Bibliothe	ek van de			
Afdeling Scheepshouw en Scheepvaartkunde				
Fechnische Ho	ogeschool, Delft			
DOCUMENTATIE	1:K56-210			
DATUM				

THICK AXISYMMETRIC TURBULENT BOUNDARY LAYER AND NEAR WAKE OF A LOW-DRAG BODY OF REVOLUTION

by V. C. Patel and Y. T. Lee

Sponsored by

General Hydromechanics Research Program of the Naval Sea Systems Command David W. Taylor Naval Ship Research & Development Center Contract No. N00014-75-C-0273

IIHR Report No. 210

Iowa Institute of Hydraulic Research The University of Iowa Iowa City, Iowa

December 1977

Approved for public release, distribution unlimited

ABSTRACT

Detailed measurements of pressure distributions, mean velocity profiles and Reynolds stresses were made in the thick, axisymmetric boundary layer and the near wake of a low-drag body of revolution. The data are presented in graphical as well as tabular form for convenience in later analysis. These measurements shed some light on the joint influence of transverse and longitudinal surface curvatures and pressure gradients on the boundary-layer development and on the manner in which an axisymmetric boundary layer becomes a fully-developed wake. Apart from giving a complete set of data on such an important flow configuration, the measurements should provide a fairly rigorous, test case for some of the recent turbulence closure models which claim a level of generality not achieved by the older phenomenological models. The present data have been used to provide an independent check on the accuracy of the simple, integral boundary-layer method proposed by Patel, and its extension to the calculation of the near wake made by Nakayama, Patel and Landweber. Preliminary calculations have also been performed using the differential equations of the thick axisymmetric turbulent boundary layer and a rate equation for the Reynolds stress derived from the turbulent kinetic-energy equation along the lines suggested by Bradshaw and others. By inclusion of recently proposed modifications to account for the effects of the extra rates of strain on the turbulence length scale arising from longitudinal and transverse surface curvatures, it is shown that the boundary layer in the tail region of a body of revolution is dominated by the extra strain rates and that more research is needed to account for them properly even in the most recent calculation procedures.

ACKNOWLEDGEMENTS

This research was carried out under the sponsorship of the Naval Sea Systems Command, General Hydro-Mechanics Research Program, Subproject SR023 01 01, administered by the David W. Taylor Naval Ship Research and Development Center, Contract N00014-75-C-0273. The authors are also indebted to Dr. A. Nakayama, who initiated the present experiment, to Dr. O. Guven, who assisted in the turbulence measurements and to Professor J.R. Glover for his assistance with hot-wire anemometry. The authors acknowledge the assistance of Professor B.R. Ramaprian through several stimulating discussions on the influence of longitudinal surface circulation on the turbulent boundary layers.

	TABLE OF CONTENTS	
		Page
T T C M		111
LIST	OF FIGURES	
LIST	OF TABLES	V.
LIST	OF SYMBOLS	vi
Ī.	INTRODUCTION	1
тл	FYPERTMENTAL ARRANGEMENT AND INSTRUMENTS	i .
---	A. Wind Tunnel and Model	÷ 1
	B. Model Alignment	3
	C. Instrimentation	3
	D. Transition Device	4
		-
III.	MEAN FLOW MEASUREMENTS	5
	A. Surface Pressure Distribution	5
-	B. Upstream Laminar Boundary Laver	5
	C. Static Pressure Field	6
	D. Mean Velocity Profiles	6
	E. Integral Parameters	8
	F. Wall Shear Stress	10
ÍV.	TURBULENCE MEASUREMENTS	10
v.	TABULATION OF DATA	12
17 T	COME DEPTIMINARY ANALYSIS OF DATA	10
VI.	SOME PRELIMINARI ANALISIS OF DATA	12
• ,	A. Infuence of the Differential Equations	15
	B. Solutions of the Differencial Equations	10
	c. Integral correlations and Fredictions	19
VII.	DISCUSSION AND CONCLUSIONS	23
REFE	RENCES	27
		~~
APPE	NDIX	30
FÌGU	RES	32
		· .
TABL	ES	77

LIST OF FIGURES

Figure		Page
1(a)	THE F-57 BODY IN THE WIND TUNNEL	32
1(b)	DETAILS OF THE F-57 BODY	33
2	PRESSURE DISTRIBUTIONS ON THE BODY	34.
3	VELOCITY PROFILE AT $X/L = 0.433$	35
4	STATIC PRESSURE DISTRIBUTIONS	36
5	MEAN VELOCITY PROFILES	37
6	ASYMPTOTIC VELOCITY AND SHEAR STRESS PROFILES IN THE WAKE	38
7	VELOCITY AT $y=\delta$ and wake centerline	39
8	INTEGRAL PARAMETERS	40
9	DISPLACEMENT SURFACE	41
. 10	WALL SHEAR STRËSS	4 2
11	DISTRIBUTIONS OF REYNOLDS STRESS /u ² /U	43
12	DISTRIBUTIONS OF REYNOLDS STRESS $\sqrt{v^2/U}$	44
13	DISTRIBUTIONS OF REYNOLDS STRESS $\sqrt{w^2/U_o}$	45
14	DISTRIBUTIONS OF REYNOLDS STRESS $-\overline{uv}/U_{o}^{2}$	46
15	EDDY VISCOSITY PROFILES, LOW-DRAG BODY	47
16	MIXING LENGTH PROFILES, LOW-DRAG BODY	48
17	EDDY VISCOSITY PROFILES, MODIFIED SPHEROID	49
18	MIXING LENGTH PROFILES, MODIFIED SPHEROID	49
19	VARIATION OF THE STRUCTURE PARAMETER a1, LOW-DRAG BODY	50
20	VARIATION OF THE STRUCTURE PARAMETER a , MODIFIED SPHEROID	51
21	RATIO OF BOUNDARY-LAYER THICKNESS TO THE LONGITUDINAL AND TRANSVERSE RADII OF SURFACE CURVATURE	52
22	COMPARISON OF MEASUREMENTS WITH THE SOLUTION OF THE DIFFERENTIAL EQUATIONS, LOW-DRAG BODY	
· · ·	(a) INITIAL PROFILES AT X/L = 0.601	53
	(b) VELOCITY AND SHEAR STRESS PROFILES AT $X/L = 0.920$	54
	(c) VELOCITY AND SHEAR STRESS PROFILES AT $X/L = 0.960$	55
•	(d) VELOCITY AND SHEAR STRESS PROFILES AT $X/L = 1.000$	56
	(e) MIXING LENGTH PROFILES	57

iii

Figure	·	Page
(f	f) BOUNDARY LAYER THICKNESS	58
. (g	g) PLANAR AND AXISYMMETRIC MOMENTUM DEFICITS	59
(h	h) SHAPE PARAMETER	60
(i	i) WALL SHEAR STRESS	61
23 CC DI	OMPARISON OF MEASUREMENTS WITH THE SOLUTION OF THE IFFERENTIAL EQUATIONS, MODIFIED SPHEROID	
(a	a) INITIAL PROFILES AT $X/L = 0.662$	62
(h	b) VELOCITY AND SHEAR STRESS PROFILES AT $X/L = 0.930$	63
(c	c) VELOCITY AND SHEAR STRESS PROFILES AT $X/L = 0.960$	'64
(đ	d) VELOCITY AND SHEAR STRESS PROFILES AT $X/L = 0.990$	65
(e	e) MIXING LENGTH PROFILES	66
(f	f) BOUNDARY LAYER THICKNESS	67
(g	J) PLANAR AND AXISYMMETRIC MOMENTUM DEFICITS	68
(h	h) SHAPE PARAMETER	69
(i	i) WALL SHEAR STRESS	70
24 SH	HAPE-PARAMETER RELATIONS IN INTEGRAL METHOD	71
25 CC IN	OMPARISON OF MEASUREMENTS WITH THE SOLUTION OF THE NTEGRAL EQUATIONS, LOW-DRAG BODY	
(a	a) BOUNDARY-LAYER AND WAKE THICKNESSES	72
(b	b) PLANAR AND AXISYMMETRIC MOMENTUM DEFICITS	73
(c	c) SHAPE PARAMETERS	74
(đ	d) WALL SHEAR STRESS	75
26 RE IN	ELATIVE MAGNITUDES OF SOME TERMS IN THE MOMENTUM NTEGRAL EQUATION	76

· · · · •

.

.

LIST OF TABLES

Table				•			•			Page
1	SUMMARY	OF I	OATA	IN THE B	OUNDARY	AND WAK	Œ			77 ·
2	PROFILE	S AT	X/L	= 0.433		· .	·· ·	. •		79
3	· 13	'n	ŭ	= 0.551						80
4	i.	ů	ĨŤ	= 0.601		·				81
5		**	11	= 0.651		•	•		i.	84
6	n,	11	ŤÎ.	= 0.701	1 . · · ·		· .		,	85
7	11	**	"	= 0.751					i.	86
8	· · ·	11	ŭ	= 0.801			•		-	87
9	**	-11	, îi	= 0.840						90
10		11		= 0.880						91
11	. "	11	jı,	= 0.920					۰.	94
12	11	.11	"	= 0.940						97
13	Ū.	11	Ħ	= 0.960						98
14	17	. 11		= 0.980				· ·		101
15	u	11	ņ	= 0.990						102
16			11	= 0.995						103
17(a)	IJ	Ŭ,	ů,	= 1.000	(0=0°)					104
17(b)	Ĩſ '	. 11	ti	= 1.000	(θ= 5.7	•)				107
18	11	ű	ģ	= 1.010						110
19		**	п	= 1.020						111
20	Ĩ	11	Ĥ,	= 1.040		·	¹			114
21	11	ü	ĥ	= 1.060		•				115
22	**	. 11.	"	= 1.100	•					118
23	11	<u>ji</u>	-11	= 1.200						119
24	11	11	Ţ	= 1.300		•				122
25	11	11	11	= 1.400						125
26	ů.	IT	**	= 2.472				" .		128

	LIST OF SYMBOLS
a,	structure parameter (= $-\overline{uv}/q^2$)
C D	drag coefficient (= $D/\frac{1}{2} \rho U_{Q}^{2} s$)
C _E	entrainment coefficient
C _f	skin-friction coefficient
Ċ	pressure coefficient
D	drag force
e .	extra rate of strain
eeff	effective rate of strain
e	rate of strain due to longitudinal curvature
e	rate of strain due to transverse curvature
G	diffusion function
h	metric coefficient in x-direction
H.	axisymmetric shape factor (= Δ_1/Δ_2)
Ħ	planar shape factor (= $\overline{\delta}_1/\overline{\delta}_2$) $\overline{\delta}_{-\overline{\delta}}$
H*	entrainment shape parameter $(=\frac{1}{\overline{\lambda}})$
I _k	integral defined by equation $(20)^2$
I D	integral defined by equation (21)
$k_{1}^{k}, k_{2}^{k}, k_{3}^{k}$	constants
l	mixing length or length scale
٤ _A	mixing length (axisymmetric definition)
l	length scale with no extra rate of strain
L	body length
P	static pressure
P O	free-stream static pressure
đ	$(\dot{u}^2 + \dot{v}^2 + w^2)^{1/2}$
Q	$(v^2 + v^2)^{1/2}$
r	radial distance
r	local radius of body
r m	maximum r
Re	Reynolds number (= $U_0 L/v$)
S	a representative area (maximum cross-sectional area of the body)

vi

•

u	fluctuating velocity in x-direction
U,	mean velocity in x-direction
ບຼ	mean velocity in axial direction at wake center
Ū	$1 - U_{c}/U_{\delta}$
ບູ	defect velocity (= $U_0 - U$)
Ū,	maximum U _d
U Max	velocity of the approach stream
U _A U	U at y=δ
v	fluctuating velocity in y-direction
v	mean velocity in y-direction
W	fluctuating velocity in the azimuthal direction
x	coordinate parallel to the body surface and the centerline of the wake
X	axial coordinate
X m	X where r=r
У	coordinate normal to the surface
^y 1/2	y where $U_d = 1/2 U_{d_{d_{d_{d_{d_{d_{d_{d_{d_{d_{d_{d_{d_$
α.	constant
δ	boundary-layer thickness or radius of the wake
δ*	radius of the displacement surface
٥	planar displacement thickness (equation 2)
- گ	planar momentum thickness (equation 2)
Δ1	mass-deficit area (equation 3)
Δ_2	momentum-deficit area (equation 3)
Δ _{2 m}	asymptotic value of Δ_2
ε	eddy viscosity
εA	eddy viscosity (axisymmetric definition)
θ:	angle between axis and tangent to the body surface
κ	longitudinal curvature of the body surface
λ	constant
Λ	Pohlhausen parameter
ν	kinematic viscosity
ξı	x/x m

vii

ξ ₂	<u>L-X</u> L-X_
ρ	density
τ	$\mu \frac{\partial u}{\partial y} - \rho \overline{uv}$

Subscripts

С
δ

quantities evaluated at the wake centerline

 δ quantities evaluated at the edge of the boundary layer or wake

w quantities evaluated at the wall

THICK AXISYMMETRIC TURBULENT BOUNDARY LAYER AND NEAR WAKE OF A LOW-DRAG BODY OF REVOLUTION

I. INTRODUCTION

In some previous work at Iowa [1], measurements were made in the thick axisymmetric boundary layer over the tail region of a spheroid whose tail was modified by attaching a short conical piece in order to avoid separation. Those measurements have been used [2,3] in the development of simple integral entrainment methods for the calculation of thick boundary layers in which there exists a substantial variation of static pressure in the direction normal to the surface. Since the measurements indicated that a proper theoretical treatment of the flow in the tail region should consider the interaction between the boundary layer and the external potential flow, a more refined iterative technique was developed [4,5]. During the course of this latter study it became apparent that a successful interaction scheme must also take the flow in the near wake of the body into consideration. The lack of detailed mean-flow and Reynolds-stress data in the near wake of an unseparated body of revolution provided the incentive to perform the present experiments. The results of these experiments provide an opportunity to independently verify some of the assumptions that have been made in the previous theoretical developments.

II. EXPERIMENTAL ARRANGEMENT AND INSTRUMENTS

<u>A. Wind Tunnel and Model</u>. The experiments were performed in the large wind tunnel of the Iowa Institute of Hydraulic Research. The working section of the tunnel is 7.3 m long with a cross-section in the form of a 1.5 m octagon provided by throating a 3.7 m square approach section.

The selection of the model shape was based on a number of considerations and experience gained from the previous experiments [1]. First of all, it was desirable to select a practically important configuration rather than a simple geometric shape. Secondly, in order to highlight the influence of strong transverse surface curvature it was necessary to maintain a thick boundary layer over an extended region of the body. Thirdly, it was essential to avoid separation in the tail region so that the near wake could be explored in detail. Finally, in order to avoid the experimental [1] and theoretical [5] difficulties encountered in earlier work with a conical tail, it was thought convenient to consider a cusped-tail body so that the transition from the boundary layer to the wake would be smooth.

Parsons and Goodson [6] have considered a variety of shapes within a five-parameter family of bodies of revolution and used well known potentialflow and boundary-layer calculation methods and optimization techniques to recommend optimum low-drag shapes. The so-called F-57 body was selected out of these shapes as one which gave minimum resistance (at zero-incidence and practical Reynolds numbers) and, at the same time, met most of the requirements set out above. The coordinates of this body are given by

For $0 \leq X \leq X_m$ (fore-body)

$$\frac{r_0}{r_1} = \{-1.1723 \xi_1^4 + 0.7088 \xi_1^3 + 1.0993 \xi_1^2 + 0.3642 \xi_1\}^{1/2}$$

For $X_m \leq X \leq L$ (pointed aft-body)

 $\frac{r_{o}}{r_{m}} = \{-0.11996 \xi_{2}^{5} - 2.58278 \xi_{2}^{4} + 3.52544 \xi_{2}^{3} + 0.17730 \xi_{2}^{2}\}^{1/2}$

where $\xi_1 = X/X_m$, $\xi_2 = \frac{L-X}{L-X_m}$, X is the axial distance measured from the nose, r_o is the local radius, X_m^m is the axial location of the maximum radius r_m , and L is the total length of the body. The location of maximum radius is thus $X_m/L = 0.4446$ and the length to maximum diameter ratio, $L/2r_m = 4.2735$

For the present experiments, a model was constructed with L = 1.219 m (4.0 ft) so that $r_m = 0.1426$ m (0.4680 ft). The model was made hollow and in two parts in order to accomodate a scanivalve which was connected to the forty eight, 0.117 cm (0.046 in) diameter, pressure taps on the surface. Thirty two pressure taps lay on a single generator on the surface while the other fifteen were spaced circumferentially at three axial locations X/L = 0.104, 0.445 and 0.771, for use in model adjustment. The main body of the model was made of seasoned wood but metal nose- and tail-pieces, 5.08 cm and

12.70 cm in length, respectively, were used to provide accuracy and durability. The major features of the model are shown in Figure 1.

<u>B. Model Alignment</u>. The model was mounted in the wind tunnel by means of eight 0.84 mm diameter steel wires in tension, four at each end (Figure 1). Each wire was provided with a screw coupling so that its length could be adjusted and the model located at the desired position.

The model was placed in the tunnel with its axis coincident with the tunnel axis. Minor adjustments were then made to obtain axisymmetric flow conditions. Several means were employed to ascertain axial symmetry:

- The static pressures measured along the circumference at the three axial locations were used to guide the preliminary positioning of the model.
- 2. Three 1.651 mm outside-diameter Preston tubes were then mounted on the surface at X/L = 0.771 at 120-degree intervals. The final position of the model was achieved by making small adjustments in the lengths of the rear support wires until the Preston tubes gave identical readings.
- 3. The final check on axial symmetry was provided by traversing a total pressure tube and a hot wire across the wake of the body at X/L = 1.10 and 1.20. Satisfactory symmetry was observed in terms of the profiles of the total pressure, the average velocity and the turbulence intensity.

All measurements reported here were made without further adjustments, the model being kept in the tunnel until the experiment was completed.

<u>C. Instrumentation</u>. The measurements in the boundary layer and the wake of the model were made with basically the same transverse mechanism as was described in [1]. The range of axial distances over which measurements could be made was, however, extended for the present experiments by making suitable modifications to the transverse mounting system situated outside the wind tunnel.

The total and static pressures were measured using micro-manometers and probes of standard design made from hypodermic tubing. In view of the uncertainities experienced earlier [1] in making static pressure measurements

across the thick boundary layer where the mean-flow streamlines diverge appreciably from the surface, a special mechanism was built to rotate the head of the static probe into the direction of the local on-coming stream. Such a device was of course not required for the total pressure measurements due to the yaw-insensitivity of the pitot tube. Preston tubes of different diameters were used, in conjunction with the calibration of Patel [7], to measure the wall shear stress on the body. As indicated earlier, the surface pressure distribution was measured by means of the pressure taps on the model. The scanivalve was located inside the model primarily to avoid flow interference associated with a large number of pressure tubes running from the model to outside the tunnel. The scanivalve was driven by power supplied through the rear cables supporting the model. Thus, only one pressure tube had to be taken out of the model. The flow disturbance caused by this was considered negligible.

Mean velocities and Reynolds stresses within the boundary layer and the wake were measured by means of single-wire and cross-wire probes using the two-channel, constant-temperature, "Old-Gold-Model, Type 4-2H Hot-Wire Anemometer" and "Type 2 Mean-Product Computer" [8]. For the purposes of the present experiments, these instruments were modified to make them compatible with the gold-plated series of probes made by DISA. In order to ascertain that proper matching had been achieved and, at the same time, to establish measurement procedures to be used, a series of preliminary tests was conducted in fully-developed turbulent flow in a 5.08 cm diameter pipe. The measurements on the body of revolution were commenced only after achieving consistent and satisfactory agreement with the data of Laufer at a pipe Reynolds number of 50,000.

<u>D. Transition Device</u>. The computations [6] of Parsons and Goodson had indicated that transition on the F-57 body would occur naturally at X/L = 0.475, i.e. a short distance downstream of the location of maximum diameter, over a range of Reynolds numbers. Surface pressure distributions and other flow diagnostics on the model at a Reynolds number of 1.2×10^6 (Re = U₀L/v, where U₀ is the velocity of the freestream approaching the body, L is the axial length of the body and v is the kinematic viscosity) indicated that

in reality transition occurred as a result of laminar separation followed by a turbulent reattachment, the bubble being in the neighborhood of the predicted location of transition. In order to eliminate this somewhat unsteady separation bubble and establish well defined conditions for the subsequent development of the turbulent boundary layer, a circular trip wire of 1.664 mm diameter was wrapped around the body at X/L = 0.475. Subsequent analysis of data revealed that the choice of such a relatively large trip wire was somewhat unfortunate since its downstream influence (say 100 diameters) may have persisted upto X/L = 0.6, where the first set of detailed measurements was made. Nevertheless, since the main body of data of interest here was collected from stations further downstream, the overall influence of the trip wire may be considered negligible.

III. MEAN FLOW MEASUREMENTS

All measurements reported here were made at a Reynolds number, based on the approach velocity U_{o} and the body length L, of 1.2×10^{6} , which corresponded to a nominal approach velocity 15.24 m/s (50 fps). U_{o} and the static pressure P_{o} at the end of the tunnel contraction were monitored throughout the experiments and have been used as reference conditions to nondimensionalize the data.

<u>A. Surface Pressure Distribution</u>. The static pressure distribution on the body surface is shown in Figure 2. Also shown for comparison is the potential-flow pressure distribution computed using the method of Landweber [9]. The close agreement between the two over most of the body indicates that the influence of wind-tunnel bockage is quite small. The departure of the measured pressure distribution from the theoretical one over the rear 25 percent of the body length is a result of the large thickness of the boundary layer in that region and its interaction with the external inviscid flow. It is seen that the influence of the increasing boundary layer thickness is to relieve the inviscid pressure gradients.

B. Upstream Laminar Boundary Layer. A single set of measurements was made in the laminar boundary layer upstream of the trip wire at the axial

਼5

location X/L = 0.433. The velocity profile obtained by means of a flattened pitot tube is shown in Figure 3 along with two members of the Pohlhausen family of profiles, the values of the Pohlhausen parameter Λ being chosen to span the value of -1.65 estimated from the local boundary layer thickness, which was 1.93 mm, and the local pressure gradient.

<u>C. Static Pressure Field</u>. Figure 4 shows the variation of static pressure across the boundary layer and the wake at several axial positions in the range 0.551 < X/L < 2.472. The convex longitudinal curvature of the body surface in the range 0.45 < X/L < 0.76 apparently leads to the substantial increase in static pressure along the outward normal not only within the boundary layer but also for some distance beyond the edge of the boundary layer (which was determined from the distribution of total pressure and is indicated by the dotted line $y = \delta$). As the longitudinal curvature becomes concave and the boundary layer thickens as a result of the decreasing transverse radius r_0 over the rear one-quarter of the body length, the trends of the static pressure variation are reversed, indicating that the mean stream-lines are concave. The data in the near wake suggest that the streamlines become nearly straight within a short distance downstream of the tail.

The axial variation of static pressure at the edge of the boundary layer and wake inferred from these measurements is compared in Figure 2 with the surface pressure distribution. The magnitude of the pressure difference between the surface of the body and the edge of the boundary layer is apparent from Figure 2.

The present data have been used to assess the importance of the static pressure variation across the near wake in the prediction of the overall drag coefficient of bodies of revolution using the conventional Squire-Young type formula [10]. Further analysis of the pressure measurements in the thick boundary layer over the tail would undoubtedly shed some light on the magnitude of the extra terms in the momentum-integral equation which were found to be important in the previous experiments and analysis [2,5]. This aspect is considered in a later section.

D. Mean Velocity Profiles. Figures 5 shows the mean velocity profiles across the boundary layer and the wake at several axial stations. Here U and V are the components of velocity in the directions tangent and

6.

normal to the body surface, respectively, and Q is the resultant velocity, i.e. $(U^2 + V^2)^{1/2}$. Q was measured by means of a single hot-wire probe and was also obtained from the separate pitot and static probe traverses. It is seen that the two sets of data are in close agreement. The U and V components were measured by means of a cross-wire probe. It is known that this technique is not altogether satisfactory insofar as accuracy of the mean flow quantities is concerned. Nevertheless, the data show the relative magnitudes of the two components and indicate that the normal component attains maximum values in the neighborhood of X/L = 0.92, where it is roughly 12 to 13 percent of the tangential component. The implication of this with regard to the validity of the thin boundary-layer assumptions is obvious.

The velocity and shear-stress profiles measured at the most downstream station in the wake, namely X/L = 2.472, are compared in Figure 6 with the most downstream measurements of Chevray [11] and Schetz and others [12,13], and with the asymptotic axisymmetric wake profiles. It would be recalled that the measurements of Chevray were made in the wake of a prolate spheroid of axis ratio 6:1, where the boundary layer separated some distance upstream of the tail. The measurements of Schetz and others were made in the wake of an elongated body of axis ratio 12:1, consisting of a parabolic nose, a cylindrical middle body and a pointed stern, and it is not clear whether boundary layer separation was encountered before the tail. The velocity distribution in the far wake is assumed to be (see, for example, Schlichting [14])

$$\frac{U_{d}}{U_{d}}_{max} = \left\{ 1 - 0.293 \left[\frac{y}{y_{1/2}} \right]^{3/2} \right\}^{2}$$
(1)

where $U_d (=U_0-U)$ is the velocity defect, U_d is its value at the wake center and $y_{1/2}$ is the radial distance to the point where U_d is one-half of the maximum value U_d . The corresponding shear-stress profile is deduced by assuming a constant mixing length across the wake. It would be seen from Figure 6 that the present measurements at X/L = 2.472 may be regarded as those corresponding to a fully-developed axisymmetric far wake where the memory of the body which generated it is almost eliminated. It is, however, known (see, for example, Rodi [15]) that the mean velocity distribution in an

axisymmetric wake continues to depend on body shape for quite large axial distances.

Figure 7 shows the variations of the velocity Q_c along the centerline of the wake and the total velocity Q_{δ} at the edge of the boundary layer and the wake. It is observed that the velocity at the edge of the wake reaches the freestream value by about X/L = 1.25. This is roughly 2.3 initial wake diameters, or one maximum body diameter, downstream of the tail. The wake develops under the influence of a small favorable axial pressure gradient over this region. The maximum velocity defect in the wake, $Q_{\delta} - Q_c$, is also seen to decrease rapidly within this distance. On the basis of these observations it may be conjectured that the so-called near wake is confined to this region, and we may expect the measurements further downstream to conform with the asymptotic wake behavior discussed above.

<u>E. Integral Parameters</u>. The velocity profiles deduced from the pitot and static⁺traverseswere integrated to determine the various types of integral parameters discussed earlier in [1]. The overall shape of the velocity profile is best described by the so-called "planar" displacement and momentum thicknesses:

$$\overline{\delta_1} = \int_0^{\delta} (1 - \frac{U}{U_{\delta}}) \, dy, \qquad \overline{\delta_2} = \int_0^{\delta} \frac{U}{U_{\delta}} (1 - \frac{U}{U_{\delta}}) \, dy \qquad (2)$$

which do not take the axial symmetry of the flow into account. On the other hand, the physical mass- and momentum-flux deficits in the boundary layer and the wake are given by the integral areas

$$\Delta_{1} = \int_{0}^{\delta} (1 - \frac{U}{U_{\delta}}) r dy, \qquad \Delta_{2} = \int_{0}^{\delta} \frac{U}{U_{\delta}} (1 - \frac{U}{U_{\delta}}) r dy \qquad (3)$$

respectively. Here, U_{δ} is the velocity component at the edge of the boundary layer and wake (y = δ), tangent to the body surface for the boundary layer and parallel to the axis for the wake, r is the radial distance from the axis of symetry and y is measured normal to the surface of the body. Thus, $r=r_{0}+y \cos \theta$, where θ is the angle between the axis and the tangent to the body surface, for the boundary layer, and r=y for the wake.

The variations of $\overline{\delta_2}$ and Δ_2 with X/L in the turbulent boundary layer

⁺ In view of the inaccuracies in the direct measurement of U, the integral parameters have been determined using Q. The error is negligible for practical purposes.

and wake, and the corresponding shape parameters, defined by

$$\overline{H} = \overline{\delta_1 / \delta_2}$$
, $H = \Delta_1 / \Delta_2$ (4)

are shown in Figure 8. It should be noted that the total drag coefficient C_D of the body is related to the asymptotic value $\Delta_{2\infty}$ of the momentum-deficit area in the far wake via

$$C_{\rm D} = \frac{\rm D}{\frac{1}{2} \rho \, U_{\rm O}^2 \, \rm S} = \frac{4\pi \, \Delta_{2\infty}}{\rm S}$$
(5)

where D is the drag force and S is a representative area of the body. The measurements at X/L = 2.472 indicate that the drag coefficient, based on frontal area, of the present body (with the trip wire) is 0.0092. $\overline{\delta_2}$, on the other hand, has no special physical significance, but the parameter \overline{H} indicates the shape of the velocity distributions.

Finally, the normal distance by which the external inviscid-flow streamlines are displaced outward due to the presence of the boundary layer and the wake, i.e. the displacement thickness δ^* , may be obtained from the relation [1]

$$r_{0} \delta^{*} (1 + \frac{1}{2} \frac{\delta^{*}}{r_{0}} \cos \theta) = \Delta_{1}$$

for the boundary layer, and

$$\frac{1}{2} \delta^{\star 2} = \Delta_1 \tag{7}$$

(6)

for the wake. The displacement surface deduced in this manner is shown in Figure 9 along with the physical edge of the boundary layer and the wake. It should be emphasized here that this figure was drawn to scale without any distortion so that it clearly illustrates what is meant by a <u>thick</u> <u>boundary layer</u>. It is particularly interesting to note the magnitude of the displacement effect of the boundary layer over the rear one-quarter of the body and that in the near wake. The implication of this with regard to the boundary layer and near wake computations is discussed later on.

<u>F. Wall Shear Stress</u>. Three different Preston tubes of external diameters 1.651, 1.270 and 0.711 mm were used to measure the wall shearstress distribution on the body. Figure 10 shows the results obtained with the largest and the smallest tubes. The data from the intermediate size tube lay between these. The use of Preston tubes of course pre-supposes the validity of the usual law of the wall even in the thick axisymmetric boundary layer. The small but systematic variation in the wall shear stress obtained with the three tubes indicated the need for an alternative approach. The velocity profile data were therefore replotted in the form suggested by Clauser, but using the extended law of the wall proposed by Patel [16], to determine the wall shear stress compatible with that law. These results are also shown in Figure 10. It will be seen that substantial departures from the usual law of the wall (over the distance occupied by the Preston tubes) are indicated only in the neighborhood of the tail (X/L > 0.94, say).

IV. TURBULENCE MEASUREMENTS

Hot-wire traverses were made at six axial stations in the boundary layer (X/L = 0.60, 0.80, 0.88, 0.92, 0.96 and 1.00) and six stations (X/L = 1.02, 1.06, 1.20, 1.30, 1.40 and 2.47) in the wake. The mean-velocity profiles obtained in this manner were discussed earlier. The distributions of the four non-zero Reynolds stresses, namely u^2 , v^2 , w^2 , and \overline{uv} , are shown in Figures 11, 12, 13 and 14, respectively. It will be observed that two sets of data are shown in each figure for the station X/L = 1.00, which corresponds to the tail of the body. The only difference between these is the direction of traverse. Initially, a traverse was made normal to the axis of the body and the wake (θ =0), but since the semi-angle of the body tail is 5.7 degrees, another traverse was made (θ =5.7°) in the direction normal to the surface of the body at the tail. Figures 11, 12 and 14 show that the results of the two traverses differ appreciably in the distributions of v^2 and uv, and that the data in terms of the boundary-layer coordinates $(\theta=5.7^{\circ})$ are more consistent. It is obvious that this ambiguity would not have arisen had the tail been exactly cusped. However, the present data indicate the need for a very careful treatment of the flow in the neighborhood

of pointed tails where the change from the boundary layer to the wake coordinates occurs abruptly. The data corresponding to θ =5.7° is used in the subsequent analysis.

Insofar as the measurements of the Reynolds stresses in the thick boundary layer are concerned, it is observed that they are qualitatively similar to those made earlier in the tail region of a modified spheroid [1]. Quantitatively, however, the present data are expected to be quite different from the earlier set due to the different pressure gradient and surface curvature histories.

The distributions of shear stress \overline{uv} were used in conjunction with the mean-velocity profiles to calculate the variation of eddy viscosity according to the planar (ε) and the axisymmetric (ε_A) definitions

$$-\overline{uv} = \varepsilon \left(\frac{\partial U}{\partial y}\right)$$
, $-\overline{uv} = \varepsilon_A \frac{1}{r} \frac{\partial}{\partial y} (Ur)$ (8)

and the corresponding variation of mixing length

$$-\overline{uv} = \ell^2 \left(\frac{\partial U}{\partial v}\right)^2 , \qquad -\overline{uv} = \ell^2_A \left[\frac{1}{r}\frac{\partial}{\partial y} (Ur)\right]^2 \qquad (9)$$

The values of ε_{A} and ℓ_{A} were found to be substantially lower than those of ε and ℓ which are shown in Figures 15 and 16, respectively. The boundary-layer data are again in general agreement with the observations made on the modified spheroid [1] (reproduced here as Figures 17 and 18) insofar as they indicate a substantial reduction of eddy viscosity and mixing length as the boundary layer thickens towards the tail. They increase again with axial distance in the wake. The mixing length reaches a nearly constant value in the range $0.08 < \ell/\delta < 0.10$ at the most downstream station X/L = 2.47, where, as indicated earlier, the wake approaches a nearly fully-developed state. The major conclusion to be drawn from these measurements is that the characteristics of the turbulence in the region where the boundary layer is thick, and in the near wake, i.e. over 0.75 < X/L < 1.25, say, are markedly different from those of a thin turbulent boundary layer and the asymptotic far wake.

Yet another quantity that is of interest in the discussion of the characteristics of the turbulence is the so-called structure parameter

⁻ 11

ماير المام وروموسو وما الدان

 $a_1 \equiv -\overline{uv}/q^2$. It would be recalled that for most thin turbulent shear layers this is nearly constant across the flow and equal to about 0.15. The distributions of a_1 across the boundary layer and the wake of the low-drag body are shown in Figure 19. The corresponding results deduced from the modified spheroid boundary layer [1] are shown in Figure 20. From Figure 19 it is seen that a_1 remains nearly constant around 0.14 in the inner one-half of the boundary layer on the low-drag body and indicates some reduction with normal distance over the outer half. The data in the wake, however, appear to indicate nearly constant values again. Examination of Figure 20, corresponding to the boundary layer on the modified spheroid, indicates that in those experiments a_1 undergoes a drastic reduction right across the boundary layer, the minimum values of a_1 being reached at X/L = 0.93.

