie-

mann fluxes at element interfaces, the P DG
1 −P DG

1 element

pair is well suited for rotational shallow water problems

(Comblen et al., 2010b; Kärnä et al., 2011).

Achieving an accurate and monotone 3-D tracer advec-

tion scheme is one of our main design criteria. The tracers,

therefore, are also considered within a discontinuous func-

tion space, T , S ∈H= P DG
1 ×P DG

1 (here, the × operator

stands for the Cartesian product of function spaces in the ex-

truded mesh: horizontal × vertical function space). Tracer

consistency (sometimes called local tracer conservation) is a

necessary condition for monotonicity; it ensures that a con-

stant tracer field does not exhibit spurious local extrema. In

practice, it implies that the discrete tracer equation must re-

duce to the discrete continuity equation for a constant tracer.

In this work, we satisfy this property by requiring the ver-

tical velocity to belong to the tracer space H (White et al.,

2008b). In addition, compatibility between the 2-D and 3-D

momentum equations requires that the 3-D horizontal veloc-

ity must be P DG
1 in the horizontal direction. We therefore set

u′ ∈ U = [P DG
1 ×P DG

1 ]
2 as well. The used function spaces

are summarized in Table 1.

Note that this choice of function spaces is not mimetic

(McRae and Cotter, 2014; Danilov, 2013): the discrete sys-

tem does not preserve all the properties of the continuous

equations; for example, enstrophy is not conserved exactly.

As the coastal ocean is generally very dissipative, maintain-

ing mimetic properties is, however, not crucial. It is possible

to define a mimetic discretization as well, for example, us-

ing Raviart–Thomas elements for the velocity, i.e., element

pair RT1−P DG
1 (McRae and Cotter, 2014). Our preliminary

experiments, however, indicate that this choice significantly

increases the computational cost of the system, without a cor-

responding improvement in accuracy. Formal assessment of

the performance of mimetic discretizations in coastal ocean

applications will be investigated in the future.

In the weak forms, we use the following notation for vol-

ume and interface integrals:

〈
•

〉
�
=

∫

�

• dx, (16)

〈〈
•

〉〉
∂�
=

∫

∂�

• ds. (17)

In interface terms, we additionally use the average {{·}} and

jump [[·]] operators for scalar a and vector u fields:

{{a}} =
1

2

(
a++ a−

)
, (18)

{{u}} =
1

2

(
u++u−

)
, (19)

[[an]] = a+n++ a−n−, (20)

[[u ·n]] = u+ ·n++u− ·n−, (21)

[[un]] = u+n++u−n−, (22)

where the superscripts “+” and “−” arbitrarily label the val-

ues on either side of the interface, and n is the outward unit

normal vector of each element on the interface.

www.geosci-model-dev.net/11/4359/2018/ Geosci. Model Dev., 11, 4359–4382, 2018
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3.2 2-D system

Let T stand for the triangulation of the 2-D domain Ŵ0. The

set of element interfaces is denoted by I = {k∩k′|k,k′ ∈ T },
and n= (nx , ny) the outward unit normal vector of an in-

terface e ∈ I. For brevity, boundary conditions are omitted

from the weak forms.

Let φ2-D ∈H2-D and ψ2-D ∈ U2-D be test functions in the

2-D function spaces. The weak formulation of the 2-D sys-

tem then reads: find η ∈H2-D, u ∈ U2-D such that
〈∂η

∂t
φ2-D

〉
Ŵ0

+
〈〈(

H ∗u∗
)
· [[φ2-Dn]]

〉〉
I

−
〈
(Hu) ·∇hφ2-D

〉
Ŵ0

= 0, (23)
〈∂u
∂t
·ψ2-D

〉
Ŵ0

+
〈
f ez ∧u ·ψ2-D

〉
Ŵ0

+
〈〈

gη∗
[[
ψ2-D ·n

]] 〉〉
I

−
〈
gη∇h ·ψ2-D

〉
Ŵ0

=
〈
G ·ψ2-D

〉
Ŵ0

,

∀φ2-D ∈H2-D,ψ2-D ∈ U2-D. (24)

Here, the divergence ∇h · (Hu) and external gradient g∇hη

terms have been integrated by parts. The resulting interface

terms are defined on the element edges where the state vari-

ables η, u are not uniquely defined. The values η∗, u∗ are

obtained from an approximate Riemann solver; here, we use

the linear Roe solution η∗{{η}}+
√

H/g[[u ·n]] and u∗ =
{{u}}+

√
g/H [[ηn]] (Comblen et al., 2010b).

3.3 Momentum equation

Let P denote the set of prisms of the 3-D domain �, obtained

from a vertical extrusion of Ŵ0. The set of horizontal and

vertical interfaces is denoted by Ih and Iv, respectively. Let

ψ ∈ U be a test function. The weak formulation of the 3-D

momentum equation then reads: find u ∈ U such that

〈∂u′
∂t
·ψ

〉
�
−

〈
∇hψ : (uu)

〉
�
+

〈〈
uup ·

[[
ψnh

]]
· {{u}}

〉〉
Ih∪Iv

−
〈
(wu) ·

∂ψ

∂z

〉
�
+

〈〈
uup ·

[[
ψnz

]]
{{w}}

〉〉
Ih

+
〈
f ez ∧u′ ·ψ

〉
�
+

〈
F pg ·ψ

〉
�

+
〈〈

γlf[[u]] · [[ψ]]
〉〉
Ih∪Iv

=Dh(u,ψ)

+Dv(u,ψ),∀ψ ∈ U . (25)

Here, the advection and viscosity terms have been integrated

by parts (see Kärnä et al., 2013); the colon operator is the

Frobenius inner product, A : B=
∑
i,j

Ai,jBi,j , and uup stands

for the upwind value at the interface. The internal pressure

gradient term has been augmented with the Lax–Friedrichs

flux with parameter γlf = {{|u|}}. Adding such a flux is re-

quired to stabilize the internal pressure gradient: it reduces

noise in the velocity field and decreases spurious numerical

mixing in baroclinic applications. The Dh, Dv terms denote

the diffusion operators introduced later.

3.4 Tracer equation

The weak formulation of the tracer equations is derived anal-

ogously: find T ∈H such that

〈∂T

∂t
φ
〉
�
−

〈
T u ·∇hφ

〉
�
+

〈〈
T up [[φnh]] · {{u}}

〉〉
Ih∪Iv

−
〈
(T w)

∂φ

∂z

〉
�
+

〈〈
T up

[[
φnz

]]
{{w}}

〉〉
Iv

=Dh(T ,φ)+Dv(T ,φ),∀φ ∈H. (26)

Note that we do not employ the Lax–Friedrichs flux in the

tracer equation.

3.5 Symmetric interior penalty stabilization

The presented discretization is unstable for elliptic operators,

and the diffusion operators require additional stabilization.

Here, we use the symmetric interior penalty Galerkin (SIPG)

method (Epshteyn and Rivière, 2007). The SIPG formulation

of the tracer diffusion operators read

Dh(T ,φ)=−
〈
µh (∇hφ) · (∇hT )

〉
�

+
〈〈
{{µh∇hT }} · [[φnh]]

〉〉
Ih∪Iv

+
〈〈
{{µh∇hφ}} · [[T nh]]

〉〉
Ih∪Iv

−
〈〈
{{σ }} {{µh}} [[T nh]] · [[φnh]]

〉〉
Ih∪Iv

, (27)

Dv(T ,φ)=−
〈
µ

∂T

∂z

∂φ

∂z

〉
�
+

〈〈{{
µ

∂T

∂z

}}[[
φnz

]] 〉〉
Ih

+
〈〈{{

µ
∂φ

∂z

}}[[
T nz

]] 〉〉
Ih

−
〈〈
{{σ }}{{µ}}

[[
T nz

]][[
φnz

]] 〉〉
Ih

. (28)

For the viscosity terms, we get

Dh(u,ψ)=−
〈
νh (∇hψ) : (∇hu)T

〉
�

+
〈〈 [[

ψnh

]]
· {{νh∇hu}}

〉〉
Ih∪Iv

+
〈〈

[[unh]] · {{νh∇hψ}}
〉〉
Ih∪Iv

−
〈〈
{{σ }} {{νh}} [[unh]]

[[
ψnh

]] 〉〉
Ih∪Iv

, (29)

Dv(u,ψ)=−
〈
ν
∂ψ

∂z
·
∂u

∂z

〉
�

+
〈〈 [[

ψnz

]]
·
{{

ν
∂u

∂z

}}〉〉
Ih

+
〈〈 [[

unz

]]
·
{{

ν
∂ψ

∂z

}}〉〉
Ih

−
〈〈
{{σ }}{{ν}}

[[
unz

]]
·
[[
ψnz

]] 〉〉
Ih

. (30)
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The penalty factor σ is defined as σ = γ
p(p+1)

L
(Epshteyn

and Rivière, 2007), where p is the degree of the basis func-

tions, γ is a factor depending on mesh quality, and L is

the local element length scale in the normal direction of

the interface. Let hh and hv denote the horizontal and verti-

cal element sizes, and 1= diag(hh, hh, hv). We then define

L= n ·1 ·n= hh(n
2
x+n2

y)+hvn
2
z (Pestiaux et al., 2014). In

this paper, we use γ = 5.

