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We study a pattern-forming instability in a laser-driven optically thick cloud of cold two-level atoms with

a planar feedback mirror. We develop a theoretical model, enabling a full analysis of transverse patterns in a

medium with saturable nonlinearity, taking into account diffraction within the medium, and both the transmission

and reflection gratings. The focus of the analysis is on the combined treatment of nonlinear propagation in a

diffractively and optically thick medium and the boundary condition given by feedback. We demonstrate explicitly

how diffraction within the medium breaks the degeneracy of Talbot modes inherent in thin-slice models. We

predict the existence of envelope curves bounding all possible pattern-formation thresholds and illustrate their

interaction with threshold curves by experimental observation of a sudden transition between length scales as

mirror displacement is varied.
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I. INTRODUCTION

Self-organization of light and atomic degrees of freedom in

laser-driven systems of cold atoms with optical feedback has in

recent years received considerable attention [1]. In addition to

the longitudinal axis (e.g., of an optical cavity), spatial ordering

can also occur in the plane transverse to the driving laser beam.

Transverse optical self-organization has been studied in

a wide range of nonlinear media during the past 30 years

[2–5]. A particularly simple and fruitful setup is the single-

feedback-mirror (SFM) configuration, where a nonlinear

medium experiences double-pass excitation by a single pump

beam with mirror feedback. Spatial coupling of transversely

separate regions inside the medium is provided by diffraction

[6,7]. Recently, we used this setup to observe long-range

hexagonal ordering in a thermal cold-atom gas, breaking the

continuous spatial symmetries of the initial system [8,9]. This

matches interest in a related scheme for patterns in cold-atom

systems interacting with two independent counterpropagating

input fields [10–14].

Employing cold atoms as optical media offers a high

degree of tunability such that the mechanism of the optical

nonlinearity can be selected by, e.g., the duration of the pump

pulse. For long pulses (greater than 10 μs), with blue detuning,

optomechanical [15,16] density modulations were shown to

be dominant in optimum conditions [8], whereas for shorter

pulses (less than 2 μs), pattern formation was found to be

consistent with the standard two-level electronic nonlinearity

[9]. The results of Ref. [9] constitute the observation of pattern

formation in a system with a saturable electronic two-level

nonlinearity.

As was highlighted in our earlier work, the full analysis

of both qualitative and quantitative features of the trans-

verse patterns in cold atoms demands a departure from

the thin-medium approximation, in which diffraction within
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Zagreb, Croatia.

the medium is assumed negligible in comparison with the

free-space diffraction between the medium and the mirror.

One goal of the present paper is to derive an alternative

thick-medium model of the two-level instability with the

inclusion of diffraction within the nonlinear medium and

to investigate how its predictions compare to experimental

results. The requisite theory is related to that used to analyze

pattern formation in a mirrorless thick medium (slab) with two

counterpropagating (CP) input fields. Such CP systems have

been analyzed for Kerr media by Firth et al. [17] and Geddes

et al. [18], as well as by Muradyan et al. [10], as part of a study

of optomechanical effects in cold atoms.

Our model also includes the simultaneous presence of trans-

mission gratings (purely transverse gratings resulting from

the interference of the pump with copropagating sidebands)

and reflection gratings (wavelength scaled gratings that result

from the interference of counterpropagating beams) in the

presence of a feedback mirror, whereas earlier treatments

only utilized pure transmission gratings [6,19,20]. Two-beam

coupling via pure reflection gratings was included in the

analysis of photorefractive experiments [21].

A system somewhat analogous to the present one was

studied in Ref. [22], where dispersion in the time domain

plays the role of diffraction in the spatial domain. The

analogy is limited, however, because the interacting beams

are copropagating and not counterpropagating, which leads to

analytical differences. More importantly, reflection gratings,

crucial in the cold-atom SFM and CP systems, are necessarily

absent from the system analyzed in Ref. [22].

A key advance in the present paper is that we also include

a full treatment of absorption (and its saturation), not included

in the above-mentioned works. This is necessary to treat the

region of small pump detuning, where absorptive effects were

seen to limit pattern formation in recent experiments [9]. There

is no known analytic solution to the thick-medium threshold

equations in the presence of absorption, but we have developed

an efficient and instructive graphical approach to the numerical

evaluation of threshold curves. A side benefit of our approach

is our demonstration that, as the feedback mirror distance is

varied, all the corresponding threshold curves are bounded by
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FIG. 1. Schematic of the SFM configuration. A linearly polarized

beam is sent into an atomic cloud modeled as a thick slab of length L

(blue) with a nonlinear susceptibility χNL. The transmitted beam is

retroreflected by a mirror (M) with an adjustable displacement DL

beyond the end of the medium. The forward (F ) and backward

(B) propagating beams interfere inside the cloud. The experimental

parameters are a cloud of 87Rb atoms with T = 200 μK driven at

a detuning of δ > 0 from the F = 2 → F ′ = 3 transition of the D2

line, an optical density (base e) in line center equal to 210, and an

effective sample size (FWHM of cloud) L = 8.5 mm [9].

one or more envelope curves. These are as easily calculated as

any single threshold curve and are thus a very effective means

of establishing the existence and extent of instability domains.

Furthermore, we show that the zero-diffraction intercepts of

these envelopes correspond exactly to thin-medium-model

thresholds. This correspondence, the existence of envelope

curves in SFM models, and our graphical gain-circle approach

to numerical evaluation of thresholds are likely to be applicable

to SFM and related problems in a wide variety of nonlinear

optical media.