Possible reasons for the above observations on l and a_1 are discussed in a subsequent section.

V. TABULATION OF DATA

Since the main thrust of this report is to present the results of the experimental study, the complete set of data is tabulated. Table 1 provides a summary of the body geometry, pressure and freestream-velocity distributions, and the integral parameters of the boundary layer and the wake. Tables 2 through 26 contain the total- and static-pressure as well as mean-velocity distributions across the boundary layer and wake at the 25 axial measuring stations. For the 12 stations at which hot-wire traverses were made, the corresponding tables contain the distributions of the mean as well as turbulence quantities.

VI. SOME PRELIMINARY ANALYSIS OF DATA

As remarked upon earlier, the measurements of Patel, Nakayama and Damian [1] in the tail region of a modified spheroid provided the impetus to the development of some theoretical methods for the calculation of thick axisymmetric turbulent boundary layers [2,3] and the interaction between the boundary layer, the wake and the external potential flow [4,5] in the

tail region of bodies whose shapes are such that the boundary layer does not separate. The main objective of the present experiment was therefore to obtain data from a body of significantly different shape so as to provide an independent check on some of the observations that had been made earlier and the assumptions that were made in the theoretical models. This section is devoted to a preliminary discussion of these topics.

Influence of Transverse and Longitudinal Curvatures. Figure Α. 21 shows the conventional transverse and longitudinal curvature parameters for the present and the earlier spheroid experiments. The ratio of the boundary-layer thickness to the transverse radius of curvature, δ/r_{c} , is seen to be more than twice as large in the present experiments as in the previous ones. In both cases, however, δ/r_{c} is less than 0.4 upto X/L = 0.75 so that the boundary layers may be regarded as thin upto that station. Over the rear one-quarter of the body length, the influence of transverse curvature would prevail not only through the geometrical terms in the equations of motion (e.g. the term U $\frac{\partial r}{\partial x}$ in the equation of continuity or $\Delta_2 \, \mathrm{dr}_0$ in the integral momentum equation) but also through any direct ro effect on the turbulence. The precise nature of the latter is not known at the present time since the turbulence is also affected by the longitudinal curvature of the streamlines associated with the curvature of the surface as well as the curvature induced by the rapid thickening of the boundary layer over the tail.

The longitudinal surface curvature parameter $\kappa\delta$ is seen to be quite different for the two bodies. In the case of the modified spheroid the curvature is convex upto X/L = 0.933 and zero thereafter, while that of the low-drag body is initially convex and becomes concave for X/L > 0.772. Now, several recent studies with nominally two-dimensional turbulent boundary layers [17-26] have indicated that even mild ($\kappa\delta \sim 0.01$) longitudinal surface curvature exerts a dramatic influence on turbulence structure. In particular, it is noted that quantities such as the mixing length ℓ , the structure parameter $a_1 \equiv -\overline{uv}/\overline{q^2}$ and the shear-stress correlation coefficient $\overline{uv}/(\sqrt{u^2}/\sqrt{v^2})$ are influenced markedly, and experiments indicate that convex streamline curvature leads to a reduction in these, whereas concave curvature has an opposite effect. While these studies in thin boundary layers, where the

streamline curvature is dictated by that of the surface, would tend to indicate that the somewhat larger reduction in ℓ (compare Figure 18 with 16) and the drastic reduction in a_1 (compare Figure 20 with 19) observed on the modified spheroid may be attributed to the large, prolonged, convex longitudinal curvature of the surface, it should be noted that the rapid growth of the boundary layer over the tail tends to cancel out some of the convex curvature of the streamlines. Nevertheless, in view of the fact that the longitudinal streamline curvature in both experiments is large, it is possible that a part, if not all, of the changes in parameters such as ℓ and a_1 may be due to that factor.

In reference [18] Bradshaw has argued that whenever a thin shear layer experiences an extra rate of strain, i.e. in addition to the usual one $\partial U/\partial y$, the response of the turbulence parameters is an order of magnitude greater than one would expect from an observation of the appropriate extra terms in the mean-flow equations of momentum and continuity. For THIN shear layers and SMALL extra rates of strain he proposed a simple linear correction for the length scale of the turbulence, viz.

$$\frac{\dot{k}}{k_{0}} = 1 + \frac{\alpha e}{\partial U/\partial \dot{y}}$$
(10)

where l_0 is the length scale with the usual rate of strain $\partial U/\partial y$, l is the length scale with the extra rate of strain e and α is a constant of the order of 10. For the axisymmetric boundary layer being considered here, there are two extra rates of strain:

$$e_{\ell} = -\frac{\kappa U}{1 + \kappa y}$$
(11)

due to the longitudinal curvature, and

$$e_{t} = \frac{U}{1 + \kappa y} \frac{1}{r} \frac{\partial r}{\partial x} = \frac{U}{r} \frac{dr_{o}}{dx}$$
(12)

due to the convergence or divergence of the streamlines (in planes parallel to the surface) associated with the changes in the transverse curvature. The former is a shearing strain while the latter is a plain strain, and it is not certain whether the two effects can be added simply in using equation (10)

as recommended by Bradshaw [18]. If this is the case, however, we would expect a greater reduction in ℓ in the tail region of the modified spheroid, where κ is positive and dr /dx is negative, than on the low-drag body, where κ becomes negative and would therefore tend to offset the influence of the negative dr /dx. Although the data shown in Figures 16 and 18 appear to bear this out to some extent, a direct comparison between equations (10), (11) and (12) and the data has not been attempted, especially in view of Bradshaw's [27] assertion that equation (10) should be used in conjunction with a simple rate equation which accounts for the upstream extra rate-of-strain history. He

$$\frac{\ell}{\ell_{O}} = 1 + \frac{\alpha e_{eff}}{\partial U / \partial y}$$
(13)

(14)

and

where e is the actual rate of strain, e_{eff} is its effective value and 10δ represents the "lag length" over which the boundary layer responds to a change in e. Now, in order to determine the merit of this proposal, it is of course necessary to incorporate it in an actual calculation and make a comparison between the predictions and measurement. Such an attempt has been made here.

 $\frac{d}{dx}(e_{eff}) = \frac{e - e_{eff}}{10 \delta}$

B. Solutions of the Differential Equations. As shown by Patel [28] and Nakayama, Patel and Landweber [5], the differential equations of a thick axisymmetric turbulent boundary layer may be written

$$\frac{U}{h_{1}}\frac{\partial U}{\partial x} + V \frac{\partial U}{\partial y} + \frac{\kappa}{h_{1}}UV + \frac{1}{\rho h_{1}}\frac{\partial p}{\partial x} - \frac{1}{rh_{1}}\frac{\partial}{\partial y}\left(\frac{1}{\rho}\right) = 0$$
(15)

$$\frac{U}{h_1}\frac{\partial V}{\partial x} + V\frac{\partial V}{\partial y} - \frac{\kappa}{h_1}U^2 + \frac{1}{\rho}\frac{\partial p}{\partial y} = 0$$
(16)

$$\frac{\partial}{\partial \mathbf{x}}(\mathbf{U}\mathbf{r}) + \frac{\partial}{\partial \mathbf{y}}(\mathbf{r}\mathbf{h}_{\mathbf{I}}\mathbf{V}) = 0$$
 (17)

where U and V are the components of mean velocity in the x and y directions, along and normal to the body surface, respectively, $h_1 = 1 + \kappa y$, κ being the longitudinal surface curvature, $\tau = -\rho \overline{uv} + \mu \frac{\partial U}{\partial y}$, ρ and μ are the density and

15

Service States

dynamic viscosity of the fluid, and $r = r_0 + y \cos \theta$ is the radial distance measured from the body axis. These equations allow for the variation of static pressure across the boundary layer. If the Reynolds stress \overline{uv} is determined by a one-equation model using the turbulent kinetic-energy equation, as proposed by Bradshaw, Ferriss and Atwell [29], then the appropriate closure equation is

$$\frac{1}{2a_{1}}\left\{\frac{U}{h_{1}}\frac{\partial\tau}{\partial x}+V\frac{\partial\tau}{\partial y}\right\}-\tau\left\{\frac{\partial U}{\partial y}-\kappa U\right\} +\frac{1}{r}\frac{\partial}{\partial y}\left\{rG\frac{\tau}{a_{1}}\frac{\sqrt{\tau}\max}{\rho}\right\}+\frac{1}{r}\frac{\tau}{l}\frac{\tau^{3/2}}{\rho^{1/2}}=0 \quad (18)$$

where a_1 is a constant (=0.15), $G(y/\delta)$ is a diffusion function and $\ell(y/\delta)$ is a length-scale function identified with the usual mixing length. It is assumed that ℓ is given by equations (13) and (14) where $\ell_0(y/\delta)$ is the universal function corresponding to a thin, flat-surface boundary layer [29] with no extra rate of strain.

A computer program available for the solution of equations corresponding to equations (15), (17) and (18) for a thin two-dimensional boundary layer was modified to introduce the longitudinal- and transverse-curvature terms and, instead of incorporating the y-momentum equation (16) into the solution procedure, changes were made such that a prescribed variation (in the y-direction) of the pressure gradient $\frac{\partial p}{\partial x}$ could be used. The computer program was then used to perform calculations for the two bodies of revolution for which detailed experimental data are available.

Preliminary calculations quickly indicated that the extra rates of strain in both experiments were much larger than those examined by Bradshaw [18] in support of the linear length-scale correction formula. In fact, the use of the linear formula led to a rapid decrease in ℓ and indicated almost total destruction of the Reynolds stress across the boundary layer. In view of this, recourse was made to a non-linear correction formula in the form

$$\frac{\ell}{\ell_{O}} = \left\{1 - \frac{\alpha e_{eff}}{\partial U / \partial Y}\right\}^{-1}$$
(13a)

which reduces to the linear one, equation (13), for small extra rates of strain. Equations (15), (17), and (18), together with (11), (12), (13a), and (14), were then solved with the following inputs:

- B: the measured wall pressure distribution with $\ell(y/\delta)$ corrected for only the longitudinal curvature (e = e_l) according to equations (13a) and (14)</sub>
- C: the measured wall pressure distribution with $l(y/\delta)$ corrected for only the streamline convergence (e = e_t) according to equations(13a) and (14)
- D: As above, but with $e = e_0 + e_+$
- E: Using $e = e_{l} + e_{t}$ in equations (13a) and (14), and a variable $\frac{\partial p}{\partial x}$ across the boundary layer evaluated by assuming a linear variation in p from y=0 to y= δ and using the measured values of

 C_{pw} , $C_{p\delta}$ and δ . The constant a_1 and the diffusion function G were maintained at their usual thin boundary-layer values [29] in all calculations. Thus, case A corresponds to an axisymmetric boundary layer with thin, two-dimensional boundary-layer physics. The other cases enable the evaluation of the influence of the extra rates of strain as well as the static-pressure variation through the boundary layer. The calculations were started with the velocity and shear-stress profiles measured at X/L = 0.662 for the modified spheroid and X/L = 0.601 for the low-drag body.

The major results of the aforementioned calculations are summarized in Figure 22 (a-i) for the low-drag body and in Figure 23 (a-i) for the modified spheroid. Each figure contains comparisons between the experimental and calculated velocity, shear-stress and mixing-length profiles at a few representative axial stations as well as the development of the integral parameters $\delta, \overline{\delta}_2, \Delta_2, \overline{H}, \overline{H}$ and C_f with axial distance. In the interest of clarity, the results of all the calculations (cases A through E) are shown only at one axial station (Figure 22c and 23c), those at other stations being qualitatively similar.

Considering the most detailed figures, 22c and 23c, first, it is clear that the predictions are rather poor when the length scale l is assumed to be the same as that in a thin boundary layer (case A). This is particularly evident in the prediction of the shear-stress profiles. Incorporation of the correction to 1 to account for the extra rate of strain due to longitudinal curvature (case B) leads to a marginal improvement in the case of the lowdrag body and a dramatic improvement for the modified spheroid. This is to be expected in view of the grossly different curvature histories of the two bodies as noted earlier (Figure 21). Nevertheless, it is clear that this correction by itself is not sufficient to account for the differences between the data and the calculations with thin boundary-layer turbulence models. The application of the correction for the extra rate of strain due to the transverse curvature (case C) appears to account for a major portion of these differences for both bodies. The influence of transverse curvature is in fact seen to be somewhat larger for the low-drag body as would be expected from the fact that δ/r_{c} is greater in that case (Figure 21). The simple addition of the effects of the two rate of strains (case D) leads to a significant improvement in the prediction of both the velocity profiles and the shear stress profiles. The incorporation of a variable pressure gradient across the boundary layer (case E), which is an attempt to account for the normal pressure gradients, appears to make a significant improvement in the prediction of the velocity profile in the case of the modified spheroid, but its influence is small, and confined to the outer part of the boundary layer, in the case of the low-drag body.

Examination of the velocity and shear-stress profiles at several axial stations shown in Figures 22b, c, d and 23b, c, d suggests that the incorporation of the non-linear length-scale correction of equation (13a), the associated rate equation (14) and the static-pressure variation in the equations of the thick boundary layer, which already include the direct longitudinal and transverse curvature terms, leads to satisfactory overall agreement with the data for both bodies. The predictions of the shear stress profiles are consistent with those of the mixing-length distributions shown in Figures 22e and 23e insofar as lower shear stresses correspond to an over correction in the mixing length.

It is interesting to note that, for both bodies the calculation procedure predicts normal components of mean velocity which are of the same order of magnitude as those measured. The relatively close agreement between the predictions and experiment for both components of velocity is perhaps a good

indication of the axial symmetry achieved in the experiments. The large values of the normal velocity and the influence of static pressure variation noted above would appear to indicate that the incorporation of the y-momentum equation in the calculation procedure would be worthwhile. Note that this has been avoided in the present calculations by using the measured pressure distributions at the surface and the outer edge of the boundary layer.

Finally, the comparisons made in Figures 22(f-i) and 23(f-i) with respect to the integral parameters of the boundary layer show several interesting and consistent features. It is observed that the prediction of the physical thickness of the boundary layer is insensitive to the changes in L as well as the inclusion of static pressure variation. The planar momentum thickness $\overline{\delta}_2$ and the momentum-deficit area Δ_2 are also insensitive to changes in ℓ . The variation of static pressure across the boundary layer appears to make a small but noticeable contribution to the development of Δ_2 in both cases. However, it is not large enough to account for the differences between the calculations and experiment. Indeed, the disagreement between the experimental results and calculations for Δ_2 are somewhat surprising in view of the excellent agreement shown by the planar momentum thickness $\overline{\delta}_2$. A closer examination of the predictions of the two quantities suggests, however, that the maximum percentage of error in both cases is about the same. The predictions for the shape parameters \overline{H} and H, and the wall shear stress, shown in Figures 22h,i and 23h,i, again indicate that the best overall results are obtained with corrections to L for both extra rates of strain and that inclusion of the static pressure variation makes only small contributions. The influence of the reduction in the mixing length, caused here by convex curvature and lateral convergence of streamlines, on the various integral parameters is similar to that shown earlier by Bradshaw [17] and others in connection with longitudinal surface curvature effects alone.

<u>C. Integral Correlations and Predictions</u>. One of the objectives of the on-going research is to investigate the possibilities of extending boundary-layer calculation methods into the near wake and recover the well known asymptotic axisymmetric wake behavior. One such attempt was made in

[5] where the simple entrainment method of Patel [2] was extended to calculate the development of the wake. It is therefore of interest not only to verify the assumptions made in the boundary-layer method but also the additional assumptions required for its extension to wakes.

The method of Patel is based on that of Head [30] for thin twodimensional boundary layers. It involves the simultaneous solution of the momentum integral equation for the thick axisymmetric boundary layer [2,5],

$$\frac{d\Delta}{dx} + (H + 2) \frac{\Delta}{U_{\delta}} \frac{dU_{\delta}}{dx} - \frac{1}{2} C_{f}r_{o} - I_{k} - I_{p} = 0$$
(19)

where

$$\bar{I}_{k} = \kappa \int_{0}^{\delta} \frac{UV}{v_{\delta}^{2}} r \, dy$$
⁽²⁰⁾

and

$$I_{p} = \frac{1}{U_{\delta}^{2}} \int_{0}^{\delta} r \frac{\partial}{\partial x} \left\{ \frac{\rho - p_{\delta}}{\rho} - \frac{v_{\delta}}{2} \right\} dy$$
(21)

and an equation relating the rate of mass entrainment into the boundary layer to the shape of the velocity profile, together with a number of auxiliary relations between the planar and axisymmetric integral parameters deduced from assumed velocity profile shapes. For thick axisymmetric boundary layers, two additional assumptions are made: that the empirical correlation between the entrainment shape-parameter $\bar{H}^* = (\delta - \bar{\delta}_1)/\bar{\delta}_2$ and the usual shape parameter $\bar{H} = \bar{\delta}_1/\bar{\delta}_2$, and the correlation between the entrainment coefficient C_E and \bar{H}^* , are the same as in two-dimensional flow provided the shape parameters are based only on the shape of the velocity profile (i.e. planar definitions of equation (2) are used) and C_E is defined appropriately, viz

$$C_{E} = \frac{1}{U_{\delta}r_{\delta}h_{1\delta}} \frac{d}{dx} \left[U_{\delta}(r_{O}\delta - \Delta_{1} + \frac{1}{2} \delta^{2} \cos\theta) \right]^{\dagger}$$
(22)

where $r_{\delta} = \dot{r}_{0} + \delta \cos \theta$, $h_{1\delta} = 1 + \kappa \delta$ and the quantity within the square brackets represents the mass flux within the boundary layer. The assumption concerning the shape-parameter correlation was verified directly in [5] using the then available data from boundary layers and wakes. Figure 24 shows that the data from the low-drag body supports this observation. Upon closer examination, however, it is seen that there is a systematic departure from the boundary-

+This definition of C_E differs slightly from that of Patel [2] and is in agreement with the improvement suggested by Nakayama, Patel and Landweber [5] and Granville [3].

layer correlation and that the data from the most downstream wake stations are in better agreement with the \bar{H}^* vs \bar{H} relation deduced from the asymptotic wake profile of equation (1). Wake calculations have been performed using both correlations to demonstrate their influence. An attempt was made to deduce the variation of C_E with \bar{H}^* using equation (22) and the measured values of the quantities appearing therein. The inaccuracies associated with the differentiation in equation (22), however, masked any systematic trend, and therefore the previous assumption that the correlation of Head continues to apply in the wake has been retained. The influence of this could then be determined by the performance of the overall solutions.

The method of Patel [2], with the modification of C_E noted earlier, was used to predict the development of the boundary layer and the wake of the lowdrag body. Since the tail of the low-drag body is nearly cusped; it was not necessary to change the coordinates abruptly at the tail, and make a special analysis as in Nakayama, Patel and Landweber [5], in order to continue the calculation into the wake. The assumption of an exponential velocity profile family in the wake, suggested in [5], namely

$$\frac{U}{U_{\delta}} = 1 - \overline{U}_{c} e^{-\lambda (y/\delta)^{2}}$$
$$\overline{U}_{c} = 1 - \frac{U}{U_{\delta}}$$

(23)

(24)

where

 U_c is the velocity at the wake center and λ is a parameter, was retained. The inter-relationships between the planar and the axisymmetric integral parameters were obtained in [5] by using $\lambda = 3.22$ in equation (23), performing the integrations in equations (2) and (3) upto $y/\delta=1$ and curve-fitting. In the present work, this procedure has been simplified by setting the outer limit of integration equal to infinity so that the necessary relations are obtained analytically. These are

$$\Delta_{1} = \frac{k_{2}}{\bar{v}_{c}(k_{1} - \bar{v}_{c})^{2}} \overline{\delta}_{2}^{2}$$

$$\Delta_{2} = \frac{k_{2} - k_{3}\bar{v}_{c}}{\bar{v}_{c}(k_{1} - \bar{v}_{c})^{2}} \overline{\delta}_{2}^{2}$$

$$H = \frac{k_{2}}{k_{2} - k_{3}\bar{v}_{c}}$$

$$\overline{H} = \frac{k_{1}}{k_{1} - \bar{v}_{c}}$$

and

where $k_1 = \sqrt{2}$, $k_2 = 4/\pi$ and $k_3 = 2/\pi$. It is of interest to note that these relations are independent of λ and therefore a constant value of λ is not implied.

The boundary layer calculation was started at x/L = 0.70, where the boundary layer has recovered from the influence of the trip wire, and terminated at the tail. The initial conditions for the wake were provided by requiring the continuity of the physical mass and momentum deficits there, i.e. Δ_2 and H remain continuous in going from the boundary layer to the wake. Since the integral method is basically a two-parameter method, this leads to a discontinuity of the other parameters, such as the boundary layer thickness δ . The wake calculation was terminated in the far wake, where the momentum deficit approaches a constant value.

A set of calculations was first performed using only the pressure distribution along the body surface and wake centerline (i.e. with $I_k = I_p = 0$ in equation (19), as suggested by Patel [2]) and the two alternative shapeparameter relations $H^*(H)$ (Figure 24) in the wake. The results of these are shown in Figure 25 and identified as curves A and B. It is seen that the method predicts most of the quantities reasonably well in the boundary layer. In fact, comparison of Figure 25 with Figure 22(f-i) shows that the simple integral method appears to do just as well as the differential one with respect to the prediction of the integral parameters δ , Δ_2 , $\overline{\delta}_2$, H, H and C_f. The performance of the method in the wake is not as good as that for the boundary layer. This is due partly to the retention of the boundary layer entrainment correlation and more likely to the inadequacy of the exponential velocity profile family used to describe the velocity distribution in the near as well as far wake. The difference between curves A and B, which correspond to the two different shape-parameter relations, clearly indicate the need for the introduction of another parameter which would govern the gradual change from the boundary layer profile at the tail to the asymptotic wake profile in the far wake. Although such an additional parameter would eliminate the discontinuity in δ (Figure 25a) and improve the prediction of the near wake, it is not entirely clear what additional equation could be used to determine its streamwise distribution within the framework of an integral method.

Another possible source of the disagreement between the calculations and experiment is the use of the pressure distribution on the body surface and the wake centerline to compensate for the neglected static pressure and

curvature integrals $(I_p \text{ and } I_k)$ in the momentum integral equation. An attempt has been made to evaluate these integrals from the experimental data. The procedure that has been adopted is described in the Appendix. Although this involves several approximations and inaccuracies stemming from the differentiation of ill-defined quantities such as the boundary layer and wake thicknesses and the normal velocity at the edge of the boundary layer and the wake, it is seen from Figure 26 that the two integrals are not small in comparison with some of the other terms in the momentum integral equation. A similar conclusion was drawn by Patel and Guven [10] from their analysis of the same data in order to explore the importance of the near wake in the calculation of the viscous resistance of axisymmetric bodies using conventional extrapolation formulae.

A second set of calculations was performed in which the momentum integral equation was solved using the estimated values of I $_{\rm D}$ and I $_{\rm k}$ and the velocity distribution measured at the edge of the boundary layer in place of that inferred from the pressure distribution on the body surface and the wake centerline. The effective value of I, in the near wake was estimated simply by fairing the values at the tail to zero in the far wake, as shown in Figure 26. The results of these calculations are shown in Figure 25 as curves C and D, corresponding again to the two shape-parameter relations for the wake. The relatively small differences between this and the previous set of calculations suggest that the use of the pressure distribution on the surface and wake centerline to account for the effects of I $_{_{\rm D}}$ and I $_{\rm k},$ as recommended by Patel [2], is a good engineering approximation. However, the results of the calculations also indicate that such an approximation can be discarded in favor of the correct momentum integral equation, equation (19), provided the values of I and I can be determined a priori, as is the case in an interactive scheme such as that of Nakayama, Patel and Landweber [5].

VII DISCUSSION AND CONCLUSIONS

The data from the present experiments have been documented here in as much detail as possible so that they can be used by others to further investigate the various aspects of the thick axisymmetric turbulent boundary layer and near wake of a body of revolution. The boundary layer data are

qualitatively similar to the earlier set obtained on a modified spheroid by Patel, Nakayama and Damian [1]. The two configurations are, however, sufficiently different to indicate the relative importance of longitudinal and transverse surface curvatures in the tail region. In both cases, the boundary layer grows rapidly towards the tail and interacts with the external potential flow. This interaction is strong enough to relieve the inviscid pressure gradients and avoid separation. The experiments with these two distinctly different shapes would appear to suggest that separation may be avoided on most slender axisymmetric bodies of practical interest by providing pointed tails and thus ensuring the growth of thick boundary layers.

The data in the wake are of considerable interest insofar as they document the transformation of a wall boundary layer into a free shear layer without the usual complication of flow reversal. To the authors' knowledge, the only other detailed set of data in a non-separated near wake is that of Chevray and Kovasznay [31], who made measurements in the wake of a twodimensional flat plate. Such data are needed to examine the possibilities of continuing boundary layer solutions into the wake. Information on the wake is required, in turn, to develop practical methods for the treatment of the viscous-inviscid interaction in the tail region.

The boundary layer and wake data also afford the opportunity to verify the applicability of some of the recent turbulence closure models which claim to possess greater generality than the older phenomenological (mixing-length and eddy-viscosity) models. From the preliminary solutions of the differential equations, using the (one-equation) turbulent kineticenergy model of Bradshaw, Ferriss and Atwell [29], presented in section VI.B, it is clear that methods developed for thin shear layers cannot be relied upon to predict the behavior of thick boundary layers. Although these calculations have demonstrated that a fairly satisfactory prediction procedure can be developed by incorporating ad hoc corrections to the model for the extra rates of strain, along the lines recommended by Bradshaw [18], it is indeed surprising that such modifications, proposed originally for small extra rates of strain and thin shear layers, work so well in the thick boundary layer on both bodies. In keeping with recent trends in the formulation of turbulence

models, one inquires whether thick boundary layers ought to be treated by the so-called two-equation models. From the rapid changes in the mixinglength indicated by the data, this would appear to be desirable since it would provide an extra equation for the length-scale of the turbulence in addition to that for its intensity. This would also enable the incorporation of the variation in the structure parameter a₁ observed in the experiments. However, the recent work of Launder, Priddin and Sharma [32] and Chambers and Wilcox [33] indicates that even two-equation models, at least of the type available at the present time, require further modifications to account for the extra rates of strain stemming from such effects as streamline curvature, streamline convergence and rotation, two of which are present in the case examined here.

In addition to the problem of turbulence models, the thick boundary layer contains the complication of normal pressure gradients. Both sets of data show that there exist substantial variations of static pressure across the boundary layer. Examination of the momentum integral equation (19) suggests that it is the streamwise rate of change of this variation, and not the variation itself, which affects the growth of the boundary layer. The calculations made here with the differential as well as the integral method have shown that the normal pressure gradients are not negligible. If they are to be taken into account in a method based on the differential equations, it is then necessary to include the y-momentum equation in the solution procedure and regard the pressure as an additional unknown. This is perhaps best accomplished by means of an iterative scheme such as that proposed by Nakayama, Patel and Landweber [4,5], although other possibilities can be explored.

The calculations presented in section VI.C have demonstrated the overall reliability of the simple integral method of Patel [2] for the prediction of the thick boundary layer. Its extension to the wake is not altogether satisfactory and this is attributed largely to the lack of a systematic procedure for the description of the velocity profiles in the near wake. This method is ideally suited, however, for rapid calculations to determine the state of the boundary layer in the tail region for applications in the design of tail-mounted propellers, control surfaces and other appendages.

In view of the success of the differential method of section VI.B, it is now proposed to extend it beyond the tail to calculate the development of the wake. Comparisons of the results with near- and far-wake data would shed some light on the continued applicability of the one-equation turbulence model together with the extra rate-of-strain corrections, in the wake. If such an extension can be carried out successfully, the method would be incorporated in the iterative scheme of Nakayama, Patel and Landweber [4,5], in place of the integral method, to study the viscous-inviscid interaction in the tail region in greater detail.

REFERENCES

- Patel, V.C., Nakayama, A. and Damian, R., "Measurements in the Thick Axisymmetric Turbulent Boundary Layer Near the Tail of a Body of Revolution," Journal of Fluid Mechanics, Vol. 63, 1974, pp. 345-362.
- Patel, V.C., "A Simple Integral Method for the Calculation of Thick Axisymmetric Turbulent Boundary Layers," <u>The Aeronautical Quarterly</u>, Vol. 25, 1974, pp. 47-58.
- 3. Granville, P.S., "Similarity-Law Entrainment Method for Thick Axisymmetric Turbulent Boundary Layers in Pressure Gradients," David W. Taylor Naval Ship Research and Development Center, Rept. 4525, 1975.
- 4. Nakayama, A., Patel, V.C. and Landweber, L., "Flow Interaction Near the Tail of a Body of Revolution. Part I: Flow Exterior to Boundary Layer and Wake," ASME, <u>Journal of Fluids Engineering</u>, Vol. 98, 1976, pp. 531-537.
- 5. Nakayama, A., Patel, V.C. and Landweber, L., "Flow Interaction Near the Tail of a Body of Revolution. Part II: Iterative Solution for Flow Within and Exterior to Boundary Layer and Wake," ASME, Journal of Fluids Engineering, Vol. 98, 1976, pp. 538-549.
- Parsons, J.S. and Goodson, R.E., "The Optimum Shaping of Axisymmetric Bodies for Minimum Drag in Incompressible Flow," Automatic Control Center, School of Mech. Eng., Purdue Univ., Rept. ACC-72-5, 1972.
- Patel, V.C., "Calibration of the Preston Tube and Limitations On Its Use in Pressure Gradients," <u>Journal of Fluid Mechanics</u>, Vol. 23, 1965, pp. 185-208.
- Glover, J.R., "Old Gold Model, Type 4-2H Hot-Wire Anemometer and Type 2 Mean-Product Computer," Iowa Institute of Hydraulic Research, IIHR Rept. No. 136, 1972.
- 9. Landweber, L., "Potential Flow About Bodies of Revolution and Symmetric Two-Dimensional Forms," IIHR, Report Buships Index NS 715-102, 1959.
- 10. Patel, V.C. and Güven, O., "Importance of the Near Wake in Drag Prediction of Bodies of Revolution," <u>AIAA Journal</u>, Vol. <u>14</u>, 1976, pp. 1132-<u>1</u>133.
- 11. Chevray, R., "The Turbulent Wake of a Body of Revolution," ASME, <u>Journal</u> of <u>Basic Engineering</u>, Vol. 90, 1968, pp. 275-284.
- 12. Swanson, R.C., Schetz, J.A., Jr. and Jakubowski, A.K., "Turbulent Wake behind Slender Bodies Including Self-Propelled Configurations," VPI-Aero-024, Virginia Polytechnic Institute and State University, 1974.
- Chieng, C.C., Jakubowski, A.K. and Schetz, J.A., "Investigation of the Turbulence Properties of the Wake behind Self-Propelled, Axisymmetric Bodies," VPI-Aero-025, Virginia Polytechnic Institute and State University, 1974.
- 14. Schlichting, H., <u>Boundary-Layer Theory</u>, 6th edition, McGraw-Hill Book Company, 1968, pp. 691-695.
- Rodi, W., "A Review of Experimental Data of Uniform Density Free Turbulent Boundary Layers," <u>Studies in Convection</u>, Vol. I, ed. B.E. Launder, Academic Press, 1975, pp. 79-165.
- 16. Patel, V.C., "A Unified View of the Law the Wall Using Mixing-Length Theory", The Aeronautical Quarterly, Vol. 24, 1973, pp. 55-70.
- Bradshaw, P., "The Analogy Between Streamline Curvature and Buoyancy in Turbulent Shear Flow," <u>Journal of Fluid Mechanics</u>, Vol. 36, 1969, pp. 177-191.
- Bradshaw, P., "Effects of Streamline Curvature on Turbulent Flow," AGARDograph No. 169, 1973.
- 19. So, R.M.C. and Mellor, G.L., "An Experimental Investigation of Turbulent Boundary Layers Along Curved Surfaces," NASA-CR-1940, 1972.
- 20. So, R.M.C. and Mellor, G.L., "Experiment on Convex Curvature Effects in Turbulent Boundary Layers," <u>Journal of Fluid Mechanics</u>, Vol. 60, 1973, pp. 43-62.
- 21. So, R.M.C. and Mellor, G.L., "Experiment on Turbulent Boundary Layers on Concave Wall," <u>The Aeronautical Quarterly</u>, Vol. 26, 1975, pp. 35-40.
- 22. Meroney, R.N. and Bradshaw, P., "Turbulent Boundary Layer Growth Over Longitudinally Curved Surfaces," <u>AIAA Journal</u>, Vol. 13, 1975, pp. 1448-1453.
- Ramaprian, B.R. and Shivaprasad, B.G., "Mean Flow Measurements in Turbulent Boundary Layers Along Mildly-Curved Surfaces," <u>AIAA Journal</u>, Vol. 15, 1977, pp. 189-196.
- 24. Shivaprasad, B.G. and Ramaprian, B.R., "Some Effects of Longitudinal Wall-Curvature on Turbulent Boundary Layers," Proc. of Symposium on Turbulent Shear Flows, Penn State Univ., April 18-20, 1977, pp. 9.21-9.28.
- 25. Shivaprasad, B.G. and Ramaprian, B.R., "Turbulence Measurements in Boundary Layers along Mildly Curved Surfaces," To be published in ASME, <u>Journal</u> of Fluids <u>Engineering</u>, 1977.
- 26. Ramaprian, B.R. and Shivaprasad, B.G., "The Structure of the Turbulent Boundary Layer Over Surfaces of Mild Longitudinal Curvature," To be published in <u>Journal of Fluid Mechanics</u>, 1977.