3.6 Continuity equation

The vertical velocity w is computed diagnostically from the

continuity equation (Eq. 5) by solving the weak form: find

w ∈H such that
〈〈

wnzϕ
〉〉

Ŵs

+
〈〈
{{w}}

[[
ϕnz

]] 〉〉
Ih

−
〈
w

∂ϕ

∂z

〉
�

=
〈
u ·∇hϕ

〉
�
−

〈〈
{{u}} · [[ϕnh]]

〉〉
Ih∪Iv

−
〈〈
u ·ϕnh

〉〉
Ŵs

,∀ϕ ∈H, (31)

where both the left- and right-hand sides have been integrated

by parts. Note that the terms on the bottom surface Ŵb vanish

due to the impermeability constraint u ·nh+wnz = 0.

3.7 Computing the internal pressure gradient

The water density is computed diagnostically using the equa-

tion of state. We use the same P DG
1 ×P DG

1 function space for

tracers and water density. In this work, we use a linear equa-

tion of state (Eq. 14), and consequently density can be com-

puted locally (at each node of the tracer field). In general,

however, the equation of state is non-linear, and the density

is projected on the ρ field.

The baroclinic head is computed from Eq. (3) by inte-

grating ρ′ over the vertical. In practice, we solve equation
∂r
∂z
= ρ′/ρ0 weakly with the appropriate boundary condi-

tions:
〈〈

rnzϕ
〉〉

Ŵs

+
〈〈

rup

[[
ϕnz

]] 〉〉
Ih

−
〈
r
∂ϕ

∂z

〉
�
=

〈 1

ρ0
ρ′ϕ

〉
�
. (32)

Here, the left-hand side has been integrated by parts, and

rup denotes the value on the prism above the interface. Note

that the free surface terms vanish because r = 0 on Ŵs by

definition. We use function space P DG
1 ×P2 for r to alleviate

internal pressure gradient errors (Piggott et al., 2008).

Finally, taking a test function ψ ∈ U , we compute the in-

ternal pressure gradient with the weak form
〈
F pg ·ψ

〉
�
=−

〈
gr∇h ·ψ

〉
�
+

〈〈
g{{r}}

[[
ψ ·nh

]] 〉〉
Ih∪Iv

+
〈〈

grψ ·nh

〉〉
Ŵs∪Ŵb

,∀ψ ∈ U, (33)

where the right-hand side has been integrated by parts. Usu-

ally, F pg belongs to the same space as the horizontal veloc-

ity, i.e., [P DG
1 ×P DG

1 ]
2. However, to reduce bathymetry in-

duced internal pressure gradient errors, it is possible to use

a quadratic horizontal space, i.e., r ∈ P DG
2 ×P2 and F pg ∈

[P DG
2 ×P DG

1 ]
2. In this paper, we use a linear F pg field unless

otherwise specified.

3.8 Slope limiters

We use vertex-based P DG
1 slope limiters (Kuzmin, 2010) for

three-dimensional variables to ensure positivity. The limiter

is applied to both tracer and horizontal velocity fields after

each update of the advection operator as discussed in the next

section.

4 Time integration

The coupled 2-D–3-D system is advanced in time with a

two-stage ALE time integration scheme. In this section, we

present the ALE formulation and summarize the final time

integration scheme.

4.1 ALE mesh formulation

To accurately account for the free surface movement, one

must move the mesh in the vertical direction. In this work,

we adopt the ALE method (Donea et al., 2004). Here, we

describe a mesh update procedure that stretches (or com-

presses) the mesh uniformly over the vertical direction. The

ALE formulation, however, allows more complex mesh-

moving methods as well, such as the (approximate) tracking

of isopycnals (Hofmeister et al., 2010).

In three dimensions, an ALE update consists of solving

an advection–diffusion equation between two domains, �n

and �n+1. Here, the domain is uniquely defined by the sur-

face elevation field, such that for any time level n the sur-

face Ŵn
s matches ηn. Due to the chosen discretization, the

elevation field η is discontinuous, yet we wish to maintain a

conforming mesh, i.e., a continuous coordinate field z. This

is achieved by projecting the elevation field ηn to a contin-

uous space and updating the geometry with the continuous

field ηn
cg. The projection induces a small discrepancy be-

tween the elevation field and the 3-D domain, but its effect

remains negligible in practical applications because jumps in

the elevation field are typically small.

Let �ref be the reference domain corresponding to unper-

turbed elevation field ηcg = 0, and zref ∈ [−h, 0] its vertical

coordinate. Applying a uniform mesh stretching, the time-

dependent mesh coordinates can then be written as

zn = zref+ ηn
cg

zref+h

h
∈

[
−h,ηn

cg

]
. (34)

The mesh velocity is obtained as wm = ∂z
∂t

. In practice, the

consecutive fields ηn+1
cg and ηn

cg are known so we can evaluate

wn+1
m =

ηn+1
cg − ηn

cg

1t

zref+h

h
. (35)
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Given the mesh velocity, a conservative ALE update can be

written as

d

dt

(〈
T φ

〉
�

)
=

〈
FT (T ,u,w−wm)φ

〉
�
, (36)

for a generic tracer equation ∂T
∂t
= FT(T , u, w).

4.2 Coupled time integration scheme

The coupled 2-D–3-D system is advanced in time with a

two-stage ALE time integration scheme. For convenience,

we rewrite the 3-D momentum and tracer equations as

∂T

∂t
= FT(T ,u,w)+GT(T ), (37)

∂u

∂t
= Fu

(
F pg,u,w

)
+Gu(u), (38)

where FT and Fu denote all the terms that are treated ex-

plicitly, while GT and Gu contain all the implicit terms. In

this work, only vertical diffusion (Eq. 28), vertical viscosity

(Eq. 30), and bottom friction terms are treated implicitly.

The explicit 3-D equations are advanced in time with a

second-order SSP Runge–Kutta scheme, SSPRK(2,2) (Shu

and Osher, 1988; Gottlieb and Shu, 1998). For a generic

problem ( ∂c
∂t
= F(c)), the scheme reads

c(1) = cn+1tF
(
cn

)
, (39)

cn+1 = cn+
1

2
1tF

(
cn

)
+

1

2
1tF

(
c(1)

)
. (40)

When applied to the explicit 3-D momentum and tracer

equations, Eqs. (25) and (26), both of these stages are ALE

updates where the mesh is updated from geometry �n to �(1)

and then �n+1. The ALE formulation of the explicit 3-D

tracer equation can then be written as

〈
T (1)φ

〉
�(1)
=

〈
T nφ

〉
�n
+1t

〈
FT

(
T n,un,wn−w(1)

m

)
φ
〉
�n

, (41)

〈
T̃ n+1φ

〉
�n+1
=

〈
T nφ

〉
�n
+

1

2
1t

〈
FT

(
T n,un,wn−w(1)

m

)
φ
〉
�n

+
1

2
1t

〈
FT

(
T (1),u(1),w(1)−wn+1

m

)
φ
〉
�(1)

, (42)

where the vertical velocity is adjusted by the mesh veloc-

ity wm.

After the SSPRK update, the implicit terms are advanced

with the backward Euler method. This step is computed in

domain �n+1:
〈
T n+1φ

〉
�n+1
=

〈
T̃ n+1φ

〉
�n+1
+1t

〈
GT

(
T n+1

)
φ
〉
�n+1

. (43)

The 3-D momentum equation is treated analogously.

The 2-D equations are advanced in time with an implicit

scheme to circumvent the strict time step constraint imposed

by surface gravity waves. To ensure consistency between the

movement of the 3-D mesh and the 2-D mode, the 2-D time

integration scheme must be compatible with the aforemen-

tioned SSPRK(2,2) method. Here, we use a combination of a

forward Euler and trapezoidal steps:

c(1) = cn+1tF
(
cn

)
, (44)

cn+1 = cn+
1

2
1t

(
F

(
cn

)
+F

(
cn+1

))
. (45)

Denoting the tendencies of the 2-D system (Eqs. 23–24)

by Fη and Fu, respectively, we can write the 2-D solver as

〈
η(1)φ2-D

〉
Ŵ0

=
〈
ηnφ2-D

〉
Ŵ0

+1t
〈
Fη

(
ηn,un

)
φ2-D

〉
Ŵ0

, (46)

〈
u(1) ·ψ2-D

〉
Ŵ0

=
〈
un ·ψ2-D

〉
Ŵ0

+1t
〈
Fu

(
ηn,un

)
·ψ2-D

〉
Ŵ0

, (47)

〈
ηn+1φ2-D

〉
Ŵ0

=
〈
ηnφ2-D

〉
Ŵ0

+
1t

2

〈(
Fη

(
ηn,un

)

+Fη

(
H n,un+1

))
φ2-D

〉
Ŵ0

, (48)

〈
un+1 ·ψ2-D

〉
Ŵ0

=
〈
un ·ψ2-D

〉
Ŵ0

+
1t

2

〈(
Fu

(
ηn,un

)

+Fu

(
ηn+1,un+1

))
·ψ2-D

〉
Ŵ0

. (49)

The second implicit stage is linearized by treating the total

depth H explicitly in Eq. (48).

The 2-D system is solved first, resulting in an updated el-

evation field (η(1) and ηn+1 for the two stages, respectively)

and consequently mesh geometry (�(1) and �n+1). Once the

mesh geometry is known, it is straightforward to compute the

corresponding mesh velocity wm and perform a 3-D ALE up-

date.