II. SYSTEM AND MODEL

Figure 1 shows a schematic of our setup. A medium of

length L is illuminated by a laser beam leading to a forward

field F . The transmitted light is retroreflected by a plane mirror

leading to a backward field B. The longitudinal coordinate

is scaled by the medium length L. Hence the normalized

feedback distance D measured from the exit face of the

medium to the mirror is DL in units of distance. [The mirror

distance d used in Ref. [9] is measured from medium center

d = (D + 1/2)L.]

Similar to Muradyan et al. [10], we consider the coun-

terpropagating fields F and B to be coupled by a nonlinear

susceptibility

χNL = −
6π

k3
na

2δ/Ŵ − i

1 + 4δ2/Ŵ2

1

1 + I/Isδ

. (1)

Here na is the atomic density (considered constant here) and

I is the intensity, which will be a standing wave: I/Isδ =
|Feikz + Be−ikz|2. Fields F and B are conveniently scaled

such that their modulus squared equals the intensity scaled to

the saturation intensity at the detuning investigated. We can

conveniently rewrite (1) as

χNL = χl

1

1 + I/Isδ

, (2)

where χl is the linear susceptibility.

We use a time-independent susceptibility approach to the

two-level nonlinearity. This precludes consideration of growth

rates or oscillatory instabilities [23], but leads to reasonably

tractable and transparent models that allow the parameter

dependences of pattern thresholds to be investigated. We

include absorption so as to allow for arbitrary atom-field

detunings. We include reflection grating to all orders. This

analysis will be applied to the calculation of thresholds for

transverse instability in the full thick-medium two-level model

in Sec. IV and subsequently. Various limits and approximations

of the full model will be discussed so as to connect with earlier

work. These include the Kerr limit, used for the thick-medium

calculations presented in Fig. 3 B of [8]. In Ref. [9] preliminary

two-level results were presented for two cases: quasi-Kerr

(i.e., large detuning, neglecting absorption, but not saturation

of the refractive nonlinearity) for the pattern size vs mirror

displacement and absorptive thin slice for the threshold vs

atomic detuning.

The next step is to expand the nonlinear factor in a Fourier

series

1

1 + I/Isδ

= σ0 + σ+e2ikz + σ−e−2ikz + · · · . (3)

The higher-order terms (denoted by an ellipsis) do not lead

to any phase-matched couplings and so can reasonably be

neglected whatever the intensity. The coefficients σ± evidently

describe a 2k longitudinal modulation of the susceptibility, i.e.,

a reflection (Bragg) grating, which will scatter the forward field

into the backward one and vice versa. The field equations (M3)

of [10] can then be written as

∂F

∂z
−

i

2k
∇2

⊥F = i
k

2
χl(σ0F + σ+B),

∂B

∂z
+

i

2k
∇2

⊥B = −i
k

2
χl(σ−F + σ0B). (4)

To calculate σ0,±, we write the exact expansion of the

saturation term (3) as

1

1 + I/Isδ

=
1

1 + p + q
[1 + r(e+ + e∗

+)]−1, (5)

where |F (z)|2 = p(z), |B(z)|2 = q(z), and e+ = e2ikzei(θF −θB ),

with θF,B = arg(F,B). Variables p and q represent the inten-

sities of forward and backward fields scaled to the saturation

intensity at the detuning investigated. We have introduced

a coupling parameter r = h(pq)1/2/(1 + p + q), where the

grating parameter h [17] allows consistent consideration of

the cases of no reflection grating (h = 0) and of a full grating

(h = 1). In the former case σ± = 0, which would correspond

to the standing-wave modulation of the susceptibility being

eliminated by drift or diffusion. Partial elimination could be

accommodated by intermediate values of h, but would need

some associated physical justification.

The series expansion of [1 + r(e+ + e∗
+)]−1 is always

convergent, because r < 1/2. Even terms contribute to σ0,
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odd terms to σ±. Using the binomial theorem, we find

(1 + p + q)σ0 = 1 + 2r2 + 6r4 + 20r6 + · · · ,

(1 + p + q)σ+ = −ei(θF −θB )(r + 3r3 + 10r5 + · · · ), (6)

with σ− = σ ∗
+. The series in Eq. (6) can be summed, leading

to a set of field evolution equations

∂F

∂z
−

i

2k
∇2

⊥F

= i
k

2
χlF

(

1 − (1 − 4r2)−1/2

2hp
+

(1 − 4r2)−1/2

1 + p + q

)

,

∂B

∂z
+

i

2k
∇2

⊥B

= −i
k

2
χlB

(

1 − (1 − 4r2)−1/2

2hq
+

(1 − 4r2)−1/2

1 + p + q

)

. (7)

Several papers have obtained analytic solutions (in the

plane-wave limit) to (7). For our purposes, the papers of

van Wonderen et al. [24,25] (who were addressing optical

bistability in a Fabry-Pérot cavity) are most directly relevant

and underpin the analytic zero-order (no diffraction) solution

obtained in the next section.

For finite h, there is explicit nonreciprocity, since the

susceptibilities for F and B are different, because of the

susceptibility grating. Quantitatively, the nonreciprocity is

entirely due to the denominator, respectively 2hp and 2hq,

of the first term in the large parentheses on the right-hand side

of (7), the other terms all being symmetric in p and q. In the

limit of no grating h,r → 0, both terms in large parentheses

reduce to the expected saturation denominator 1 + s, where the

total intensity s = p + q. Even with a susceptibility grating

present, the amplitudes F and B are slowly varying in z,

allowing the propagation in the medium to be approximated

by comparatively few longitudinal spatial steps.