- 27. Bradshaw, P. and Unsworth, K., "Computation of Complex Turbulent Flows", in "Reviews of Viscous Flow," Proceedings of the Lockheed-Georgia Company Viscous Flow Symposium, June 22-23, 1976, pp. 448-498.
- 28. Patel, V.C., "On the Equations of a Thick Axisymmetric Turbulent Boundary Layer," Iowa Institute of Hydraulic Research, IIHR Report No. 143, 1973.
- 29. Bradshaw, P., Ferris, D.H. and Atwell, N.P., "Calculation of Boundary Layer Development Using the Turbulent Energy Equation," <u>Journal of Fluid</u> <u>Mechanics</u>, Vol. 28, 1967, pp. 593-616.
- 30. Head, M.R., "Entrainment in the Turbulent Boundary Layer," British ARC, R&M No. 3152, 1958.
- 31. Chevray, R and Kovasznay, L.S.G., "Turbulence measurements in the wake of a thin flat plate," <u>AIAA Journal</u>, Vol. 7, 1969, pp. 1641-1643.
- 32. Launder, B.E., Priddin, C.H. and Sharma, B.I., "The calculation of turbulent boundary layers on spinning and curved surfaces", ASME, J. <u>Fluids Engineering</u>, Vol. 99, No. 1, 1977, pp. 231-239. See also discussions by P. Bradshaw and G. Mellor, ASME, <u>J. Fluids Engineering</u>, Vol. 99, No. 2, 1977, pp. 435-439.
- Chambers, T.L. and Wilcox, D.C., "Critical examination of two-equation turbulence closure models for boundary layers," <u>AIAA Journal</u>, Vol. 15, No. 6, 1977, pp. 821-828.

APPENDIX

Estimation of Integrals I and I from Data p

These integrals are defined in the text by the following equations:

$$I_{k} = \kappa \int_{0}^{\delta} \frac{UV}{U_{\lambda}^{2}} r \, dy$$
⁽²⁰⁾

and

 $I_{p} = \frac{1}{U_{\delta}^{2}} \int_{0}^{\delta} r \frac{\partial}{\partial x} \left\{ \frac{p - p_{\delta}}{\rho} - \frac{V_{\delta}^{2}}{2} \right\} dy$ (21)

The evaluation of I_k is straightforward since both U and V have been measured in the boundary layer and the wake. Since κ is the curvature of the surface, I_k becomes zero everywhere in the wake.

From physical considerations, it may be argued that I_k represents the influence of the curvature of the streamlines in the boundary layer rather than that of the surface. It may therefore be preferrable to use a representative streamline curvature for κ . For example, an appropriate choice may be the longitudinal curvature of the displacement surface shown in Figure 9. In the calculations presented in the text, however, the original definition of I_k has been retained and an "effective" value has been assigned in the near wake simply by reducing I_k to zero, from its value at the tail, exponentially over a distance X/L = 0.20 from the tail.

In order to simplify the evaluation of I_p , it is first observed that the measured static-pressure variations across the boundary layer and wake (Figure 4) may be approximated by linear distributions, viz

$$p - p_s = (p - p_1)(1 - y/\delta)$$

where p_{W} is the pressure at the body surface or the wake centerline. Substitution of this into equation (21) and integration leads to

$$I_{p}U_{\delta}^{2} = \frac{\delta^{2}}{12} \frac{3r_{o}}{\delta} + \cos \theta \frac{d}{dx} (C_{pw} - C_{p\delta}) + \frac{\delta}{12} \frac{3r_{o}}{\delta} + 2\cos \theta \frac{d\delta}{dx} (C_{pw} - C_{p\delta}) - \frac{\delta^{2}}{4} \frac{2r_{o}}{\delta} + \cos \theta \frac{d}{dx} (V_{\delta}^{2})$$
(A-2)

(A-1)

Using the Bernoulli equation, V_{δ} can be related to $C_{p\delta}$ and U_{δ} as follows

$$\frac{v_{\delta}^2}{v_o^2} = 1 - c_{p\delta} + \frac{u_{\delta}^2}{u_o^2}$$
(A-3)

I can now be evaluated using the measured values of δ , U_{δ} , $C_{p\delta}$ and C_{pw} . The estimated values of I, and I are shown in Figure 26, along with the axial variation of the terms $\frac{d\Delta_2}{dx}$ and $1/2 c_r r$ appearing in the momentum integral equation. It is seen that both I, and I make a substantial contribution to the rate of growth of the momentum deficit area. It should be noted that the accuracy of the solutions of the momentum equation using I, and I is limited due not only to the approximations that are involved in the estimation of these integrals but also because they are large and of opposite signs over a substantial axial distance.

NEL

FIGURE 1 (a) THE F-57 BODY IN THE WIND TUNNEL

.

FIGURE 2 PRESSURE DISTRIBUTIONS ON THE BODY

FIGURE 5 MEAN VELOCITY PROFILES

FIGURE 6

ASYMPTOTIC VELOCITY AND SHEAR STRESS PROFILES IN THE WAKE

FIGURE 8 INTEGRAL PARAMETERS

FIGURE 1.0 WALL SHEAR STRESS

FIGURE 11 DISTRIBUTIONS OF REYNOLDS STRESS $\sqrt{u^2}/U_0$

. .

FIGURE 13 DISTRIBUTIONS OF REYNOLDS STRESS $\sqrt{w^2}/u_o$

FIGURE 15 EDDY VISCOSITY PROFILES, LOW-DRAG BODY

the second state of the second

<u></u>.16

Q

X/L • 0.60

4 0.8Q

FIGURE 22 COMPARISON OF MEASUREMENTS WITH THE SOLUTION OF THE DIFFERENTIAL EQUATIONS, LOW-DRAG BODY (a) INITIAL PROFILES AT X/L = 0.601

.

AT X/L = 1.000

FIGURE 22 (continued) (g) PLANAR AND AXISYMMETRIC MOMENTUM DEFICITS

6υ

(i) WALL SHEAR STRESS

.68

WAKE
AND
LAYER
BOUNDARY
THE
N
DATA
OF
SUMMARY
~1
TABLE

itation	X/I+	r°/I	Ţ	6/I.	¢₀∕,⁰+	ບ ^{ຂີ} ້ t	ν P ^a	61/L	6 ₂ /т	I II	Δ_1/L^{2}	Δ_2/L^2	H	6*/L	ر د	
		×10		×10 ²		•		×10 ²	×10 ²		×104	×104		*10 ²	- T X	_
															Preston	Clauser
r,	0.433	1.169	-2.080	0.158	1.145	-0.375	-0, 356	0.051	0,021	2.456	0.600	0.245	2.452	0.051	ł	;
7	0.551	1.068	-1.072	0.935	1.086	-0.209	-0.192	0.122	0.087	1.408	1.329	0.948	1.402	0.124	4.576	4.53
m	0.601	0.970	-0.744	0.935	1.047	-0.121	-0.070	0.130	£60°0	1.392	1.290	0.930	1.387	0.132	4.110	4.22
4	0.651	0.852	-0.488	1.188	1.008	-0.041	-0.033	0.185	0.132	1.403	1.629	1.168	1. 395	0.189	3.512	3.62
S	0.701	0.721	-0.268	1.575	0.975	0.031	0.037	0.270	0.186	1.451	2.052	1.428	1.438	0.279	2.978	3.10
9	0.751	0, 583	-0.068	1.988	0.947	0,092	0.091	0.379	0.253	1.499	2.395	1.622	1.476	0.398	2.567	2.55
7	0.801	0.442	0.140	2.563	0.930	0.130	0.131	0.541	0.350	1.547	2.751	1.823	1.509	0.586	2.150	2.25
8	0.840	Ó. 332	0.324	3.165	0.924	0.150	0.135	0.720	0.454	1.586	3.001	1.970	1.524	0.809	1.909	2.00
6	0.880	0.229	0.552	3.725	0.925	0.160	0.134	0.910	0.562	1.620	3.022	1.983	1.524	1.077	1.789	1.80
10	0.920	0.134	0.868	4.333	0.,932	0.156	0,120	1.090	0.668	1.632	2.802	1.882	1.489	1.389	1.750	1.70
I	0.940	0.092	1.000	4.605	0.935	0.151	0.112	1.168	0.715	1.634	2.614	1.787	1.463	1.557	1.692	1.65
12	0.960	0.054	1.424	4.838	0.942	0.135	0.099	J. 220	0.757	1.612	2.391	1.683	1.420	1.720	1.622	1.76
1.3	0.980	0.023	1.956	5.138	0.947	0.122	0.090	1.293	0.799	1.618	2.240	1.609	1.392	1.906	1.493	1.75
14	066.0	0.010	2.400	5.288	0.949	0.117	0.084	1.336	0.824	1.622	2.206	1.602	1.377	2.007	1.354	1.70
5	0.995	0.005	2.716	5.313	0.951	0,113	0.081	1.362	0.834	1.633	2.199	1.602	1.372	2.055	1.238	1.65

TABLE 1 (continued)

1

		-									
C _D +++ ×10 ²	1.292	1.292	1.311	1.299	1.302	1.248	1.187	1.114	1.089	0.920	
6* /L ×10 ²	2.107	2.077	2.058	1.995	1.955	1.867	1.805	1.719	1.682	1.504	
æ	1.369	I. 353	1.340	1.319	1.305	1.279	1.262	1.235	1.222	1.124	
² 2/1 ² ×104	1.621	1.593	1.580	1.509	1.464	1.361	1.291	1.197	1.158	1.007	
Δ1/L ² /	2.219	2.156	2.117	1.990	1.910	1.742	1.629	1.478	1.414	1.131	
11	1.656	1.595	1 .559	1.514	1.490	1.442	1.405	1.362	1.344	1.174	
₹2/1 ×10 ²	0.844	0.842	0.849	0.814	0.797	0.760	0.732	0*690	0.671	0.523	
δ1/L ×10 ²	1.397	1.343	1.305	1.232	1.188	1.096	1.028	0.939	0.902	0.614	
р Д	0.068	0.073	0.072	0.060	0.056	0.045	0.024	0.016	0.012	0.005	-
с ^В	ı	0, 089	0.07.7	0.061	0.054	0.039	0.020	0. 017	0, 007	0.000	
Q ₆ ∕∿₀	0,955	0.958	0.958	0.963	0.965	0.971	0.985	066.0	0.992	666.0	
°u∕₀	ï	0.302	0.370	0.430	0.455	0.500	0.559	0.596	0.612	0.795	
6/L ×10 ²	5.400	5.425	5.475	5.525	5.438	5.375	5.375	5.388	5.393	6.275	
X/I	1.000	1.010	1.020	1.040	1.060	1.100	1.200	1.300	1.400	2.472	
Station	16	17	18	19	20	21	22	23	24	. 25	

+ L = 1.219 m (4 ft)

++ Uo = 15.24 m/sec (50 ft/sec)

+++ drag coefficient based on the frontal area which is 0.693 \texttt{m}^2 (0.688 ft²)

I measured Preston tube data extrapolated to zero-dlameter

TABLE 2 PROFILES AT X/L = 0.433

Y {FT.}	Y (CM.)	CP {TOTAL}	CF (STATIC)	Q/U0 +++
0.0016	0.0497	-0.0530	-0.3547	0.5493
0.0018	0.0549	-0.0474	-0.3547	0.5543
0.0021	0+0640	0.0381	-0.3547	0.6267
0.0023	0.0701	0.1165	-0.3547	0-6864
0.0025	0.0762	0.2076	-0.3547	0.7899
0.0028	0.0853	0.2912	-0.3547	0.8037
0.0032	0.0975	0.4250	-0.3547	0.8830
0.0035	0.1067	0.5634	-0.3547	0.9582
0.0038	0.1158	0.6026	-0.3547	0.5784
0.0040	0.1215	0.6921	-0.3547	1.0231
0.0043	0.1311	0.7572	-0.3547	1.0545
0.0045	0.1372	0.7760	-0.3547	1.0633
0.0047	0.1433	0.8033	-0.3547	1.0761
0.0049	0.1494	0.8332	-0.3547	1.0899
0.0050	0.1524	0.8644	-0.3547	1.1041
0.0053	0.1615	0.8884	-0.3547	1.1149
0.0055	0.1676	0.8911	-0.3547	1.1242
0.0058	0.1768	0.9236	-0.3547	1.1306
0.0060	0.1829	0.9284	-0.3547	1.1327
0.0062	0.1890	0.9471	-0.3547	1.1410
0.0064	0.1951	0.9611	-0.3547	1.1471
8 3 0 0 . 0	0.2073	0.9687	-0.3547	1.1530
0.0070	0.2134	0.9767	-0.3547	1.1563
0.0073	0.2225	0.9823	-0.2547	1.1563

CROSS WIRE PROBE SINGLE WIRE PROBE PITOT-STATIC

TABLE 3 PROFILES AT X/L = 0.551

¥	Ý.	CP	CF	Q/UÕ
(FT.)	(CM.)	(TOTAL)	(STATIC)	+++

0.0016	0.0497	0.2634	-0.2090	0.6873
0.0018	0.0549	0.2820	-0.2090	0.7007
0.0020	0.0610	0.3072	-0.2090	0.7185
0.0025	0.0762	0.3540	-0.2090	0.7503
0.0030	0.0914	0.3807	-0.2090	0.7679
0.0035	0.1067	0.4036	-0.2090	0.7827
0.0040	0.1219	0.4207	-0.2090	0.7935
0.0045	0.1372	0.4365	-0.2090	0.8034
0.0050	0.1524	0.4527	-0.2090	0.8134
0.0060	0.1829	0.4832	-0.2090	0.8320
0.0070	0.2134	0.5151	-0.2090	0.8505
0.0080	0.2438	0.5380	-0.2090	0.8643
0.0090	0.2743	0.5623	-0.2090	0.8782
0.0100	0.3048	0.5891	-0.2090	0.8934
0.0120	0.3658	0.6334	<u>~</u> 0.2090	0.9178
0.0140	0.4267	0.6782	-0.2090	0.9419
0.0160	0.4877	0.7149	-0.2082	9608
0.0180	0.5486	0.7414	-0.2058	0.9732
0.0200	0.6056	0.7874	-0.2040	0.9957
0.0220	0.6706	0.8222	-0.2020	1.0120
0.0240	0.7315	0.8532	-0.2001	1.0263
0.0250	0.7620	0.8685	-0.1592	1.0333
0.0260	0.7925	0.8842	-0.1582	1.0404
0.0280	0.8534	0.9114	-0.1960	1.0523
0.0300	0.9144	0.9367	-0.1945	1.0636
0.0320	0.9754	0.9434	-0.1937	1.0663
0.0340	1.0363	0.9710	-0.1929	1.0788
0.0360	1.0973	0.9815	-0.1521	1.0833
0.0380	1.1582	0.9907	-0.1513	1.0872
0.0400	1.2192	0.9948	-0.1505	T-0681
0.0420	1.2802	0.9972	-0.1891	1.0892
0.0440	1.3411	1.0006	-0.18/7	1.0901
0.0460	1.4021	1.0006	-0.1863	1.0894
0 0480	1.4620	1.0006	-0.1845	1.0888

CROSS WIRE PROBE + SINGLE WIRE PROBE ++ PITOT-STATIC

8Q

TABLE 4 PROFILES AT X/L = 0.601

ä. 1	.	•											-																							1
-20UV/U04+5						•		٩			0-0331		7550-0	0.0308		1150 0	1160-0	105 0.0	0 0 304		0.0300		0.0302	0.079		0.0273		0-0271			0.0244			0.0203		0.0170
HRMS/UD					`						0-0630						0-0623					0.06.00				0.0591				0-0557		. •	0.0528		•	۰.
VRMS/ UD									•		0.0531		0.0573	0.0527		0.0527		0.0525	0.0522		0-0523		0-0525	0.0521		0-0514		0.150.0			0*0497			0.0473		0.0454
URMS/UD +		•.			•						0.0726		0.710	0.0732		7120 0		0.0710	0.0706		0.0709		0.0704	0.0703		0.0691		0.0684			0.0663	•		0.0637	•	0.0605
ion/A											-0.0035		500-0-	-0.0047		-00 00 -0-		-0-0044	1900-0-	10000	-0-0088		-0-0098	-0.0103		-0-0106		-0.0123			-0.0108			-0.0117		-0.0116
°an∕n		•			•			·			1.187.0		0.7902	0.8009		0 01 60	4010-0	0.8250	0 83 0V		0.8617		0.8766	0. RAGK		0.9077		0.9155			0.9388			0.9615		0-9813
on/o	•				•		•				0.781		0.7902	0. 8009		0 0150	1010-0	0• 8250	0.8306		0.8617	•	0.8767	0. 8897		0.9078		0.9156			0. 9389			0.9616		0.9814
9 10 10			-				0.7003	0-7417		0.7724			0.7846		0,01 0	0- 1 968	•.	•		0.8369				. 0-8664			0-8833		0.9079			0.9243			0-9479	
₽∩/0 +++	0-6170	0.6437	0-6994	0-7172	1267-0	C.7556		0.1766	0.7945			0.8099	· ·		0.8253	•		1010	50.58.0			I ROR -)			0-8919			0.000	0- 41 C A	-	0.0177	7 77 6 • 0	-	C. 9509		
CP (STATIC)	-0-1220 -0.1220	-0.1220	-0.1220	-0-1220	-0-1220	-0.1220		-0•1220	-0-1220			-0.1220	• •		-0-1220				-0-1220-			-0-1220	·	·	-0.1215				-0-1200		-0.11.07			-0-1187		
CP (TOATL)	0.2587	0.2924	0.3672	0. 3924	0.4139	0.4490		0.4811	0.5092		•	.0.5339	•		0.5592		•.	0 5011				0760-0			0.6740				0-1-1-0		0 7403			0.7855		
۲ (CH.)	0 - C 497 0 - C 497	0-0142	0-0914	0-1067	0-1219	0 - 1524	0-1585	0-1829	0-2134	0.2155	0-2377	0.2438	0.2499	0.2682	0.2743	0.2835	1862-0	0.2987	0-3040	0.3414	1935-0	0.3901	1066-0	0-4266	0.4257	0-4511	0 - 46 33	0.4816	0-5243	0-5425	0.5425	0.5852	0.6035	0.6035 0.6035	0-6462	0.6645
۲ (F)	0-0016 [-CC18	C.CO20	C. CU3.0	0-0035	0.0045	0.000	C. GU52	0.0060	c_ cu 7 0	C.C072	C. 0C78	0.90.0	C. COBZ	0-0089	C-CO-CO-C		C.C398	8600-0	0-0108	C. C112	C-0118	C. C128	8210.0	0128	0-0140	c. c148	0-0152	C. C158	0.0100	C-C178	0.0178	c. c192	0.0198	C.C.58	0.212	C. 22 18

+ CROSS WIRE PROBE ++ Single Wire Probe +++ Pitot-Static

TABLE 4 (continued)

Ň

√ (,FT,)	(C H •)	CP (TCATL)	CP (STATIC)	07/0 ***	0/n0 ++	a/uc	U / UG	Dn/7	URMS/LC	VRMS/UC	WRMS/UD	-2CLV/UC
0-0225	C.6706	0-8201	1911°n-	1004 • N							C. C49C	
0.5232	1101.0				. 0.9677	00000	1 0220	1000-0-	C_ 0563	C= C 42 S		0•.0140
0.0238	07254	0636	3411.0	0.9954		0 7 0 0 T	22204					•
0-024C	0.7555	0 ° C 0 • D									0-0446	
G. 2252	0.7681				0.9830			1010-0-	(63) U	0.404		0-0114
0.3253	0,73,64					1-0144	841041					
0.0263	C. 7.125	0.5841	-0-11.70	1.• C C O 3	0.0017							
0.5272	1578-5				771197						0.0386	
	5746°O					1.0326	1.0326	- 6,0073	0.0467	C. C37C		C. CC84
	1. 1.	0-9094	-0-1150	1.0121								
0. C292	016200				10131						7-0367	
0.0293	C-9033					0100	0420	-6-053	0-0405	Ca:0337		C. CC45
0.0299	0.9.83											
0-0300	0 0 1 4 4	9466 ªD-	6 C T T • N -	0 C 2 N • T	1-0267							
0.0312	0.4010					1.0587	1.0587	-0.0043	0-0326	C. C295		C. C035
	0155	0.9537	-0-11-26	1-3326		•	•		•	•		
0,000											0.C278	
	1.0119				1.0357							
0-0338	1.0332					1.0613	1.0613	-0*002/1	0.0258	0*2.240		
0.6340	1.0363	9696	-0,1117	1.0398	-						C. C227	
0+0348	1.0607			,	0.10							
0.0352	1-0.729				0.1 40 41	A-12-0-1	1-0716	-C-0018.	0-0240	C. C 243		C+ C012
0.5358	1.0.12	0010 0	000	1 0630								
0.0360	1.0.173	0, 4784	-0° 1108	r • • • • • •	1 . 0469	•						
0.0372											C. C185	
57 50°-D						1.0793	1.0793	C.0022	0.0134	C. C158		C.5C05
	1.1552	0, 98.70	-0-1100	1.0474								,
0.0392	1.1948		, ,		1.0499						C. C14P	
0.0398	1-:2131							0,00,0	2710 0	C. C 1.72	1 1 2 0 2	C. CC02
0+03338	1,6,2,5,3,1		1		· .	7 190 1	2100-1	04000				
0,0400	1.2152	0,9913	-0-104	1.6 40 •1	1 0520							
0.0412	1.2558										C. C121	
0.0418	1.572	•	•			1.0841	1.0841	0.0029	0.0116	C.C135		C* CC01
		1996.0	-O. ICAR	1,2 0504								
0.450-0	1 - 12 67				1.0524						1010	
											TOTO *D	
	1.3350			:		1-0845	1°C845	5600.03	0,0058	C. CI15		1000
0.440	1.3411	1966-0	-0.1672	1-0504					•			
0.6452	1.3777				1-0514						C_0085	
0.0458	1. 3360					3700 .	1.0945	0.038	0_0085	C_ C102		0000.00
0. C458	1.3960			00700								
0440.0		1044 .0	TONTON		1-0531							
0.0478	1.4569			•) 	1.0861	1.0861	0.0062	12:00.00	C. C078		0000-0

CRCSS WIRE PRCEE Single Wire Prcee Pitot-Static

••••

TABLE 4 (continued)

URMS/U0 VRMS/U0 MRMS/U0 -20UV/U0442 0000 0000*0 C.0001 100.0*0 0-0076 0.0064 0.0054 0*0051 0-0038 0-0054 0.0026 0.0046 0.0107 0.0040 0-0028 0.0024 0-0154 0.0200 0-0234 00,/ A 1.0845 1.0819 1.0800 1.0033 u∕iu. 1.0821 1-0834 1.0846 1.0803 00./0 01 /0 1.640.1 1.0526 1-0513 1.0505 1.0471 1.0487 1-0440 01 t 0-9961 -0-0571 1.0456 CP CP CP LTOATL P. (STATIC) -0.1004 -0.0938 -0-1036 0.9961 1965-0 1966-0 Y GH-J) 5 80 -4334 95.55 . 1336 -6761 Y (FT_) G.C492

+ CROSS WIRE PROBE ++ SINGLE WIRE PROBE +++ PITOT-STATIC

TABLE 5 PROFILES AT X/L = 0.651

V	V	ĊP	ĊF	C/UD
(FT.)	(CM.)	(TOTAL)	(STATIC)	+++
			ہے کہ مرتبعہ سرے جانے ہے	مىشىتىنى بەر بەر بەر بەر بەر
0.0016	0 0497	0.2505	-0-0394	0.5384
	0.0546	0.2557	-0.0394	0.5432
0.0010	0.0610	0.2719	-0.0354	0.5575
0,0020	0.0010	0.3157	-0-0394	0.5959
	0.0016	0.3405	-0.0354	0.6167
0.0030	0.1067	0.3590	-0.0394	0.6312
0.0035	0 1219	0.3758	-0.0394	0.6444
0.0040	0 1 7 7 2	0.3511	-0.0394	0.6561
0.0045	0 1524	0.4058	-0.0294	0.6672
0.0050	0.1929	0-4315	-0-0394	0.6862
0.0000	0.2134	0.4549	-0.0394	0.7031
0.0070	0.2438	0.4773	-0.0394	0.7188
0.0000	0.2743	0.4973	-0.0394	0.7326
0.0090	0 3048	0.5192	-0.0394	0.7474
0.0120	0.3658	0.5587	-0.0394	0.7734
0.0140	0.4267	0.5954	-0.0394	0.7967
0.0140	0.4877	0.6306	-0.0394	0.8185
0.0180	0.5486	0.6649	-0.0394	0.8392
0.0200	0.6096	0.6963	-0.0385	0.8574
0.0200	0.6706	0.7254	-0.0386	0.8741
0.0220	0.7315	0.7535	-0.0384	0.8895
0.0240	0.7925	0.7825	-0.0381	0.9055
0.0200	0.8534	0.8082	-0.0378	0.9198
0.0200	0.9144	0.8344	-0.0275	0.9338
0.0320	0.9754	0.8592	-0.0370	0.9467
0.0340	1.0363	0.8820	-0.0364	0.9583
0-0360	1.0973	0.9016	-0.0356	0.9681
0.0380	1,1582	0.9196	-0.0351	0.9771
0.0400	1.2192	0.9376	-0.0347	0.9861
0.0420	1.2802	0.9562	-0.0340	0.9951
0.0440	1.3411	0.9695	-0.0332	1.0013
0.0460	1.4021	0.9791	-0.0324	1.0057
0.0480	1.4630	0.9862	-0.0316	1.0089
0.0500	1.5240	0.9919	-0.0309	1.0113
0,0520	1.5850	0.9938	-0.0302	1.0119
0.0540	1.6459	0.9548	-0.0295	1.0121
0.0560	1.7069	0.9952	-0.0288	1.0115
0.0580	1.7678	0.9952	-0.0270	1.0110
000200		· · ·		

CROSS WIRE FROBE SINGLE WIRE PROBE + PITOT-STATIC

. . .

Y (FT.)	Y (CH.)	CP (TOTAL)	CP (STATIC)	Q/U0 +++
0.0014	0 0 / 0 7	0 0/75	0 0 0 0 0 0	
	0.0497	0.2475	0.0213	0.4650
0.0010	0.0545	0 2627	0.0313	0.4001
0.0020	0.0762	0 2080	0 0313	0.4821
0.0020	0.0102	0.2100	0.0313	0.5272
0.0035	0.1067	0.3370	0.0213	0 5520
0.0040	0.1219	0.3469	0.0313	0 5444
0.0050	0.1524	0.3712	0.0313	0.5830
0.0060	0.1829	0.3902	0.0313	0.5001
0.0070	0.2134	0.4093	0.0513	0.6148
0.0080	0.2438	0.4279	0.0313	0.6795
0.0090	0.2743	0.4450	0.0313	0.6432
0.0100	0.3048	0.4611	0.0313	0.6556
0.0120	0.3658	0.4930	0.0313	0.6795
0.0140	0.4267	0.5234	0.0313	0.7015
0.0160	0.4877	0.5530	0.0313	0.7223
0.0180	0.5486	0.5810	0.0313	0.7714
0.0200	0.6096	0.6044	0.0313	0.7570
0.0250	0.7620	0.6709	0.0317	0.7995
0.0300	0.9144	0.7306	0.0321	0.8358
0.0350	1.0668	0.7833	0.0326	0.8664
0.0400	1.2192	0.8355	0.0331	0.8958
0.0450	1.3716	0.8825	0.0338	0.9212
0.0500	1.5240	0.9224	0.0345	0.9423
0.0550	1.6764	0.9570	0.0352	0.9601
0.0600	1.8288	0.9788	0.0355	0.9710
0.0650	1.9812	0.9902	0.0364	0.9766
0.0700	2.1336	0.9940	3320.0	0.9784
0.0750	2.2860	0.9964	0.0272	0.9794
0.0800	2.4384	0.9964	0.0373	0.9793
0.0850	2.5908	0.9964	0.0373	0.5793
0.0900	2.1432	0.9964	0.0373	0.9793
0.0420	2.8956	0.9964	0.0373	0.9793
0.1000	3.0480	0.9964	0.0373	0.9793

TABLE 6 PROFILES AT X/L = 0.701

+ CROSS WIRE PROBE ++ SINGLE WIRE PRCEE +++ PITOT-STATIC

. ج- 2

79 TT

•

Y (FT.)	¥ (CM.)	CP (TOTAL)	CF {STATIC}	Q/UO +++
0.0016	0.0497	0-2450	0.0920	0.3912
0.0018	0.0549	0.2480	0.0920	0.3950
0.0020	0.0610	0.2542	0.0920	0.4027
0.0025	0.0762	0.2856	0.0920	0.4400
0.0030	0.0914	0.3031	0.0920	0.4595
0.0035	0.1067	0.3183	0.0920	0.4757
0.0040	0.1219	0.3287	0.0920	0.4865
0.0050	0.1524	0.3486	0.0920	0.5066
0.0060	0.1829	0.3620	0.0520	0.5196
0.0070	0.2134	0.3752	0.0920	0.5322
0.0080	0.2438	0.3880	0.0920	0.5441
0.0090	0.2743	0.4014	0.0920	0.5562
0.0100	0.3048	0.414E	0.0920	0.5680
0.0120	0.3658	0.4422	0.0920	0.5918
0.0140	0.4267	0.4673	0.0920	0.6130
0.0160	0.4877	0.4872	0.0515	0.6290
0.0180	0.5486	0.5100	0.0915	0.6465
0.0200	0.6096	0.5338	0.0915	0.6654
0.0250	0.7620	0.5916	0.0911	0.7159
0.0300	0.9144	0.6443	0.0911	0.7438
0.0350	1.0668	0.6937	0.0911	0.7763
0.0400	1.2192	0.7373	0.0511	0.8035
0.0450	1.3716	0.7823	0.0511	0.8314
0.0500	1.5240	0.8241	0.0911	0.8562
0.0550	1.6764	0.8530	0.0511	0.8786
0.0600	1.8288	0.8958	0.0511	0.8971
0.0650	1.9812	0.9304	0.0511	0.9161
0.0700	2.1336	0.9584	0.0911	0.9316
0.0750	2.2860	0.9765	0.0906	0.9412
0.0800	2.4384	0.9874	0.0906	0.9470
0.0850	2.5908	0.9940	0.0506	0.9506
0.0900	2.7432	0.9958	0.0904	0.9517
0.0950	2.8956	0.9958	0.0901	0.9519

CROSS WIRE PROBE SINGLE WIRE PRCEE PITOT-STATIC

TABLE 7 PROFILES AT X/L = 0.751

TABLE 8 PROFILES AT X/L = 0.801

•

Y (F7.)	۲ (CM.)	CP (TOATL)	CP (STATIC)	01/10	0/00 ••	a/ua	au/u	0n/A	URMS/LO	VRMS/UD	NRMS/UD +	-20UV/UG++2 +
100 0												
0-0018	0-0549	0-2515	5051°0	1045-00								
0-0020	Ú.0610	0.2625	0.1303	Ú. 3636								
0.0025	0,0762	G, 2853	0.1303	0.3937								
0-0030	0-0314	0,2999	0.1303	0.4118								
0.0335	0.1067	0.3117	0.1303	0.4259								
	0.1219	C125.00	0.1303	0.4361								
			1001-0	6764+0	2013 0						•	
0.5960	C-1123	0-3467	1051-0	0-4654	767610							
0-0062	0.1490				0-4411							
0100-0	0.2134	0. 3567	0.1301	0.4760								
0, 30 72	0.2495				0,4587							
0.0078	0.2377										C. 0455	
0.0080	0.2433	0.3658	1051-0	0-4045		8864 0	0.4986	1200°D	01 40 *0	C, C380	ł	0• 0172
0.0082	0-2499				0-4722							
0,0083	0.2530					0.5022	0.5022	0.0032	0.0565	G. C383		0.C173
0.0088	G.2582					0.5102	0.5102	C. C058	0.0563	C. C387		0. 6177
0-0030	G. 2743	0.3767	0.1301	0.4966								
0. 0092	C. 2804				0.4842							
0,0033	0.2435					0.5216	0.5216	0.0051	0.0561	0.0384		0.6177
0.0048	C. 2987										0. C48C	
0.100	87'18 - O	C 206.0	1061 0	0 5041		767600	7676.0	c+00=0	7960.00	C. C380		C113-0
0.9162	0.3169	7000 *0	100100		0-4042							
0.0108	0 . 3292				74440	0.5289	0.5289	0-0030	0-0559	0.0384		0- 6177
0.C118	0.3557					0.5435	0.5435	0-0043	0.0559	C. C390		0-0179
0.0120	0.3658	0.4020	0.1301	0.5214								
0.C122	0.3719	•			0.5127							
0.0128	0.3301										0. C466	
0.0128	107.5 0					0.5494	0.5494	C. 0050	0.0563	C. C389		C. 0182
01100	0.4660	0007 0				CECC*0	0.55335	0* 00 4 3	0.0565	C• C3 90		C. C179
0-1-2	1074 - C	00.24.00	TOCT ON	485C *N	0.6332				•			
0.0148	0.4511										C= C 4 6 4	
0.0158	0.4016					0.5738	0.5738	0.0066	0.0565	0. C3 94		0. C183
0.0160	C. 4477	0.4362	0.1310	0.5524								
0.0178	C.5425							1600 0			0.0463	
		0 4543	0161.0	1010 0		1 000 •0	1 5 2 5 • 0	c/ 00 • 0	0/ 20 -0	U. C 3 4 3		6 0 1 8 4
0-0192	C. 5852	5+6+ •0	0161-0	0.0000	0.5675						•	
0-0198	0-6-35											
0.0199	0.6035					0-5970	0.5969	0600-0	0-0584	0-0400		0-0177
0.0200	0.6096	0.4714	0-1310	0.5834	•	•						
0.0242	0.7376				0.5991							
C.0248	0.7559								•		0+0468	
0.0248	0.1554	. 5123				0.6386	0.6385	0-0135	0.0581	C. C401		0.0175
0.0292	0.8900	C+1C+0	0 T C T * N	1410-0	0.6343							

87

CRCSS WIRE PRCBE Single Wire PrcBe Pitot-Static

.::

. . .