The time integration method is second order for all the

terms. The whole algorithm is summarized in Algorithm 1.

4.3 Choosing the time step

The maximal admissible time step is constrained by the

stability of the coupled time integrator. The presented

SSPRK(2,2) scheme has a CFL (Courant–Friedrichs–Lewy)

factor 1. The 2-D scheme (Eq. 45) and the implicit vertical

solver (Eq. 43), on the other hand, are unconditionally stable.

This implies that the coupled system is stable under the same

conditions as the explicit SSP scheme on its own.

The horizontal advection term imposes a constraint:

1tadv =
σhLh

U
, (50)

where Lh is the horizontal element size, U is the maximal

horizontal velocity scale, and σh is a length scaling factor.

For the presented P DG
1 discretization, we take Lh as the

square root of the triangle area. For rectangular P DG
1 ele-

ments and second-order RK schemes, the scaling factor is

approximately σh = 0.33 (Cockburn and Shu, 2001). In this

work, we use σh = 0.05 for all the diagnostic test cases. In
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Algorithm 1 Summary of the coupled time integration algo-

rithm.

Require: Model state variables at time tn: ηn, u
n, T n, Sn, u

′n

First stage:

1: Solve 2-D system for (η(1), u
(1)) (Eqs. 46–47)

2: Update mesh geometry to �(1) and compute mesh veloc-

ity w
(1)
m (Eq. 35)

3: Update 3-D equations with ALE step for T (1), S(1), u
′(1)

(Eq. 41)

4: Apply slope limiter to T (1), S(1), u
′(1)

5: Update the 2-D coupling term G (Eq. 12) and correct u
′

(Eq. 13)

6: Update w (Eq. 31), water density (Eq. 14), and pressure gradi-

ent (Eq. 33)

Second stage:

7: Solve 2-D system for (ηn+1, u
n+1) (Eqs. 48–49)

8: Update mesh geometry to �n+1 and compute mesh veloc-

ity w
n+1
m (Eq. 35)

9: Update 3-D equations with ALE step for T̃ n+1, S̃n+1, ũ
′n+1

(Eq. 42)

10: Apply slope limiter to T̃ n+1, S̃n+1, ũ
′n+1

Final stage:

11: Update the 2-D coupling term G (Eq. 12) and correct u
′

(Eq. 13)

12: Solve vertical viscosity and diffusion implicitly (Eq. 43)

13: Update w (Eq. 31), water density (Eq. 14), and pressure gradi-

ent (Eq. 33)

14: Update parametrizations (e.g. bottom friction and viscosity)

Algorithm 1.

strongly stratified flows, internal waves may impose a stricter

constraint:

1tiw =
σhLh

Ciw+U
, (51)

where Ciw is the speed of the internal waves.

Analogously, the time step constraint for vertical advec-

tion is

1tw =
σvLz

W
, (52)

where Lz is the element height, W is the vertical velocity

scale, and σv = 0.125 is the scaling factor.

Given a horizontal viscosity scale Nh, the explicit viscosity

operator imposes a constraint:

1tvisc = σvisc
(σhLh)

2

Nh
, (53)

which may become stringent for small elements and large

viscosity values. The scaling factor σvisc depends on the used

stabilization scheme; here, a value of σvisc = 2 is used. The

constraint for horizontal diffusivity is analogous.

In the simulations presented herein, the minimal admissi-

ble time step is evaluated on the mesh based on constant a-

priori velocity and viscosity scales. The time step is kept con-

stant throughout the simulation.

5 Test cases

We demonstrate the performance of the proposed discretiza-

tion with a suite of test cases of increasing complexity. We

first evaluate the conservation and convergence of the solver

in a barotropic standing wave test case. The convergence of

baroclinic terms is then examined in a specific steady-state

test case. The baroclinic solver and its numerical mixing are

then evaluated with a non-rotating lock exchange test case

and a rotating baroclinic eddy test, followed by the Dynam-

ics of Overflow Mixing and Entrainment (DOME) overflow

test.

5.1 Standing wave

We first evaluate the performance of the solver in a barotropic

standing wave test case. The domain is a Lx = 60 km long

rectangular channel, 625 m wide, and 100 m deep. All lat-

eral boundaries are closed. Initially, the water is at rest. A

10 m tall sinusoidal elevation perturbation is prescribed along

the channel (ηa =−η0 cos(2πx/Lx), η0 = 10 m), leading to

a non-linear wave as the simulation progresses.

The simulation is run for two full wave periods, approxi-

mately 3831.31 s. To investigate tracer conservation and con-

sistency properties, two passive tracers are included: salinity

is set to a constant 4.5 psu, while temperature varies between

5.0 and 15.0 ◦C along the channel (T = 5sin(2πx/Lx)+
10 ◦C).

The domain was discretized with a split-quad mesh us-

ing 40 elements along the channel (1500 m edge length) and

four vertical layers. The time step is 1t = 95.78 s, chosen to

meet the horizontal advection condition.

During the simulation, the volume of the 3-D domain

was conserved to accuracy O(10−15). The “2-D volume”,

i.e., the integral of the elevation field, was conserved to accu-

racy O(10−16). Salinity remained at constant 4.5 psu with a

small O(10−9) deviation. The total mass of salinity and tem-

perature were both conserved to accuracy O(10−12). Over-

and undershoots in the temperature field were negligible due

to the slope limiters. Without the limiter, temperature over-

shoots were O(10−2). These results show that the model in-

deed fully conserves volume and tracers and does not exhibit

overshoots. Moreover, the tracer consistency property is sat-

isfied, verifying the integrity of the ALE formulation.

To investigate the order of convergence of the solver, we

used a smaller initial elevation perturbation (η0 = 1 cm). In

this case, the resulting standing wave is close to linear. At

the end of the simulation, the solution was compared to the

analytical solution of the linear wave equation (which coin-

cides with the initial condition) by computing the L2 error,

E(η)= (
∫
�

(η− ηa)
2dx)1/2.

We ran the simulation, varying the horizontal mesh reso-

lution between 3 km and 300 m; the number of vertical levels

varied between 2 and 20. In each case, the channel was made

one element wide, and the time step was chosen to meet the
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Figure 1. Convergence of the L2 error in the standing wave test case. Tested element sizes were 3000, 1500, 1000, 750, 500, 375, and 300 m.

The number indicates the slope of the least-squares best-fit line (dashed line).

CFL criterion for horizontal advection. At the end of the sim-

ulation, the L2 error was computed for water elevation and

velocity (see Fig. 1). The velocity field shows the expected

second-order convergence, whereas elevation converges at a

rate of 3.2. It is known that P DG
1 shallow water equations

models may exhibit superconvergence properties, especially

for the elevation field (Bernard et al., 2008; Comblen et al.,

2010b). Here, our results verify that the solver behaves as

expected and yields second-order accuracy under barotropic

forcing.

5.2 Baroclinic MMS test

Verifying model accuracy under baroclinic forcing is more

challenging as no analytical solutions are available. Here, we

use the method of manufactured solutions (MMS; Salari and

Knupp, 2000) to construct a steady-state test case that allows

us to verify the correctness of the discrete baroclinic oper-

ators. The domain is a Lx = 15 by Ly = 10 km large and

h= 40 m deep rectangular box. All lateral boundaries are

closed. We prescribe initial velocity and temperature fields:

ua =
1

2
sin

(
2π

Lx

x

)
cos

(
3z

h

)
, (54)

va =
1

3
cos

(
πy

Ly

)
sin

( z

2h

)
, (55)

Ta = 15sin

(
πx

Lx

)
sin

(
πy

Ly

)
cos

( z

h

)
+ 15. (56)

These functions were chosen to be analytic (infinitely differ-

entiable) and fully three-dimensional to better quantify the

spatial discretization error.

Salinity is set to a constant 35 psu. We use the linear

equation of state (Eq. 14) with ρ0 = 1000 kg m−3, αT =
0.2 kg m−3 ◦C−1, and T0 = 5 ◦C−1. For the sake of simplic-

ity, bathymetry is constant and elevation is set to zero ini-

tially. Coriolis frequency was set to a constant f = 10−4 s−1.

Bottom friction, viscosity, and diffusivity are omitted.

Without any additional forcing, the initial conditions lead

to a time-dependent solution. Following the MMS strategy,

we add analytical source terms in the dynamic equations

that cancel all the active terms in the equations, leading to

a steady-state solution. The remaining error is purely the

discretization error of the advection, pressure gradient, and

Coriolis operators. The source terms are derived analytically

and projected to the corresponding function space. The ana-

lytical formulae are given in Appendix A.

The coarsest mesh contains four elements both in x and

y directions and two vertical levels. We refine the mesh up to

10 times (40 elements and 20 vertical levels) and compute the

L2 error of the prognostic fields against the exact solutions.

In each case, the model is run for 50 iterations with a time

step chosen to meet the CFL condition.

The variation of the L2 errors with resolution is shown

in Fig. 2. All the prognostic variables exhibit the correct

second-order convergence rate. The diagnostic vertical ve-

locity field (which depends on the divergence of u) con-

verges linearly as expected. Therefore, we conclude that ad-

vection, pressure gradient, and Coriolis terms are discretized

correctly. We have also developed similar MMS tests for the

diffusivity/viscosity operators and the bottom friction term,

all of which show second-order convergence as well (not

shown).