In all the cases discussed above, we can write the two

propagation equations in the form

∂F

∂z
−

iL

2k
∇2

⊥F = −
αlL

2
(1 + i
)A(p,q)F,

∂B

∂z
+

iL

2k
∇2

⊥B =
αlL

2
(1 + i
)A(q,p)B, (8)

where we have scaled z to the thickness L of the medium,

αl is the linear absorption coefficient, and 
 (=2δ/Ŵ) is the

scaled detuning. For a two-level system, the linear absorption

coefficient can be written as αl = α0/(1 + 
2), where α0 is the

on-resonance absorption and α0L is the on-resonance optical

density (OD), which is an important figure of merit for a cold-

atom cloud (equal to 210 for the cloud in Ref. [9]; see the

caption to Fig. 1).

The function A(p,q) describes the nonlinearity of the

atomic susceptibility, as modeled by (7), by some approxi-

mation thereto, or some other model, including other optical

systems with phase-independent interaction of counterpropa-

gating beams [21]. By definition, A(0,0) = 1, but A(p,q) �=
A(q,p) in general, because of nonreciprocity due to standing-

wave effects. The cubic model [A(p,q) = 1 − p − (1 + h)q]

is the simplest example, explicitly nonreciprocal if h �= 0.

III. ZERO-ORDER EQUATIONS AND SOLUTIONS

To find the pattern-formation thresholds, we first drop

diffraction and solve the plane-wave zero-order problem in

which F and B depend on z alone. From (8) it follows that the

plane-wave intensities p(z) and q(z) obey the real equations

dp

dz
= −αlLA(p,q)p,

dq

dz
= αlLA(q,p)q, (9)

leading to the expected exponential absorption of the intensi-

ties in the linear limit.

We define the input intensity p(0) = p0 and transmitted

intensity p(1) = p1 and similarly q(0) = q0 and q(1) = q1.

The boundary conditions of the SFM system are q1 = Rp1,

where R is the mirror reflection coefficient. We now solve (9)

for various two-level models.

For h = 0, A = 1/(1 + s) = 1/(1 + p + q) is symmetric

in its arguments and it follows that the product of the

counterpropagating intensities (and indeed of the fields, FB) is

independent of z, simplifying the analysis. We set p(z)q(z) =
K , where K is constant, and thus K = p1q1 = Rp2

1 for a

feedback mirror of reflectivity R. It follows that the backward

intensity q(z) is given by K/p(z), enabling the first equation

of (9) to be written in terms of p(z) alone. It can then be

integrated analytically, giving

ln(p/p0) + p − K/p − p0 + K/p0 + αlLz = 0 (10)

and hence, for the transmitted power p1 (using the explicit

SFM value of K),

ln(p1/p0) + (1 − R)p1 = p0 − Rp2
1/p0 − αlL. (11)

The all-grating system given by (7) also possesses a

propagation constant for h = 1, this time given by K =
W (z) − s(z), where W (z) = (1 + 2s + ξ 2)1/2, and ξ (z) =
p(z) − q(z). Essentially the same conservation law was noted

by van Wonderen et al. in the context of optical bistability

in a Fabry-Pérot resonator [24], for which the propagation

equations are identical to the present case, though the boundary

conditions are different.

In terms of W , s, and ξ the all-grating function Aall(p,q)

becomes Aall = [1 + (ξ − 1)/W ]/(s + ξ ), with its transpose

Aall(q,p) obtained by ξ → −ξ . Recasting Eqs. (9), the

propagation equations for s and ξ take a fairly simple form

ds

dz
= −αlLξ/W,

dξ

dz
= −αlL(1 − 1/W ), (12)

from which one easily deduces dW/dz = ds/dz and thus the

constancy of K = W (z) − s(z). One can then obtain an inte-

grable differential equation in just one variable. For example,

by using the definitions of W and K to express W in terms of

K and ξ , the second of Eqs. (12) is easily integrated to yield

ξ + ln[ξ + (ξ 2 + 2 − 2K)1/2] + αlLz = const. (13)

For the important case R = 1, we have s1 = 2p1 and ξ1 = 0,

hence W1 = (1 + 4p1)1/2 and thus K = (1 + 4p1)1/2 − 2p1.

Using this data in Eq. (13) yields an implicit expression for ξ0

in terms of K (and thus p1):

ξ0 + ln
[

ξ0 +
(

ξ 2
0 + 2 − 2K

)1/2] − 1
2

ln(2 − 2K) = αlL.

(14)
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FIG. 2. Dependence of zero-order intensities p,q, scaled to

saturation intensity Isδ , on the longitudinal coordinate z, scaled

to medium length L, in a two-level medium with on-resonance

optical density equal to 210 (see Fig. 1): forward p(z) (dashed lines)

and backward q(z) (solid lines) for several cases. The four lower

curves are for output p(1) = 0.3, δ/Ŵ = 5, and an R = 1 mirror so

that q(1) = 0.3: Top (green dashed) and lowest (red solid) curves

are for h = 0, i.e., no reflection grating. The inner curves are for

h = 1: upper (blue dashed) and lower (light orange solid). The two

uppermost (black dashed and orange solid) curves are for output

p(1) = 1.2, larger detuning δ/Ŵ = 10, and h = 1, to illustrate a case

where absorption effects might be considered negligible, leading to a

quasi-Kerr approximation to the two-level response.