•

TABLE 8 (continued)

0/00
0.6671
0
0, 124.0
0-7468
0.7763
0. 7984
0 8119 0
0.8418
0. 0.8578
0 . 0.8771
0.8948
0° 9102
°

CROSS WIRE PACEE Single wire pacee Pitot-Static

.:

TABLE 8 (continued)

-20LV/UC++2 +	2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1101-5		0.0006			C. CCC3						C. CCOT			1000 0	1033-0			C- C001			C. CC01						C. CC00					0. 601	
#R#S/UC +		C.0177			Acto •0			50 T D 90			0-0080		•				0.0055			0.0051						1000-0			, ,			•				
VRMS/UO					C. C132			C			, COD			CC064				1-			C_CC49		•	· C. C 0.43			0-0042			C. C037		0,0000			0. 0036	
URMS/LO					0.0147			0.0052			0-00-0			0,0052	•		0000				0.0030			0.0029		:	0-0024			0.0019		0-0023			0.0016	
DN/7		9 C 8 J 6			0. 0888		:	C. 0927			0-0946			0.0982			-1001-0				0-1041			0.1057			0-1081			0.1099		0-1145			0.1161	•
0n/n		0 030E			0.9466			0.9505	•		0.9528			0.9537			0.0533				0.9522			0.9548	•		0-9531		i I I	0.9551		0.9552			0.9566	
a/ua +		0 - 04 3.1		•	0.9508			0.9550			0.9575			0.9587		•	0. GSRA				0.9579	•	,	. 0• 9606			0.9592			0.9614	• •	0.9620			0.9636	
0//0	0,0150	DC76 *D		0.9322			0* 9350	•		0.9399			0-9415			5++F =D	1		0.9463				0.9445	•		0.9498			0.9508		0-9597			8636 °O.		
DU 10	6.9108		0;92 02			0.9269	•	•	0.9330	•		C. 9353		. '.	. 0. 9369			0.9442				0° 9396				•.	-	0 • 9441			0016 -1	•	0,9493		0-:061	
CP (STATIC)	0. 1239	•••	0.1230		•	0.1221	•	-	0.1199	•••		0.1183		!	0.1167	:	•	0.1150				0.1117		9001 U	0407.00		•	0.1032		0 000			0.0933		02.0401	41.27.62
CP (TTATL)	0,7535		0,9698	-		0.9812	,		5066°C	•		1699.0			0°9945		•	0. 3945				G, 3945;		2700 0				0.3945		3700 0			0.9945		0.9945	
(CN.)	2.7432	2.6595	2.8756	3.0419	3.0419	3.0480	3,1943	3,1743	3.2704	3.3284	3.3467	3.3523	3.4503	3.4091	3.5.52	2000 00 00 00 00 00 00 00 00 00 00 00 00	3.6515	3.65.76	3.7.20	3.9563	3.9563	3.9524	4.2.2.0	4.251.1	4.5659	4.8524	4.9707	4. 8.7.6 B	5.4.20		6.0716	6. 3359	6.0.960	6.6812	6-7056	
`۲ (FT»)	0,0900 0,0900	8450°0	0.0953	0.0993 0.0993	0.0998		0.1045 C.1045	0.1349	0.1250	0.1092	960.00	0.1103	0.1142	0.1145		0.1198	0.1198	0.1200	0.1292	0.1298	C.1298	0.1300	26710	0.1460	0-1498	G.1592	0,1598	0.1600	0.1772	0-1-100	0_1992	0.1978	0-2000	0.2192	0.2200	

CRCSS WIRE PROBE Single Wire Probe Pitot-Static

.::

PROFILES AT X/L = 0.840TABLE 9

Ŷ (FT.)	Y (CM.)	CP (TOTAL)	CF {STATIC}	Q/UD +++
		0 9767	0 1403	0 3476
0.0021	0.0640	0.2703	0.1493	0.3475
0.0025	0.0762	0.2845	0.1493	0.3078
0.0030	0.0914	0.2916	0.1493	0.3112
0.0040	0.1219	0.3073	0.1498	0.3975
0.0060	0.1829	0.3273	0.1502	C. 42CE
0.0080	0.2438	0.3430	0.1502	0.4391
0.0100	0.3048	0.3586	0.1502	0.4565
0.0150	0.4572	0.3900	0.1502	0.4857
0.0200	0.6096	0.4228	0.1498	0.5225
0.0250	0.7620	0.4570	0.1495	0.5545
0.0300	0.9144	0.4926	0.1493	0.5855
0.0400	1.2192	0.5553	0.1488	0.6376
0.0500	1-5240	0.6195	0.1479	0.6867
0.0600	1.8288	0.6836	0.1465	0.7329
0.0700	2.1336	0.7421	0.1451	0.7727
0.0800	2.4384	0.7991	0.1437	0.809E
	2.7422	0.8518	0.1423	0.8423
0.000	3 0480	0.9031	0.1400	0.8736
0.1100	2 2529	0 0445	0.1376	0.8983
0.1300	3 4 5 7 4	0.0172	0.1253	0.9176
0.1200	3.0570	0.9115	0 1230	0.9266
0.1300	2.7024	0.0059	0 1 2 0 2	0.0304
0.1400	4.2072	0.9920	0.1302	0.0326
0.1500	4.5/20	0.99(2	0.1269	0 63/1
0.1600	4.8/68	0.95/2	0.1246	0.9341
0.1800	5.4864	0.95/2	0.1194	0.7007

CROSS WIRE PROBE SINGLE WIRE PROBE PITOT-STATIC

0
Ō
Ö
0
U
Ţ
×
AT
ROFILES
Р
0
TABLE

Ň

-2014/UC+			•		· ·			C• C133		0.0136	:			CelC139			0.0150			0 0100	767.7.97		0 1155				C.0161	, - 			C. 0146				C. C136	•	•
WRFS/UD				•.	, ••• • •		0. 6428			+7+D*D	: •.	0.0416	C. C411			50+0°C	576300	:	• • •	0- 6407			0.0418			C. C43C							10.00			1	0.0428
DU./SMAV			•			÷				G. C334		•			•		C. C35C			1367 U		,	C.C.SAT		•		0. C3 62				C+C357				C. C347		
URMS/LO +			•							0.0476			7270,0				0 . C 4 5 B		•	0-0504			0-0521				0.0519		•		0.0517				0.0505		
- DU/Y				• .		•		T 000 0		-C.0066	•	,	5 TUU - U			•	-0-031		•	0.0004		-	0-0040				0-0119				0.0210			• •	0.0291		:
				-	• .		0-4263			0,4560			14944			•	0. 5097	•	• • • •	0.5355			0-5631		· . •		0-6071			·	0.6473				0.6875	•••	
0n/0							0.4352			0.954.0		•	0.4844				1.903.0		:.	0-5355			0.5631				0.607.2				0.0 647.6		•		0.6881	•	
07/0	 		- - -	0.3587	0.3875	0.4068			0.4167		0-4323		-		0.4695				0.4974			0.5237			0.5449				0.000				1660 ° N	• ;		0.6736	
0/10 •••	0.3366	6.3471	C. 3728		1665 °D			0.4145			0- 4264			0.4575		•		C. 4847			0.5091	. '		0.5337				0.5801	1			0.6255			2	00 °D	
CP (STATIC)	0.1598	0.1598	0°1598		95CT-0	:		0.1538			0°1598			0.1608		·		0.1608			0.1608			0.1608		:		0.1590	•			CRCI."N				COCT •0	
CP (TOATL)	0.2731	0.2803	0.2988		6CTC-10		÷.	0.3316			01.45°=D	•		0.3701				0, 3957			0.4200	•		0-4456				0.4955									
Ч	0-0540	0-0762	0.1219	0.1585	06.81.0	0.2195	0.2377 0.2377	0.2438	0.2499 0.2787	0.2967	0.3109	G.3301	0.4511	0.45.72	0.4633	0.6035	0-6035	C. 6C 96	0.7450	0.7559	C. 7620	0.7631	0.9083	0.9144	C. 4205	I.2 131	1-2131	1.22192	1.3655	1.5.79	1.5179		1.6703	1.8227.	1.8227	1.8349	1.9751
Υ (FT。)	0.0221	0.0025	0.00.0	0.0052	0.0062	0.0072	0.0078	0,9680	0.0398	6-0038 0 0038	0.0102	0-6126	0.0148 0.0148	0+0150	0.C152	0.0198	0.0198	0,0200	0,0248	0.0248	0.0250	0.0252	0-0298	0.0300	0.030Z	8660-0	0,0398	0.07600 	0.448	8650.0	0498		0.0548	0.0598	0.0598	.0602	0.0648

91

-

CRCSS WIRE PRCBE Single Wire Probe Pitot-Static

.::

TABLE 10 (continued)

:-

Ł

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		۲ ۲	CP. (ITCATL)	CP (ISTATIC)	5/UC	0n/0	0/NC	DU/U		URMS/LO	VAMS/UQ +	4 8 / UC	-20LV/UC+
	8	2-1275		•		 -			•				
2.1113 0.6532 0.1130 0.1300 0.1130 0.1300<	5	2.1275	,				0•1290	0.7279	0.0400	0.0451	C. C337		0- 0122
0.7126 0.7126 0.7126 0.7126 0.7126 0.7126 0.7126 0.7136 0.7136 0.7136 0.7136 0.7136 0.7136 0.7136 0.7136 0.7136 0.7136 0.7136 0.7136 0.7136 0.7136 0.7136 0.7136 0.7139 0.7136 0.7137 0.7136 0.7136 0.7136 0.7136 0.7136 0.7136 0.7136 0.7136 0.7136 0.7136 0.7136 0.7136<	0	2.1.36	0.6552	0.1540	C. 7080					-			
2 2		20102			•	0•7126		÷					
2 0.1019 0.1305 0.7446 0.7431 0.7435 0.7435 0.7434 0.7431 0.7434 0.7039 0.04415 0.7237 0.7030 0.7131 2 2 2 2 0.7435 0.7494 0.71914 0.71914 0.71914 0.71934 0.70393 0.60415 0.61931 0.61023 2 2 2 0.7134 0.71940 0.71934 0.71931 0.00451 0.61013 0.61034 0.61034 0.61034 0.61034 0.61034 0.61034 0.61034 0.61034 0.61034 0.61034 0.61034 0.61034 0.61034 0.61034 0.61034 0.61034 0.61034 0.61034 0.61034 <td< td=""><td>ń co</td><td>2.4323</td><td></td><td>•</td><td></td><td></td><td></td><td>•</td><td></td><td>•</td><td></td><td></td><td></td></td<>	ń co	2.4323		•				•		•			
2.4.991 0.17019 0.17019 0.17019 0.17019 0.17019 0.17019 0.17019 0.17019 0.17019 0.17019 0.17019 0.17019 0.17019 0.17011 0.17019 0.17019 0.17019 0.17011 0.17019 0.17019 0.01019 <t< td=""><td></td><td>2.4323</td><td></td><td></td><td></td><td></td><td>0.7612</td><td>0.7596</td><td>0.0495</td><td>0-0475</td><td>G. C327</td><td></td><td>0- 0120</td></t<>		2.4323					0.7612	0.7596	0.0495	0-0475	G. C327		0- 0120
2.7445 0.7495 0.7495 0.7495 0.7495 0.7495 0.7495 0.7495 0.7014 0.7495 0.7610 0.7539 0.7014 0.7611 0.7613<	20	2.4384	0.7079	0.1505	0.7466								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N	2-4445				0.74,95							•
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	m	2.5.47	•								•	C. 0402	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8	2.7.371								÷	•••	0.0391	
2 7.743 0.7834 0.7834 0.7834 0.7834 0.7334 0.7335 0.7343 0.7335 0.7335 0.7345 0.7335	80	2.7571					4797.0	0.7951	0.0599	0.0446	C+ C3C8		C. C102
2 2 1 0.1130 0.1130 0.1130 0.1130 0.1031 0.0311 0.0311 0.0311 0.0311 0.0311 0.0311 0.0311 0.0311 0.0311 0.0313 0.0311 0.0313 0.0311 0.0313 0.0311 0.0313 0.0311 0.0313 0.0314 <t< td=""><td>ri.</td><td>2-7432</td><td>0.7621</td><td>0.1475</td><td>.0•7840:</td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	ri.	2-7432	0.7621	0.1475	.0•7840:	•							
J.0419 0.8105 0.1450 0.8158 0.8125 0.8199 0.0657 0.6417 C.C286 0.6331 J.0419 0.8105 0.1457 0.8156 0.8155 0.6147 C.C286 0.6331 J.941 0.8105 0.8156 0.8157 0.8155 0.6134 0.6334 0.6334 J.941 0.8551 0.8146 0.8515 0.0149 0.0316 C.C237 0.6344 J.9513 0.8551 0.1405 0.8415 0.8176 0.6324 C.C237 0.6334 J.9513 0.8939 0.1405 0.8174 0.6324 0.6213 0.6014 J.9513 0.9960 0.1405 0.8174 0.6324 0.6213 0.6014 J.9513 0.9912 0.9123 0.9017 0.0326 0.6127 0.6013 J.9513 0.9712 0.9153 0.9017 0.0316 0.6127 0.6013 J.9513 0.9712 0.9153 0.9013 0.0163 0.61137 0.6013 0.611		2.7493				0.7834							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10 1 18 1	CA88.2						•		·,		0°C381	•
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		5 T 4 D 4 7 4										0.0365	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	F (5-0414			() 		0.8225	6618.0	0.0657	0-0417	C. C286		C• CC90
11000 0.0344 0.01427 0.04446 0.8515 0.00376 C.C257 0.0343 13.467 0.5561 0.1427 0.6446 0.8548 0.8515 0.00376 C.C257 0.0343 13.467 0.5561 0.1427 0.6446 0.8515 0.00376 C.C257 0.0334 13.5515 0.8989 0.1405 0.8174 0.00326 C.C216 0.0214 0.0024 10.5515 0.8989 0.1405 0.8174 0.00326 C.C115 C.0214 0.0024 10.5515 0.9989 0.1405 0.8174 0.0925 0.9214 0.0256 C.C175 C.0214 0.0224 10.5515 0.9914 0.9124 0.9129 0.9124 0.9033 0.0103 C.C175 C.0211 0.0224 10.5516 0.9130 0.1128 0.9134 0.9234 0.9134 0.0033 C.C175 0.0135 C.0135 0.01015 10.5517 0.9134 0.9124 0.9124 0.9124 0.9104 <td>20</td> <td>3+0+60</td> <td>0.8105</td> <td>0-41-0</td> <td>RCTAN</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	20	3+0+60	0.8105	0-41-0	RCTAN								
3.3.5.0 0.3541 0.1427 0.0444 0.8548 0.4515 0.0749 0.0376 0.6237 0.6234 0.6639 3.3515 3.3515 0.3515 0.3445 0.8515 0.0149 0.0376 0.6237 0.6639 3.3515 3.5515 0.8909 0.1405 0.8740 0.8815 0.8176 0.0324 0.6217 0.60216 3.5515 0.8909 0.1405 0.8740 0.8177 0.9025 0.0124 0.6217 0.60216 3.5525 0.9910 0.1300 0.8974 0.9013 0.9182 0.9013 0.0163 0.6127 0.6021 0.6021 3.5525 0.9970 0.9133 0.9182 0.9182 0.9183 0.60163 0.6127 0.6021 0.6021 4.2277 0.9791 0.9133 0.9182 0.9183 0.9183 0.6163 0.6127 0.6021 0.6021 0.6021 0.6021 0.6021 0.6021 0.6021 0.6021 0.6021 0.6021 0.6021 0.6021 0.6021 0.6021 0.6021 0.6021 0.6021 0.6021 0.602	9 0 F C		•			CCT0*0							
5.3467 0.8548 0.8515 0.0749 0.0376 C.227 C.237 C.237 C.237 C.233 3.4515 3.4515 0.8511 0.4452 0.8452 0.8151 0.0749 0.0376 C.2215 0.0276 3.4515 0.8939 0.1405 0.8174 0.8174 0.0826 0.0324 C.2216 0.0044 3.4515 0.8939 0.1405 0.8717 0.9025 0.0324 C.2116 0.0216 3.4511 0.9340 0.1351 0.8933 0.9015 0.0163 C.0135 0.0211 3.4511 0.9910 0.1351 0.9133 0.9122 0.9159 0.00163 C.1127 0.0212 3.4511 0.9912 0.9122 0.9123 0.9163 C.127 0.0135 0.0213 3.4511 0.9913 0.9163 0.0163 0.0163 C.127 0.0135 0.0101 3.4511 0.9913 0.9163 0.0163 0.0123 0.0135 0.0135 0.0135 <tr< td=""><td>> œ</td><td></td><td></td><td></td><td></td><td>•</td><td>•</td><td>•</td><td></td><td></td><td></td><td></td><td></td></tr<>	> œ					•	•	•					
00 3:552 0.4427 0.8446 0.4452 0.8476 0.8716 0.0324 0.0324 0.0216 0.0014 3:5515 0.8989 0.1405 0.8109 0.8176 0.0026 0.0324 0.6216 0.0044 3:5515 0.8989 0.1405 0.8170 0.8171 0.0026 0.0324 0.6216 0.0044 3:5515 0.8989 0.1405 0.8173 0.9007 0.0015 0.0326 0.0121 0.0022 3:5515 0.9180 0.8913 0.9007 0.0015 0.0226 0.0127 0.0221 3:5515 0.9136 0.9122 0.9159 0.0083 0.0163 0.0127 0.0221 0.0125 3:5517 0.9702 0.1335 0.9183 0.0163 0.0127 0.0125 0.0013 3:5512 0.9914 0.9254 0.1042 0.0037 0.0137 0.0122 0.0127 0.0127 0.0127 0.0127 3:5519 0.9913 0.9124 0.9237 0.92	86	3.34.67					0.8548	0.8515	0.0740	0-0376	C. C257		0,00,0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	3.3528	0.8561	0.1427	0.8446								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	25	3,3589	•			0.8452			•			•	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	80	3.6515										C-0276	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	~ `	3.6515					0.8815	0.8776.	0.0826	0.0324	C. C215	•	0. 0044
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.9	3.6576	0.8989	0.1405	6.8709	. '		-					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		3,6637		,		0.8747				•			• .
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					•	•						C.0211	
3.9905 0.974 0.9212 0.9159 0.0083 0.0163 0.0155 0.0155 4.2211 0.9702 0.1357 0.9135 0.9182 0.9212 0.9159 0.0083 0.0163 0.0155 0.0155 1.2513 0.9702 0.1357 0.9135 0.9182 0.9212 0.9159 0.0083 0.0163 0.0155 0.0155 1.2559 0.4991 0.1335 0.9225 0.9314 0.9256 0.1042 0.0087 0.0038 0.0012 1.2559 0.4991 0.1335 0.9225 0.9327 0.9244 0.1042 0.0087 0.0036 0.0012 1.45720 0.9944 0.1308 0.9231 0.9327 0.9244 0.1084 0.0035 0.0012 1.48707 0.9944 0.1308 0.9236 0.9336 0.9336 0.9326 0.1024 0.0035 0.0012 1.8770 0.9914 0.9336 0.9336 0.9336 0.9336 0.9336 0.9336 0.9336 0.0035 0.0046 0.0012 1.8780 0.99336 0.9336 0.9336	0 0		0,000				5 COA .0	1006.00	6760+0	0.0256	C•.C175		0. 0022
**2611 0.9702 0.1357 0.9115 0.9212 0.9159 0.0983 0.0163 0.0135 0.0135 **2611 0.9702 0.1357 0.9135 0.9182 0.9182 0.9159 0.0163 0.0135 0.0135 **2613 0.9702 0.1335 0.9135 0.9182 0.9182 0.9182 0.0163 0.0135 0.0135 **2659 0.4991 0.1335 0.9235 0.92314 0.9256 0.1042 0.0087 0.0138 0.0135 **5781 **5781 0.9235 0.9237 0.9234 0.9236 0.1042 0.0087 0.0036 0.00012 **5781 0.9944 0.1336 0.9235 0.9326 0.9326 0.1084 0.0046 0.0037 0.0012 **5781 0.9973 0.9326 0.9326 0.9126 0.1127 0.0012 0.0012 0.0001 **1070 0.9936 0.9326 0.9326 0.9326 0.1287 0.0012 0.0012 0.0012 **1070 0.9937 0.9326 0.9326 0.1127 0.0035 0.0012	2 2	20 40 44	0- 4300	0° 1380	0.8453	1000							
4.2611 0.9702 0.1357 0.9135 0.9122 0.9159 0.0983 0.0163 C.C127 0.0123 0.0163 C.C127 0.0123 0.0163 C.C127 0.0113 0.0163 C.C127 0.0113 0.0163 C.C127 0.0113 0.0113 0.0113 0.0113 0.0113 0.0113 0.0113 0.0113 0.0113 0.0113 0.0113 0.0113 0.0113 0.0113 0.0113 0.0113 0.0113 0.0113 0.0113 0.0103 0.0103 0.0103 0.0103 0.0103 0.0103 0.0103 0.0103 0.00012	1 00	50 200 400 400 200 200 200 200 200 200 20						·				0 0165	
0.4702 0.9135 0.9255 0.1042 0.0087 0.0098 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0006 0.00072 0.00072 0.00072 0.00012 0.00072 0.00072 0.00072 0.00012 0.00072 0.00012 0.000012 0.00001 0.00	. 80	4.2611					0.9212	0.9159	0.0983	0-0163	C. C127		0.010
2 4.2733 0.9182 0.9182 0.9182 0.9182 0.9182 0.0087 0.0087 0.0098 0.0098 0.0008 0.0098 0.0008 0.0098 0.00012 0.00002 0.00001 0.00002 0.00002	ġ	4.2672	0.9702	0.1357	0.9135								
9 4.5659 0.4971 0.1335 0.9255 0.9314 0.9256 0.1042 0.0087 C.0086 C.0098 0.0001 1 4.5720 0.4971 0.1335 0.92597 0.9237 0.9256 0.1042 0.0087 C.0086 C.0078 C.0001 1 4.5720 0.4971 0.1335 0.9297 0.9237 0.9266 0.1084 0.0087 C.0072 C.0012 1 4.8707 0.9944 0.1308 0.9233 0.9327 0.9266 0.1084 0.0072 C.0012 C.0012 1 4.8707 0.9944 0.1308 0.9336 0.9327 0.9326 0.1127 0.0035 C.0046 0.0012 1 5.1755 0.9973 0.9336 0.9336 0.9330 0.1127 0.0035 C.0046 0.0001 1 5.4803 0.9973 0.9334 0.93302 0.1158 0.0024 C.0041 C.0062 1 5.4803 0.99334 0.93314 0.93302 0.1158 0.0024 C.0041 C.00622	2	4.2733				0.9182							14 .
9 4.5659 0.4971 0.49314 0.9256 0.1042 0.0087 0.0087 0.0087 0.0087 0.0007 10 4.6770 0.4971 0.1335 0.9257 0.9257 0.9257 0.9257 0.0087 0.0087 0.0072 0.0072 10 4.6707 0.9944 0.1336 0.9237 0.9264 0.1084 0.0046 0.0072 0.0012 10 4.8707 0.9944 0.1308 0.9236 0.9327 0.9264 0.1084 0.0012 0.0012 0.0012 10 4.8707 0.9944 0.1308 0.9236 0.9327 0.9326 0.9326 0.0084 0.0012 0.0012 0.0012 10 5.1175 0.9948 0.9300 0.1127 0.0035 0.0014 0.0001 12 5.1187 0.9314 0.9314 0.9300 0.1127 0.0035 0.0046 0.0001 12 5.4603 0.9334 0.9334 0.93302 0.1158 0.0024 0.0062 0.00022 10 5.4603 0.9334 0.9334 0.930	Ē	4.5653	•		•							C-0098	
0 4.5720 0.4971 0.1335 0.9257 0.9297 12 4.6771 0.9944 0.1335 0.9297 0.9227 0.9264 0.1084 0.0046 C.C057 0.0072 C.C01 18 4.8707 0.9944 0.1308 0.9235 0.9327 0.9264 0.1084 0.0046 C.C057 0.0072 C.C01 18 4.8707 0.9944 0.1308 0.9356 0.9327 0.9264 0.1084 0.0046 C.C057 0.0012 10 5.1759 0.9973 0.9356 0.9368 0.9366 0.9366 0.9366 0.9366 0.0035 C.C046 0.0001 10 5.1877 0.9973 0.9374 0.9302 0.1285 0.00024 C.C042 0.00022 10 5.4664 0.99334 0.9334 0.9302 0.00224 C.C041 0.00022	œ.	4.5659			, ,		0.9314	0.9256	0.1042	0.0087	C. C086		0.000
2 4.5781 0.9297 0.9297 0.9297 0.9264 0.1084 0.0046 C.0072 C.0012 8 4.8107 0.9944 0.1308 0.9293 0.9327 0.9264 0.1084 0.0046 C.0057 0.0072 C.001 00 4.8107 0.9944 0.1308 0.9356 0.9327 0.9264 0.1084 0.0035 C.0057 C.001 01 4.8769 0.9973 0.1285 0.9326 0.9368 0.9300 0.1127 0.0035 C.0046 0.0001 01 5.1155 0.9973 0.1285 0.9321 0.9336 0.9330 0.1127 0.0035 C.0046 0.0001 02 5.1877 0.99374 0.93302 0.1158 0.0024 C.0042 0.0002 03 5.4803 0.99334 0.99302 0.1158 0.0024 C.0041 0.00002	2	4.5720	1064.0	0.1335	0. 9255						•		
98 4.8707 0.9327 0.9264 0.1084 0.0046 C.C057 0.0072 C.C01 00 4.8707 0.9944 0.1308 0.92956 0.9326 0.9366 0.9366 0.9366 0.9366 0.0355 C.C057 0.0012 C.C001 01 5.1755 0.9973 0.9326 0.9366 0.9366 0.9366 0.9366 0.9366 0.00355 C.C046 0.0001 02 5.1817 0.9973 0.1285 0.9379 0.9376 0.9302 0.1127 0.00355 C.C046 0.0001 02 5.1817 0.9973 0.9379 0.9336 0.9336 0.9336 0.01127 0.00355 C.C046 0.0001 02 5.4803 0.9973 0.9334 0.9332 0.9332 0.9332 0.01358 0.0024 C.C041 C.C062	22	4.578L				0.9297							•
38 4.8707 0.9344 0.1308 0.9293 0.9327 0.9264 0.1084 0.0046 C.0057 C.001 20 4.8768 0.9944 0.1308 0.92956 0.9326 0.9326 0.9336 0.001 0.0001 0.001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.00001 0.0001 0.0001	ŝ	4.87.07				,						0+0072	
00 4.8768 0.9944 0.1308 0.9293 0.9356 0.9368 0.930C 0.1127 0.0035 C.C046 0.C001 3.5.1755 0.9973 0.1285 0.9321 0.9368 0.930C 0.1127 0.0035 C.C046 0.C001 0.5.1877 0.9973 0.1285 0.9321 0.9379 0.9302 0.1158 0.0024 C.C041 C.C062 0.6000 38 5.4803 0.9973 0.1260 0.9334 0.99374 0.9302 0.1158 0.0024 C.C041 C.C062 0.6000	8	4.8707		- ;		•	0.9327	0.9264	0.1084	0.0046	C. C057	•	C. CCOI
02 4.8329 03 5.1755 0 5.1816 0.9973 0.1285 0.9321 0 5.1816 0.9973 0.1285 0.9321 0 5.4803 0 5.4864 0.9973 0.1260 0.9334 0 5.4864 0.9973 0.973 0.1260 0.9334 0 5.4864 0.9973 0.9024 0.9024 0.0004 0 5.4864 0.9973 0.1260 0.9334 0 5.4864 0.9973 0.1260 0.9334 0 5.4864 0.9973 0.0024 0.9024 0.9024 0.00024 0 5.4864 0.9973 0.1260 0.9334 0 5.4864 0.9973 0.9024 0.9024 0.9024 0.00024 0.0000 0 5.4864 0.9973 0.1260 0.9334 0 5.4864 0.9973 0.9024 0.9024 0.9024 0.0000 0 5.4864 0.9973 0.9024 0.9024 0.9024 0.0000 0 5.4864 0.9024 0.9024 0.9024 0.9000 0 5.4864 0.9024 0.9024 0.9024 0.9000 0 5.4864 0.9024 0.9024 0.9024 0.9000 0 5.4864 0.9024 0.9000 0 5.4864 0.9000 0 5.4865 0.9000 0 5.4855 0.90000 0 5.4855 0.9000 0 5.4855 0.9000 0 5.4855 0.90000 0 5.4855 0.90000 0 5.4855 0.90000 0 5.555 0.9000000 0 5.555 0.9000000000000000000	2	4.8768	4466.0	0.1308	0. 9293	•							
08 5.1755 0 5.1816 0.9973 0.1285 0.9321 0.9368 0.930C 0.1127 0.0035 C.C046 0.C001 12 5.1817 13 5.4803 18 5.4803 18 5.4803 10 5.4864 0.9973 0.1260 0.9334 0.9374 0.9302 0.1158 0.0024 C.C041 C.C062 0.C000	2	4.8.129		•	• •	0.9356							:•
00 5.1816 0.9773 0.1285 0.9321 22 5.1817 24 5.4803 28 5.4803 29 5.4864 0.9973 0.1260 0.9334 0.9374 0.9302 0.1158 0.0024 C.C041 C.C062 20 5.4864 0.9973 0.1260 0.9334	80	5.1755					0.9368	0.9300	0.1127	0.0035	C= C046	•	0- 001
22 5-1877 18 5-4803 28 5-4803 28 5-4804 0-9973 0.1260 0.9334 0.9374 0.9302 0.1158 0.0024 C.C041 C.C062 0.C000	0	5.1816	0.9973	0.1285	0.9321						•	•	
38 5.4803 38 5.4803 30 5.4864 0.9973 0.1260 0.9334 0.9374 0.9302 0.1158 0.0024 C.C041 0.C000	N'	5.1877			•	0.9379	,		:			•	
98 5+803 00 5+864 0-9973 0-1260 0-9334 0-9374 0-9302 0-1158 0-0024 0-041 0-000	8	5.4803			•					•		C. C062	
00 5.4664 0.9973 0.1260 0.9334	86	5.4803				•	0.9374	0.9302	0.1158	0.024	C+C041		0.000
	8	5.4864	0.9973	0.1260	0.9334	·.				•	- -		 . . .

CRCSS WIRE PRCBE Single Wire PrcB Pltot-Static

.:İ

TABLE 10 (continued)

-20LV/UC++2 +	0. C001	
KRFS/UC	C. C053	
VRMS/UC	0 0 0 0 0 0	
URMS/LO	0• 0020	
on/a	0.1182	
on/n	0• 93 28	
on/o	0• 9403	VIRE PRCBE Wire Prce Static
BU) :	0.9402 0.9447 0.9447 0.9486 0.9488 0.9488	CRCSS N SINGLE PITOT-S
0n/6	G . 9348	• • • •
CP (STATIC)	0.1235	
CP (TUATL)	0. 9973	
۲ (C4.)	5,4925 5,7912 5,7912 6,0899 6,121 7,3213 7,3213	
Y (FT.)	11802 11803 11898 11898 11898 11898 11898 11898 11898 11898 11898 11898 11898 11898 11898 11898 11898 11898 11898 11898 11808	

TABLE 11 PROFILES AT X/L = 0.920

.

Y CP CP Q/U0 (CM.) (TDATL) (STATICH +++	CP CP Q/U0 (T2ATL) (STATIC) +++	CP Q/UO (STATICP +++	0/0 0		c/up	0/nC	Dn/n	DN/A	URMS/LD	VRMS/LC	krrs/uc	-26L v/UC+*
0+0640 0.2550 0+1556 0+3153 0-0762 0-2635 0-1556 0-3285	0.2550 0.1556 6.3153 0.2635 0.1556 0.3285	0.1556 6.3153 0.1556 0.3285	6.3153 0.3285						· ·	:	•	·
C.C.714 0.2763 0.1556 C.3474	0.2763 0.1556 0.3474	0.1556 6.3474	G. 3474									
			0.28	0.28	35				•	•		
0.1329 0.3047 0.1556 C.3861 0.3 0.1253 0.3047 0.1556 0.3861	0.3047 0.1556 C.3861 0.3	0.1556 C.3861 0.3	C.3661 0.3	6-0	587			• .		÷.		
0.2377											C+ C374	
0.2377 0.2433 0.3189 0.1556 0.4041	0.3189 0.1556 0.4041	0.1556 0.4041	0.4041		•	9+7+*0	8474 °O	6200-0-	2.0.0462	G• C 3 I Z		-113-0
0.2459 0.2247	0	0	Ö	o	4108						C. CARS	
0.2967						0.4381	-0-4381	-C+00+0	0.0446	0.0311		C. C115
0,3048 0.3303 0.1550 0.44180 0.03169 0.3169	0. 0. 0.	0° 1930 0° 4180	0.4180	Q	•4219	•			••	•	•	
0.4511 0.4511 0.3516 0.1556 0.427	0.3516 0.1556 C.4427	0.1556 C.4427	C=4427			0.4679	0.4679	-0- 0017	0°0441	C.C.316	0• C363	·G. 0121
				0	• 4535					•		
0+6535	· · · · · · · · · · · · · · · · · · ·			:		0.4923	0+4923	E000°0-	0-0445	0• C322	C. C.3.C	G. C123
0.6096 0.3744 0.1556 0.4678 0.6557 0	0.3744 0.1556 0.4678 0	0.1556 0.4678 0	0.4678	0	-4788			•		•		•
0.7559	•										C. C371	
0.7553 C.7681			J		1997	0414-0	041400	0600 *0	0.0454	C • C332	•	0. 6129
0.9383	•	• •						C 200	0110 0		C. 0378	
0.9144 0.4156 0.1538 0.5117	0.4156 0.1538 0.5117	0-1538 0-5117	0.5117		•.							6777.00
0.9205	•	•			0• 51.93							-
1.2131	· ·	•				0,5782	0.5781	0-0129	0.0472	0° C339		0. 0133
1.2132 9.4554 0.1518 C.5510	9.4554 0.1518 C.5510	0+1518 C+5510	C.5510									•
1-5179				9	5004			-	-		C_ C198	
1.5179						0.6128	0.6125	0-0168	0.0472	C. C341		0. 0137
1.5240 0.4930 0.1492 0.5906 1.5201 0.4930 0.1492 0.5906	0-4930 0.1492 0.5906 f	0•1492 0•5906	0.5906						•••	•	•	
1.822				5							C+ C4 C5	
1.8288 0.5333 0.3470 0.4243	0_5191 0_1470 0_4241	0-3470 0-4243	0.6263			.1.100.0	2109-0	667040	1-1 +0 +0	0+10-0		0• 0128
		•0	•	ö	6669	•••	•	-				
2.1275 2.1275						7007 U	1001 0	0.0325	0-0473		0. 0407	
2.1336 0.5848 0.1445 0.6636	0-5848 0.1445 0.6636	0.1445 0.6636	0.6636				00000					
2.1397	Ő	Ő	ŏ	ŏ	.6676							
2.4323						0.7210	5612-0	¥6E0*0	0.0466	C. C325	E043*0	0-0120
2.4384 0.6317 9.1423 0.6996 2.4445 0.	0.6317 0.1423 0.6996 0	9.1423 0.6996 0	0.6996	a	-7015		• •			•	•	
						-						

CROSS WIRE PROBE Single wire probe Pitot-static

•

TABLE 11 (continued)

!