5.3 Lock exchange

The validity of the baroclinic solver and its level of spuri-

ous mixing is investigated with the standard lock exchange

test case (Wang, 1984; Haidvogel and Beckmann, 1999;

Jankowski, 1999; Ilıcak et al., 2012; Kärnä et al., 2013; Pe-

tersen et al., 2015). Here, we follow the setup of Ilıcak et al.

(2012) and Petersen et al. (2015): The domain is a 64 km long

and 1 km wide rectangular channel. Water depth is 20 m. Ini-

tially, the left-hand side of the domain is filled with dense

water mass (T = 5.0 ◦C) compared to the water on the right

(T = 30.0 ◦C). Salinity is kept at constant 35 psu. We use the
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Figure 2. Convergence of the L2 error in the baroclinic MMS test case. The mesh was refined 1, 2, 4, 6, 8, and 10 times, resulting in

resolutions of 2500, 1250, 625, 416.67, 312.5, and 250 m (shortest edge of the triangle). The time steps were 25.0, 12.5, 6.25, 4.167, 3.125,

and 2.5 s, respectively. The number indicates the slope of the least-squares best-fit line (dashed line).

same linear equation of state as in Sect. 5.2, resulting in a

density difference of 1ρ = 5.0 kg m−3. The domain is dis-

cretized with a regular split-quad mesh. The triangle edge

length is 500 m and 20 equidistant σ levels are used in the

vertical direction.

Stabilizing the internal pressure gradient requires some

form of friction. To this end, we apply a constant Lapla-

cian horizontal viscosity, using values ν = 1.0, 10.0, 100.0,

and 200.0 m2 s−1. These values correspond to grid Reynolds

numbers Reh = U1x/ν = 250.0, 25.0, 2.5, and 1.25, respec-

tively, where the characteristic velocity scale of the exchange

flow is U = 0.5 m s−1. Vertical viscosity is set to a constant

10−4 m2 s−1. Bottom friction is omitted.

Figure 3 shows the initial density field and solution after

17 h of simulation for the three cases. Higher background

viscosity leads to a less noisy velocity field and therefore

sharper density front. The sharpness and shape of the fronts

are similar to results presented in the literature (e.g., Fig. 5 in

Ilıcak et al., 2012). The low viscosity cases (Reh = 25250)

exhibit an internal wave at the front which significantly in-

creases the overall mixing.

Assuming that, in the absence of bottom friction, all avail-

able potential energy is transformed into kinetic energy, the

maximum front propagation speed can be estimated as c =
1/2
√

gH1ρ/ρ0 (Benjamin, 1968; Jankowski, 1999). Fig-

ure 4a shows the propagation of the front location at the bot-

tom of the domain (the front at the surface behaves compa-

rably). All three simulations are in good agreement with the

theoretical propagation speed. The simulated front propaga-

tion speed is underestimated by roughly 5 %, indicating loss

of energy due to mixing. These results are similar to results

reported in the literature; e.g., Ilıcak et al. (2012) show simi-

lar performance for ROMS, MITgcm, and MOM.

Figure 4b shows the maximum over- and undershoots

in the temperature field during the simulation. Even in the

low viscosity case (Reh = 250), the overshoots are of order

10−5 ◦C, indicating that the tracer advection scheme is in-

deed close to monotone, due to the SSP time integration

method and slope limiters. Note that, if the slope limiter is

omitted, the overshoots can reach 30 ◦C.

To diagnose the role of spurious mixing, we use the ref-

erence potential energy (RPE; Ilıcak et al., 2012; Petersen

et al., 2015). RPE is computed as the vertical center of

mass of a sorted density field ρ∗: RPE= g
∫

ρ∗(z+h)dx.

The ρ∗ field is defined as the unique, stratified density field

where the densest water parcels are distributed over the bot-

tom, and density increases monotonically over the water col-

umn. As such, ρ∗ is the steady-state density distribution,

and RPE represents the portion of potential energy that can-

not be transformed into kinetic energy. Mixing the two wa-

ter masses increases RPE (the center of mass), and thus

the amount of unavailable potential energy increases. Fig-
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Figure 3. Water density in the lock exchange test case in the center of the domain (y = 0 km). (a) Initial condition. Solution after 17 h of

simulation with Reh (b) 1.25, (c) 2.5, (d) 25.0, and (e) 250.0.
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Figure 4. Diagnostics of the lock exchange test. (a) Location of the density front at the bottom of the domain, (b) over- and undershoots in

the temperature field (with regard to to 30.0 and 5.0 ◦C, respectively), and (c) normalized reference potential energy (RPE) versus simulation

time.

ure 4c shows the evolution of normalized RPE, RPE(t)=
(RPE(t)−RPE(0))/RPE(0), during the simulation. At t =
17 h, the values are 0.612, 1.13, 2.35, 3.11× 10−5 for the

four simulations. These results are in good agreement with

those reported with MPAS-Ocean model (Petersen et al.,

2015): with the same mesh resolution, MPAS-Ocean shows

slightly larger normalized RPE, for example, at t = 17 h

RPE≈ 3.5× 10−5 in the case of Reh = 25. The difference

Geosci. Model Dev., 11, 4359–4382, 2018 www.geosci-model-dev.net/11/4359/2018/



T. Kärnä et al.: Thetis: discontinuous Galerkin discretization 4371

is likely due to the different spatial discretization (P DG
1 in-

stead of finite volumes) or differences in the numerical vis-

cosity operator. Applying slope limiters to the velocity field

is not necessary for numerical stability, but it reduces high-

frequency noise in the velocity field and hence results in

lower RPE values.

In order to investigate the role of the Lax–Friedrichs flux

on numerical mixing, we ran the lock exchange test case with

zero viscosity. After 17 h of simulation, the RPE value was

approximately 3.2×10−5. When the Lax–Friedrichs flux was

omitted, a similar RPE value was obtained with viscosity

ν = 3.125 m2 s−1. Therefore, in this particular test case, the

Lax–Friedrichs flux introduces mixing that is roughly equiv-

alent to 3 m2 s−1 viscosity, corresponding to Reh = 80. When

viscosity was non-zero, it was evident from the numerical

simulations that the Lax–Friedrichs flux has a negligible im-

pact on numerical mixing if Re < 10 (not shown).

5.4 Baroclinic eddies

We investigate the model’s ability to generate baroclinic ed-

dies with the eddying channel test case of Ilıcak et al. (2012).

This test case is an idealization of the Antarctic Circum-

polar Current, the domain spanning 500 and 160 km in the

meridional and zonal directions, respectively. The domain

is 1000 m deep. At the zonal boundaries, periodic bound-

ary conditions are applied; northern and southern boundaries

are closed. The Coriolis parameter is taken as a constant

1.2× 10−4 s−1.

Initially, the domain is linearly stratified with warmer wa-

ter at the surface. In addition, the northern half of the domain

is warmer, with a narrow sinusoidal transition band separat-

ing the warm (northern) and cold (southern) water masses

(Fig. 5; see Petersen et al., 2015 for the definition of the

initial temperature field). Water temperature ranges between

10 and 20 ◦C. A linear equation of state is used with ρ0 =
1000 kg m−3, αT = 0.2 kg m−3 ◦C−1 and T0 = 5 ◦C. Salin-

ity is kept at constant 35 psu and it does not affect density

(βS = 0). Bottom friction is parameterized by a constant drag

coefficient of CD = 0.01.

The baroclinic Rossby radius of deformation is 20 km (Ilı-

cak et al., 2012). Horizontal mesh resolution is constant in

space. We use a regular split-quad mesh with two different

mesh resolutions: eddy-permitting 10 km and a finer 4 km

resolution. In the vertical direction, 26 and 40 equidistant

sigma levels are used in the two cases, respectively. Simu-

lations are carried out with different values of horizontal vis-

cosity, with the grid Reynolds number ranging from 2 to 100.

The different setups are summarized in Table 2. Vertical vis-

cosity is set to a constant 10−4 m2 s−1.

As the simulation progresses, baroclinic eddies develop

at the center of the domain, quickly propagating elsewhere.

This is a spin-down experiment, i.e., the domain is a closed

system with no forcing at the boundaries. Therefore, all the

energy in the system originates from the initial potential en-

Table 2. Experimental setup for baroclinic eddy test case. Listed are

the horizontal mesh resolution (min. triangle edge length), number

of vertical levels, time step, horizontal viscosity, and the approxi-

mate grid Reynolds number.

1x nz 1t νh Reh

(km) (s) (m2 s−1)

10 26 348.39 10.0 100

10 26 348.39 20.0 50

10 26 348.39 50.0 20

10 26 348.39 125.0 8

10 26 348.39 200.0 5

10 26 348.39 500.0 2

4 40 140.26 4.0 100

4 40 140.26 8.0 50

4 40 140.26 20.0 20

4 40 140.26 50.0 8

4 40 140.26 200.0 2

ergy, which is being dissipated during the simulation; again,

the RPE is used as a metric for the energy transfer or the loss

of energy due to mixing.

Figure 5 shows the surface temperature fields at various

time intervals up to 200 days after the initialization for dif-

ferent values of horizontal viscosity. As expected, the model

captures more mesoscale features as viscosity is decreased.

Qualitatively, the results are in agreement with ROMS and

MITgcm results (Ilıcak et al., 2012), as well as MPAS-Ocean

(Petersen et al., 2015), all of which use a comparable Lapla-

cian scheme for horizontal viscosity.