Given ξ0, it is straightforward to calculate W0 and s0 and thus

the input intensity p0 and the backward output intensity q0, all

in terms of the given transmitted intensity p1, thus completing

the solution of the plane-wave problem for the all-grating

model.

The Muradyan et al. model (MM) is obtained by restricting

(6) to first order in r with h = 1, leading to A(p,q) = (1 +
p)/(1 + s)2. We can again find a propagation constant, in this

case given by K = pq/(1 + s), again leading to an integrable

first-order equation in p(z) alone. It turns out that the MM

transmission shows bistability, i.e., the output p1 is not a single-

valued function of the input p0, if αlL is big enough.

This is surprising and counterintuitive, and turns out to

be a flaw in the model: Including more terms in the series

expansion (6) eventually makes p1 single valued. In particular,

the all-grating formula (13) and its R = 1 subcase (14) give

single-valued transmission characteristics. We therefore drop

further detailed consideration of the MM.

Figure 2 illustrates the z dependence of the zero-order

intensities in a two-level medium for several cases, with OD

equal to 210 as in the experiment illustrated in Fig. 1. The

lowest group of curves is for moderately high absorption

αlL ∼ 2 at δ/Ŵ = 5 and is chosen to illustrate the two cases

h = 0 [described by (10)] and h = 1, where the z dependence

may be deduced from (13). To assist comparison, we assume

the same output p1 = 0.3 and a perfect mirror so that q1 = 0.3

also. The differences are fairly slight, the no-grating case

having a slightly higher effective absorption for both forward

and backward intensities. As we will see, there is a much

more profound difference in the instability thresholds. We also

display full-grating curves for larger detuning δ/Ŵ = 10 to

illustrate a case where absorption effects might be considered

negligible, leading to a quasi-Kerr approximation to the two-

level response, which we will analyze below.

IV. TRANSVERSE PERTURBATIONS

We now assume that a solution has been found for the

plane-wave case: F = F0(z) and B = B0(z), obeying appro-

priate longitudinal boundary conditions. This solution may be

numerical or a solution to some special case or approximate

version of (8). We now turn our attention to the stability of

such a plane-wave solution against transverse perturbations.

We consider perturbations of the forms F = F0(1 +
f cos(Qx)) and B = B0(1 + b cos(Qx)), where (f,b) are

complex (z-dependent) amplitudes of the transverse mode

function cos(Qx), chosen without loss of generality to respect

the transverse symmetries of (8) and the mirror boundary

conditions. The transverse perturbation has wave vector Q,

corresponding to a diffraction angle Q/k in the far field.

We define a diffraction parameter θ = Q2L/2k, physically

the phase slippage between the f and F0 in traversing the

cloud. Because Q is experimentally a free parameter, so is θ ,

and we have to calculate threshold intensities as a function

of θ , anticipating that the Q corresponding to the lowest

threshold will be dominant in any experiment, especially a

pulsed experiment.

We assume that the fields (f,b) are time independent,

adequate to calculate the threshold of a zero-frequency

pattern-forming (Turing) instability at wave vector Q. To find

Hopf instabilities, or to properly account for the dynamical

behavior of the field-atom system, we would have to start from

the Maxwell-Bloch equations rather than our susceptibility

model. It is worth mentioning that van Wonderen and Suttorp,

in a paper on dispersive optical bistability [25], performed a

perturbation analysis of the full Maxwell-Bloch equations with

all grating orders included (though without transverse effects).

The resulting model is very involved and beyond our present

scope. Meantime, we are content to address the Turing pattern

threshold problem.

Within this constraint, we can say nothing about the nature

and symmetry of the pattern that actually forms once threshold

is exceeded. However, we know that hexagonal patterns are

generic in systems of the type under consideration and indeed

are the dominant pattern observed in the experiments reported

in Ref. [9]. In a sense, therefore, threshold calculation is the

most important step towards establishment of a theoretical

underpinning for the observations of Camara et al. [9] and

related experiments. Assuming |f |,|b| ≪ 1, we thus obtain

the linearized propagation equations

df

dz
= −iθf − αlL(1 + i
)(A11f

′ + A12b
′),

db

dz
= iθb + αlL(1 + i
)(A21f

′ + A22b
′). (15)

Here f = f ′ + if ′′, b = b′ + ib′′, and the real quantities

Aij are defined as A11 = p
∂A(p,q)

∂p
, A12 = q

∂A(p,q)

∂q
, A21 =

p
∂A(q,p)

∂p
, and A22 = q

∂A(q,p)

∂q
and form a 2 × 2 matrix Â.

In the presence of absorption, the elements of Â are z de-

pendent, for example, obeying the zero-order solutions derived
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above for various models, and usually no analytic solution

for f (z),b(z) is available, requiring a resort to numerics.

Below we will consider both numerical investigations of the

full (absorptive) model and simpler models. These include

the quasi-Kerr case, in which the detuning is large enough

to neglect the absorption, enabling analytic solution of the

perturbation equations.