-20UV/UC++	0. C104	0- 6100	0. 0092	C. C085	0=/C07/3	Ca C064	C= C040	C. C019	0- 0	0. CC02 0. CC01	1000 °C	0- 000
MRMS/UC	0° C + 0 I	C.0388	C. 0374	0°.0354	0°0325	C. C287	0. 0233	0.0176	C. C123 0. 6081	0. CO56	C= CC4 S	0-0043
VRMS/UC	0.,C320	0. C31C	0. (2294	G. 6275	C. C250	0° C226	0- 6187	0	C. C104	C. C069 0. C054	C. C046	0. C038
URMS/UD	0° 04 61	0.0443	0.0417	0.0380	0•0351	0°0317	0- 0265	0° 0195	0• 0 1 2 5	0 . 0036 0 . 0032	0.0027	0°0025
0 n/ 1	0.0487	C. 0560	C. 0650	0.0707	0.0783	0°0861	0=0833	0° 0333	C. 0989	0. 1017 0. 1045	0. 1078	0-1091
¤n∕n	0°7514	0.77.87	7613.0	0-8406	0.8659	0-8-03	1606-0	0. 9247	0- 9354	0.9407 0.9440	0. 9448	0.9469
av.e	0 e 7 53 0	0.7807	0.8163	0.8436	0.8694	0-8945	0 . 9135	0.9294	0-9406	0 • 9462 0 • 9498	0° 9509	0.9532
07/0		0. 7369	E077 °0	8008 °	0.8324 0.8574			0,9059	0. 9413	E056 °0	0.9537	V7 CF 0
0/10	62E7.0	7.44	6e 7939	4.8234	0-8500	0.8761	J. 8974	6.9144	0.9285	0°,9369	ese6 •0	
CP (STATIC)	0-1400	0461-0	0°1350	0°1328	0 . 1295	0.1272	0.124B	0.1225	0.1206	0.1178	U• 1222	
CP (TCATL)	0.6786	TC C T _ D	0•7653	0.0108	0. 3520	0-+947	0 • 9302	0, 9586	0• 7828	0. 3956	0.9970	
۲ (۵۴.)	2.757.2 1767.2 26.752.2	2.7493 3.0419 3.0419	3.3467 3.3467 3.3467	3. 3589 3.6515 3.6515	3,9563 3,9563 3,9563 3,9563 3,9563 3,9583 3,95633 3,95563 3,95563 3,95635 3,95563 3,95563 3,95563 3,95563 3,95563 3,95563 3,95563 3,95565555555555555555555555555555555555	4.2611 4.2611 4.2612	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4.8707 4.8707 4.8707 4.8769 4.8826	5-1155 5-11816 5-18175 5-18175 5-4803	5.4903 5.4925 7851 7851	5. 7979 6. 0859 6. 0859 6. 0859	1701 °0
Υ. (FT.)	0.05898 0.0893 0.090	0,0998 0,0998 0,0998 0,0998	0.1008 0.1098 0.1098	0.1102 0.1198 0.1198 0.1203	0.1298 0.1298 0.1298 0.1298 0.1300	0.1398 0.1398 0.1400	0.1498	C. 1598 0. 1598 0. 1600	0.1699 0.1698 0.1700 0.1792 0.1798	0, 1793 0, 1800 0, 1898 0, 1898 0, 1898	0.1998 0.1998 0.1998 0.1998	0. 2098 0. 2098 0. 2098

95

SINGLE WIRE PROBE PLIOT-STATIC

CROSS WIRE PROBE

.::

TABLE 11 (continued)

Y (CH.)	CP (TGATL)	CP (STATIC)	0n/0	0/00 **	a/uc	on/n	on/1	URMS/UC	VRMS/UC +	kars/UC +	-26LV/UC++2 +
5				0.9576							. croi
5 6	0.9970	0.1170	1966.0		0•9554	1646.0	660 1 ° D	0+0010	L• LU30		C. CCU
17				0• 9601						0. CO45	1001 0
25	0.9970	0.1123	0• 9406		0.9583	0.9515	6E11.0	2100.0	C. CC34		0. 1001
				0.9629						0+ 0052	
87 43	0.9970	0.1068	0, 9435		0•9608	0.9536	0.1170	0.0014	Ce C 0 4 2		C. 5 G 0 1
603 144	0.9970	0.1025	0.9458	0•9640							

CROSS WIRE PRCBE Single Wire PrcBe Pitot-Static .::

TABLE	12	PROFILES	AT	X/L =	0.940
-------	----	----------	----	-------	-------

Y	Y ¹	CP	CF	Q/U0
(FT.)	(CM.)	(TOTAL)	(STATIC)	***
0.0021	0.0640	0.2507	0.1511	0.3156
0.0025	0.0762	0.2606	0.1511	0.3305
0.0030	0.0914	0.2706	0.1511	0.3457
0.0040	0.1219	0.2848	0.1511	0.3657
0.0060	0.1829	0.2990	0.1511	0.3846
0.0080	0.2438	0.3104	0.1511	0.3991
0.0100	0.3048	0.3232	0.1511	0.4148
0.0150	0.4572	0.3431	0.1506	0.4387
0.0200	0.6096	0.3630	0.1500	0.4615
0.0300	0.9144	0.4000	0.1477	0.5023
0.0400	1.2192	0.4369	0.1459	0.5394
0.0500	1.5240	0.4753	0.1426	0.5768
0.0600	1.8288	0.5137	0.1393	0.6115
0.0700	2.1336	0.5545	0.1360	0.6472
0.0800	2.4384	0.5976	0.1332	0.6815
0.0500	2.7432	0.6416	0.1308	0.7147
0.1000	3.0480	0.6829	0.1290	0.7442
0.1100	3.3528	0.7298	0.1266	0.7767
0.1200	3.6576	0.7710	0.1247	0.8039
0.1300	3.9624	0.8136	0.1224	0.8314
0.1400	4.2672	0.8556	0.1204	0.8574
0.1500	4.5720	0.8918	0.1181	0.8796
0.1600	4.8768	0.9274	0.1162	0.9007
0.1700	5.1816	0.9558	0.1139	0.9176
0.1800	5•4864	0.9771	0.1110	0.9306
0.1900	5.7912	0.9942	0.1092	0.9407
0.2000	6.0960	0.9956	0.1062	0.9431
0.2100	6.4008	0.9956	0.1045	0.9440
0.2200	6.7056	0.9956	0.1021	0.9453
0.2300	7.0104	0.9956	0.0997	0.9465
0.2400	7.3152	0.9956	0.09/9	0.9475
0.2500	7.6200	0.9956	0.0555	0.9487

⁺ CROSS WIRE PROBE ++ SINGLE WIRE PROBE +++ PITOT-STATIC

TABLE 13 PROFILES AT X/L = 0.960

-201.1/10442 0° C110 C. C098 0. C102 C. C 11C C.0111 C. C120 0.010.01 C. C121 C. C118 C+.C120 C. C118 URMS/LO VRMS/UC WRFS/UC 0.0351 C. 0379 0. 0355 0.0368 0.0351 C.C357 C.C370 C. C375 0.0388 2963.0 C. C40C 0.0319 C+ C254 0. 0305 C.C311 C.C332 C. C333 C. C.2 94 C. C254 C. C 303 0.6324 C.•C328 0.0411 0-0400 ESE0*0 0.0359 0.0425 0.0405 0.0428 0.0436 0*00.*0 0.0458 .0.0465 0.0074 -0.0015 0.0003 C*0022 C+0045 0.0087 0.0137 0.0185 C.0219 0.0270 C.0314 0n/A ъ. +0++-0 0. 5035 0.5193 0.4653 0.4824 1965.0 0.5687 0.6043 0.6354 0.6982 0.6661 DU/U 0.5689 0.6358 0.5035 0.4404 0.4653 0.5194 0.5382 0.6666 0.4824 0.6046 0.6989 07.0 061490 0.4986 0.5157 0.5478 0.5777 0.6388 0.6659 0.3397 0.4594 0.4807 DN/0 0.3719 0.4362 0.6058 `, 0.4279 0.3347 0.3652 0. 6407 0.4022 0.4527 0.4731 0• 5060 0. 5765 G. 6107 0.6707 0.4162 0.5434 Dn/10 CP CP CP (TOATL) (STATIC) 0.1345 0.1345 0.1345 0.1345 0.1345 0.1345 0+1340 0.1327 0.1345 0.1336 0.1303 0.1275 0.1232 0• 1'223 0.1251 0.2579 0.2579 0.2806 77,06.0 0.3574 1964.0 C. 2963 0.3176 0.3389 0.3687 0.42.56 0.45'98' 0.5337 0+5721 ۲. (۲۰۰۱) 0.0640 0.0762 0.1829 0.1899 0.2377 0.2377 2.4445 2.4628 2.7371 3 253 \$ 0.0914 0.1219 0.2439 0 0.158 (FT.) 0.08080 0-0062 C-0078 0-0078 .0240 6. 209 B 0.0100 5602 0.0700 0.0708 0.0021 D..C69a 9670.0 0.0800 0.0802 0025 0.010 0.060 900.00 0.008 0.070.0 0.011 0.014 0.03 0.01

CROSS WIRE PROBE Single Wire Probe Pitot-Static

.....

TABLE 13 (continued)

i.

ř

Υ (,FT•.)	(~ ►)	CP (TCATL)	CP (STATIC)	07.00 07.00	Dn / 0	a/u	0n/n		URMS/LO	VRMS/UC	NRPS/UC	-2014/00
0.0300 0.0300 0.0303	2.7432 2.7432 2.7433	0, 61 33	0.1204	0. 7021	0.7624	0.7253	0.7243	0.0376	0.0462	C• C332		0. C127
0.0398 0.1000 0.1002	3.0413 3.0480 3.0541 3.2724	0.6545	0+ 1185	0•7321	0. 7298	0.7578	0.7568	0•0395	0.0458	C. C328	00+0	C. C1 ² 8
0.11039 0.1100 0.1102 0.1103	3.3467 3.3528 3.3589 3.3772	0.6972	0 . 1162	0, 7622	C. 7627	0• 7.834	0. 7822	C+0432	0•0451	C. C321	0. C396	C. C125
0+1198 0+1202 0+1202 0+1208	3. 6515 3. 6576 3. 6537 3. 6537 3. 9537 3. 9553	J. 7384	0•1143	0• 7900	0. 7938	0.8132	0.8117	0•0493	0• 04 29	6.C314	0° 0386 C° C369	6• 0121
0.1302 0.1302 0.1302	3.9624 3.9685 3.9685 4.2611	0.7810	0.1129	0.8174	0.8236	0.8395	0.8378	C• 0535	0.0409	C. C297	C. C347	0. 0107
	4.2716 4.2716 4.5659 4.5120	u. °223 0.8621	1601-0	0- 8678 0- 8678	0,8502	0.8641	0•8622	0•0566	0• 0376	C. C277	c. c314	C• CO88
0.1508 0.1598 0.1598	4.8707 4.8707	0.8962	0. 1072	0, 8883	0.8758	0 • 8896	0.8875	0-061.7	0•0354	C. C254	G• 0279	0• C072
0.1602 0.1608 0.1698 0.1709	4.8329 4.8329 5.1416 5.1416	0, 9303	0. 1058	0806 *0	0-8983 0-9166	0•9082	0• 9059	0.0651	0• 0315	C. C222	C• 0233	0 • CO5 6
0011708	5000 5000 5000 5000 5000 5000 5000 500	0.9616	0•1035	0.9263	0.9377	0•9300 0•9457	0•9275	C.0681 0.0699	0.0264 0.0157	C. C183 C. C145	0• 01 82	0. C038 0. C021
0.1998 0.1998 0.1998	5. 7912 5. 7912 5. 9156 6. 0899	0 . 7843 0. 9843	0. 1016 0. 1036	0- 9395	0.9506	0. 9566	0.9537	0.0739	0.0129	C. C113	C• 0085	C: CC03
0.2100 2100 0.2100 0.2100	6.4008 6.4008 6.4008	0, 9957	0.0978	0.9476	0. 9567 0. 9648	8196*0	0= 9589	C=0746	0+00£5	C. C075	C• C061	C- 0C03

CROSS WIRE PROBE Single Wire Probe Pitot-Static

.....

99

•••
-201 v/UC++2		C. CCOL	и 	C. C001		•								
NRMS/UD		C. 0050			0400- 0									
VRMS/UD		0. 0057	•	C.* CO4'5					C= CC+1				1-02-0	
URHS/UD		0*00*0		0.0031				0100 0	0.0019		•		5100-0	
		0°.0754		0°0772		•			4 A / D - D		•		0.0803	
00/0	•	0.9625		0.9626					0.9650	•			0.9664	
0/0	•	0-9654	• •	0.9657			:		0.9682				0-9697	•
0/10	:			0•96•0		-		0=.96.70			•	0.9702		0,9697
0/10	÷.		0. 9486	•		0. 44 48	0.9508				0.9521			
Ģ	(STATEC)		0° 0329	•	1	0.0936	0.017	•			0.0893			
٩ د	(TOATL)	:	7299 °C			0. 9957	0.9957				0°.9957			
.] 1 }. 	(CM.)	6.4252	6.7056	6.7117 6.73CO	7.0343	7,0104	.7.31.52	7.3213	7.3396	7.6139	7.6200	7.9309	7.9492	8. 5405
►	(FT.) 	.2108	0022°I	.2202	I. 2298	I= 2-3,00	1.,2400	1.2402	1.2408	1.2493	1.2530	.2602	. 2608	.2802

CRCSS WIRE PRCBE Single wire prcBi Pitot-Static

.::

TABLE 13 (continued)