The evolution of the normalized RPE during the simu-

lation is shown in Fig. 6a for the 4 km mesh resolution.

The amount of mixing clearly depends on the grid Reynolds

number, with RPE being roughly twice as high for Reh =
20 compared to Reh = 2. The average rate of change of

RPE, averaged over days 3 to 319, is shown in Fig. 6b

for all the simulations. As expected, the rate of change in-

creases with larger grid Reynolds number and with a coarser

mesh. These RPE metrics are in good agreement with re-

sults in the literature. At Reh = 20 Thetis dRPE/dt , val-

ues are 4.3× 10−4 and 2.2× 10−4 W m−2, for the 10 and

4 km resolutions. The corresponding values for MITgcm,

Modular Ocean Model (MOM), and Parallel Ocean Program

(POP) (averaged over days 3 to 319) are larger: at least

8× 10−4 and 3× 10−4 W m−2, respectively (Petersen et al.,

2015, Fig. 12). Ilıcak et al. (2012) reported similar values for

MITgcm and MOM. On a hexagonal mesh, MPAS-Ocean

yields smaller dRPE/dt values: approximately 2× 10−4 and

7× 10−5 W m−2 for the two resolutions, respectively (val-

ues averaged over days 1–320; see Fig. 12 in Petersen et al.,

2015). With a quad mesh, however, MPAS-Ocean values

are approximately 2× 10−4 W m−2 for both resolutions and

therefore close to Thetis performance.
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Figure 5. Sea surface temperature fields for the eddying channel test case at 4 km horizontal mesh resolution. Horizontal viscosity is 200 (a),

50 (b), and 20 m2 s−1 (c). These values correspond to mesh Reynolds numbers 2, 8, and 20, respectively.

The test cases were run on a Linux cluster with 16-core

Intel Xeon E5620 processors and Mellanox Infiniband inter-

connect. The 320-day simulation took roughly 42 h to run

on 96 cores with the 4 km resolution mesh and 140.26 s time

step. It should be noted, however, that the time step employed

here is smaller than the maximal allowed time step. We also

carried out a strong scaling test with the 4 km mesh. In the

scaling test, the simulation was run for 40 time steps, record-

ing the total elapsed wall-clock time and time spent in differ-

ent parts of the solver. Figure 7a shows the overall speed-up

up to 96 processors. The scaling efficiency drops to roughly

50 % at 96 cores, when the local degree of freedom count

for the tracer field is 25 000 (see black line in Fig. 7b). This

scaling efficiency is close to typical Firedrake performance

(Rathgeber et al., 2016).

The scaling efficiency of the separate solvers is plotted

with colored lines in Fig. 7b. The implicit vertical diffu-

sion/viscosity solvers perform best due to the fact that the

problem is purely local without any horizontal dependen-

cies. The explicit momentum solver scales almost as well,

whereas the explicit tracer solver scales worse. The implicit

2-D solver (assembly and linear solve) scales the poorest be-

cause the problem is relatively small; at 96 cores, there are

only around 940 degrees of freedom in the (u, η) system per

core. We have also experimented with explicit 2-D solvers,
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but they do not scale significantly better compared to the two-

stage implicit scheme used herein.

To further assess the CPU cost, we compared Thetis tim-

ing against the SLIM 3-D model (White et al., 2008a; Blaise

et al., 2010; Comblen et al., 2010a; Kärnä et al., 2013) which

uses a similar DG formulation but is implemented in C/C++.

The wall-clock time, and parallel efficiency used by both

Thetis and SLIM 3-D are presented in Appendix B. The

setup, mesh, and time step were identical for the two models.

On a single core, Thetis runs 3.3 times faster. On 24 cores, the

ratio is 4.0, and on 144 cores Thetis is still 2.2 times faster

than SLIM 3-D. This highlights the fact that Firedrake can

deliver good parallel performance compared to models writ-

ten in lower level languages.

It should be noted, however, that Thetis performance is

currently not fully optimized. We expect that the perfor-

mance can be significantly improved both in terms of serial

and strong scaling performance. These will be addressed in

future work.

5.5 DOME

Next, we investigate the model’s ability to simulate density-

driven overflows with the DOME benchmark (Ezer and Mel-

lor, 2004; Legg et al., 2006; Wang et al., 2008b; Burchard

and Rennau, 2008). The domain is a 1100 by 600 km large

basin, whose depth varies linearly from 600 m at the north-

ern boundary to 3600 m in the middle of the domain (see

Fig. 8). To avoid boundary condition issues, we have ex-

tended the domain to the west by 120 km. At the northern

boundary, there is a 100 km wide and 200 km long inlet.

Initially, the basin is stably stratified with a linear temper-

ature variation from 10 ◦C in the deepest part of the basin to

20 ◦C at the surface. We use the linear equation of state with

www.geosci-model-dev.net/11/4359/2018/ Geosci. Model Dev., 11, 4359–4382, 2018



4374 T. Kärnä et al.: Thetis: discontinuous Galerkin discretization

120 0 200 400 600 800 1000 1100
x [km]

0

100

200

300

400

500

600

700

800

y 
[k

m
]

600

1000

1400

1800

2200

2600

3000

3400

Ba
th

ym
et

ry
 [m

]

Figure 8. Horizontal mesh and bathymetry for the DOME test case. The domain is extended 120 km further to the west to avoid boundary ef-

fects (shaded region). Horizontal element size ranges from 6 to 22 km. There are 18.8×103 triangles in the horizontal mesh and 24 uniformly

distributed vertical levels resulting in 450× 103 prisms and 2.7× 106 tracer degrees of freedom.

ρ0 = 1000 kg m−3, αT = 0.2 kg m−3 ◦C−1, and T0 = 10 ◦C,

resulting in a 1ρ = 2.0 kg m−3 density difference.

At the inlet, a dense inflow (temperature 10 ◦C) is pre-

scribed in the bottom layer, with the surface layer being at

20 ◦C. The inflow is in geostrophic balance, the thickness

of the bottom layer being roughly 300 m on the eastern end

of the boundary diminishing exponentially westward (Legg

et al., 2006). The total inflow in the bottom layer is 5 Sv

(5× 106 m3 s−1), the surface layer being static. During the

simulation, the fate of the inflowing waters is tracked with a

passive tracer that is initially zero in the basin and unity at the

inlet. Initially, the tracer field is set to the inflow conditions

in the northern part of the basin (y > 650 km). Velocity is set

to zero everywhere. The eastern and southern boundaries of

the basin are closed. The western boundary is open with ra-

diation boundary conditions and a 100 km wide band where

the temperature is relaxed to the initial condition.

The domain is discretized with an unstructured grid

(Fig. 8). Horizontal mesh resolution is 6 km near the northern

boundary, increasing southward. Overall, 24 vertical sigma

levels are used. Over the slope, the mesh resolution was de-

signed to result in a hydrostatic consistency metric (r < 1.5)

(Beckmann and Haidvogel, 1993). Horizontal viscosity is

set to a constant 50 m2 s−1, which corresponds to Reh ≈ 200

at the inlet. Horizontal diffusivity is constant at 10 m2 s−1.

Vertical viscosity and diffusivity are parameterized by the

Pacanowski–Philander scheme as described in Sect. 2.4. Bot-

tom friction is parameterized with a quadratic drag coeffi-

cient Cd = 2× 10−3 (Legg et al., 2006; Wang et al., 2008b).

A quadratic function space is used for the baroclinic head

and internal pressure gradient as discussed in Sect. 3.7.

As the inflowing current reaches the basin, it turns to the

west and forms a coastal plume that is approximately 150 km

wide (Fig. 9). The plume detaches from the lateral boundary

as it flows westward and along the bottom slope. As the dense

water mass meets the stratified ocean, the plume becomes un-

stable and starts to generate eddies and internal waves. The

most vigorous eddies are found in the first 300 km after the

inlet (x = 500–800 km), after which the plume is more mixed

and quiescent. Overall, the plume is shallow; most of the pas-

sive tracer is concentrated within 200 m of the bottom. Quali-

tatively, the extent and propagation of the plume, and its eddy

structure are in good agreement with the literature (e.g., Bur-

chard and Rennau, 2008; Wang et al., 2008b). The results

show that Thetis is able to represent eddying flows over slop-

ing bathymetry, generating and maintaining strong gradients

between water masses. The sharpest fronts in the simulation

encompass only one or two elements.

Figure 10 shows the distribution of the inflowing tracer

concentration as a function of water density and the x axis.

The inflowing waters are initially very dense but get mixed

to lower density as the plume advances along the coast. The

histogram shows that the plume volume is low in the first

150 km after the inlet (x = 650–800 km) where the plume ac-

celerates. After x = 650 km, the plume slows down and starts

to accumulate in volume. The density of the main plume oc-

cupies ranges from 0.8 to 1.5 kg m−3, the peak being around

1.28 kg m−3. The rate of entrainment can be used as a met-

ric for mixing. Results herein are similar to those presented

in literature: Wang et al. (2008b) present a mean density

anomaly of 1.5 kg m−3 for their terrain-following FESOM

model configuration.

The 47-day simulation took roughly 42 h to run on

90 cores with a 39.65 s time step on the same Linux cluster.
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Figure 9. Bottom tracer concentration in the DOME test case after 10 (a), 20 (b), and 40 days (c).