We have to solve (15) subject to appropriate boundary

conditions. As there is no input field perturbation, we set

f0 = f (0) = 0. The counterpropagating perturbation field at

z = 0, b0 = b(0), is physically determined by its value at

z = 1, but the system (15) is mathematically well defined

and solvable for any given b0. Given initial conditions

(f,b)z=0 = (0,b0), numerical integration of (15), using the

known functions p(z) = |F0|2 and q(z) = |B0|2, generates a

pair of complex output perturbation fields at z = 1, namely,

(f1,b1). For an acceptable solution, these fields must obey

appropriate physical boundary conditions at z = 1. For the

SFM system these are given by f = b [note that this is

independent of mirror reflectivity R, because of the definition

of (f,b) as relative perturbations].

Turning now to the solution of (15), the fact that f has

to grow through the medium makes it useful to define an

output gain g = f1/b1. Since f = b on the mirror of an SFM

system, we immediately conclude that |g| = 1 is a necessary

condition for SFM instability. We can expect that g ∼ 0 at low

intensities, when the nonlinearity is negligible. As the intensity

is increased, f and b begin to couple through the interaction

matrix Â and we can expect the gain to increase, leading

to instability if the parameters permit. As mentioned, our

present approach cannot describe behavior above threshold,

but if the nonlinearity saturates, as is true for a two-level

system, |g| may begin to decrease for large enough input

intensity. Then the system may restabilize and the pattern will

disappear. This scenario is illustrated in Fig. 3, which compares

the threshold domains for two two-level absorptive models

with experimental data [9] on the detuning behavior of the

diffracted power observed under pattern-formation conditions

in a cold Rb cloud with single feedback mirror. There is a

minimum and a maximum detuning for the observation of the

SFM instability, while between these limits there is both a

lower and an upper threshold power, with patterns observed

only at intermediate powers. The computed threshold loops in

Fig. 3 correspond to approximate thin-medium models with

and without short-period (reflection) gratings. Note that the

presence of reflection gratings has a much larger effect on

the instability thresholds (about a factor of 2) than on the

zero-order intensities, where the effect is modest (Fig. 2).

V. GAIN CIRCLE

The transverse gain function g = f1/b1 is complex and its

phase must satisfy the boundary conditions at z = 1, which

depend on the mirror displacement. If the mirror displacement

is DL (Fig. 1), then the boundary condition is b1 = e−2iψDf1,

where ψD = Dθ . (Note that D can be negative if the feedback

optics involves a telescope.) Thus the complete boundary

condition is that g = e2iψD , i.e., g must lie at a point, the

threshold point, on the unit circle in the complex plane.

FIG. 3. Two-level instability domain (δ > 0) reported in Ref. [9].

Diffracted power Pd is measured as a function of δ > 0 (note that 
 =
2δ/Ŵ) and input intensity I . Note the logarithmic horizontal scale.

The dotted loops indicate maximal instability domains calculated

in the thin-medium approximation as described in Ref. [9]: closed

circles, domain calculated from (14), i.e., with all reflection gratings

included (h = 1); open circles, domain calculated from (11), i.e.,

with no reflection gratings (h = 0). Both dotted traces are rescaled to

absolute values of intensity and detuning.

Before looking at specific examples, there are some general

considerations that give insight into methodology, but also

into the physics. Because (15) is a linear system, its solutions

obey the principle of superposition. Hence, if input condition

(f0,b0) = (0,1) generates outputs (f1,b1) = (fr ,br ) and input

condition (f0,b0) = (0,i) generates outputs (f1,b1) = (fi,bi),

then an arbitrary input condition (f0,b0) = (0,u + iv), with

(u,v) real, generates outputs (f1,b1) = (ufr + vfi,ubr + vbi).

The gain is then given by g = g(u,v) = (ufr + vfi)/(ubr +
vbi) and so g(u,v) describes all the possible values that the gain

can take as b0 varies. Thus, for any given physical parameters,

one need only obtain the pairs (fr ,br ) and (fi,bi) and then

testing for the SFM instability is a matter of algebra.

A graphical approach to calculation of the gain function

is convenient and instructive. First, some algebra shows that

g(u,v) is given by a simple analytic formula in terms of gr =
g(1,0) = fr/br and gi = g(0,1) = fi/bi :

g(u,v) = gi + (gr − gi)/(1 + ceiφ0 ), (16)

where c = (u/v)|(bi/br )| is a real parameter, while φ0 is the

phase of bi/br . All possible gain values as b0 is varied can thus

be calculated from the variation of (1 + ceiφ0 )−1 as c traverses

all real values. This locus turns out to be a circle in the complex

plane, with center (1 − e2iφ0 )−1 and radius |1 − e2iφ0 |−1. This

circle evidently passes through both the origin (for c infinite)

and (1,0) (for c = 0).

Since a circle in the complex plane remains a circle when

multiplied by a complex number and translated by another,

it follows that the locus of the gain function is also a circle,
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FIG. 4. Illustration of transverse gain circles (see the text)

calculated from (15) for different input intensities. The parameters

here are OD equal to 210, δ/Ŵ = 2, and θ = 2. The unit circle

centered on the origin is the locus of the feedback phase as mirror

displacement D is varied. Lying on it, the red dot is the feedback

phase for the particular case D = −1.3. The displaced circles are the

loci of transverse gain for three cases: (a) The smallest gain circle (red

solid) lies wholly inside the unit circle and so the system is always

below threshold for this case (scaled input intensity p0 = 7.905 64),

(b) the middle gain circle (green dashed) touches the unit circle and

so the system reaches threshold for one value of D (p0 = 8.1266),

and (c) the largest gain circle (blue dotted) intersects the unit circle

at two well-spaced points and so the system is above threshold for a

wide range of D values, including D = −1.3 (p0 = 8.297 54). Points

on the arc of the touching circle corresponding to gr (blue) and gi

(brown) are also shown. Its center is also marked with a green dot.

which we term the gain circle, given by

g(φ) = gi + (gr − gi)(1 − e2iφ)/(1 − e2iφ0 ), (17)

where the phase angle 0 � φ < π is a more convenient

parameter than (u,v) or c. Clearly g(0) = gi and g(φ0) = gr , so

both these values lie on the gain circle, as they must. The center

of the gain circle lies at gi + (gr − gi)/(1 − e2iφ0 ), while its

radius is |gr − gi |/|1 − e2iφ0 |. Figure 4 demonstrates that both

the center and the radius depend on the system parameters, in

particular the input intensity.