Y	Y	СР	CF	9/00
(FT.)	(CM.)	(TUTAL)	(STATIC)	***
	~~~~~~~~			
0.0016	0.0488	0.2094	0.1223	0.2951
0.0020	0.0610	0.2250	0.1223	0.3205
0.0025	0.0762	0.2392	0.1223	0.3419
0.0030	0.0914	0.2506	0.1223	0.3582
0.0040	0.1219	0.2619	0.1223	0.373£
0.0060	0.1829	0.2804	0.1223	0.3976
0.0080	0.2438	0.2932	0.1223	0.4134
0.0100	0.3048	0.3031	0.1223	0.4252
0.0150	0.4572	0.3216	0.1214	0.4474
0.0200	0.6056	0.3414	0.1205	0.4700
0.0300	0.9144	0.3755	0.1181	0.5073
0.0400	1.2192	0.4039	0.1162	0.5364
0.0500	1.5240	0.4365	0.1143	0.5676
0.0600	1.8288	0.4692	0.1124	0.5973
0.0700	2.1336	0.5061	0.1104	0.6290
0.0800	2.4384	0.5430	0.1086	0.6591
0.0900	2.7432	0.5785	0.1068	0.686 <b>8</b>
0.1000	3.0480	0.6211	0.1049	0.7185
0.1100	3.3528	0.6605	0.1(35	0.746€
0.1200	3.6576	0.7063	0.1020	0.7774
0.1300	3.9624	0.7475	0.1002	0.8045
0.1400	4.2672	0.7886	0.0588	0.8305
0.1500	4.5720	0.8255	0.0575	0.8600
0.1600	4.8768	0.8625	0.04	0.8753
0.1700	5.1816	0.8979	0.0950	0.8960
0.1800	5.4864	0.9278	0.0540	0.9126
0.1900	5.7912	0.9604	0.0527	0.9315
0.2000	6.0960	0.9789	0.0508	0.9424
0.2100	6.4008	0.9916	0.0893	0.5495
0.2200	0.1000	0.9943		0.9521
0.2400	(•UIU4 7 2152	0.99999	0.0653	0.9530
0.2500	(.)172	U.Y777	U. UC52	U. 9343
0.2900	1.0200	0.4424	0.0532	0.9329
	•			•

+ CROSS WIRE PROBE ++ SINGLE WIRE PROBE +++ PITOT-STATIC

TABLE 14 PROFILES AT X/L = 0.980

### CP Y -¥ CP 9/00 (FT.) (CM.) (TOTAL) (STATIC) *** 0.0012 0.0357 0.1755 0.1163 0.2650 0.0016 0.0488 0.1996 0.1163 0.2886 0.0020 0.0610 0.2138 0.3124 0.1163 0.0025 0.0762 0.2251 0.1163 0.3298 0.0030 0.0914 0.2322 0.1163 0.3404 0.0040 0.1219 0.2478 0.1163 0.3626 0.0060 0.1829 0.2677 0.1158 0.3897 0.0080 0.2438 0.2805 0.1158 0.4058 0.0100 0.3048 0.2904 0.1154 0.4183 0.0150 0.4572 0.3131 0.1140 0.4462 0.0200 0.6096 0.3288 0.1130 0.4645 0.0300 0.9144 0.3628 0.1107 0.5021 0.0400 1.2192 0.3926 0.1084 0.5331 0.0500 1.5240 0.4239 0.1050 0.5647 0.0600 1.8288 0.4575 0.1037 0.5951 0.0700 2.1336 0.4920 0.1018 0.6247 0.0800 2.4384 0.5261 0.0595 0.6528 0.0900 2.7432 0.5630 0.0586 G.6815 0.1000 3.0480 0.0976 0.6042 0.7118 0.1100 3.3528 0.6435 0.0962 0.7401 0.1200 3.6576 0.6823 0.0548 0.7665 0.1300 3.9624 0.7277 0.0939 0.7961 0.1400 4.2672 0.7660 0.0525 0.8207 0.1500 4.5720 0.8029 0.0912 0.8436 0.8441 0.1600 4.8768 0.0901 0.8683 0.1700 5.1816 0.8796 0.0893 0.8890 0.1800 5.4864 0.9137 E830.0 0.9085 0.1900 5.7912 0.9435 0.0874 0.9253 0.2000 6.0960 0.9676 0.0860 0.9389 6.4008 0.2100 0.0246 0.9832 0.9479 0.2200 6.7056 0.9932 0.0832 0.5540 0.2300 7.0104 0.9946 0.0818 0.9554 7.3152 0.2400 0.9946 0.0804 0.9561 7.9248 0.2600 0.9946 0.0778 0.9575 0.2800 8.5344 0.9946 0.0752 0.9589

CROSS WIRE PROBE SINGLE WIRE PROBE PITOT-STATIC

. .

102

TABLE 15 PROFILES AT X/L = 0.990

•	<i>r</i>			
Y (FT.)	Y (CM.)	CP (TOTAL)	CP (STATIC)	Q/U0 +++
0.0016	0.0497	0.1796	0.1129	0.2583
0020	0.0610	0.1966	0.1129	0.2893
J.0025	0.0762	0.2080	0.1129	0-3084
00000	0.0914	0.2193	0.1129	0.3262
	0.1219	0.2535	0.1125	0.3472
	0.2629	0.2048	0.1129	
	0.24.38	0.2833	0.1124	0.5957
	0.6572	0 20/5	0.1100	0.4133
0120	0.4012	0 3 2 3 0	0.100	0.4410
		0 3670	0 1064	0.5026
	1 2102	012822	0.1044	0.5254
	1 5740	0 / 195	0.0002	0.5554
	1.8298	0 4507	0.0592	0.5034
3.0700	2.1336	0.4820	0.0468	0 6204
0.0800	2.4384	0.5175	0.0554	0.6497
	2.7432	0.5544	0.0545	0.6782
	3-0480	0.5927	0.0931	0.7068
0.1100	3,3528	0.6325	0.0921	0.7351
1200	3.6576	0-6736	0.0511	0.7632
0.1300	3.9624	0.7148	8980.0	0.7906
0.1400	4.2672	0.7560	3830.0	0.8168
0.1500	4.5720	0.7557	0.0875	0.8415
0.1600	4.8768	0.8341	0.0860	0.8618
0.1700	5.1816	0.8738	0.0851	0.8881
0.1800	5.4864	0.9050	0.0841	0.9060
0.1900	5.7912	0.9334	0.0832	0.9221
2000	6.0960	0.9632	0.0827	0.9383
0.2100	6.4008	0.9831	0.0818	0.9494
.2200	6.7056	0.951E	0.0804	0.9546
.2300	7.0104	0.9945	0.0794	0.9566
0.2400	7.3152	0.9945	0.0785	0.9571
0.2500	7.6200	0.9945	0.0775	0.957£
te st		•		
•		CROSS WIRE	PROBE	

+ CROSS WIRE PROBE + SINGLE WIRE PROBE +++ PITOT-STATIC

103

TABLE 16

PROFILES AT X/L = 0.995

TABLE 17(a) PROFILES AT X/L = 1.000 ( $\theta = 0^{\circ}$ )

-20UV/UC++2 C.0119 C+C129 C=0143 C-0150 C. C134 C. C136 0. C156 0. C11 5 0. C106 C-.0116 VRMS/UD WRMS/UC 0. 0323 C.C333 0-0332 C. C3C5 G. C254 0.0295 0.0295 0.0308 0.0333 0.0343 C. C346 C. C312 C. C291 Q. C290 C. C3C0 G. C313 C. C323 C. C333 C. C340 C. C348 URMS/UD 0.0351 0-0430 0.0339 0°0393 0-0406 0.0428 0.0376 0.0353 0°0341 0.0364 -0.0703 -0.0583 -C.0452 -0-0446 -C.0461 -C+0479 -C.0521 -0.0534 -0.0620 -0.0687 0.6739 0.6233 C.5326 0.5930 0.6484 0.4967 0.5654 0.4211 0.4783 0.4421 07/n 0.5959 0.6776 0.4443 0.4805 0.4990 0.5679 0-6264 0.6520 0.4235 0.5351 DN /0 0.5572 0.3778 .C. 4495 0.4733 0-5824 0.6122 0.2907 0.2388 0.3860 0.5135 0.5303 97.0 1 0.4374 0.6204 0.5319 0.5621 0.5912 0.1715 0.1715 0.2193 0.2722 0.3650 0. 3844 5.4002 0.5026 C. COCO G. 0872 0.4651 C.3531 9. 9. CP (STATIC) 0.0936 0°C959 0.0950 0.1043 0.0997 0.1141 0.1108 0.1108 0.1103 0.1103 0.1095 0.1095 0.1095 0-1020 0.0978 0.1071 0.1085 0.1031 CP (TOATE) 0.2956 0.4119 0.4445 G. 4785 0.3523 0,1141 0,1194 0,1194 0,1397 0,1581 0,1581 0,1581 0,2020 0.2559 0.2673 0.3183 0.3807 0. 2332 Y (CH.) 2.4.523 C.0200 0.0152 0.0305 0.0457 C-0510 0.1219 0.1585 0.1585 0.1585 0.1585 5 275 1336 5 432 0. 0 3 Υ (FT.) 0702 0.0798 36 503 698 6690 0-0500 6 65 602 50 0.0315 0-020

CRCSS WIRE PRCEE Single wire prcee Pitot-Static

.::

TABLE 17(a) (continued)

2

2         0.5123         0.0077         0.46479         0.46403         0.46473         0.46403         0.46473         0.46403         0.46433         0.46433         0.46433         0.46433         0.46433         0.46433         0.46433         0.46133         0.46433         0.46133         0.46133         0.4613         0.4613         0.4613         0.4613         0.4613         0.4613         0.4613         0.4613         0.4613         0.4613         0.4613         0.4613         0.4613         0.4613         0.4613         0.4613         0.4613         0.4613         0.4613         0.4613         0.4613         0.4613         0.4613         0.4613         0.4613         0.4613         0.4613         0.4613         0.4613         0.4613         0.4613         0.4613         0.4613         0.4613         0.4613         0.4613         0.4613         0.4613         0.4613         0.4613         0.4613         0.4613         0.4613         0.4613         0.4613         0.4613         0.4613         0.4613         0.4613         0.4613         0.4613         0.4613         0.4613         0.4613         0.4613         0.4613         0.4613         0.4613         0.4613         0.4613         0.4613         0.46134         0.46134         0.46134	T. J. (C	-	CP (TGATL!)	CP (STATIC)	Dn/0	c,'u	0,100 •	-0n/n		URMS/CO	VRMS/UC	HRPS/UD	-20UV/UE
2.7731 2.7743         0.5740 0.5743         0.6735 0.6678         0.7035 0.6078         0.7035 0.7035         0.7034 0.7043         0.7035 0.7043         0.7035 0.7043         0.7035 0.7043         0.7036 0.7043         0.7036 0.7043         0.7036 0.7043         0.7035 0.7043         0.7035 0.7036         0.7036 0.7043         0.7036 0.7043         0.7036 0.7043         0.7033         0.7034 0.7043         0.7033         0.7034 0.7043         0.7033         0.7034 0.7043         0.7034         0.7034         0.7034         0.7034         0.7034         0.7034         0.7034         0.7034         0.7034         0.7034         0.7034         0.7034         0.7034         0.7034         0.7034         0.7034         0.7034         0.7034         0.7034         0.7034         0.7034         0.7034         0.7034         0.7034         0.7034         0.7034         0.7034         0.7034         0.7034         0.7034         0.7034         0.7034         0.7034         0.7034         0.7034         0.7034         0.7034         0.7034         0.7034         0.7034         0.7034         0.7034         0.7034         0.7034         0.7034         0.7034         0.7034         0.7034         0.7034         0.7034         0.7034         0.7034         0.7034         0.7034         0.7034         0.7034	2.4	296 292 292	0.5125	0.0927	0-6479	- E0.34 - 0	•	  -  -  -  -  -	  -  -  -  -				
2.77432         0.46410         0.0017         0.6779         0.6678         0.4617         0.46735         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.4618         0.46	8 2.7	371					0-7059	0-7023	-0-0716	0-0430	0.6352	C. C354	0- 0154
7.0411         0.5317         0.6303         0.7105         0.71361         -0.0739         0.0438         C.6337         C.6322           1.04410         0.5917         0.0908         0.7119         0.7311         0.7314         -0.0438         C.6334         C.6134           1.04417         0.1314         0.7311         0.7311         0.7314         -0.0807         0.0438         C.6334         C.6134           1.0515         0.6011         0.7039         0.7131         0.7131         0.7131         0.7134         C.6334         C.6134         C.6134           1.0516         0.6111         0.7039         0.7133         0.7133         0.7134         0.6134         C.6334         0.6134           1.0516         0.7145         0.7133         0.7133         0.7133         0.7136         0.6134         0.6134         0.6134         0.6134         0.6134         0.6134         0.6134         0.6134         0.6134         0.6134         0.6134         0.6134         0.6134         0.6134         0.6134         0.6134         0.6134         0.6134         0.6134         0.6134         0.6134         0.6134         0.6134         0.6134         0.6134         0.6134         0.6134         0.6134         0.	2.2	493	0.5480	0•0917	0. 6755	0. 6678							
3         0.0001         0.7049         0.47049         0.6901         0.7049         0.6901         0.7049         0.6001         0.0438         C.C135         C.C136           3         3         0.2280         0.00899         0.71319         0.7751         0.0137         0.0132         C.C136         C.C136           3         3         0.551         0.0611         0.7600         0.7151         0.7152         0.0131         0.7131         0.0134         0.0131           3         0.551         0.6611         0.7601         0.71647         0.71803         -C.0327         0.0131         0.0134         0.0134           3         0.5511         0.70649         0.71842         0.71842         0.8011         0.01333         0.0111           3         0.71465         0.71842         0.71842         0.71842         0.71843         0.0111           3         0.71465         0.71842         0.71843         0.71843         0.0111         0.01313         0.0111           3         0.71465         0.71843         0.8011         0.8011         0.61313         0.0111         0.0123         0.0111           3         0.71465         0.71863         0.8011         0.8011<	8 8 5 0 6 0	6 1 9 6 1 9					0•7305	0.7261	-0-0799	0-0438	C. C357	C. C362	0.0154
3.3457         0.6230         0.00899         0.7319         0.7517         -0.0807         0.0438         C.C135         C.C135           3.3451         0.6671         0.0899         0.7319         0.7251         0.7847         0.7847         0.7874         0.0438         C.C356         0.0144           3.4515         0.6671         0.6899         0.7703         0.7847         0.7847         0.7847         0.0131         0.0134         0.0144           3.4515         0.6671         0.6871         0.7847         0.7847         0.8871         0.0469         0.0131         0.0114           3.4563         0.7766         0.7813         0.7814         0.8871         0.8871         0.0469         0.0131         0.0114           3.9653         0.7766         0.7812         0.8891         0.8891         0.8013         0.0131         0.0131         0.0131         0.0114           4.2771         0.7864         0.6891         0.8891         0.8891         0.9032         0.6314         0.6134         0.6134         0.6134         0.6134         0.6134         0.6134         0.6134         0.6134         0.6134         0.6134         0.6134         0.6134         0.6134         0.61134         0.61134 <td>2 3.0</td> <td>541 541</td> <td>0. 5877</td> <td>0• 0008</td> <td>0. 7049</td> <td>0. 6960</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	2 3.0	541 541	0. 5877	0• 0008	0. 7049	0. 6960							
3.3589       0.7251       0.7251       0.7251       0.7251       0.7251       0.7251       0.7251       0.0125       0.0125         3.6575       0.6671       0.6671       0.6671       0.6703       0.7259       0.6114       0.6114         3.6575       0.6711       0.6671       0.7603       0.7529       0.71842       0.6124       0.0121       0.6124         3.6575       0.7168       0.6174       0.7803       0.71842       0.71842       0.6131       0.6131         3.6567       0.71862       0.71842       0.7840       0.8124       0.8011       0.0409       0.6131       0.6114         3.6567       0.71663       0.71842       0.7841       0.71842       0.7314       0.6131       0.6114         4.7271       0.7765       0.7661       0.71842       0.6314       0.6313       0.6114         4.7271       0.7765       0.7841       0.8011       0.8011       0.6133       0.6114         4.7271       0.7765       0.7841       0.8011       0.8011       0.6133       0.6114       0.6114         4.7771       0.8244       0.8130       0.8164       0.8134       0.9131       0.6134       0.6101         4.7771		467 453					0.7617	4157.0	-0-0807	0=0438	C• C352	C. C364	C• C152
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.0	5 6 6 0 9 0	0.020.0	0•0844	61E/ "D	0.7251						· .	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		515				·	0.7847	0.7803	-0.0827	0-0429	0, (350	C. C36C	0.0149
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 3.6	576	0.6671	0° C890	0, 7603	0.7570	•					2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		563										C. C354	
2         3.9685         0.7865         0.7862         0.7862         0.7862         0.7861         0.7812         0.7842         0.8809         0.8809         0.0332         0.0331         0.6333         0.6333         0.6334         0.6333         0.6334         0.6334         0.6334         0.6334         0.6334         0.6334         0.6334         0.6334         0.6334         0.6334         0.6334         0.6334         0.6334         0.6334         0.6334         0.6334         0.6334         0.6334         0.6334         0.6334         0.6334         0.6334         0.6334         0.6334         0.6110         0.6334         0.6110         0.6334         0.6110         0.6334         0.6110         0.6334         0.6110         0.6334         0.6110         0.6334         0.6110         0.6334         0.6110         0.6110         0.6110         0.6110         0.6110         0.6110         0.6110         0.6110         0.6101         0.6101         0.6101         0.6101         0.6101         0.6101         0.6101         0.6101         0.6101         0.6101         0.6101         0.6101         0.6101         0.6101         0.6101         0.6101         0.6101         0.6101         0.6101         0.61011         0.6101         0.6101		6 <b>2</b> 4	0.7068	0.0875	0. 7870		6 7 T 0 • 0	1.00.00	1,80.00-	A 3 4 0 * 0	1660.00	•	0.012
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 .	685				0.7842		•					
0.1465       0.6461       C.8126       0.8089         4.5573       0.1465       0.00847       0.8352       0.8081       0.8051       -0.0330       0.0348       C.6239       C.610         4.5773       0.17662       0.00847       0.8352       0.8051       0.8651       -0.0333       0.62397       C.610         4.57791       0.8244       0.0833       0.8352       0.8852       -0.0767       0.0333       0.6276       C.6297         4.9707       0.8244       0.0833       0.8588       0.8925       0.9101       -C.00167       0.0333       0.6276       C.6279       0.6093         4.9707       0.8124       0.0833       0.8508       0.9101       -C.00767       0.0333       0.6276       C.6279       0.6297         5.11755       0.8641       0.0819       0.8862       0.9101       -C.00767       0.0333       0.6276       0.6237       0.6238         5.11755       0.8641       0.09802       0.9886       0.9285       0.9249       0.0328       C.6236       0.6238         5.11755       0.8997       0.99906       0.9919       0.9101       -C.00827       0.0223       C.6239       0.6033         5.11755       0.99996       <							0.8409	0.8369	-0,0819	2.5 6 0 • 0	0.0316	5553 °N	0.0113
4.5559       0.7862       0.0847       0.8376       0.8352       0.0368       C.C259       C.C316       C.C316         4.5559       0.7862       0.0847       0.8352       0.8352       0.8352       0.8352       0.8352       0.6333       0.02368       C.C297       C.C316       C.C397         4.6781       0.8244       0.0833       0.8588       0.8352       0.8392       0.0767       0.0333       0.0276       C.C297       0.0075         4.8707       0.8244       0.0833       0.8609       0.8925       0.9101       -C.0333       0.0276       C.C297       0.0075         2.1755       0.8241       0.0819       0.8888       0.9138       0.9101       -C.0827       0.0328       C.C276       0.0075         2.1755       0.8641       0.0819       0.9886       0.9138       0.9101       -C.0338       C.C236       C.C236       0.0075         2.1755       0.8691       0.9928       0.9249       0.9237       0.0227       C.C190       0.0035         2.1755       0.9399       0.9010       C.9238       0.9227       C.C194       C.C190       0.0303         2.7713       0.9939       0.9011       -0.0804       0.9227       C.C148 <td></td> <td>572</td> <td>0.7465</td> <td>0.06861</td> <td>C. 8126</td> <td>0.909.0</td> <td></td> <td>-</td> <td></td> <td>•</td> <td>•</td> <td></td> <td></td>		572	0.7465	0.06861	C. 8126	0.909.0		-		•	•		
+.5729       0.7862       0.0847       0.8352       0.8352       0.8651       -0.0830       0.0368       0.6259       0.6104         +.5721       0.8721       0.8352       0.8352       0.8352       0.8352       0.8352       0.8352       0.60333       0.6276       0.6297       0.60333       0.6276       0.6297       0.60333       0.6279       0.6003         +.8707       0.8244       0.0844       0.8588       0.9101       -0.0827       0.03333       0.6276       0.6297       0.6074         5.1755       0.8641       0.0819       0.8844       0.9101       -0.0167       0.0333       0.6276       0.6074         5.1755       0.8641       0.8844       0.8892       0.9101       -0.0367       0.0333       0.6276       0.6074         5.1755       0.8641       0.88902       0.9101       -0.0817       0.0336       0.6235       0.6074         5.1755       0.8992       0.9285       0.9249       0.0220       0.6238       0.6039         5.4473       0.8992       0.9249       0.9101       0.0316       0.0220       0.6238       0.6039         5.4473       0.9308       0.9010       0.9413       0.94139       0.0221       0.60		623			-				•			C. C316	
4.5781       0.8352       0.8352       0.8925       0.8892       -0.0767       0.0333       0.62397       0.6297         4.8707       0.8244       0.0833       0.8609       0.8925       0.8892       -0.0767       0.0333       0.6276       0.62397         4.8707       0.8244       0.0813       0.8609       0.8925       0.8892       -0.0767       0.0333       0.6276       0.62397         5.1755       0.8641       0.08819       0.8844       0.9101       -6.0827       0.0358       6.6236       0.6237         5.1775       0.8641       0.08819       0.8844       0.8802       0.9101       -6.0827       0.0358       6.6236       0.6237         5.1775       0.8641       0.08819       0.8846       0.8802       0.9285       0.9239       0.6236       0.6236       0.6236         5.1715       0.8992       0.9285       0.92493       0.9227       0.0220       0.6236       0.6039         5.17912       0.9308       0.69149       0.94439       -0.0806       0.0227       0.6190       0.60359         5.77913       0.9191       0.9433       0.9439       -0.0806       0.0227       0.6194       0.60359         5.77913       <	n.⊮ € 4	500	0.7867	7 4 9 0	, 6374		0.8691	0.8651	-0.0830	0.0368	C+ C259	•	C+ C104
4.8707       4.8707       0.0333       0.4.297       0.4.297       0.4.297         4.8707       4.8707       0.8844       0.8869       0.8845       0.8892       0.0167       0.0333       0.6.276       0.6.297       0.6.076         4.8707       0.8844       0.9588       0.9101       -0.0358       0.6236       0.6270       0.6077         5.1755       0.8641       0.8844       0.8860       0.9101       -0.0328       0.0358       0.6236       0.6237         5.1755       0.8641       0.08819       0.8844       0.9101       -0.0817       0.0328       0.6236       0.6237         5.1755       5.1775       0.8992       0.9285       0.9249       0.90318       0.62236       0.6236       0.6236         5.1755       0.8992       0.9285       0.9249       0.90318       0.0227       0.6236       0.6236         5.4903       5.4903       0.9914       0.9413       0.9439       0.9016       0.0227       0.6236       0.6033         5.7951       0.9308       0.6901       0.9439       0.9016       0.0227       0.6190       0.6036         5.7913       0.9439       0.9439       0.90806       0.9227       0.6194       0.61		181				0.8352			•				:
4.8776       0.8244       0.0833       0.8609       0.8942       0.8892       0.0333       0.6276       0.6276         5.1755       5.1755       5.1755       0.0313       0.6276       0.6270       0.6077         5.1755       5.1755       0.9101       -0.0827       0.0358       0.6236       0.6270       0.6077         5.1755       5.1755       0.9802       0.9101       -0.0827       0.0358       0.6236       0.6077         5.1755       5.1775       0.99285       0.9101       -0.0816       0.0328       0.6236       0.6037         5.1755       5.4403       0.9948       0.9101       -0.0816       0.6236       0.6236       0.6037         5.4403       5.4423       0.9948       0.9285       0.9249       0.9221       0.6236       0.6236         5.4423       0.8992       0.6919       0.9473       0.9439       0.0327       0.62196       0.6039         5.7951       0.9308       0.0801       0.9223       0.9439       0.90806       0.62196       0.6039         5.7913       0.9309       0.90806       0.9223       0.9439       0.90806       0.9223       0.6197         5.7913       0.9903       0.9601	60 0 • • •	202			;							C. C2 97	
4.8825       4.8825       0.85185       0.6138       0.9101       -C.0827       0.0368       C.C270       0.0001         5.1755       5.17155       0.8644       0.8844       0.9101       -C.0827       0.0368       C.C235       C.C236       0.0001         5.17155       0.8641       0.8844       0.8802       0.9101       -C.0827       0.0368       C.C236       0.0001         5.17155       0.8992       0.68002       0.9285       0.9249       0.9249       0.0221       C.C236       0.0001         5.4403       0.8992       0.68992       0.92895       0.9249       0.9211       0.0220       C.C236       0.0001         5.4713       0.9191       0.9413       0.9439       -0.0806       0.0220       C.C190       C.C031         5.77912       0.9308       0.0801       C.9223       0.9413       0.9439       -0.0806       C.C194       C.C190         5.77913       0.9308       0.0900       0.9227       C.C184       C.C190       C.C031         5.77913       0.9909       0.9439       -0.0806       0.0227       C.C194       C.C190         5.77913       0.9909       0.9601       C.0781       C.9339       0.9601       C		168	0-8244	C.0.0833	0.8609	ŗ	C 26.8.*0	0.4892	-0-0161	62E0 •0	0• C 2 7 6		0• 00
5.1775 5.1777 5.1316 5.1377 5.4303 5.4303 5.4303 5.4303 5.4303 5.4303 5.4315 5.4312 5.4312 5.4312 5.4312 5.4312 5.4312 5.4312 5.4312 5.4312 5.4312 5.4312 5.4312 5.4312 5.4312 5.4312 5.4312 5.4312 5.4312 5.4312 5.4312 5.4312 5.4312 5.4312 5.4312 5.4312 5.4312 5.4312 5.4312 5.4312 5.4312 5.4312 5.4312 5.4312 5.4312 5.4312 5.4312 5.4312 5.4312 5.4312 5.4312 5.4312 5.4312 5.4312 5.4312 5.4312 5.4312 5.4312 5.4312 5.4312 5.4312 5.4312 5.4312 5.4312 5.4312 5.4312 5.4312 5.4312 5.4312 5.4312 5.4312 5.4312 5.4313 5.4312 5.4312 5.4312 5.4313 5.4312 5.4313 5.4315 5.4315 5.4315 5.4316 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.6214 5.		829				0.8588					-		•
5.1316 0.8641 0.0819 0.8844 5.1377 0.8992 0.6819 0.8802 5.4303 5.4425 0.8992 0.6810 C.9048 0.8995 0.9285 0.9249 -0.0816 0.0271 0.0220 0.6236 5.4425 0.8992 0.6810 C.9048 0.8995 0.9473 0.9439 -0.0806 0.0227 C.6184 0.6190 0.6033 5.7713 0.9308 0.0801 C.9223 0.9191 0.9433 0.9601 -C.0787 C.0175 C.6188 C.6150 0.6023 0.6023 0.6060 0.60787 C.6148 C.6150	5	1.55					0.9138	0-9101	-0.0827	0-0368	C. C255	C. C. C. / C	0. 0.76
5.4403 5.4403 5.4403 5.4403 5.4403 5.4404 5.4403 5.4404 5.4403 5.4404 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.4403 5.		616 477	0.8641	·0•'0819	0, 8844	0.980.0					-	•	
5.4473 5.4456 5.4425 5.4425 5.4425 5.4425 5.4425 5.4425 5.4425 5.4425 5.4425 5.4425 5.4425 5.4425 5.4425 5.4425 0.9191 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7913 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.7912 5.		503 ·				70000			,			0-1236	
0 5.4464 0.4992 0.6810 C.9048 5.4425 0.49308 0.6810 C.9048 5.7912 0.9308 0.0801 C.9223 0.9473 0.9439 -0.0806 0.0227 C.C184 C.C03 5.7912 0.9308 0.0801 C.9223 0.9191 0.9439 -0.0806 0.0227 C.C184 C.C03 5.7912 0.9308 0.0801 C.9223 0.9191 0.9433 0.9601 -C.0787 C.0175 C.C148 C.C150 0.C021 0.020	5.4	EC-5	•			•	0.9285	·0: 9249	-0-0816	0.0271	0-0220		0.005
5.7351 5.7351 5.7312 5.7713 5.7713 5.7713 5.7713 5.7713 5.7713 5.7713 5.7713 5.7713 5.7713 5.7713 5.7713 5.7713 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.7712 5.77712 5.77712 5.77712 5.77712 5.77712 5.77712 5.77712 5.77712 5.77712 5.77772 5.77772 5.77772 5.77772 5.777772 5.777772 5.777772 5.7777777777		0 C 6	0.8992	0.0810	C. 9048				•				•
3 5.7451 5.7712 0.9308 0.0801 C.9223 0.9191 5.7713 6.0299 8.0029 8.0029 9.6.0260 0.9606 0.6791 0.9389 0.9633 0.9601 -C.0787 C.0175 C.C148 C.C150 0.C021	2.0	951									•••	6.6100	
5.7712 0.9308 0.0801 C.9223 0.9191 5.7713 0.9308 0.0801 C.9229 0.9191 6.0399 6.0399 0.9606 0.6791 C.9389 0.9633 0.9601 -C.0787 C.0175 C.C148 C.C150 0.C021 6.0960 0.9606 0.6791 C.9389	1 5.7 ¹	451			•		0-9473	0.9439	-0-0809	0.0227	C. C184		C• C031
1 6.0399 3 6.0899 3 6.0899 0.9606 0.6791 0.9389 0.9633 0.9601 -C.0787 C.0175 C.C148 C.C150 0.C021	~ · ·	912	0,9308	0.0801	C• 9223	1010-0							
0.0010 0.9606 0.6791 0.9389 0.1003 0.7003 0.7001 -0.0101 0.0113 0.1148 0.0000		6.5		ı			6670 V					C+ C150	
		096	0•9606	0.0791	C. 9389			-					0° - 1021

CRCSS WIRE PRCEE Single Wire PrcB Plidt-Static

.::

105

۲.

-201 V/UC+	C. CC05	<b>C.</b> ĈCO2	C. C001	0• 0301	C• C 000	0• 0000
HRMS/UD	C. C108	C. 0079	C• C063	C. C060	C. CC57	•
VRMS/UD	0. C108	C+ C077	C. C063	C. C055	C. C051	C. C056
URMS/LC	0.0104	0. 00 65	0° 0038	0•0032	0.0024	0°0C29
DN/A	-0•07.79	-0.0762	-0.0770	-0.0782	-0-0177	-0.0733
Dn/n	0. 9707	0.9774	0.9801	0•9795	0.9821	0° 9853
	0.9738	0.9804	0.9831	0. 9826	0. 9852	0.9880
c ud		acctU	0.9637	0.9684	0. 9718	0,9714
0,10 C/n0	0. 94 98	Ce 9569	C. 9596	9608 096	Ca9614	0.9618
CP (STATIC)	0.0783	0.0775	0-0765	0.0756	0-0746	0.0737
CP (TOATL)	4096°0,	0°9932	0.9974	0° 9988	0. 7988	0, 9988
۲ (CH)	6.3347 6.3347 6.43087	6. 6395 6. 6395 6. 7356	6.7117 7.0043 7.0043 7.0043	7.3091 7.3091 7.3091 7.3152	7.3213 7.6139 7.6139 7.6200	7. 6261 7. 9187 7. 9248
۲ (FT-)	0.2093 0.2093 0.2100	0. 2192 0. 2195 0. 2198 0. 2198	0.2298 0.2298 0.2298	0. 2398 0. 2398 0. 2398 0. 2403	0.2452 0.2498 0.2498 0.2498	0. 2502 0. 2598 0. 2600

CRCSS WIRE PRCBE Single Wire PrcBE Pitot-Static

.::

TABLE 17 (a) (continued)

TABLE 17(b) PROFILES AT X/L = 1.00 ( $\theta = 5.7^{\circ}$ )

0.1141         0.0007         0.1144         0.0072         0.1125         0.1103         0.1125         0.1103         0.1125         0.1103         0.1125         0.1103         0.1103         0.1103         0.1103         0.1103         0.1103         0.1103         0.1103         0.1103         0.1103         0.1103         0.1103         0.1103         0.1103         0.1233         0.1013         0.1233         0.1013         0.1233         0.1013         0.1013         0.1013         0.1013         0.1013         0.1013         0.1013         0.1013         0.1013         0.1013         0.1013         0.1013         0.1013         0.1013         0.1013         0.1013         0.1013         0.1013         0.1013         0.1013         0.1013         0.1013         0.1013         0.1013         0.1013         0.1013         0.1013         0.1013         0.1013         0.1013         0.1013         0.1013         0.1013         0.1013         0.1013         0.1013         0.1013         0.1013         0.1013         0.1013         0.1013         0.1013         0.1013         0.1013         0.1013         0.1013         0.1013         0.1013         0.1013         0.1013         0.1013         0.1013         0.1013         0.1013         0.1013<	CP DATL1	CP (STATIC)	01/0	GU/0	¢/uc	un/n	DU/Y	URMS/UC	VRMS/UC	WRWS/UC	-20UV/UC+
0.1100 0.1100 0.1115 0.1100 0.1222 0.1001 0.1251 0.1333 0.1001 0.2007 0.1011 0.2007 0.1334 0.1344 0.1334 0.1344 0.1334 0.1344 0.1011 0.4002 0.1396 0.14915 0.4931 0.0095 0.0348 0.1394 0.1393 0.011 0.1013 0.4374 0.4914 0.0105 0.0348 0.1394 0.1395 0.14915 0.4915 0.4915 0.0195 0.0357 0.1394 0.109 0.1012 0.4915 0.5291 0.0195 0.0357 0.1294 0.109 0.1012 0.4915 0.5291 0.0198 0.0347 0.0290 0.0308 0.100 0.0918 0.5135 0.5135 0.5597 0.0198 0.0317 0.0290 0.0308 0.101 0.0918 0.5139 0.5203 0.5597 0.0198 0.0317 0.0290 0.0308 0.101 0.0939 0.5621 0.5597 0.0198 0.0317 0.0290 0.0308 0.101 0.0939 0.5621 0.5597 0.0198 0.0317 0.0290 0.0308 0.101 0.0930 0.5132 0.5132 0.5132 0.5134 0.0299 0.0397 0.0397 0.0399 0.0308 0.101 0.0930 0.5132 0.5132 0.5134 0.00198 0.00199 0.0397 0.0399 0.0308 0.101 0.0930 0.5132 0.5132 0.5134 0.05139 0.0317 0.0290 0.0303 0.0308 0.101 0.0930 0.5132 0.5132 0.5134 0.00198 0.00198 0.0317 0.0290 0.0308 0.101 0.0331 0.5132 0.5132 0.5134 0.00198 0.00199 0.0397 0.0399 0.0393 0.011		0.1141 0.1108 0.1105	9.0000 3.0872 0.1225				•	·		- ,	
0.1090         0.2398         0.2398         0.2398         0.2398         0.2398         0.2333         0.2313         0.2313         0.2313         0.2313         0.2313         0.2313         0.2313         0.2313         0.2313         0.2313         0.2313         0.2313         0.2313         0.2313         0.2313         0.2313         0.2313         0.2313         0.2313         0.2313         0.2313         0.2313         0.2313         0.2313         0.2313         0.2313         0.2313         0.2313         0.2313         0.2313         0.2313         0.2314         0.2314         0.2313         0.2313         0.2313         0.2314         0.2313         0.2314         0.2313         0.2314         0.2313         0.2314         0.2313         0.2314         0.2313         0.2313         0.2313         0.2313         0.2314         0.2313         0.2313         0.2313         0.2313         0.2313         0.2313         0.2313         0.2313         0.2313         0.2313         0.2313         0.2313         0.2313         0.2313         0.2313         0.2313         0.2313         0.2313         0.2313         0.2313         0.2313         0.2313         0.2313         0.2313         0.2313         0.2313         0.2313         0.2313<		0.1103	0.1715								
0.1070         0.3050         0.2388         0.1070         0.3050         0.2388         0.2012         0.2339         0.2012         0.2133         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013         0.2013<		0.1095	0.2722		•				•••		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.1090	0*3050		•						