6 Conclusions

This paper describes a DG implementation of an eddy-

permitting, unstructured grid coastal ocean model. The

solver is second-order accurate in space and time. We have

demonstrated that the formulation is fully conservative and

preserves monotonicity. The test cases indicate that the

model is capable of reproducing the expected physical be-

havior, including baroclinic eddies. Moreover, numerical

mixing is well-controlled and comparable to other estab-

lished structured grid models, such as MITgcm and ROMS,

and the large-scale finite volume model MPAS-Ocean. Find-

ing an accurate formulation is important, as commonly used

unstructured grid models tend to be overly diffusive, prevent-

ing accurate modeling of certain coastal domains (e.g., Kärnä

et al., 2015). The formulation presented herein thus con-

tributes to the development of more accurate next-generation

coastal ocean models.
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Figure 10. Histogram of tracer in the DOME test case versus the

x coordinate and density class. At the mouth of the inlet (x =
800 km), the inflowing waters are dense; they get entrained higher

up in the density spectrum as they are being transported down-

stream. The data are averaged over 1 week after day 40.

Future work will include solving the equations on a sphere,

DG implementation of a biharmonic viscosity operator, two-

equation turbulence closure models, wetting–drying treat-

ment, and development of an adjoint solver, as well as im-

proving the computational efficiency and parallel scaling of

the solver.

Code availability. All code used to perform the experiments in

this papers is publicly available. Firedrake, and its components,

may be obtained from https://www.firedrakeproject.org/ (last ac-

cess: 25 October 2018); Thetis from http://thetisproject.org/ (last

access: 25 October 2018).

For reproducibility, we also cite archives of the exact soft-

ware versions used to produce the results in this paper. All ma-

jor Firedrake components have been archived on Zenodo (zen-

odo/Firedrake, 2018). This record collates DOIs for the compo-

nents and can be installed following the instructions at https://www.

firedrakeproject.org/download.html (last access: 25 October 2018).

Thetis itself has been archived at zenodo/Thetis (2018).

Data availability. No external data were used in this paper.
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Appendix A: Source terms for the baroclinic MMS test

Using the analytical velocity and temperature fields, we can

derive the steady-state solution for the remaining fields:

ηa = 0, (A1)

ua =
1

6
sin(3)sin

(
2π

Lx

x

)
, (A2)

va =
1

3
sin

( z

2h

)
cos

(
πy

Ly

)
, (A3)

u′a = ua− ua, (A4)

v′a = va− va, (A5)
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πh

3LxLy

(
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(
−cos
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)
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(
1

2

))
sin

(
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)

−Ly

(
sin

(
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h

)
+ sin(3)

)
cos

(
2π
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αT

ρ0

(
T0z− 15hsin

( z

h

)
sin

(
πx

Lx

)
sin

(
πy
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)
− 15z

)
. (A7)

Now, we can evaluate the different terms that appear in the

momentum and tracer equations:

f (ez ∧u)x =
2f0

3

(
−cos

(
1

2

)
+ 1

)
cos

(
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)
, (A8)
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These terms are added as source terms to the right-hand side

of Eqs. (9), (10), (11), and (6). In the weak form, this cor-

responds to multiplying the analytical function by the test

function and integrating over the domain. The solutions were

derived using the SymPy symbolic mathematics Python li-

brary (Meurer et al., 2017).

Appendix B: CPU cost comparison against SLIM

A strong scaling test was carried out with both Thetis and the

SLIM 3-D model (White et al., 2008a; Blaise et al., 2010;

Comblen et al., 2010a; Kärnä et al., 2013) using the baro-

clinic eddies test case. These tests were carried out on a

Linux cluster with 16-core Intel Xeon E5620 processors and

Mellanox Infiniband interconnect. The total time spent to run

40 time steps is presented in Table B1. The table also lists

the speed-up si = T0/Ti , where Ti stands for the wall-clock

time for i cores, and the parallel efficiency p = si/i. For an

ideal model, the parallel efficiency remains at unity. The re-

sults show that on a single core Thetis runs approximately

3.3 times faster than SLIM. On 24 cores, the ratio is 4.0, and

on 144 cores, Thetis is still 2.2 times faster.
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Table B1. CPU time in the baroclinic eddies test case for Thetis and the SLIM 3-D model. Both models ran on identical triangular mesh

(4 km resolution, 40 vertical levels) using ν = 20 m2 s−1 and a 140 s time step. The wall-clock time was recorded over 40 iterations.

No. of Wall-clock time (s) Ratio Speed-up Efficiency

cores Thetis SLIM TSLIM
TThetis

Thetis SLIM Thetis SLIM

1 1778.71 5928.32 3.33 1.00 1.00 1.00 1.00

2 1034.64 4802.34 4.64 1.72 1.23 0.86 0.62

4 500.11 2380.74 4.76 3.56 2.49 0.89 0.62

8 290.61 1284.08 4.42 6.12 4.62 0.77 0.58

16 206.97 675.14 3.26 8.59 8.78 0.54 0.55

20 141.17 524.61 3.72 12.60 11.30 0.63 0.57

24 110.83 440.09 3.97 16.05 13.47 0.67 0.56

32 88.03 330.00 3.75 20.21 17.96 0.63 0.56

40 73.17 260.47 3.56 24.31 22.76 0.61 0.57

48 64.16 222.79 3.47 27.72 26.61 0.58 0.55

64 56.62 158.31 2.80 31.41 37.45 0.49 0.59

80 49.48 127.95 2.59 35.95 46.33 0.45 0.58

96 43.64 109.10 2.50 40.76 54.34 0.42 0.57

112 39.68 95.24 2.40 44.83 62.25 0.40 0.56

128 36.91 83.37 2.26 48.19 71.11 0.38 0.56

144 35.76 78.05 2.18 49.74 75.96 0.35 0.53

Geosci. Model Dev., 11, 4359–4382, 2018 www.geosci-model-dev.net/11/4359/2018/



T. Kärnä et al.: Thetis: discontinuous Galerkin discretization 4379

Author contributions. TK designed and implemented most of the

solver and carried out the numerical simulations. SK and LM con-

tributed to the design and implementation of the model. AB,

DH, and MP supervised the work and guided the implementation

of the model and the manuscript.

Competing interests. The authors declare that they have no conflict

of interest.

Acknowledgements. The National Science Foundation partially

supported this research through cooperative agreement OCE-

0424602. The National Oceanic and Atmospheric Administration

(NA11NOS0120036 and AB-133F-12-SE-2046), Bonneville

Power Administration (00062251), and Corps of Engineers

(W9127N-12-2-007 and G13PX01212) provided partial mo-

tivation and additional support. This work was supported by

the UK’s Engineering and Physical Science Research Council

(grant numbers EP/M011054/1, EP/L000407/1) and the Natural

Environment Research Council (grant number NE/K008951/1).

This work used the Extreme Science and Engineering Discovery

Environment (XSEDE), which is supported by National Science

Foundation grant number ACI-1053575. The authors acknowledge

the Texas Advanced Computing Center (TACC) at the University of

Texas at Austin for providing HPC resources that have contributed

to the research results reported within this paper.

Edited by: James Annan

Reviewed by: James Annan and one anonymous referee

References

Aizinger, V. and Dawson, C.: The local discontinuous

Galerkin method for three-dimensional shallow water

flow, Comput. Meth. Appl. Mech. Eng., 196, 734–746,

https://doi.org/10.1016/j.cma.2006.04.010, 2007.

Alnæs, M. S., Logg, A., Ølgaard, K. B., Rognes, M. E.,

and Wells, G. N.: Unified Form Language: A Domain-

specific Language for Weak Formulations of Partial Differ-

ential Equations, ACM Trans. Math. Softw., 40, 9:1–9:37,

https://doi.org/10.1145/2566630, 2014.

Beckmann, A. and Haidvogel, D. B.: Numerical Simula-

tion of Flow around a Tall Isolated Seamount. Part I:

Problem Formulation and Model Accuracy, J. Phys.

Oceanogr., 23, 1736–1753, https://doi.org/10.1175/1520-

0485(1993)023<1736:NSOFAA>2.0.CO;2, 1993.

Benjamin, T. B.: Gravity currents and related

phenomena, J. Fluid Mech., 31, 209–248,

https://doi.org/10.1017/S0022112068000133, 1968.

Bercea, G.-T., McRae, A. T. T., Ham, D. A., Mitchell, L., Rathge-

ber, F., Nardi, L., Luporini, F., and Kelly, P. H. J.: A structure-

exploiting numbering algorithm for finite elements on extruded

meshes, and its performance evaluation in Firedrake, Geosci.

Model Dev., 9, 3803–3815, https://doi.org/10.5194/gmd-9-3803-

2016, 2016.

Bernard, P.-E., Deleersnijder, E., Legat, V., and Remacle, J.-F.: Dis-

persion Analysis of Discontinuous Galerkin Schemes Applied to

Poincaré, Kelvin and Rossby Waves, J. Scient. Comput., 34, 26–

47, https://doi.org/10.1007/s10915-007-9156-6, 2008.

Blaise, S., Comblen, R., Legat, V., Remacle, J.-F., Deleersni-

jder, E., and Lambrechts, J.: A discontinuous finite element

baroclinic marine model on unstructured prismatic meshes.