As mentioned, a necessary condition for SFM instability is

|g| = 1, which requires that the gain circle intersects (or at least

touches) the unit circle. For finite θ the phase of the threshold

point, the feedback phase, will vary as D is varied, causing the

threshold point to trace out all or part of the unit circle. Hence

the intersections, if any, of the gain circle with the unit circle

define instability thresholds for the mirror displacement(s) D

corresponding to the intersection(s).

Figure 4 illustrates typical cases for the system (15). As

expected, the gain circle lies wholly within the unit circle

when the input intensity is low, so there are no intersections

and thus no instability. At higher intensity, the gain circle

intersects the unit circle at two points and there is instability

for all mirror displacements D for which the feedback phase

lies on the arc between the two intersections for which the gain

circle lies outside the unit circle. Because the feedback phase

e2iψD is periodic in D, such thresholds are periodic in mirror

displacement, with a period that depends on Q through θ .

This is an example of the Talbot effect, whereby a transversely

periodic light field self-reconstructs under propagation through

multiples of the Talbot period zT = 4πk/Q2 [26,27]. Such D

periodicity of instability thresholds is observed experimentally

and will be discussed in more detail below.

An interesting and important intermediate case illustrated

in Fig. 4 occurs when the gain circle touches the unit circle.

This corresponds to the lowest possible threshold for any D at

these parameters (modulo Talbot recurrences). This minimum

threshold will be achieved for some value of D if it is varied

over a Talbot period. The implication is that the locus (or loci)

in the (θ,p0) plane of tangencies between the gain circle and

the unit circle forms an envelope curve (or curves) bounding

the set of threshold curves in the (θ,p0) plane corresponding to

any set of D values. Given the analytic formula (17) for the gain

circle, it is straightforward to find (θ,p0) pairs such that the

gain circle touches the unit circle, thus tracing out envelope

curves in the (θ,p0) plane. It is similarly straightforward to

find p0 and θ such that the gain circle intersects the unit

circle at the feedback phase corresponding to any given mirror

displacement D and thus to trace out threshold curves for

that D. Examples, and implications, of envelope and threshold

curves for various models will be presented below.

VI. TWO-LEVEL SYSTEM ENVELOPES AND

THRESHOLDS

As a first detailed example we consider the two-level system

to be fairly close to resonance, with blue detuning δ/Ŵ = 1.5.

For optical density 210 (Fig. 3) this corresponds to αlL =
21, i.e., the linear absorption is very high. Such conditions

have usually been modeled in thin-medium or no-grating

approximations. Figure 5 shows the envelope curve for this

case, together with the threshold for the mirror displacement

D = 0, calculated using the gain circle technique. As might

be expected, the minimum threshold is rather high, p0 ∼ 17,

which means that substantial saturation is required: The output

intensity p1 is of order unity in the low-threshold region. There

is also an upper threshold; essentially the bleaching of the

absorption destroys the nonlinearity. Here p1 is of the same

order as p0. As predicted, the threshold curve lies inside the

envelope curve, touching it at closest approach.

Whereas the D = 0 threshold curve avoids θ = 0, which

is typical behavior for SFM models, the envelope seems to

have finite intercepts at θ = 0. To interpret this, we note that

the feedback phase θD tends to zero as θ → 0 for any finite

D. Thus the corresponding threshold point gets trapped close

to the positive real axis, away from the envelope-defining

contact between the gain circle and the unit circle, which will

generally occur at a finite phase angle. If we also allow D to

increase without limit, however, a finite feedback phase, and

hence finite thresholds, can be sustained as θ → 0. Now the

thin-medium approximation, in which the diffraction within
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FIG. 5. Threshold and envelope curves (scaled to Isδ) calculated

from (15) for a two-level system with all gratings included (h = 1)

with an R = 1 feedback mirror. The scaled input intensity p0 is

plotted against diffraction parameter θ = Q2L/2k. The outer (blue)

curve is the envelope curve, the limiting threshold for any mirror

displacement; the inner (orange) curve is the threshold curve for

mirror displacement D = 0, which, close to its maximum, touches

the envelope curve. It also touches the envelope at low values of p0,

in fact almost coinciding with the envelope curve over a wide range

of θ . The envelope curve has finite intercepts with the θ = 0 axis (see

the text for discussion). The other parameters are an OD of 210 and

δ/Ŵ = 1.5.

the medium is considered negligible compared to that in

the feedback loop, implies that D ∼ d/L diverges. Thus we

identify the intercept of the envelope with the θ axis as exactly

the thin-medium limit. Indeed, this is confirmed for our case.

The intercepts of the envelope found using the gain circle

technique coincide exactly with those we calculated previously

by direct use of the thin-medium approach and the results of

which were presented in Ref. [9]. We will return to this issue

below, when we consider other models.