0.2307 0.3338         0.4091         0.4091         0.4091         0.4091         0.4091         0.4091         0.6113         C.C332         0.312           0.1081         0.3304         0.3778         0.4091         0.4091         0.4091         0.4091         0.6013         C.C332         0.0113           0.1071         0.4002         0.3960         0.4321         0.4031         0.4032         0.4032         0.4032         0.0132         0.0134         C.C305         0.010           0.1073         0.4314         0.4914         C.0151         0.0356         C.C270         C.C305         0.007           0.1030         0.4416         0.4914         C.0151         0.0356         C.C270         C.C305         0.007           0.1031         0.4416         0.4914         C.0151         0.0356         C.C270         C.C395         0.007           0.1032         0.4916         0.4914         C.0151         0.0356         C.C270         C.C395         0.007           0.1031         0.4916         0.4914         C.0151         0.0356         C.C270         C.C395         0.007           0.1032         0.5314         0.5294         0.5294         0.5294         0.5295 <td< td=""><td></td><td><b>3. 1085</b></td><td>0.3531</td><td>8862 °O</td><td></td><td></td><td></td><td>•</td><td></td><td></td><td>•</td></td<>		<b>3. 1085</b>	0.3531	8862 °O				•			•
0.3339         0.4091         0.4091         0.6041         0.0413         0.1344         0.2312         0.011           0.1081         0.3178         0.3178         0.4912         0.4091         0.6085         0.0318         0.5304         0.5332         0.011           0.1071         0.4002         0.34633         0.4651         0.0085         0.0318         0.5304         0.509         0.001           0.1071         0.4016         0.4451         0.4651         0.4651         0.4322         0.0126         0.5304         0.509         0.509           0.1043         0.4314         0.4451         0.4651         0.0126         0.0356         0.5304         0.509         0.509           0.1020         0.4314         0.44916         0.4651         0.0126         0.0356         0.509         0.509           0.1020         0.4451         0.4916         0.5291         0.0185         0.0347         0.5294         0.509         0.509           0.0918         0.5028         0.5018         0.5294         0.5185         0.5294         0.5294         0.509         0.509           0.0919         0.5019         0.5185         0.5284         0.0387         0.5039         0.503				0.2907		•					
0.1081         0.3844         0.4091         0.4091         0.60491         0.60413         0.6334         0.011           0.1071         0.4378         0.3778         0.4322         0.4321         0.0085         0.0388         0.61332         0.011           0.1071         0.4374         0.3778         0.4322         0.4321         0.4015         0.01368         0.61305         0.011           0.1071         0.4374         0.4916         0.4651         0.0126         0.61305         0.010           0.1043         0.4374         0.46916         0.46916         0.46916         0.01368         0.63969         0.0007           0.1043         0.4916         0.46916         0.46916         0.0198         0.02369         0.0007           0.1043         0.4916         0.4916         0.4916         0.0186         0.0367         0.007           0.1093         0.4918         0.0186         0.0367         0.0296         0.0308         0.0296           0.0918         0.5294         0.5294         0.5294         0.0396         0.0296         0.0308           0.0918         0.5918         0.5918         0.5918         0.0398         0.02393         0.0198 <td< td=""><td></td><td></td><td></td><td>0.3338</td><td></td><td></td><td></td><td></td><td></td><td>r r 1 2 2</td><td></td></td<>				0.3338						r r 1 2 2	
0.1081         J.3844         0.3778         0.4378         0.4378         0.6378         0.6332         0.011           0.1071         0.4902         0.3778         0.4322         0.4321         0.0358         0.6334         0.011           0.1071         0.4902         0.3778         0.4316         0.4321         0.4324         0.4324         0.0354         0.6336         0.6336           0.1043         0.4314         0.4511         0.4914         0.0151         0.0356         0.6336         0.0307           0.1020         0.44916         0.4914         0.0185         0.0356         0.6234         0.007           0.1020         0.44916         0.4914         0.0185         0.0357         0.6234         0.007           0.1020         0.4914         0.5294         0.5291         0.0185         0.0357         0.6234         0.0308           0.0918         0.5313         0.5597         0.5597         0.5393         0.6033         0.6033           0.0919         0.5512         0.5597         0.0318         0.0239         0.0398         0.0333         0.0110           0.0919         0.5512         0.5594         0.0239         0.0339         0.0333         0.010<					0.4091	0.4091	0.0047	0.0413	C. C344		0.9125
0.3778         0.4378         0.4322         0.4321         C.0085         0.0368         0.C304         C.C332         0.0101           0.1071         0.4002         0.3960         0.4351         C.0085         0.0356         C.C305         0.000           0.1043         0.4374         0.4651         0.4651         0.4651         0.4651         C.C305         0.000           0.1020         0.4914         0.4916         0.4916         0.4916         C.0151         0.0356         C.C270         C.C395         0.000           0.1020         0.4914         0.4916         0.4916         C.0151         0.0356         C.C270         C.C395         0.000           0.1020         0.4914         0.4916         C.0151         0.0367         C.C270         C.C295         0.000           0.0997         0.5024         0.5291         0.0195         0.0296         C.C295         0.003         0.0299           0.0993         0.5133         0.5134         0.0294         0.0299         0.0393         0.013           0.0993         0.5512         0.5394         0.0239         0.0319         0.0333         0.013           0.0993         0.5621         0.0239         0.0319		0.1081	0.3844					_		• .	
0.1071         0.4002         0.4326         0.4321         0.0085         0.0364         0.101         0.0304         0.0305         0.001           0.1071         0.4314         0.3960         0.4651         0.0116         0.0354         0.0305         0.0309         0.0309         0.0309         0.0309         0.0309         0.0309         0.0309         0.0309         0.0309         0.0309         0.0309         0.0309         0.0309         0.0309         0.0309         0.0309         0.0309         0.0309         0.0309         0.0309         0.0309         0.0309         0.0309         0.0309         0.0309         0.0309         0.0309         0.0309         0.0309         0.0309         0.0309         0.0309         0.0309         0.0309         0.0309         0.0309         0.0309         0.0309         0.0309         0.0309         0.0309         0.0309         0.0309         0.0309         0.0309         0.0309         0.0119         0.0309         0.0119         0.0309         0.0119         0.0309         0.0119         0.0309         0.0119         0.0309         0.0119         0.0309         0.0119         0.0309         0.0119         0.0309         0.0119         0.0309         0.0119         0.0309         0.0119				0.37.78						r	
0.1071       0.4002       0.3960       0.4653       0.4651       C.0126       C.0270       C.C305       0.509         0.1043       0.4374       0.4495       0.46916       0.46916       0.46916       0.40916       0.0035       C.C270       C.C305       0.5097         0.1020       0.44511       0.49916       0.49916       0.49916       0.49916       0.49916       0.49916       0.49916       0.00357       C.C270       C.C395       0.5097         0.1020       0.4453       0.49916       0.49916       0.49916       0.49916       0.00367       C.C270       C.C295       0.508         0.1020       0.4533       0.49916       0.4914       C.0191       0.0367       C.C296       0.508         0.0978       0.53195       0.5135       0.5294       0.5297       0.0198       0.0290       C.C295       0.509         0.0978       0.5313       0.5186       0.55810       0.5587       0.0290       C.C295       0.5038         0.0919       0.5621       0.55810       0.5319       0.0291       0.0387       0.0313       0.0112         0.0930       0.5621       0.5182       0.61447       0.62442       0.02456       0.0319       0.0313					0.4322	0.4321	C.0085	0.0368	-0-0304	2003-3	0-0112
0.3960         0.4865         0.4651         C.0126         C.0354         C.C305         0.209           0.1043         0.4374         0.4495         0.4651         0.4651         0.4651         0.2035         0.2036         0.5035         0.5035         0.5035         0.5035         0.5035         0.5035         0.5035         0.5035         0.5035         0.5035         0.5035         0.5035         0.5035         0.5035         0.5035         0.5035         0.5035         0.5035         0.5035         0.5035         0.5035         0.5035         0.5035         0.5035         0.5035         0.5035         0.5035         0.5036         0.5036         0.5036         0.5035         0.5036         0.5036         0.5036         0.5036         0.5036         0.5036         0.5036         0.5036         0.5036         0.5036         0.5036         0.5036         0.5036         0.5036         0.5036         0.5036         0.5036         0.5036         0.5036         0.5036         0.5036         0.5036         0.5036         0.5036         0.5036         0.5036         0.5036         0.5036         0.5036         0.5036         0.5033         0.5033         0.5033         0.5033         0.5033         0.50333         0.50333         0.50333 <td></td> <td>0.1071</td> <td>0.4002</td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		0.1071	0.4002	•							
0.1043         0.4374         0.4653         0.4651         C.0126         C.0354         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.203         0.2033         0.2033         0.2033				0.3860		· .	•	•			•
0.1043       0.4374       0.4495       0.4916       0.4916       0.0356       C.C270       C.C254       0.0007         0.1020       0.4051       0.4916       0.4916       0.4916       0.4916       0.0356       C.C270       C.C254       0.0007         0.1020       0.4034       0.5294       0.5291       0.0185       0.0367       C.C295       0.008         0.0997       0.5012       0.5597       0.5597       0.0196       0.0379       0.0290       C.C295       C.C09         0.0959       0.5503       0.59135       0.5976       0.5976       0.0387       0.0388       0.016         0.0959       0.5502       0.5976       0.5976       0.5976       0.0239       0.0419       0.0333       0.016         0.0950       0.5572       0.6143       0.6133       0.0239       0.0419       0.0323       0.013         0.0950       0.5524       0.0245       0.03143       0.0333       0.013         0.0934       0.6204       0.0245       0.0319       0.0333       0.013         0.0934       0.6254       0.0254       0.0319       0.0333       0.013			-		0.4653	0-4651	C.0126	C.0354	C. C270	C0(1).0	- 0, 0094
0.4475         0.4916         0.4914         C.0151         0.0358         C.C270         C.C254         0.307           0.4733         0.4734         0.4914         0.4914         0.4914         0.0357         0.0358         C.C270         C.C295         0.307           0.4944         0.5135         0.4744         0.5294         0.5291         0.0185         0.0367         C.C295         0.308           0.0997         0.5026         0.5135         0.5597         0.0195         0.0367         C.C295         0.308           0.0997         0.5319         0.5597         0.0198         0.0379         0.0299         C.C295         C.C09           0.0997         0.5319         0.5597         0.0198         0.0239         0.0239         0.0338         C.C109           0.09959         0.5621         0.5816         0.5976         0.0239         0.0239         0.0332         0.013           0.09950         0.5812         0.5824         0.6138         0.0245         0.0319         0.0332         0.013           0.09950         0.5824         0.0244         0.0244         0.0244         0.0319         0.0333         0.013           0.09936         0.6254         0.0254 </td <td></td> <td>0.1043</td> <td>0.4374</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>,</td>		0.1043	0.4374								,
0.1020         0.4451         0.4916         0.4914         C.0151         0.0356         C.270         0.0235           0.4473         0.4734         0.4914         0.0165         0.0367         C.270         0.0235           0.0997         0.4926         0.5294         0.5291         0.0165         0.0367         C.2295         0.0368           0.0978         0.5019         0.5597         0.0198         0.0367         C.2295         0.0368           0.0978         0.5319         0.5597         0.0198         0.0387         C.2295         0.0368           0.0978         0.55135         0.55913         0.5597         0.0198         0.0387         C.2295         0.0308           0.0959         0.5513         0.5513         0.5376         0.5376         0.0387         0.0239         0.019           0.0959         0.5621         0.5517         0.5198         0.0239         0.0133         0.013           0.0959         0.5522         0.5143         0.0239         0.0319         0.0319         0.0319         0.0333         0.011           0.0934         0.6274         0.0324         0.0319         0.0333         0.013         0.01343         0.01343         0.0134				0.4495	۰.						
0.1020       0.4451'       0.4733       0.4733       0.4733       0.54733       0.5294       0.5291       0.0185       0.0367       0.6295       0.508         0.0997       0.5026       0.5135       0.5594       0.5591       0.0185       0.0367       0.6295       0.508         0.0997       0.5026       0.5135       0.5591       0.5597       0.0198       0.0290       0.6299       0.6299       0.6299       0.6299       0.6299       0.6299       0.6299       0.6299       0.6299       0.6299       0.6299       0.6299       0.6299       0.6299       0.6299       0.6299       0.6163       0.6143       0.6239       0.6149       0.6143       0.61239       0.03817       0.63319       0.6332       0.6119         0.09950       0.5512       0.6143       0.6138       0.02399       0.0419       0.03313       0.01333       0.011         0.09356       0.6204       0.6447       0.6442       0.0245       0.0319       0.03333       0.01333       0.01333         0.09366       0.6204       0.61764       0.0254       0.0319       0.03333       0.01333       0.01333       0.01333		•			0.4916	0.4914	C.0151	0.0358	C. C 270		0.0078
0.4733 0.4734         0.4733 0.4734         0.4733 0.5294         0.5294         0.5291         0.0286         0.6295         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.008         0.001           0.00950         0.5572         0.5880         0.5876         0.0239         0.0387         0.0387         0.0338         0.011           0.00950         0.5572         0.5880         0.5876         0.0138         0.0333         0.013         0.013           0.09950         0.5912         0.5824         0.6447         0.6442         0.0245         0.0319         0.0333         0.013           0.0934         0.6254         0.0425         0.0319         0.0333         0.013         0.0134         0.0134         0.0134	-	0.1020	0.4'65'1'							•	1
0.00997       0.5294       0.5294       0.5291       0.0185       0.0367       0.6295       0.0299         0.0997       0.5135       0.5135       0.5135       0.5597       0.0185       0.0367       0.6299       0.6099         0.0978       0.5319       0.55903       0.5597       0.0198       0.03179       0.0299       0.6299       0.60308         0.0959       0.5512       0.5880       0.5576       0.5976       0.0207       0.0387       0.0308       0.616         0.0959       0.5572       0.5880       0.5576       0.6143       0.0237       0.0387       0.03323       0.03323         0.0950       0.5572       0.6143       0.0237       0.0347       0.0339       0.0333       0.03323       0.011         0.0950       0.5572       0.6143       0.6447       0.6442       0.0245       0.0313       0.0333       0.013         0.0936       0.6204       0.6122       0.03143       0.0245       0.0319       0.0333       0.013         0.0112       0.6477       0.6142       0.0245       0.0319       0.0319       0.0343       0.01343       0.01343				0.4733							•
0.0097         0.5026         0.5135         0.5294         0.5291         0.0185         0.0367         0.0284         0.0308           0.0978         0.5135         0.5135         0.5597         0.0198         0.0379         0.0290         0.5295         0.000           0.0978         0.5319         0.55903         0.5597         0.0198         0.0379         0.0290         0.0308         0.010           0.0959         0.5572         0.5980         0.5976         0.0207         0.0387         0.0308         0.016           0.0959         0.5572         0.5976         0.02399         0.0387         0.0333         0.012         0.0333           0.0950         0.5572         0.6143         0.6138         0.02399         0.0346         0.0333         0.011           0.0950         0.5912         0.6447         0.6442         0.0245         0.0313         0.0333         0.011           0.0934         0.6204         0.6174         0.6442         0.0254         0.0319         0.0333         0.011										0,0295	
0.0997 0.5026 0.0978 0.5135 0.0978 0.5319 0.0959 0.5303 0.0959 0.5303 0.5303 0.5580 0.5976 0.0207 0.0387 0.0299 0.0308 0.5572 0.5880 0.5976 0.0207 0.0387 0.0259 0.0333 0.010 0.0950 0.5572 0.6143 0.6138 0.0239 0.0468 0.0319 0.0323 0.011 0.0936 0.6204 0.6143 0.6142 0.0245 0.0419 0.0313 0.0333 0.011 0.0936 0.6204 0.6754 0.6447 0.6449 0.0254 0.0429 0.0319 0.0333 0.011			·		0.5294	0.5291	0.0185	0.0367	C. C284		0.0087
0.5135       0.5135       0.5135       0.5135       0.5135       0.5295       0.6295       0.6295       0.6295       0.6295       0.6295       0.6295       0.6295       0.6205       0.6205       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169       0.6169		10.0997	0.5026								
0.0978         0.5319         0.5601         0.5597         0.0198         0.0319         0.0290         0.0290         0.0207         0.0290         0.0308         0.0308         0.0308         0.0308         0.0308         0.0308         0.01308         0.0308         0.01308         0.01308         0.01308         0.01308         0.01308         0.01308         0.01308         0.01323         0.0110         0.01223         0.0110         0.01323         0.0110         0.01323         0.0110         0.01323         0.0110         0.01323         0.0110         0.01323         0.0110         0.01323         0.0110         0.01323         0.0110         0.01323         0.0110         0.01333         0.0110         0.01333         0.0110         0.01333         0.0110         0.01333         0.0111         0.01343         0.0111         0.0112         0.0112         0.0112         0.0112         0.0114         0.0114         0.0119         0.0119         0.0119         0.0119         0.0119         0.0119         0.0119         0.0119         0.0111         0.0111         0.0111         0.0111         0.0111         0.0119         0.0119         0.0119         0.0119         0.0111         0.0111         0.0111         0.01119         0.01119         0.0111				0.5135	•	. ,					
0.0978       0.5319       0.5303       0.0308       0.0308       0.0308       0.0308       0.0308       0.010         0.00159       0.5621       0.5572       0.5880       0.5976       0.0207       0.0387       0.0387       0.0332       0.0110         0.00159       0.5572       0.6143       0.6138       0.0239       0.0448       0.0332       0.0332       0.012         0.0950       0.5912       0.6143       0.6142       0.0239       0.0419       0.03333       0.011         0.0936       0.6204       0.6447       0.6442       0.0245       0.0419       0.03333       0.011         0.0936       0.6204       0.6122       0.6142       0.0245       0.0419       0.03333       0.011		•			0.5601	0.5597	0.0198	01000	0,0290	567797	0,000
0.0359 0.5503 0.0359 0.5621 0.5572 0.5880 0.5976 0.0207 0.0387 0.6259 0.0308 0.616 0.0950 0.5912 0.5572 0.6143 0.6138 0.0239 0.0468 0.5310 0.0323 0.010 0.0936 0.5204 0.6447 0.6442 0.0245 0.0419 0.0313 0.0333 0.011 0.0936 0.6204 0.6174 0.6442 0.0245 0.0419 0.0319 0.0343 0.011		0.0978	0.5319								
0.0936 0.5621 0.5572 0.5880 0.5976 0.0207 0.0387 0.6259 0.0308 0.616 0.0950 0.5572 0.6143 0.6138 0.0239 0.0468 0.6310 0.0323 0.610 0.0936 0.6204 0.6447 0.6442 0.0245 0.0419 0.0313 0.0333 0.011 0.0936 0.6204 0.6172 0.6174 0.6442 0.0254 0.0419 0.0319 0.0343 0.011				0.5303				•.			
0.0759 0.5621 0.5572 0.0390 0.0376 0.0207 0.0397 0.0229 0.0323 0.010 0.0950 0.5912 0.6143 0.6143 0.6138 0.0239 0.0419 0.0310 0.0323 0.010 0.0936 0.6204 0.6447 0.6442 0.0245 0.0419 0.0313 0.0333 0.011 0.0936 0.6204 0.6122 0.6174 0.6149 0.0254 0.0425 0.0319 0.0343 0.011		•	•	. •						0.0308	
0.0950 0.5912 0.5572 0.6143 0.6138 0.0239 0.0468 6.5310 0.0323 0.610 0.0950 0.5912 0.5824 0.6143 0.6138 0.0245 0.0419 0.0313 0.0333 0.011 0.0936 0.6204 0.6447 0.6442 0.0245 0.0419 0.0313 0.0333 0.011		0300.0			0.996.0	97 KC • 0	1070.0	0.0387	0. 52.59	;	0.010.0
0.0950 0.5912 0.6143 0.6138 0.0239 0.0468 6.6310 0.0323 0.610 0.0950 0.5912 0.5824 0.6447 0.6442 0.0245 0.0419 0.0313 0.0333 0.011 0.0936 0.6204 0.6754 0.6442 0.0254 0.0425 0.0319 0.0343 0.011		AC6.0.0	1706.0	0.55.72					<i>.</i>	•	
0.0950 0.5912 0.6143 0.6138 0.0239 0.0468 6.0310 0.0333 0.010 0.0936 0.6204 0.6447 0.6442 0.0245 0.0419 0.0313 0.0333 0.011 0.0936 0.6204 0.6122 0.6142 0.0549 0.0254 0.0425 0.0319 0.0343 0.011									•	0.0323	
0.0950					0.6143	0.6138	0.0239	0.0408	0.160.0		0.106
0.0936 0.6204 0.6447 0.6442 0.0245 0.0419 0.0313 0.0333 0.011 0.0936 0.6204 0.6122 0.6124 0.0425 0.0425 0.0319 0.0343 0.011		0.0950	0.5912							:	-
0.0936 0.6204 0.6447 0.6442 0.0245 0.0419 0.0313 C.011 0.0936 0.6204		•		+20C+D :					•	FFF0.0	
0.0936 0.6204 9.6122 0.0343 0.012 0.6754 0.6749 0.0254 0.0425 0.0319 0.011	-		•		0.6447	0.6442	0.0245	0.0419	0.0313		C.0111
0.0343 0.6754 0.6749 0.0254 0.0425 0.0319 0.011		0.0936	0.6204								
0.6754 0.6749 0.0254 0.0425 0.0319 0.011				2210.1	. '					0,0343	
		•			0.6754	0.6749	0.0254	0.0425	6160.0		0.110

STYGLE WIRE PREAF PLIDT-STATIC

1

# TABLE 17(b) (continued)

C. C032 C. C032 C. C017	0.0238 0.C190 C.O15C	C. C213 C. C117 C. C140	6760°0	0.0518 0.0547 0.0548 0.0548	0.9082 0.9263 0.9484 0.9636 f	0.9095 0.9277 0.9500 0.9654 0.9654 0.9654 1.86 PR08 Mire Pro	0.8802 0.8995 0.9391 0.9391 0.9391 51701 51701	0.8844 0.9048 0.9223 0.9389	0.0810 0.08210 0.0791	0.9641 J.3308 0.9606	5.1755 5.1316 5.1816 5.4803 5.4804 5.4804 5.4803 5.4815 5.4803 5.4812 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.4712 5.5712 5.5712 5.5712 5.5712 5.5712 5.5712 5.5712 5.5712 5.5712 5.5712 5.5712 5.5712 5.5712 5.57712 5.57712 5.57772 5.57772 5.57772 5.57772 5.57772 5.57772 5.57772 5.57772 5.57772 5.57772 5.57772 5.57772 5.57772 5.57772 5.57772 5.57772 5.57772 5.57772 5.57772 5.57772 5.57772 5.57772 5.57772 5.57772 5.57772 5.57772 5.57772 5.57772 5.57772 5.57772 5.57772 5.57772 5.57772 5.57772 5.57772 5.57772 5.57772 5.57772 5.57772 5.57772 5.57772 5.57772 5.57772 5.577772 5.577772 5.577772 5.5777772 5.5777772 5.57777777777	0.1698 0.1792 0.1792 0.1792 0.1798 0.1798 0.1892 0.1892 0.1898 0.1998 0.1998 0.1998 0.1998 0.1998 0.1998 0.1998 0.1998
C. C054	0.0238	C. C242 C. C213	0.0323 0.0262	C. C479 0.0518	0.9082	0.9095	0.8802	0.8844	<b>0.819</b>	0.9641	5.1755 5.1877 5.1877 5.4903	0.1698 0.1702 0.1722 0.1798
C. COE8 C. CO74	G. C297 G. C270	C.C266 C.C266 C.C242	C.0347 0.0323	C. C467 C. C479	0.9082 0.9082	0.9881 0.9095	0.8352 0.8588	0.8609	0.0833	0.8244	4 4 4 4 701 4 4 4 4 4 701 7 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7	0.1592 0.1598 0.1598 0.1598 0.1602 0.1602 0.1698
C • C 1CG	0.0316	C. C28C	0.0377	G • C44 1	0.8625	0.8636	0.8089	0.8376 0.8376	0.0861 0.0847	0.7465	4.2672	0.1400 0.1400 0.1498 0.1498
C.CI11 C.CI08	EEE0.0	C. C3/13	0.04.24 0.0355	0.0402 0.0426	0.8135	0.8145 0.8423	0.7842	0.7870 0.870	0.3875	0.7368	3.9563 3.9553 3.9553 3.9563 4.2611 1.2611	0.1299 0.1296 0.1300 0.1398 0.1398
C.C117	0.0360	C. C3.17	Q.0434	C. 0356	0.7875	0.7883	0.7251 0.7529	0°.7603	0.0890	0.6671		0.1102 0.1102 0.1198 0.1198 0.1203
C. C120	C.0364	C. C323	0.0446	C.0349	5192.0	0.7627	0.6960	0.7049	0.0908	0.5877	9.0419 9.0419 9.0480 9.4461 9.4641	8601-0 2001-0 2001-0 8001-0
C. C122 C. C123	0.0354 C.0362	C. C323 C. C324	0.0437	0. 0284 0. 0282	0.7049	0.7054	0.6403	0.6479 0.6755	190.0	0.5125 J.5480	2.4384 2.4445 2.7371 2.7571 2.7432 2.7493 2.7493 3.0419	0.000 0.0800 0.0802 0.0898 0.0998 0.0998 0.0998
-23uv/ud#=2	HRP S/UC	VRMS/UC +	URMS/LC	0n/^	- 	DU 10	GU/ 0	0n/0	CP (STATIC)	CP (TOATL)	۲ (۲۳۰۵)	Y (FT.)

ntinued
(p) (co
17
TABLE

•

.

.

-20UV/UD+2		0.003	0 • 00 1	0.000	0°000	0• 000 1
WRPS/UC	0.0108	0.0079	0.6663	0.060	0.0057	
VRMS/UC	C.0107	C. C078	C. 0063	0•0052	G. C045	C. C046
URMS/LC	0.0132	0.0065	0.0041	0.0029	0*0030	0.0024
DU/Y	0.0579	0.0588	0.0586	0•0620	0•0617	0.0625
on/n	0.9744	0.9796	0.9815	0.9826	0.9841	0.9845
01/0	0.9761	0.9814	0.9832	0.9846	0•9860	0.9865
av.u		0.9556	0.9437	0.9584	0.9718	0.9714
0/00	0.9498	ů. 9569		J. 9596	0.9608	0.9614 0.9618
CP (STATIC)	0.0783	0-0775		0.0765	0.0756	0.0746 9.0737
CP (TUATL)	0.9804	2699.0		4196.0	0.9988	0.9988 0.9988
۲ (۲.)	6.3947 6.3947 6.408	6.6995 6.6995 6.6995 6.7056	6.7117 7.0343 7.0343	7.0104	7.3152 7.3213 7.6139 7.5139	7.6200 7.6261 7.9187 7.9248
Y (FT.)	0.2098 0.2098 0.2103	0.2198 0.2198 0.2198	0.2298 0.2298 0.2298	0.2300 2062.0 8962.0 8962.0	0.2402 0.2402 0.2498 0.2498	9.2500 0.2502 0.2598 9.2600

CROSS MIRE PRODE SINGLE WIRE PROBE  $\left\{ \theta=0^{\circ} \right\}$  pitot-static .::

Y	<b>.                                    </b>	CP	CF	C/U0
(FT.)	(CM.)	(TOTAL)	(STATIC)	+++
0.0000	0.0000	0.1795	0.085	0.3017
0.0005	0.0152	0.1795	0.0885	0.3017
0.0010	0.0305	0.1837	2830.0	0.3005
0.0015	0.0457	0.1880	0.0284	0.5150
0.0020	0.0610	0.1951	0.0183	0.3200
0.0030	0.0914	0.2050	0.0181	0.3691
0.0040	0.1219	0.2163	1830.0	0.3901
0.0060	0.1829	0.2376	0.0277	0.1012
0.0080	0.2438	0.2546	0.0877	0.4005
0.0100	0.3048	0.2674	0.0277	0.4239
0.0150	0.4572	0.2929	0.0872	0.4535
0.0200	0.6096	0.3184	1 330.0	0.4014
0.0300	0.9144	0.3553	0.0263	0.5107
0.0400	1.2192	0.3851	0.0853	0.5473
0.0500	1.5240	0.4163	0.0843	
0.0600	1.8288	0.4489	0.0833	0.6040
0.0700	2.1336	0.4829	0.0830	0.0324
0.0800	2.4384	0.5169	0.0825	0.0091
0.0900	2.7432	0.5524	0.0825	0.0000
0.1000	3.0480	0.5878	0.0825	0.7108
0.1100	3.3528	0.6318	0.0125	0.7411
0-1200	3.6576	0.6715	0.0821	0,1611
0.1300	3.9624	0.7112	0.0811	0.7538
0.1400	4.2672	0.7495	0.0802	1919.0
0.1500	4.5720	0.7906	0.0194	0.8455
0.1600	4.8768	0.8285	0.0184	0.000
0.1700	5.1816	0.8686	0.0776	
0.1800	5.4864	0.9012	0.0766	0.9081
0.1900	5.7912	0.9296	0.0157	0.7241
0.2000	6.0960	0.9636	0.0141	0.5420
0.2100	6.4008	0.9821	0.0135	0,0505
0.2200	6.705E	0.9920	0.0732	0.9000
0.2300	7.0104	0.9962	0.0123	0.7014
0.2400	7.3152	0.9577	0.0714	0.9024
0.2500	7.6200	0.9577	0.0105	0.9027
0.2600	7.9248	0.9577	0.0696	0.7034
0.2800	8.5344	0.9977	0.06/1	0.7044
0.3000	9.1440	C.9577	0.0655	0.9023

CROSS WIRE FROBE + SINGLE WIRE PROBE ++ PITOT-STATIC TABLE 19 PROFILES AT X/L = 1.020

Y CP CP CP 9/U0 9/U0 9/U0 4/U0 1 (CM-) (TUATL) (STATIC) +++ ++ ++ ++ 0.000	CP CP 9/U0 9/U0 9/U0 4/U0 L (TUATL) (STATIC) +++ ++ +	CP q/UD q/UD q/UD U (STATIC) +++ ++ ++	a/ua a/ua a/ua ++	a/up a/up a/up	0 0 1 0		0	DN/A	URHS/UD	VRHS/UC +	HRPS/UC +	-20UV/UC++
0.0000 0.0000 0.0000 0.2141 0.0769 0.3704 0.3897 0.3803 (	0.2141 0.0769 0.3704 0.2141 0.0769 0.3704	0.3803 () 0.0769 0.3704 0.0769 0.3704	0.3803 (0.3897 0.3803 (0.3704)	0, 3897 0, 3897	0.3803	<b>.</b>	567E.(	-0.0170	0°03C9	G. C307		c. cco5
C.05125 U.K.29 U.C.09 U.C.1 29 U.C.196 U.C.196 U.C.19796 U.C.19705 U.C.19711 U.C.19796 U.C.19705 U.C.19711 U.C.19712	0,3779 0.3796 0.3779 0.37796	0,3796 0.3911 0,3796	0.3796 0.3911	0.3911 0.3796	0.3796	-	0.3792	-0-0178	0.0314	C. C312		C. CC26
C.0565 0.2169 0.0769 0.3742 C.0457 0.2183 0.0769 0.3760 C.0618	0.2169 0.0769 0.3742 0.2183 0.0769 0.3760	0.0769 0.3742 0.0769 0.3760	0, 3760 0, 3760	•	· .						C. C296	
0.0610 CeCElO 0.2211 0.0769 0.3797	0.2211 0.0769 0.3797 0.3958	0.0769 v.3797	0.3758 Ú.3797	0• 3958								
C.0914 C.0914 0.2268 0.C769 C.3872 0.4007	0+4007 0+2268 0+0769 C+3872	0.6769 C.3872	0.4007 C.3872	0.4007								· ·
0.1219 0.1219 0.4671	0.4671	0.4671	0+4671	0+4671					· .		0• 0230	
0.1219 0.2339 0.0169 0.3902 0.1324 0.4041 0.41324 0.4126 0.1324 0.4126	0.2339 0.0709 0.3902 0.4041 0. 0.4126 0.4071 0.	0.0769 0.3962 0.4126 0.4041 0.	u₀ 3962 0.4126 0.4126	0.4126 0.4126	0.4041 0.	·	603	- C+0260	0,0381	C. C330		0*0141
C.1329 0.1529 0.4190	0.4190	0.4190	0.4190	0.4190					-		C. C291	
0.1829 0.2481 0.0769 0.4138 0.2134 0.4284 0.0769 0.4138	0.2481 0.0769 0.4138 0.4284	0.0769 0.4138 0.4284	C.4138 0.4284	0.4284								•
0.2439 0.2433 0.2433 C. 2100 C. 0710 C. 1200	C. 2100 C. 0710 C. 4357	C. 4357	C.4357	C. 4357							C+ 0 29-1	
0.2243 0.4400 0.4440 0.44405 0.3548 0.3660 0.44405 0.3568		0= 1405	0= 4405	0.4405				•		2	C. C302	
0.3148 0.2736 0.0769 0.4435 0	0.2736 0.0769 0.4435 0	0.0769 0.4435 0	0.4435 0.4495 0	0 4495 0	0.4495	0	.4483	+ EEO * 033 +	0-0393	C. C307		0. C144
0.42658 0.4267	0.4752	0.4752	0+4752	0+4752	-	•					C. C306	
0,4572 0,2991 0,6769 0,4714 0,4849 0	0.4849 0.4714 0.4849 0	0.c769 0.4714 0.4849 0	0.4714 0.4849 0	0.4849 0	0.4849	Ο.	469 <b>4</b> *	-C*0362	0.0357	C* C Z 83		.2013 °D
0.5731 0.5131 0.4964 0.5111 0	0.4964 0.5111 0	0.4964 0.5111 0	0.4964 0.5111 0	0.4964 0.5111 0	0.5111 0	0	• 5096	- C. 0388	0.0342	C., C285		0. 0089
C¢5∴96 0•3218 0•6769 0•4949 C¢6766	0.3218 0.0769 0.4949	0° 0769 0° 4949	0. 4949								0.160.00	
0.7315 0.5156 0.5413 0	0°5129 0°5413 0	0+5156 0-5413 (	0.5156 0.5413 (	0.5156 0.5413 (	0-5413	-	7962.0	-C.0413	0.0340	0. C287		C+(0092
0•9144 0•3587 0•0769 0•5308 0•9754	0.3587 0.0769 0.5308	0°0769 0.5308	0• 5308							•	C. C316	•
1,0363 0.5449 0.5698 1	0.5449	0.5449	0.5449	0.5449 0.5698	0.5698	-	0-5680	-0,0453	C. 0349	C. C255		0-0103
1.2192 0.3899 0.0774 0.5590	0.3899 0.0774 0.5590	0.0774 0.5590	0•5590									
1.2602 1.3411 0.5739 0.5739 0.573	0.5739	621390	0.5739 0.573	0.5739	1 2 0		6067	9440	02.60		C. C312.	8110 0
	0.4197 0.0774 C.5851	0.0774 C.5851	C. 5851							2	C.0313	

CROSS WIRE PRCBE Single Wire PrcBe Pitot-Static

.::

ntinued
1.9 (·co
TABLE

o

_	Ч., (Сн.)	GP (TCATE)	CP (STÅTIC)			0/0			URHS/LO	VRMS/UD	WR S/UD	-20UY/UD##2.
	1.6459				0.5984	AFCA. O	0.621 B	-0-6502	0,0362	C. C316		C. C123
	1,8288 1,8288	C. 4 537	0.0774	0.6134							0. 0321	-
	1.9507			٠Ę	0. 6258	0.6521	0.6500	-0*0519	55ED*0'	C. C322		C+:C125
	2,1336	0.4877	0.0774	50 +9. "0							C. C325	
	2.2555			•	0.6521	0027 0	0 4747	1.054.7	5340-0	r. r. 7 2 0		Č. Č132
	2.4384	0.5189	477.0. <b>•</b> 0	G+6645							: : : : : : : : : : : : : : : : : : :	
	2.4394			•							C•C356	
	2,5603				6979 °0	0.7064	0.7042	-C.0557	0.6414	C. C334		C. C139
	2.7432	0,5572	0.07.74	G. 6927							C. C359	
	2.8051		•		0.7052							
	3,0480	0.5941	0.0774	0.7188		0•7322	5671°0	0960-0-	0240 *0	(cc)(a)		
	3.1093										0°:0363	
	3,1699				0.1341	0°7561	0.7537	-0°060.7	0. 6422	C+.C338		C. C148
	3.55 9.25 9.25 9.25 9.25 9.25 9.25 9.25 9	0.6338	0.0774	0.7459				•			0.0358	
	3.4:38				0. 7556							
	3.6576					0.7845	0.7821	-C.0616	0-0420	C. C336		0. C141
	3.6576	0.6721	0.0774	0.7712	٩.						0.0346	
	3.7795				0.7819							9517 0
	3,9624					0.8107	0.8083	6290-0-	0*0416	C. C333		001100
	349624	0.7118	0• 0769	0.7968							0.0335	
	4.0343				0-,8050	1650.0	0.0707	-0-0426		[25]		c. c129
	4.2572	0.7472	0.0765	0-8190		170000						
	583284				C. 8793	•					0.0520	
	4.5720		•			0.8592	0.8567	-0-0653	0,0385	C. C31C		C. C120
	4.5720	C.7884	0.0761	C•,8440			÷				C. 0312	÷
	6.6.0.9.4		;		0° 85 60			.				
	4.8168		-			0.8797	0.8773	-C*0645	0,0355	0° C 289		C. C106
	4.8768	0.8295	0°0.756	C.e.8683							C. C2 93	
	1966.4				0.8731	•						1002 2
	5.1316			0100 0		0-8999	0.8975	9 6 9 0 10 -	6260°D	U+ C 203		
	5.2426	0-8621	1970-0	0.8868					•	•	C= C262	
	5.3035				0-8904	0-9183	<u>a.</u> 9159	-C_0658	0-02:50	" C•C233	•	C. C064
	1002.0											

CROSS WIRE PRCEE Single Wire PrcBe Pitot-Static

.::

TABLE 19 (continued)

. . 7. 2

		0.0763 0.0003
-	0.9108	8016*0
> •	9249 0_020	0.0732 0.9249 0.0732 0.9249
•	9414	0.0723 C.9414