Part I: space discretization, Ocean Dynam., 60, 1371–1393,

https://doi.org/10.1007/s10236-010-0358-3, 2010.

Bleck, R.: On the Use of Hybrid Vertical Coordinates in

Numerical Weather Prediction Models, Mon. Weather

Rev., 106, 1233–1244, https://doi.org/10.1175/1520-

0493(1978)106<1233:OTUOHV>2.0.CO;2, 1978.

Bleck, R.: An oceanic general circulation model framed in hy-

brid isopycnic-Cartesian coordinates, Ocean Model., 4, 55–88,

https://doi.org/10.1016/S1463-5003(01)00012-9, 2002.

Blumberg, A. F. and Mellor, G. L.: A description of a

three-dimensional coastal ocean model, in: Three Dimen-

sional Coastal Ocean Models, chap. 1–16, edited by: Heaps,

N. S., American Geophysical Union, Washington, D.C.,

https://doi.org/10.1029/CO004p0001, 1987.

Burchard, H. and Bolding, K.: GETM – a general es-

tuarine transport model, Scientific documentation,

Tech. Rep. EUR 20253 EN, European Commission, Ispra,

Italy, 2002.

Burchard, H. and Rennau, H.: Comparative quantifi-

cation of physically and numerically induced mix-

ing in ocean models, Ocean Model., 20, 293–311,

https://doi.org/10.1016/j.ocemod.2007.10.003, 2008.

Casulli, V. and Walters, R. A.: An unstructured

grid, three-dimensional model based on the shal-

low water equations, Int. J. Numer. Meth. Flu-

ids, 32, 331–348, https://doi.org/10.1002/(SICI)1097-

0363(20000215)32:3<331::AID-FLD941>3.0.CO;2-C, 2000.

Chen, C., Liu, H., and Beardsley, R. C.: An Unstructured Grid,

Finite-Volume, Three-Dimensional, Primitive Equations Ocean

Model: Application to Coastal Ocean and Estuaries, J. At-

mos. Ocean. Tech., 20, 159–186, https://doi.org/10.1175/1520-

0426(2003)020<0159:AUGFVT>2.0.CO;2, 2003.

Cockburn, B. and Shu, C.-W.: Runge–Kutta Discontinuous

Galerkin Methods for convection-dominated problems, J. Scient.

Comput., 16, 173–261, 2001.

Comblen, R., Blaise, S., Legat, V., Remacle, J.-F., Deleersnijder,

E., and Lambrechts, J.: A discontinuous finite element baro-

clinic marine model on unstructured prismatic meshes. Part II:

implicit/explicit time discretization, Ocean Dynam., 60, 1395–

1414, https://doi.org/10.1007/s10236-010-0357-4, 2010a.

Comblen, R., Lambrechts, J., Remacle, J.-F., and Legat, V.: Prac-

tical evaluation of five partly discontinuous finite element pairs

for the non-conservative shallow water equations, Int. J. Numer.

Meth. Fluids, 63, 701–724, https://doi.org/10.1002/fld.2094,

2010b.

Cotter, C. J., Ham, D. A., and Pain, C. C.: A mixed dis-

continuous/continuous finite element pair for shallow-

water ocean modelling, Ocean Model., 26, 86–90,

https://doi.org/10.1016/j.ocemod.2008.09.002, 2009a.

Cotter, C. J., Ham, D. A., Pain, C. C., and Reich, S.:

LBB stability of a mixed Galerkin finite element pair for

fluid flow simulations, J. Comput. Phys., 228, 336–348,

https://doi.org/10.1016/j.jcp.2008.09.014, 2009b.

www.geosci-model-dev.net/11/4359/2018/ Geosci. Model Dev., 11, 4359–4382, 2018

https://doi.org/10.1016/j.cma.2006.04.010
https://doi.org/10.1145/2566630
https://doi.org/10.1175/1520-0485(1993)023<1736:NSOFAA>2.0.CO;2
https://doi.org/10.1175/1520-0485(1993)023<1736:NSOFAA>2.0.CO;2
https://doi.org/10.1017/S0022112068000133
https://doi.org/10.5194/gmd-9-3803-2016
https://doi.org/10.5194/gmd-9-3803-2016
https://doi.org/10.1007/s10915-007-9156-6
https://doi.org/10.1007/s10236-010-0358-3
https://doi.org/10.1175/1520-0493(1978)106<1233:OTUOHV>2.0.CO;2
https://doi.org/10.1175/1520-0493(1978)106<1233:OTUOHV>2.0.CO;2
https://doi.org/10.1016/S1463-5003(01)00012-9
https://doi.org/10.1029/CO004p0001
https://doi.org/10.1016/j.ocemod.2007.10.003
https://doi.org/10.1002/(SICI)1097-0363(20000215)32:3<331::AID-FLD941>3.0.CO;2-C
https://doi.org/10.1002/(SICI)1097-0363(20000215)32:3<331::AID-FLD941>3.0.CO;2-C
https://doi.org/10.1175/1520-0426(2003)020<0159:AUGFVT>2.0.CO;2
https://doi.org/10.1175/1520-0426(2003)020<0159:AUGFVT>2.0.CO;2
https://doi.org/10.1007/s10236-010-0357-4
https://doi.org/10.1002/fld.2094
https://doi.org/10.1016/j.ocemod.2008.09.002
https://doi.org/10.1016/j.jcp.2008.09.014


4380 T. Kärnä et al.: Thetis: discontinuous Galerkin discretization

Danilov, S.: Two finite-volume unstructured mesh models

for large-scale ocean modeling, Ocean Model., 47, 14–25,

https://doi.org/10.1016/j.ocemod.2012.01.004, 2012.

Danilov, S.: Ocean modeling on unstruc-

tured meshes, Ocean Model., 69, 195–210,

https://doi.org/10.1016/j.ocemod.2013.05.005, 2013.

Danilov, S., Wang, Q., Losch, M., Sidorenko, D., and Schröter, J.:

Modeling ocean circulation on unstructured meshes: comparison

of two horizontal discretizations, Ocean Dynam., 58, 365–374,

https://doi.org/10.1007/s10236-008-0138-5, 2008.

Danilov, S., Sidorenko, D., Wang, Q., and Jung, T.: The Finite-

volumE Sea ice–Ocean Model (FESOM2), Geosci. Model Dev.,

10, 765–789, https://doi.org/10.5194/gmd-10-765-2017, 2017.

Dawson, C. and Aizinger, V.: A discontinuous Galerkin method for

three-dimensional shallow water equations, J. Scient. Comput.,

22–23, 245–267, 2005.

Deleersnijder, E. and Lermusiaux, P. F. J.: Multi-scale modeling:

nested-grid and unstructured-mesh approaches, Ocean Dynam.,

58, 335–336, https://doi.org/10.1007/s10236-008-0170-5, 2008.

Donea, J., Huerta, A., Ponthot, J.-P., and Rodríguez-Ferran,

A.: Arbitrary Lagrangian–Eulerian Methods, in: Ency-

clopedia of Computational Mechanics, chap. 14, John

Wiley & Sons, Chichester, West Sussex, 413–437,

https://doi.org/10.1002/0470091355.ecm009, 2004.

Epshteyn, Y. and Rivière, B.: Estimation of penalty

parameters for symmetric interior penalty Galerkin

methods, J. Comput. Appl. Math., 206, 843–872,

https://doi.org/10.1016/j.cam.2006.08.029, 2007.

Ezer, T. and Mellor, G. L.: A generalized coordinate ocean model

and a comparison of the bottom boundary layer dynamics in

terrain-following and in z-level grids, Ocean Model., 6, 379–403,

https://doi.org/10.1016/S1463-5003(03)00026-X, 2004.

Farrell, P. E., Ham, D. A., Funke, S. W., and Rognes, M. E.: Auto-

mated Derivation of the Adjoint of High-Level Transient Finite

Element Programs, SIAM J. Scient. Comput., 35, C369–C393,

https://doi.org/10.1137/120873558, 2013.

Fringer, O., Gerritsen, M., and Street, R. L.: An

unstructured-grid, finite-volume, nonhydrostatic, paral-

lel coastal ocean simulator, Ocean Model., 14, 139–173,

https://doi.org/10.1016/j.ocemod.2006.03.006, 2006.

Gottlieb, S.: On high order strong stability preserving runge-kutta

and multi step time discretizations, J. Scient. Comput., 25, 105–

128, https://doi.org/10.1007/BF02728985, 2005.

Gottlieb, S. and Shu, C.-W.: Total Variation Diminish-

ing Runge–Kutta Schemes, Math. Comput., 67, 73–85,

https://doi.org/10.1090/S0025-5718-98-00913-2, 1998.

Gottlieb, S., Ketcheson, D. I., and Shu, C.-W.: High Order Strong

Stability Preserving Time Discretizations, J. Scient. Comput., 38,

251–289, https://doi.org/10.1007/s10915-008-9239-z, 2009.

Griffies, S. M.: Fundamentals of ocean climate models, Princeton

University Press, Princeton, 2004.

Griffies, S. M. and Hallberg, R.: Biharmonic friction

with a Smagorinsky-like viscosity for use in large-

scale eddy-permitting ocean models, Mon. Weather

Rev., 128, 2935–2946, https://doi.org/10.1175/1520-

0493(2000)128<2935:BFWASL>2.0.CO;2, 2000.