Another question arising from the finite intercept of the

envelope curve is how to interpret its continuation to negative

θ , which presents no numerical difficulties (for diffractively

thin media negative feedback distances were considered in

Ref. [27]). If we look at the structure of (15), we observe that

simultaneously changing the signs of θ and 
 has the effect of

transforming the equations into their complex conjugates. The

boundary condition is also conjugated. Thus we can interpret

the continuation of the envelope curve(s) to negative θ as cor-

responding to the opposite sign of detuning. We will routinely

take advantage of this symmetry to present result for both signs

of detuning in a single diagram. An important corollary is that

SFM thresholds are equal for both signs of detuning in the

thin-medium limit for all models described by (15).

In Fig. 6 we use this tuning-diffraction correspondence

to extend the envelope and also to display threshold curves

for mirror displacement D = −1.3, which corresponds to the

experimental results of Fig. 3. The extended envelope displays

a huge red-blue tuning asymmetry in the upper threshold, and a

smaller one in the lower threshold, for which blue tuning gives

the lowest thresholds, in accord with experimental experience.

FIG. 6. Threshold and envelope curves (scaled to Isδ) calculated

from (15) for the same conditions as in Fig. 5, except that the

feedback mirror displacement is D = −1.3, which corresponds to

the experimental results of Fig. 3. The scaled input intensity p0 is

plotted (here on a logarithmic scale, for clarity) against the diffraction

parameter θ = Q2L/2k, which is continued to negative θ (see the

text) so as to present results for red, as well as blue, atomic tuning.

The envelope curve, the continuation to negative θ of that in Fig. 5,

shows a large red-blue tuning asymmetry. Inside the envelope is a

set of discrete closed threshold loops for D = −1.3, each of which

touches the envelope above and below.

The threshold curves for fixed D = −1.3 are very different

from that for D = 0 in Fig. 5, being a discrete set of closed

loops, which each touch the envelope twice, close to their

upper and lower extrema.

Increasing the magnitude of the detuning, both the absorp-

tive and the dispersive nonlinearity decrease, but at different

rates, with the absorption decreasing faster, which favors

pattern formation. Figure 3 shows that the pattern threshold

intensity is a minimum and its intensity range a maximum

for detunings of magnitude ∼5. Figure 7 illustrates envelope

curves and threshold curves for D = −1.3 vs diffraction

parameter for δ/Ŵ = 5, with other parameters as before. For

this case, both the envelope and the fixed-D threshold curves

seem to be open to large |θ |, indicating that low (but not

lowest) thresholds persist to large diffraction angles (divergent

Q). This is not unexpected, because the coupling of the f

and b∗ components of the transverse perturbations is phase

conjugate (PC) in nature and so is phase matched for all

diffraction angles. As was discussed for counterpropagation

in Kerr media by Firth et al. [17], at small diffraction angles

the non-phase-matched couplings of f and f ∗ and of f and b

(and analogously for b couplings) give additional oscillatory

contributions to the transverse gain and can lead to thresholds

that are significantly below the PC oscillation threshold [28].

Similar considerations apply in our case, though the SFM

boundary conditions and the two-level nonlinearity lead to

quantitative differences.

Figure 7 displays oscillations in both the envelope and

the threshold curves, for both signs of detuning, though

more prominent for red detuning. The D = −1.3 threshold

curves are again wholly contained by the envelope curves,

with touching contact at several points. There are several
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FIG. 7. Threshold and envelope curves (scaled to Isδ) calculated

from (15) for the same conditions as in Fig. 6, except δ/Ŵ = 5.

The scaled input intensity p0 is plotted (again on a logarithmic

scale, for clarity) against the diffraction parameter θ = Q2L/2k,

which is continued to negative θ (see the text) so as to present

results for red, as well as blue, atomic tuning. Upper and lower

portions of both envelope and threshold curves are well separated for

large θ , asymptotically corresponding to phase-conjugate oscillation

thresholds.

near contacts, linked to the complexity of the system in

such strongly nonlinear regions. The minimum and maximum

thresholds are associated with tangencies in all cases, however.

Further increasing the detuning leads to a fall-off in

nonlinearity and the envelopes begin to close again, PC oscil-

lation becomes impossible, and eventually the SFM transverse

instability also disappears, at a detuning that depends on optical

density. Figure 8 shows the onset of this process, for detuning

δ/Ŵ = 13.1, with other parameters as in the previous figures.

At such large detunings, absorption becomes small and it is

of interest to compare Fig. 8 with the corresponding results in

the quasi-Kerr case (discussed in the next section), in which

FIG. 8. Threshold and envelope curves (scaled to Isδ) calculated

from (15) for the same conditions as in Fig. 6, except δ/Ŵ = 13.1.

Note that p0 is here plotted on a linear scale.
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FIG. 9. Two-level instability domain, range of threshold input

intensity p0 in terms of δ/Ŵ, with a logarithmic horizontal scale,

as in Fig. 3. The larger loop (black circles) is as presented in

Ref. [9], calculated in the thin-medium approximation for R = 1,

but identifiable as the θ = 0 envelope (see the text); the smaller loop

(red solid) is calculated from (15), i.e., with all reflection gratings

included (h = 1) and for R = 0.95 and D = −1.3. The OD is equal

to 210. The contour plot loops show experimental data of Fig. 3, for

comparison.

absorption is neglected, enabling analytic solution to the thus

simplified version of the system (15).