0	0.942	C.942 0.0716 C.9530
0	0°9450 9578	0.9450 0.0709 C.9578
0	0°9484 9613	0.0699 0.9613
Ö.	0•9482 9618	0•9482 0•C690 0•9618
	9640 0.9502	0-0672 C.9640 0.9502
	9650	0, C671 0, 9650

CRCSS WIRE PACEE Single wire pacee Pitot-Static

TABLE 20 PROFILES AT X/L = 1.040

¥ (FT.)	¥ {C⊭₀}	CP (TOTAL)	CF (STATIC)	Q/UQ +++
0.0000	0.0000	0.2454	0.0613	0.4297
0.0010	0.0305	0.2468	0.0613	0.4313
0.0015	0.0457 0.0610	0.2482 0.2496	0.0613	0.4329
0.0030	0.0914	0.2525	0.0613	0.4378
0.0040	0.1829	0.2667	0.0613	0.4538
0.0080	0.2438	0.2766	0.0613	0.4645
0.0150	0.4572	0.3092	0.0613	0.4984
0.0200	0.0090	0.36 <b>7</b> 3	0.0615	0.5534
0.0400	1.2192	0.3971 0.4311	0.0618	0.5795
0.0600	1.8288	0.4623	0.0622	0.6329
0.0700 0.0800	2.1336	0.4964	0.0622	0.6846
0.0900	2.7432	0.5659	0.0624 0.CE26	0.7099
0.1100	3.3528	0.6424	0.0626	0.7618
0.1200	3.9624	0.7190	0.0626	0.8105
0.1400 0.1500	4.2672 4.5720	0.7587 0.7556	0.0626 0.0626	0.8346
0.1600	4.8768	0.8339	0.0626	0.8785
0.1800	5.4864	0.9048	0.0626	0.9180
0.1900	5.7912 6.0960	0.9374 0.9643	0.0626	0.9350
0.2100	6.4008 6.7056	0.9785	0.0624	0.9574
0.2300	7.0104	0.9927	0.0618	C. 9651
0.2400 0.2500	7.3152	0.9941 0.9941	0.0606	0.9664
0.2600	7.9248	0.9941 0.9941	0.0595 0.0585	0.9668 0.9675
0.3000	9.1440	0.9941	0.0572	0.9682

CROSS WIRE FROBE SINGLE WIRE PROBE PITOT-STATIC

1.060	
ĸ	
X/L	
AT	
PROFILES	
E 21	
TABL	

1

-2CUV/U0++	0.0019	C. CC57	C. C082	C. C087	G.CC84 C.€CC84	G. C 1 G S
HRFS/UC +	0-0223	C. C223 C. C225 O. C235	G. C241 G. C252	C. C257	C= C2 <i>T3</i> Q= G287	0.0299 0.0307
VRMS/UO	C. 6275	C. C 2 6 2	0° C 2 6 5	C. C265	C. C264 C. C264	C. C.92
URMS/UO	0.0279	652 <b>0</b> • 0	0.0336	0• 0345	0.0325 0.03C2	1560.0
0n/x	-6.0212	-C. 0 258	-0°0295	-0°0324	-0-0373	- 0° 0405
on/n	0.4707	0.4792	0.4964	0. 51 82	0.5805	0° 6071
0n/0	0.4712	0.4799	0.4973	0.5192	0.5852 0.5821	0 • 6 08 4
00/0 ••	0.4848	0 • 4858 0 • 4888	0.4911 0.4935 0.49377 0.5090	0.5761 0.5579 0.5151 0.5209 0.5224 0.5224	0.5625 0.5838 0.6106	0.6333
01/0 •••	8454 8454 9454 90 9454 90	0.4578 5.4593 5.4659 0.4659 0.4716	0.4805 C.4906	0.5119 0.5308	0.5645	0 <b>.</b> 5927 0 <b>.</b> 6207
CP (STATIC)	0°00335 0°00535 0°00535	0.0535 0.0535 0.0535 0.0535 0.0535	0.0535 0.535	0.0535 0.0535	5E20°0	0.0535 0.0535
CP (TOATL)	0,2598 0,2612 0,2612	U. 2626 0. 2640 0. 2669 0. 2697 0. 2697	0.2839 0.2839	0,3150 0.3348	.1176.0	0. 4043 0. 4383
۲ (۲۹۰)		0.0557 0.0510 0.0510 0.1219 0.1219 0.1219 0.1229 0.1229 0.1329 0.1329 0.1329 0.1329	00000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C. 67C6 0. 7515 0. 91620 0. 9164 0. 9164 1. 2192	1.22402 1.52402 1.52400 1.55240 1.55240
۲ (۴۲۰.)		00000000000000000000000000000000000000	00000000000000000000000000000000000000		00000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

115

. ÷,

ROBE ACRE PITOT-STATIC

CRO

...:

_
5
۵ĭ
<u> </u>
2
<b>C</b>
-
·
÷
<b>C</b>
2
<u> </u>
0
57
TABLE

۲.) (FT.)	, С. ч. )	CP (TOATL)	CP (STATIC)	01/0	07.00 **	0n/0	0,/n	v/vo +	URMS/LO +	VRMS/U0	HRMS/UD +	-2011/1004
.0540	1.6453	i i i				0.6347	0. 6332	-C.0437	0• 03 69	C. C306		C+ C12C
.0590	1.7483 1.8288				0. 6568	0.6459	0.6443	-0-0454	E/ ED *0	0. 0311		0• 6122
0600	1.8288 1.8398	0.4695	0* 0535	0.6454							C. C317	
0690	2.1031		€.			0.6718	0.6701	-0-0483	0°0358	Q. C325		C. C134
.0700	2.1336	0.5021	0,0535	0, 6701	07 00 00							
. 0720	2.1346					0-6935	0-6918	-0-0400	0-0406	C. C328	C.0321	C. C135
0630.0	2.4384		·		6601 °0							
00900	2.4364	0.53.90	0.0535	0. 6971							0-0176	
0,0890	2.71.27	•				0.7201	0.7182	-0-0524	0.0411	C. C326		C.C138
0.000.0	2.7432		0,0010		0. 7348							
00600	2.8042	C+7:C=0	6560.00	1221 00							C. C332	
0660.0	3.01.75					0° 7461	0,7441	-0-0543	0.0413	C. C321		C.C134
0.1000	3,0480	0007 0	0,000	0.7460	0. 7639							
0.1000	3.10.20	660°°*0			•						C. C325	
0601-0	3.3223					0.7674	0.7654	-0*0260	0.0410	0+.C321		C. C135
0.1100	3.3528			0,127.0	0-7870			•				
0.1130	3-3-24	0. 04 40	0* 004 C	6723 *0		•		<b>.</b> .	•		0. 0334	•
0.11.00	3.6271	.•				0*1950	0.7929	E720-0-	0.0406	0.0315		C. C126
0-1203	3. 6576		1		0.8110							
0.1200	3.6576	0.6879	0, 0544	0.7962	•						1663 0	
0.1220	3. 72.86					0-8210	0.8189	-0-0585	0-0353	0-0306	10000	C. 6119
0.1100	3.96.74				0.8372							
0.1300	3.9524	0.7219	0.0547	0.8171						·		
0-1320	4= 02.34					1010 0			. 037E		C* 0323	
0.1390	4.230/				0-8597		coco•0	70 BO *D -				
0.1400	4.2672	0.7673	0.0549	0.8443								
0+1+20	4.32.82	•	,						0 0364		C.C313	0000
0.1493	4.5415					1.908.0	0.8000	+000+0-		Co.C201		
0.1:000	4.5729		1990.0	0.946.0	0.884/							
	077.0.04	0,0020	Teen Ph								0.0296	
0.1590	6448.44		•			0.8856	0.8835	-0.0611	2660.0	C. C264	•	0.0089
0.1600	4.8768				0.9348						•	
0.1600	4.8768	0.8354	0.0553	0, 8835	· .							
0-1620	6.9378 5.1511					0.9047	0. 9026	-0.0612	0.0363	C. C242	C-177.40	C. C072
001100	5-181.6		•		0.9306							
0.1.700	5,1816	0.8694	0. 6553	0,9026						•		
0-1720	5.2426								0100 0		C. C245.	
0-1790	5.4559		-			0.9231	C126.0	-0-00-0-	0* 02 10	0°, C 5 7 4		

PLIDI-STATI

116

į

TABLE 21 (continued)

-20LV/UC++2 C. CC12 C.,CCC5 C. CC02 C. CC01 0.5002 0. 0043 0. C024 HRPS/UC 0.0088 C. 0054 0-0045 0.0045 0.0211 0.0065 0.0175 0.0125 VRMS/UD C. C113 C. CC84 C. CO65 G. CO52 C. C152 .C. CO51 C. C.184 URMSVLO 02:00-0 0-00-0 0° 0233 0.0162 0.0043 0.0032 0.0117 0.9783 -0.0673 0.9397 -0.0629 0.9556 -0.0626 0.9751 -0.0661 0.9782 -0.0661 0.9772 -0.0666 0.9711 -G.0655 26179 °O 0.9576 0°• 9773 0,9418 0°.9733 0.9806 9086°*0 07/0 0•9929 0• 97.72 0.9992 0-9620 0.9873 0.9963 7799.00 0**.** 9964 0n/0 0*9440 0. 9687 0,9687 0.9380 19197 C. 9715 0.9508 0•9605 0. 9656 0.9678 DU 10 0.0553 0.0553 CP CP CP (TOATL) (STATIC) 0.0553 0.0553 0* 0549 0.0553 0.0553 E550,*0 0.0551 0, 9929. 0.9929 9006 *0 0.4589 0.9773 0, 9872 0, 9915 0.4929 0.9346 K (CH.) 912 0960 603 0655 0960 010 0-1900 (FT.) 0.1990 000 20 004 700 0.1800 0.1400 200 0-1-920 0000 293 0.2300 0.1.893 .2190 3 .

CRCSS WIRE PROBE Single wire probe Pitot-Static

*

•

# TABLE 22 PROFILES AT X/L = 1.100

Y (FT.)	Y (CM.)	CP (TOTAL)	CP (STATIC)	C/U0 +++
	0 0000	0 2996	0.0285	8.5001
0.0000	0.0152	0.2900	0.0385	0.5015
	0.0305	0.2900	0.0385	0.5015
0.0015	0.0457	0-2914	0.0385	0.5029
0.0020	0.0510	0.2928	0.0385	0.5043
0.0030	0.0914	0.2542	0.0385	0.5057
0.0040	0.1219	0.2957	0.0385	0.5071
0.0060	0.1825	0.3013	0.0385	0.5126
0.0080	0.2438	0.3070	0.0385	0.5182
0.0100	0.3048	0.3141	0.0385	0.5249
0.0150	0.4572	0.3354	0.0385	0.5448
0.0200	0.6096	0.3566	0.0385	0.5635
0.0300	0.9144	0.3921	0.0385	0.5946
0.0400	1.2192	0.4276	0.0385	0.6238
0.0500	1.5240	0.4587	0.0385	0.6480
0.0600	1.8288	0.4928	0.0385	0.6738
0.0700	2.1336	0.5254	0.0385	0.6974
0.080.0	2.4384	0.5594	0.0385	0.7217
0.0900	2.7432	0.5920	0.0394	0.7434
0.1000	3.0480	0.6317	0.0403	0.7683
0.1100	3.3528	0.6672	0.0408	0.7915
0.1200	3.6576	0.7083	0.0413	3618.0
0.1300	3.9624	0.7452	0.0418	0.8387
0.1400	4.2672	0.7806	0.0423	0.8592
0.1500	4.5720	0.8161	0.0417	0.8800
0.1600	4.8768	0.8515	0.0421	0.8997
0.1700	5.1816	0.8762	0.0423	0.91.32
0.1800	5.4864	0.9196	0.0426	0.9303
0.1900	5.7912	0.9431	0.0428	0.9492
0.2000	6.0960	0.9664	0.0431	0.7007
0.2100	6.4008	0.9820	0.0433	0.0721
0.2200	6.7056	0.9905	U.U435	0.7/21
0.2300	7.0104	0.9933	0 0435	0.07/4
0.2400	7.3152	0.9933	0.0433	0.0757
0.2500	7.6200	0.9948	0.0435	0.9753
0.2600	7.9248	0.9948	0.0451	0.7120

CROSS WIRE PROBE Single wire probe Pitot-static

1.200
I
J
×
АТ
PROFILES
23
TABLE

Y (FT.)	K.	CP (TOATL)	CP (STATIC)	0/00 •••	0/00 ++	0/10	DN/N	0n/+	URHS/LO	VRMS /UC +	HRPS/UC	-2007/00+
5080	C. 2438					0•5680	0.5680	8 D 0 0 ° 0	0.0306	C. C246		0° C 05 1
.0080	U. 2438 0.2438	0.3419	0*0200	0. 5656	-0.5879							
.0080	C.2438					0•5680	0•5680	0.0008	0.0306	0°C246		0. 0051
.0080	C.2438 0.2438	0.3419	0• 0200	0. 5656	0.5879							
. 0080	0.2433							0.00.0		0 5346	0*0240	0.0051
• 00800 • 00800	0.2438 0.2438				0, 587.9	0894-0	0.000	8300-0	0.0360	01-77-10		10000
0030	C.2438	0,3419	0.0200	0• 5656	•			÷			0 4 5 7 0	
- 0030	C. 2438 C. 2438					0.5680	0.5680	0,0008	0.0306	C+ C246		0° CO51
.0080	C.2438		0000 0		0.5879				·	•		
	8542 <b>0</b>	5745 °D	n n 2 n e n	0000.00						-	0.0240	•
.0380	0.2438					0.5680	0.5680	0.0008	0.0306	0°C246		0.0051
.0080	C. 2438				0.5879						· ,	
	C• 24 38	0.3419	0-0200	0.5695								
.0130	0.3962				0.5947			•				
.0150	0.457.2	0.3588	0• 0200	0, 5803								
•0183	0.5486			•		0.5804	0.5894	-0-0024	0-0354	C_ C251	1.0 523	0- 0077
	001010	0.5713	0-0200	0.5927								
.0230	0.7010				0-6201					-	• :	
.0280	0.8534										C+ C277	
.0280	0.8534		1	1		0.6157	0.6157	-0.0042	0.0357	0° C 2 5 2		0. 0089
. 0300	0.9144	0•4061	0* 0200	C. 6198	0 47EC				,			•
	1-1562										C. C408	
C380	1.1592			•• •		0.6433	0-6433	-0.0055	0.0360	G. C256		C. C089
0400	1.2.1.32	0.4398	0*0200	0. 6464		•		•		· ·		
0.430	1, 3106				0.6726				•	•	C. C298	
10440						0.6677	0.6676	-0-0086	0-0360	C. C257		0.091
0.050g	1.5240	0-4759	0.0200	C. 6737			, ,	•				•
0.0530	1.6154				0.6964						7020 J	
02200	1.7573 1.7578					0-6913	0-6913	-0-0075	0-0367	C. C260		0.091
00000	1.8286	0.5110	0-0200	. 0. 6993								-
.0630	1.9202			-	0,7219		•		·		0.10	
0680	2.0726		-			0117 0	0 11 0		92.50°0.	C_ C268	C. C. J. L.	0-000
00000	2-1336	0-5443	0-0200	Ĵ. 7227	•							
0.730	2.2250				0.7408							
.0780	2.3774								á tá t		0.0310	
0.0780	2,3774					0.7387	0.7386	-0-0042	CBED.	0.572		C• C 100
00800	2.5258	0.5776	0.0205	141.65	0.7652							
							•				•	-

119

CROSS WIRE PROBE Single Wire Probe Pliot-Static

••••

TABLE 23 (continued)

Y .(F.T.	(C+•)	CP (TOATL)	CP (STATEC)	c/ù0 • • •	0/10	0/0	01/1	on/ A	URMS/U0	VRMS/UC +	HRFS/UC	-2017/1044
0.0880	2.6922 2.6922	, , , , , , , , , , , , , , , , , , ,	1 1 1 1 1 1 1 1			0547-0	0-7629	1600-0-	0.0357	C. C278	C.0315	0, C 1 0 3
0.0300	2.7432 2.8346	0-6132	0.0210	0. 7682	-0-7835							
0.0380	2.9870 2.9870	•				0.7858	0.7858	-C.0087	6560-0	G., C.278	C+ C320	C. 6105
0,1000	3.0480 5.0480	0. 6502	0.0214	0• 7917	0.8070							
0.1090	3.2918						-				C. 0327	
6.1080 0.1100	3.2716 3.3528	0.6872	0-0213	0-8146		0.8083	0.8083	-0,0088	0°0403	C. C276		C. C102
0-1130	3+442				0•:8264		•					
0.1180	3.5766					0.827.3	0.8273	- 0, 0086	0*04:02	C+C275	1.260.40	0.0100
C.1200	3.6576	0.7266	0.0219	0. 8383	,		• .		•	1		
0:1230	3.7490				0.8486						7120-0	
0.1260	41/6 °E	•				0.8542	0.8542	- 05 0092	E5E0°0 -	:C. C270		C+ C096.
0.1300	3,9624	0.7622	0.0224	0. 8590				). 		i.		
0.1330	4,0538				0.8707						5150 J	
0.1380	4-2-62					0-8751	0.8751	-0-0082	0.0382	C. C 263	C1010	C. C085
0.1400	4.2672	0. 80 65	0.0228	0. 8841				~	) 			
0.1430	4,3536				0.8917	•						
0.1480	4.5110		÷.			0100	0.002.0		0.0347	1961	6670 °0	1002.0
0.1500	4.5720	0.8343	0-0231	0-8596						T	•	
0.1'530	4.6634				0.9139				,			
0.1583	4.8158				-						0.0278	
009.10	8728.7	0.9446	0.033	0. 91 77		T.OT 6 *A	1016.00	0000*0-		U. L 237		
0.1630	4.9582				0-9351							
0.1580	5.1206					-					C. 0256	
0.1680 	5.1206					0.9363	0.9363	-C.0076	0-0313	0. 0220	,	09000.00
0.1730	5.2730	C845.0		C* F F • D	0.9497					•		
0.1780	5.42.54						tin				C.0235	
0.1790	5.4254					1.656.0	1654.40	-0-0021	0.0288	C. C 204		0• 0051
0.1820	5005°C	40EA *0	-FF 20 •0	+T 66 +D	n okas		•					
0-1990	5.7302										0-0202	
0.1887	5.7302	1				0.9669	0.9669	-0.0069	0.0249	G. C178		0+ CG41
0, 1, 900	5.7912	0.4580	0.0235	0• 9657								
0661-0	0.50				×> × × × • 0						0210-0	
0.01.198.0	0320					7.689.0	0.9837	-0-0052	0-0205	C. C149		C- 603C
0.2000	6.0960	0.9781	0.0238	0. 9759								
0.2030	6.1874			•	0.9879							
0.2080	0.000 0.000 0.000 0.000					0.9950	0.9950	-0-0044	0.0151	C. 0125	C . T T 2 2	0- 6617
	•			-		) ) ) )	) 		1 1 1 7 8 1 7 8 1 7 8 1 7 8 1 7 8 1 8 1			

RCBE

CRCSS WIRE PI SINGLE WIRE I PITOT-STATIC

.::

TABLE 23 (continued)

-2014/104+2		C• CCC 1	C+ CC05	c• cc03	0. 002	
WRMS/UO	C+ C 0.93	•	C• CC69	C= 0C62	C+ C064	
VRM5/U0		C+ C 546	C. C077	C+ CC64	C. CO77	
URMS/UD		0500.00	0.0660	0.0043	0.0038	
07 +		c f n • • • •	- 0,0040	-0-0036	-0-0049	
0n/n		C	1.0042	1.0047	1=006C	
av.•		C	I. 0042	1.004.7	1.0060	•
Dn/0	1866 •0	1. 0036		0460.1		1.0049
.0n/ b	C. 5333	C. 9866	0. 9886	0• 5890	0, 9890	0• 9890
CP (STATIC)	0=0238	0.0238	0.0236	0•0233	0.0233	0.0233
СР (ТбАТL)	0• 9927	0.9992	1-0030	1.0034	1.0034	1-0034
<ul><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li><li></li></ul>	6.4008 6.44008 6.6445 6.446	6, 7975 6, 7975	6.9494 7.0104 7.10104	7.2542 7.3552 7.3552	7.5590	7.9248
۲ (FT. )	0.2100 0.2130 0.2130	0.2200	0. 2280 0. 2390 0. 2390	0.2380 0.2380 0.2400 0.2430	0.2480 0.2480 0.2590	.2603

PRCEE E PROBE CRCSS HIS INGLE

PITOT-STATIC

:

TABLE 24 PROFILES AT X/L = 1.300

-2 0L V/UC++2 C. C095 C+ CC91 0500 °C C*(C087 0.0091 C. C048 0. 005 9 0- C104 C- 6109 C. C048 0* 0040 URMS/LO VRMS/UC WRMS/UC + + C. 0326 0.0331 0.0328 C. 0265 C.0288 0. C318 C.0326 0.0305 C.0233 0.0233 C. C245 C. C274 C.C274 C. C267 C. C27C C. C265 C+C271 C. C27C C. C270 C. C271 C. C27C C. C272 0, 0409 0°.04C5 0.0404 0.0408 0, 0365 0. 04.00 0.04C1 0.0411 0.0324 0.0304 0.0304 - 0000 --0-0145 -0.0137 -0,0119 -C.CO13 -C. GOB I -C+0067 -0,0111 0.6238 -0.0057 -0.0055 -0-0003-07/7 0°6043 0.7811 0. 6445 0.6730 0.7175 0.1450 0.7564 0. 5999 0.6927 0°5995 Dn/n 0.6043 0.7176 0.7565 0.7812 0.599.9 0.6927 0.7451 0.6700 0.6238 0.6445 6.655.0 070 C. 7679 0.7422 0.6115 0.6328 0.7231 0.7896 0. 5966 0.5989 0.6590 0.6788 0. 6011 0.7015 0.5966 0/00 . 5 0- 7260 0. 7930 0• 6500 0.6760 C. 5960 C. 5970 Ũ**-** 6060 G. 7030 0.7490 0-7720 C=159.60 C. 6250 0.5960 0. 5580 C. 6150 Dn/0 0.0116 0.0123 0.0125 0.0127 CP. CP. (TCATIC) (TCATIC) 0.0116 0.CI19 0.0121 0. 6116 0. 6116 0.0116 0° 01:1-9 0, 0116 0.0116 0.0116 0.0116 -; 0.6094 0.5426 0.3676 0.5400 0,-5738 0.3676 0.3670 0.4032 0.5072 0.3700 0.3799 1364.0 0.4698 0.3676 0.3911 i ۲ (۲۰۰) 0.0510 0.0510 0.0510 0.0510 0.0510 0.0510 0.0510 0.0510 0.0110 C. 151 0.0920 080 -0 0.0820 0.0860 0.5880 0.000 (FT.) 0.0020 6

CRCSS WIRE PROBE SINGLE WIRE PAGEE PITOT-STATIC

.::

ntinued
E 24
TABL

2**

Υ (FT。)	( C.K )	(TUATL)	CP (STATIC)	0 / nC	01/0	Dn/b	07/n	DN/ A	URMS/LO	VRMS/UC	MRPS/UC	-2007/01
0.0980	2+9270				0 0 0 0 0 0 0 1 1	0.8011	0.8010	-01.10	0.0417	C. C275	5 · 0 1 0 0 0 0	<b>0-00</b>
0.1020	0.6 - 1 - 6 0.6 - 1 - 6 0.6 - 2		0010-0	nc 10 *0	0.01.2						C. 031.6	
0.1080	3.2418				4440.00	0.8194	0.8194	-C.0055	C.041C	G+ C275		C.:0096
0.1120	3,41,46 3,41,38	6717°0	FE10*0	C. 8360							0. C313	
0-1160	3.5357				0.8291				-			
0.1180	3. 5765 3. 6576	7. 74 RS	AE10.0	C 8570		0.8385	0.8384	- 0* 0045	0. 6414	C. C27C		0.000
0-1220	3.7286										0.0310	
0.1260	9.9405	•			0-8499				)       			
0.1300	4106 42 42 46 46	0.7850	01010	0.8770		C•8594	0.8593	-0-0104	0• 04 05	C• C263		0* 000
C.1320	4.0234										C. C295	
0961-0	4.1453				0.8720			• •				
0.1380	4.2362					0.8812	0.6812	-0-0062	0°0351	C.C261		C. CCBC
0-1420	4.3282	1819-0	0°0144	0*8460					-	•	0.0285	
0.1460	4501				0.8939							
0.1480	4.5110					0-9026	0.9026	-0.0057	0.0375	C. C246	•	0- C07C
0.1500	4.57.20	0.8469	0.0147	C* 9120								
					icio o				•		C. C272	
0.1580	4.8158				1616.0	0°9213	0.9213	-0-0015	0-0352	C. C 2 2 9	•	Ca.C060
0.1600	4.37.69	0.8802	0.0149	C. 9296								
0-1-50	4.9378										C. C257	
0.1660	5.0597				0.9266				. '		•	,
0-1200	5.1205		0.0161	9966		0-9345	0°9345	-0*0012	0.0323	C.C212		C. C05(
0-1720	5.2426	20.74 00	1010-0								0.0734	
0.1760	5.3045		-		0.9449							
0.1760	5.4254					0.9498	0,9498	C.0017	0.0299	C• C1 95		0-004
0.1933	5 - 4 C C A	0.9364	0.0154	0* 55 92			,					
0.1960	5.655				0.9551			•.			C• CZ1Z	-
0.1930	5.7302					0.9688	0.9688	0.0010	0.0268	C. C173		0. C034
0-1-00	5.7912	0.9650	0.0156	0.9738							•	
0*1920	5-852				- go to to						C. C182	
001100	14/6 46		•	•	0.9688	- F - 60 - 6	1.100.0				*	
0.2000	6.0360	0-9809	0.0158	0. 981 9		1.04.00		1200.00	N° U 2 C 8	9415 · S		00.024
0.2020	6.157G										C. C152	
0-2260	6.2133				0. 98.76							
0.2080	6.33.98					0.9935	0,9935	-0.0011	2610.0	C. C126.		C. CO16
0-2100	6.4.03	0° 9931	0.0159	0.9880			•					
0-12-0	0.00.00										0.0116	
0-2180	00000				7944.0		9100-1	050030				0.00
0*2200	6.7056	0.9987	0.0161	C. 9908								· · ·
		•										

123

CRCSS WIRE PACEE Single Wire Pacee Pitot-Static

.::

TABLE 24 (continued)

N:				1.		
-20LV/UC+#	4099 0- CC 04		C. CC03	C. CC01	•	
HRYS/UC	C. CC94	0. 0079		0,0064	ал 1	. ·
VRMS/UC	C. C082	-	C. C063	C. C058		
URMS/LC	1600-0		0.0046	0•0037		
0n/^	0-0117		0.0115	0.0150	)*  -  -	
0n/n	2000-1		1-0008	0.9989		ш
0 0 10	E000 - 1		1.0009	0666 -0		IAE PROBE Mire Prcb Tatic
0n/0	1.0042		1• 0063	1.0067		CROSS H SINGLE PITOT-S
07/0 +++		8166 0	UEDS U		0° 6630	••••
CP. (STATIC)	• .	0.0162	6910 0		0,0163	•••
CP (TUATL)	. ,	1.0010	4500.1		1,0034	• • •
۲ (و۲۰)	6. 7666 6. 8885	7.0716	7.2542	7.4981	7.6200	
۲ ۲.)	0.2220	0.2300	0.2360	0.2450	0,2500	

1.400
H
ZI Z
AT .
PROFILES
25
TABLE

•		-				UTRF PRCB	CRUSS	•				
•		-		•			÷	0, 7819.	0• 0083	0.6236	2.4079	0610+0
C. C111		C. C275	0.0421	-0-0141	0.7730	0°7731	0.8012				2.25555	0*0140
	0.0305	•	-								2.2555	0.0740
) · · · )			J 4 F 2 4 2	1.1.2.0.	1,001,00	0.000		0, 7613	0.0681	0.5887	2.1031 2.1031	0690.0
	-:	0223	0.10				0.7766				1.9507	0.6640
	0° C305							0.65.00	5.00 °D :	00000 ⁰ 0	1.9507	0.0040
611D-0D		C. C284	0*0420	-0-0080	1167.0	0.7311		2027 0	0,0070	0.5550	1.7983	0.0590
							0• 7507	'n	•		1.6453	0120-0
	C- C2 97		 					0° 7132	0•0079	0.,51,75	L.47335	0.0400
0.0118	-	C. C287	0.0434	-C.0116	0.7122	.0°.7'123					1.4935	0.490
			•				0.7300				1.3411	0440.0
	0-0292							0. 6895	0. 0074	0.4838	1.1487	0.0390
0• C117		C. C287	0+40	-0.0147	0.6753	0.6755			•	•	1.8.01.1	0.0390
							0.7052				1.0363	0,0340
								0. 6555	0.0074	0.4381	0.8839	0.000
0-0113		C. C.2.87	0.0426	- 0- CO40	0. 650A	A5504	0.6842				0.7315	0,0240
	0.0254										0.7215	0.0240
6803 °D		082390	0.0393	-0-013	0.6389	0.6389		3667 0	4LUU 0	8007.0	0.5791	0.0190
								0.6235	0.0074	1.1.65.0	0.4267	0.410.0
•	C= U23 0.						0.4410				0.4267	0.01.40
	C. 0231										0.3658	0.0120
	C. C23C							4010 ⁴ 0	0.00	0.3864	0-3048	0.0100
. •							0.6502				0.2743	0-00-00
0.0061		C. C286	0.0347	0.0032	0.6216	0.6216					0,2743	0.0000
								C. 6135	0.0074	G•3848	C.2.34	0.5070
	G. 0224		•.						1.00.00		0-1329	0.00000
		C97193	1 5 5 0 • 0	0,00.00	0.6203	0.06203		0.6126	0-0074	1226	0.1524	0.0050
0.5057								0.6121	0.0074	G. 3830	0.1219	0• 204 0
C002	C.0223	C•:C287	0.530	0•0023	0.6110	0.119-0					0.0714 C.1217	0.0030
	••			•		-	0.6464	0- 6121	0-0074	0.3830	0.0610	0.0200
•	G. 0222			-			06.00.00				0.0610	0.000.0
C. C049	•	C. C285	0°C323	C, 0091	0.6138	0.6139					0.0205	0.0010
			•	-			0°6420	0614	0 0074			
	0-0223											
-20UV/U044	WRP S/UC	VRMS/UO	URMS/UD	:0n/A	₽n/n	0n/0	01/0	01/0	CP- (STATIC)	ĆΡ (ΤŬΑΤL)	×. C.₩S.)	√ (ET•)

E PRCBE

PLTOT-STATIC

::

<u>ğ</u>
nue
Ţ.
20 L
С
25
g
ABI
F

					E .	MIRE PRO	SINGLE	••••• ••••				
•	••					IRE PRCB	CRCSS	•				
		•.					1.0020	•	•		6.2179	0-2040
	C.C121	•			·		-		0110 •0	0.7807	6-2179	0-2010
C. C027	. :	C. C145	0.0220	-C.0121	0.9955	0° 9956					6.0655	0.1993
							1266-0			•	1616.5	0*1.340
	6-0147	•	•					Ge 9739	0° 0113	0,9607	5.7912	0.1500
C. C038	:	C+ C'166.	0°0247	-C+0113	0.9825	0.9830		-			5.7607	0.1.893
	C* C1 /3						0.934				5.6083	0-1840
		#  }	, ,     	· · ·	-	1 1 1 1 1		0- 9620	601C*0	6769-0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.1800
C. CC45		C. C 183	0.0283	-C.0179	0.9716	0.9718	C. 9738	: · ·			5.3035	0.1740
	C. C20C				•					1114 °n	5.3535	0-1140
C, C050		C. C 202	0,0311	-C.0137	0.9454	0.9455		1010			5.1511	0.1693
							0.9610				4.9487	0-1640 0.1640
	C.C.1.8							C. 9350	1010*0	0,8853	4,8763	0-1-00
C. C058		C. C214	0.0332	-0*0111	0.9276	0.927.7	0646 •0				4.6333 4.8463	0,1540 0,1576
	C. 0238							•		-	4.6439	0.1540
								0-9172	0-0097	6.8520	4.5413	064140
0 . COAA		3669 0	0100 0	0000			0°0304				1666.4	. 0.141.0
<b>.</b> .	C. C245				-	ī		0.0018	0. 0097	0.8239	4.2672	0.1403
C. CC83.		C.C.246	0.0366	-C+0027	0.8868	0.8868	1404.00			·	4.2367	0.1340
•	C. C262										4.0643	01340
								G. 8830	0, 0095	0-7902	3.95.19	0.1290
0. CCRA		1. C 254		-r 0105	C070 0	7010 0	0.8874				3.7795	0.1240
	C.C277							Ce.8641	0. 092	0.7569	3. 6576	0+12C0
CC102		C. C. 268	0-0420	-C.0151	0 <b>.</b> 8545	0.8546		•	1	•	3.6271	.1193
		;					0.8747	, - 			3.4747	11140 11140
	3053 0		, , ,		•			0.8467	0-000	0, 7269	3.35.28	0.1100
C. C106		C. C276	0.0420	-0-0021	0.8308	0.8308	0.8032				3.1659 3.3223	1.1040
	0. C2 93									1260 1	3, C-50	0401-0
0-C112		C. C281	0 • C 4 2 5	-C+00+7	0.8111	0.8111					3.0175	0660-0
							0-8414				2.8551	0460
	JUE J - J		•	•	•			0.8045	0° C'C85	0,6567	2.7.27	.0990
C, C115		C. C 286	0.0424	-C+0124	0.7996	7 99 7	• 128 • 0	•		÷.	2.5603	. 6340
	1060-0			· .				•			2.5503	• C 34 0
•	•	•	•	+	•	+	+		(STATIC)	(TCATL)	(0%)	(FT.)
-266.9706		VKMS/UC	URMS/LU	۸/۲C		5/UC		01/5	CP CP	с. Р	× .	> 1

continued)
÷
25
TABLE

-201V/UC++2	C. C018	0• CCO8	C. CO05	C• CCO3	C• CC02
WRPS/UC		50 0 0 0	0° 0077	0• 0058	0.057
VRMS/UD +	C. C127	C.,C098	C+ C C 84	5933:*3	0.,059
URHS/LO	0.0165	0-0116	0+0067	0-0046	0=0050
0.1×	-C.0124	- C • 004 7	-0-0033	- 0- 0104	- 0° 008 7
0n/n	1.0071	1-0120	1-0082	1-0165	1e10•1
0 n / 0	1-0072	1.0120	1.0082	1.0166	1.0131
0n/5		1.0039	1.0049	1.0089	1.0100
0.+ 2.5 2.5 2.4	0- 9904	0,9931	9946	0.9957	1999 Lee
CP (STATIC)	0,0117	0.0118	0-0119	0- 01/20	0. 0120 0. 0120
CP (TUATL)	0, 9335	1666'0	1,0021	1,0034	1. 0034 -0. 5600
	6.3703 6.4009 6.5227	6.7556 6.7556	6.8275 6.9799 7.0104	7.1323 7.1323 7.2547 7.3152	7.4271 7.4371 7.5895 7.6200 7.6200
Y (FT.)	0•2090 0•2100 0-2140	0.2140 0.2190 0.2200	0.2240 0.2240 0.2290	0.2340 0.2340 0.2390	0-2440 0-2440 0-2490 0-2500 0-2500

+ CRCSS WIRE PRCBE ++ SINGLE WIRE PROBE +++ PITUT-STATIC TABLE 26 PROFILES AT X/L = 2.472

N - 1	42	5	88	18	5	e e	60	19	0E	Ő	51	32
-2014/	0 0 0	<u>ر</u> • در	C.• C.0	C. 00	0.0	,00 °0	0-01	C. 01	0• C1	G• C1:	C. C. I.	0-01
HRPS/UC +	C• C 2 6 3	C• C262	C. C254	C. C252	C. C251.	C. C255	G. C260	G. C268	C. C283	C. 0295	0- 0304	C. C302
VPMS/UD. +	C. C368	0. C363	C. C363	0. (353	1960-0	G. C350	0. (339	C. C335	C. 0332	0° C323	Q. C315	G. C307
URMS/UG +	C • 04 CB	0-04C1	0.0383	0.0380	0 <b>- 0</b> 387	0 <b>.040</b> 9	0.0414	0•0436	0• 0450.	0.0452	0-0450	0,0449
0n/*	0•0129	C•0125	0.0116	0, 0082	£500.°0.	0• 0042	0°38	0° 0008	C. 0002	-0-0024	-0-0031	-0" 0010
07/02	0.8079	0+8094	0.8104	0-8128	0.812C.	0.8212	0.8286	0.8412	0° 8442.	0.8572	0.8704	0.8876
av.	0.8080	0e 8095	0•8105	0.8128	0-8120	0.8212	0.8286	0.8412	0.8442	0.8572	0-8704	0.8876
a/10	0-81.05	0-8110 0-8120	0.8106	0.8129	0.810A	0.8253	0-8290	0 <b>.</b> 8424	0. 8545	0.8661	0.8774	0.8820
07/0 1		5462 °0	0.7947	0, 7974	0. 8034	0. 8094	0.8221	0. 8304	0. 8420	0.8549		J <b>.</b> 8791
CP (STATIC)		0 • 0	0100*0	0,100 *0,	0100 *0	0.0010	0- 0010	0100 0	0*0010			0" 6620
CP (TOATL)		0° 6313	0.6326	0.6368	0.6465	C. (562)	0. 6.768	0. £936	0 <b>.</b> 7099	0,7319		0.7748
Υ. (CM•)	0 - 00 00 0 - 00 00 0 - 00 00 0 - 00 00	C= 0100 0= 0610 0= 0610 0= 0610 0= 1219	0 3 3 5 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5	0.6796 0.6706 0.6706 0.6706	0.9154 C.9754 0.9754	1.2152 1.2502 1.2502	1.2920 5950 5950 5950 5950 5950 5950 5950	1.8283 1.8598 1.8598 1.9398	2.1336 2.1946 2.1946 2.1946	2.4534	2.8042 2.8042 2.8042	3, 10, 90 3, 10, 90 3, 10, 90 3, 10, 90
Y (FT.)	00000 0°0000 0°0000		0,0120	0.5200 0.9220 0.6220 0.5220	0-0320 0-0320 0-0320	0.04400	0.0520	0.0600 0.0620 0.0620 0.0620	0.0700 0.0720 0.0720 0.0720	0.0820	0.0320 0.0320 0.0320 0.0320	0.1020 0.1020 0.1020 0.1020

RC BE

CROSS WIRE PRI Single Wire PI Pitct-Static

• • •

128

.

TABLE 26 (continued)

1

Y (FT.)	К С. н. )	CP (TCATL)	CP (STATIC)	0,100 C/C0	a/ua	an / 6	07/10	on/*	LAMS/LO	VRMS/UC	14 N S / UC	-2CLV/UC+
1120	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6				0. 8979	0-8971	0.8971	- C • C 01 8	0440	50C0,".0	U - 0 0 0 0 0 0 0 0 0 0 0 0 0	0-:0120
1220	3.7186	101010	•••	61.9623	0•9042	5016°0	5016°0	-0-0032	0.0437	C. C294	C. C302	C. C110
1320	3 9 9 7 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0.8355	0•:0020	0-9130	0.9094	<b>4</b> 616 <b>*</b> 0	<b>*616</b> *0	-0-0036	0° 0425	C. C283	C• C305	C. C1C0
1 4 5 0 0 1 4 4 5 0 1 4 4 5 0 1 4 4 5 0 1 4 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4,25,72 4,32,92 4,32,82 4,32,82 4,32,82 4,57,70	0.8547 0.8726	0*020	0.9234	0. 9222	0. 9327	0.9327	0• CC01	0•0411	C. C2.72	1060.0	C. CC56
1520 1520	4 • 6330 4 • 6330 4 • 6330 4 • 6330	ú, 3905	0-0620	0.9427	0• 9292	0-9430	0° 943C	C. 0CC 2	0*0356	C+ C260	0° C292	C • C088
620 620 700 700	4 9373 4 9373 4 9378				0•9385	0.9473	E7+9.0	-¢•0016	0°0361	C. C25C	0 <b>°</b> C278	Carcec
1720	2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.9292		0, 9528 4780	0.9498	0• 9572	0•9572	¥100*9	0°0356	C. C235	0.0264	C= C068
025 025 025 025	5-5474	0.9443	0.030	0.9702	0• 9592	0.9687	0.9687	C. C002	0.0334	G. C220	0+0244	C.CC63
920	5.8522 5.8522 5.8522 6.0460	0.9623	0,0030	0,9794	0•9685	0.9706	0.9706	0. 5654	0.0315	G. C 2 08	G. C230	C• C0 <u>5</u> 3
0200	6.1579 6.1579 6.4578	EE79.0	0400	C. 9846	0.9787	0,9843	0.9843	0.0017	0.0283	C. C186	C. 0204	C. C046
	6-4-618 6-4-518 6-4-518	0. 4857	0• 0020	0 <b>-</b> 9903	0.9889	0.9926	0.9926	0.0038	0.0245	C. C176	C.01.82	C• C038
0 0 0 0 0 0 0 0 0 0 0 0	6.7566	2166*0.	0• 0050	1665.0	0666 •0	+ 1997 +	0.9974	0100*0	0-0211	C. C.157	G. 0166	C• CC29
320	7.0714 7.0714 7.0714				1•0023	1•0032	1•0032	0°C029	0•0172	C. C140	C. C151	C• C023

SINGLE WIRE PITOT-STATIC CROSS

• • • •

WIRE PRCBE

TABLE 26 (continued)

(TOATL)	(STATIC)				*	•	+	÷	+	•
<u>56</u> 6	0• 0050	0. 9972					•	•	C. C127	
			0600.1	1.0094	\$600 <b>*1</b> .	C+0034	0°C132	'C. CI20	•••	C. CQ16
0.036	0\$00\$0	6665*0							C. C11C	
	:		1-0063	1.0143	1.0143	0*0025	0.0100	C. C108		C. C011
5763	0-0020	1.0013							C+ CC95	
			1.0077	1.0168	1.0168	0-0031	0-0057	0*104	2603.COBC	
	•		1.0023						-	

CROSS WIRE PRCBE Single wire prcbe Pitot-Static

Unclassified		· 我吗?要问: "
		READ INSTRUCTIONS
	2 AOVE ACCESSION NO.	BEFORE COMPLETING FORM  A. RECIPIENT'S CATALOG NUMBER
IIHR Report No. 210		
TITLE (and Subtitie)	· · · · ·	5. TYPE OF REPORT & PERIOD COVERE
Thick Axisymmetric Turbulent Bound	ary Layer and	
Near Wake of a Low-Drag Body of Re	volution	6. PERFORMING ORG. REPORT NUMBER
	<u> </u>	IIHR Report No. 210
AUTHOR()	· · ·	6. CONTRACT OR GRANT NUMBER(0)
V.C. Patel and Y.T. Lèe	· · · ·	N00014-75-C-0273
PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Institute of Hydraulic Researc University of Iowa, Iowa City, Io	h wa 52242	
CONTROLLING OFFICE NAME AND ADDRESS	arch and	12. REPORT DATE December 1977
Development Center Dept. of t	he Navy.	19. NUMBER OF PAGES
Bethesda, Maryland 20084	from Controlling Office)	130 15. SECURITY CLASS. (of this Provet)
MONITORING AGENCY NAME & ADDRESSIN BILDRAN		Unclassified
		154. DECLASSIFICATION/DOWNGRADING
DISTRIBUTION STATEMENT (of this Report) Approved for public r	elease, distribu	ution unlimited
DISTRIBUTION STATEMENT (of the Report) Approved for public r DISTRIBUTION STATEMENT (of the abstract enfored in	elease, distribu n Block 20, 11 different free	ution unlimited
DISTRIBUTION STATEMENT (of this Report) Approved for public r DISTRIBUTION STATEMENT (of the abstract enfored in	elease, distribu n Block 20, 11 different from	ution unlimited
DISTRIBUTION STATEMENT (of this Report) Approved for public r DISTRIBUTION STATEMENT (of the abstract enfored in SUPPLEMENTARY NOTES	elease, distribu n Block 20, 11 different free	ution unlimited
DISTRIBUTION STATEMENT (of this Report) Approved for public r DISTRIBUTION STATEMENT (of the abstract enfored in SUPPLEMENTARY NOTES	elease, distribu n Block 20, 11 different from	ution unlimited
DISTRIBUTION STATEMENT (of this Report) Approved for public r DISTRIBUTION STATEMENT (of the abstract enfored in SUPPLEMENTARY NOTES	elease, distribu n Block 20, 11 different from	ution unlimited
DISTRIBUTION STATEMENT (of this Report) Approved for public r DISTRIBUTION STATEMENT (of the abstract enfored in SUPPLEMENTARY NOTES	elease, distribu n Block 20, 11 different from	ution unlimited
DISTRIBUTION STATEMENT (of this Report) Approved for public r DISTRIBUTION STATEMENT (of the abstract entored in SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and Thick turbulent boundary layer and	elease, distribu n Block 20, 11 different fra identify by block number) wake.	Turbulence models
DISTRIBUTION STATEMENT (of this Report) Approved for public r DISTRIBUTION STATEMENT (of the abstract enfored it SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if necessary and Thick turbulent boundary layer and Longitudinal and transverse curvat	elease, distribu n Block 20, 11 different from identify by block number) wake, ures	Turbulence models,
DISTRIBUTION STATEMENT (of this Report) Approved for public r DISTRIBUTION STATEMENT (of the abstract enfored is SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side if mecassary and Thick turbulent boundary layer and Longitudinal and transverse curvat	elease, distribu n Block 20, 11 different from identify by block number) wake, ures,	Turbulence models, Calculation procedures,
DISTRIBUTION STATEMENT (of this Report) Approved for public r DISTRIBUTION STATEMENT (of the ebstrect enfored in SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse eide if necessary and hick turbulent boundary layer and ongitudinal and transverse curvat tatic-pressure variations, ABSTRACT (Continue on reverse eide if necessary and	elease, distribu n Block 20, 11 different from Identify by block number) wake, ures, Ex	ution unlimited m Report) Turbulence models, Calculation procedures, ktra rates of strain.
DISTRIBUTION STATEMENT (of this Report) Approved for public r DISTRIBUTION STATEMENT (of the abstract enfored in SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse elde !! necessary and hick turbulent boundary layer and congitudinal and transverse curvat static-pressure variations, ABSTRACT (Continue on reverse elde !! necessary and Detailed measurements of press and Reynolds stresses were made in he near wake of a low-drag body o graphical as well as tabular form teasurements shed some light on th udinal surface curvatures and pre pment and on the manner in which	elease, distribu <b>Block 20, 11 different from</b> <b>Identify by block number)</b> wake, ures, Endemtify by block number) sure distribution the thick, axis f revolution. The thick of the the thick of the	Turbulence models, Calculation procedures, Ktra rates of strain.
DISTRIBUTION STATEMENT (of this Report) Approved for public r DISTRIBUTION STATEMENT (of the abstract enfored in SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse elde 11 necessary and hick turbulent boundary layer and ongitudinal and transverse curvat tatic-pressure variations, ABSTRACT (Continue on reverse elde 11 necessary and Detailed measurements of pres nd Reynolds stresses were made in he near wake of a low-drag body o raphical as well as tabular form easurements shed some light on th udinal surface curvatures and pre pment and on the manner in which	elease, distribu <b>Block 20, 11 different from</b> <b>Identify by block number)</b> wake, ures, Existentiation the thick, axis f revolution. The thick, axis f revolution. The thick of the	Turbulence models, Calculation procedures, Calculation procedures, Ktra rates of strain.

### Unclassified

# LURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

fully-developed wake. Apart from giving a complete set of data on such an important flow configuration, the measurements should provide a fairly rigorous test case for some of the recent turbulence closure models which claim a level of generality not achieved by the older phenomenological models. The present data have been used to provide an independent check on the accuracy of the simple, integral boundary-layer method proposed by Patel, and its extension to the calculation of the near wake made by Nakayama, Patel and Landweber. Preliminary calculations have also been performed using the differential equations of the thick axisymmetric turbulent boundary layer and a rate equation for the Reynolds stress derived from the turbulent kinetic-energy equation along the lines suggested by Bradshaw and others. By inclusion of recently proposed modifications to account for the effects of the extra rates of strain on the turbulence length scale arising from longitudinal and transverse surface curvatures, it is shown that the boundary layer in the tail region of a body of revolution is dominated by the extra strain rates and that more research is needed to account for them properly even in the most recent calculation procedures.

## Unclassified