Griffies, S. M., Pacanowski, R. C., and Hallberg, R. W.:

Spurious Diapycnal Mixing Associated with Advec-

tion in a z-Coordinate Ocean Model, Mon. Weather

Rev., 128, 538–564, https://doi.org/10.1175/1520-

0493(2000)128<0538:SDMAWA>2.0.CO;2, 2000.

Griffies, S. M., Gnanadesikan, A., Dixon, K. W., Dunne, J. P.,

Gerdes, R., Harrison, M. J., Rosati, A., Russell, J. L., Samuels,

B. L., Spelman, M. J., Winton, M., and Zhang, R.: Formulation

of an ocean model for global climate simulations, Ocean Sci., 1,

45–79, https://doi.org/10.5194/os-1-45-2005, 2005.

Haidvogel, D. and Beckmann, A.: Numerical Ocean Circula-

tion Modeling, in: Environmental Science and Management,

4th Edn., Imperial College Press, London, 1999.

Hanert, E., Legat, V., and Deleersnijder, E.: A comparison of three

finite elements to solve the linear shallow water equations, Ocean

Model., 5, 17–35, 2003.

Hiester, H., Piggott, M., Farrell, P., and Allison, P.: Assess-

ment of spurious mixing in adaptive mesh simulations of

the two-dimensional lock-exchange, Ocean Model., 73, 30–44,

https://doi.org/10.1016/j.ocemod.2013.10.003, 2014.

Higdon, R. L. and de Szoeke, R. A.: Barotropic-Baroclinic Time

Splitting for Ocean Circulation Modeling, J. Comput. Phys., 135,

30–53, https://doi.org/10.1006/jcph.1997.5733, 1997.

Hofmeister, R., Burchard, H., and Beckers, J.-M.:

Non-uniform adaptive vertical grids for 3D nu-

merical ocean models, Ocean Model., 33, 70–86,

https://doi.org/10.1016/j.ocemod.2009.12.003, 2010.

Homolya, M., Mitchell, L., Luporini, F., and Ham, D. A.: TSFC:

a structure-preserving form compiler, SIAM J. Scient. Comput.,

40, C401–C428, https://doi.org/10.1137/17M1130642, 2018.

Ilıcak, M., Adcroft, A. J., Griffies, S. M., and Hall-

berg, R. W.: Spurious dianeutral mixing and the role

of momentum closure, Ocean Model., 45–46, 37–58,

https://doi.org/10.1016/j.ocemod.2011.10.003, 2012.

Jackett, D. R., McDougall, T. J., Feistel, R., Wright, D. G.,

and Griffies, S. M.: Algorithms for Density, Potential Tem-

perature, Conservative Temperature, and the Freezing Temper-

ature of Seawater, J. Atmos. Ocean. Tech., 23, 1709–1728,

https://doi.org/10.1175/JTECH1946.1, 2006.

Jankowski, J. A.: A non-hydrostatic model for free surface flows,

PhD thesis, Institut für Ströungsmechanik und ERiB, Universität

Hannover, Hannover, 1999.

Kärnä, T. and Baptista, A. M.: Evaluation of a long-term hindcast

simulation for the Columbia River estuary, Ocean Model., 99,

1–14, https://doi.org/10.1016/j.ocemod.2015.12.007, 2016.

Kärnä, T., de Brye, B., Gourgue, O., Lambrechts, J., Comblen, R.,

Legat, V., and Deleersnijder, E.: A fully implicit wetting-drying

method for DG-FEM shallow water models, with an application

to the Scheldt Estuary, Comput. Meth. Appl. Mech. Eng., 200,

509–524, https://doi.org/10.1016/j.cma.2010.07.001, 2011.

Kärnä, T., Legat, V., Deleersnijder, E., and Burchard, H.: Coupling

of a discontinuous Galerkin finite element marine model with

a finite difference turbulence closure model, Ocean Model., 47,

55–64, https://doi.org/10.1016/j.ocemod.2012.01.001, 2012.

Kärnä, T., Legat, V., and Deleersnijder, E.: A baro-

clinic discontinuous Galerkin finite element model

for coastal flows, Ocean Model., 61, 1–20,

https://doi.org/10.1016/j.ocemod.2012.09.009, 2013.

Kärnä, T., Baptista, A. M., Lopez, J. ., Turner, P. J., McNeil, C., and

Sanford, T. B.: Numerical modeling of circulation in high-energy

estuaries: A Columbia River estuary benchmark, Ocean Model.,

88, 54–71, https://doi.org/10.1016/j.ocemod.2015.01.001, 2015.

Geosci. Model Dev., 11, 4359–4382, 2018 www.geosci-model-dev.net/11/4359/2018/

https://doi.org/10.1016/j.ocemod.2012.01.004
https://doi.org/10.1016/j.ocemod.2013.05.005
https://doi.org/10.1007/s10236-008-0138-5
https://doi.org/10.5194/gmd-10-765-2017
https://doi.org/10.1007/s10236-008-0170-5
https://doi.org/10.1002/0470091355.ecm009
https://doi.org/10.1016/j.cam.2006.08.029
https://doi.org/10.1016/S1463-5003(03)00026-X
https://doi.org/10.1137/120873558
https://doi.org/10.1016/j.ocemod.2006.03.006
https://doi.org/10.1007/BF02728985
https://doi.org/10.1090/S0025-5718-98-00913-2
https://doi.org/10.1007/s10915-008-9239-z
https://doi.org/10.1175/1520-0493(2000)128<2935:BFWASL>2.0.CO;2
https://doi.org/10.1175/1520-0493(2000)128<2935:BFWASL>2.0.CO;2
https://doi.org/10.1175/1520-0493(2000)128<0538:SDMAWA>2.0.CO;2
https://doi.org/10.1175/1520-0493(2000)128<0538:SDMAWA>2.0.CO;2
https://doi.org/10.5194/os-1-45-2005
https://doi.org/10.1016/j.ocemod.2013.10.003
https://doi.org/10.1006/jcph.1997.5733
https://doi.org/10.1016/j.ocemod.2009.12.003
https://doi.org/10.1137/17M1130642
https://doi.org/10.1016/j.ocemod.2011.10.003
https://doi.org/10.1175/JTECH1946.1
https://doi.org/10.1016/j.ocemod.2015.12.007
https://doi.org/10.1016/j.cma.2010.07.001
https://doi.org/10.1016/j.ocemod.2012.01.001
https://doi.org/10.1016/j.ocemod.2012.09.009
https://doi.org/10.1016/j.ocemod.2015.01.001


T. Kärnä et al.: Thetis: discontinuous Galerkin discretization 4381

Kuzmin, D.: A vertex-based hierarchical slope lim-

iter for hp-adaptive discontinuous Galerkin meth-

ods, J. Comput. Appl. Math., 233, 3077–3085,

https://doi.org/10.1016/j.cam.2009.05.028, 2010.

Legg, S., Hallberg, R. W., and Girton, J. B.: Comparison of

entrainment in overflows simulated by z-coordinate, isopyc-

nal and non-hydrostatic models, Ocean Model., 11, 69–97,

https://doi.org/10.1016/j.ocemod.2004.11.006, 2006.

Luettich, R. A. and Westerink, J. J.: Formulation and numerical im-

plementation of the 2D/3D ADCIRC finite element model ver-

sion 44. XX, University of Notre Dame, Notre Dame, Illinois,

2004.

Luporini, F., Ham, D. A., and Kelly, P. H. J.: An Algorithm for the

Optimization of Finite Element Integration Loops, ACM Trans.

Math. Softw., 44, 3:1–3:26, https://doi.org/10.1145/3054944,

2017.

Mahadevan, A.: Modeling vertical motion at ocean fronts: Are non-

hydrostatic effects relevant at submesoscales?, Ocean Model.,

14, 222–240, https://doi.org/10.1016/j.ocemod.2006.05.005,

2006.

Marchesiello, P., Debreu, L., and Couvelard, X.: Spurious

diapycnal mixing in terrain-following coordinate models:

The problem and a solution, Ocean Model., 26, 156–169,

https://doi.org/10.1016/j.ocemod.2008.09.004, 2009.

Marshall, J., Adcroft, A., Hill, C., Perelman, L., and Heisey, C.: A

finite-volume, incompressible Navier Stokes model for studies

of the ocean on parallel computers, J. Geophys. Res., 102, 5753–

5766, https://doi.org/10.1029/96JC02775, 1997a.

Marshall, J., Hill, C., Perelman, L., and Adcroft, A.: Hydrostatic,

quasi-hydrostatic, and nonhydrostatic ocean modeling, J. Geo-

phys. Res., 102, 5733–5752, https://doi.org/10.1029/96JC02776,

1997b.

McRae, A. T. T. and Cotter, C. J.: Energy- and enstrophy-

conserving schemes for the shallow-water equations, based on

mimetic finite elements, Q. J. Roy. Meteorol. Soc., 140, 2223–

2234, https://doi.org/10.1002/qj.2291, 2014.

McRae, A. T. T., Bercea, G.-T., Mitchell, L., Ham, D. A., and Cot-

ter, C. J.: Automated generation and symbolic manipulation of

tensor product finite elements, SIAM J. Scient. Comput., 38,

S25–S47, https://doi.org/10.1137/15M1021167, 2016.

Meurer, A., Smith, C. P., Paprocki, M., Čertík, O., Kirpichev, S.
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