Similar threshold calculations enable the minimum and

maximum thresholds to be found over the full range of

detuning for which instability exists for a given configuration.

Choosing parameters D = −1.3 and R = 0.95 to align with

the recent experiment [9], we have calculated the instability

domain using the above methods based on the full thick-

medium model (15). Results are shown in Fig. 9. The

instability domain is broadly similar to that found for the

thin-slice model used in Fig. 3, though with a significantly

smaller upper threshold. As mentioned above, the thin-medium

threshold corresponds precisely to the θ = 0 intercepts of the

envelope curves. In all the tuning cases shown (Figs. 6–8),

the upper intercept is substantially above the highest upper

threshold for fixed D = −1.3 and Fig. 9 shows this to be the

case for all tunings. The lower threshold, which is perhaps

the most interesting experimentally, is very similar for both

thin-medium and fixed-D cases.

The agreement with experiment of the all-grating models

is rather satisfactory, bearing in mind that the theory only

calculates threshold conditions, while the experiment detects

diffracted power only if the perturbation gain is large enough

to build a strong pattern from noise within the microsecond

or so duration of the pump pulse. Moreover, we note that the

no-grating threshold domain in Fig. 3 is smaller than that in

which a transverse structure is observed. This provides firm

evidence that reflection gratings are present in the cold-atom

cloud, in agreement with expectations based on the inability
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of transport mechanisms to eliminate susceptibility gratings at

such low temperatures when such short input pulses are used.

The comparison between experimental and theoretical

curves is further complicated by the fact that the theory uses a

uniform plane wave and the experiment a Gaussian input beam.

The Fourier transform to extract the power in the modulation

was performed over an area with diameter equal to the beam

waist radius (i.e., at the 60% power point). The pump power

reported in Fig. 9 is the peak power. As a certain area of

at least two pattern periods needs to cross the threshold for

a sizable effect, it is understandable that the experimentally

detected threshold is higher than the predicted one. At the

high-intensity threshold, the center of the beam will become

stable again but modulation still exists in the wings. Hence it

makes sense that the plane-wave instability closes before the

experimentally obtained threshold.

VII. QUASI-KERR CASE

While the above technique based on the gain circle is

general and flexible, it yields little in the way of analytic

insight in cases where strong nonlinear absorption leads to

large and complicated changes in the forward and backward

intensities in propagation through the medium. If we restrict

consideration to large enough detuning that the absorption

can be considered negligible, however, it follows that p and

q are constant in the medium and analytic solution to this

quasi-Kerr approximation to the thick-medium model (15) is

possible. Formally, in such a model, we suppose that |
| is

large enough that αlL can be neglected, but with αl
L finite,

so that the nonlinearity is purely refractive, as is the case for

a true Kerr medium, in which the refractive index changes

linearly with intensity.

In the quasi-Kerr approximation the matrix Â has constant

coefficients and Eqs. (15) become

df

dz
= −iθf − iαlL
(A11f

′ + A12b
′),

db

dz
= iθb + iαlL
(A21f

′ + A22b
′). (18)

Evidently, the combination αlL
 is an important strength

parameter for the nonlinearity. Bearing in mind that αl =
α0/(1 + 
2), with 
 large by assumption, there is an obvious

trade-off between nonlinearity and absorption. We will pro-

ceed by solving (18), analytically where possible, and testing

against the results derived above for the “full” two-level model

with absorption.

For feedback mirror boundary conditions, we have q = Rp.

For the symmetric equal intensity case (q = p), A11 = A22 =
Asym and A12 = A21 = GAsym. The matrix Â then has a simple

symmetric form

Âsym = Asym

(

1 G

G 1

)

.

Both Asym and G are in general functions of s = 2p, but are

independent of z.

We now define ψ2
1,2 = θ (θ + κφ1,2), where the effective

Kerr coefficient κ = αlL
. Here φ1 and φ2 are the eigenvalues

of Â, chosen such that (φ1,φ2) → Asym(1 − G,1 + G) (the

eigenvalues of Âsym) as q → p. Thus defined ψ1,2 coincide

exactly with the quantities ψ1,2 used in Refs. [17,18] in

analyzing the Kerr CP case. It follows that the analysis

developed in these papers for the symmetrically pumped CP

Kerr problem extends to the present quasi-Kerr case, in which

the strength of both the nonlinearity and the grating coupling

G can be intensity dependent. Detailed consideration of the CP

problem for a two-level system is a subject for future work.

We now present explicit forms of the matrix Â for various

models of interest here. For the Kerr case we have

ÂKerr = −
(

p (1 + h)q

(1 + h)p q

)

. (19)

For p = q this leads to Asym = −p and G = 1 + h as expected.

For the MM we obtain

ÂMM = −
1

(1 + s)3

(

p(1 + s) − 2hpq (1 + h)q(1 + s) − 2hq2

(1 + h)p(1 + s) − 2hp2 q(1 + s) − 2hpq

)

. (20)

For p = q = s/2 and h = 1 this expression for ÂMM leads to

Asym = − p

(1+s)3 , while we find an intensity-dependent grating

factor G = 2 + s. This differs from the results of [10], wherein

the given formulas imply G = 2.

The general function A given in Eq. (7) also leads to explicit

expressions for the matrix Âall. In the absence of grating terms,

i.e., for h = 0, it simplifies to

Âh=0 = −
1

(1 + s)2

(

p q

p q

)

,

which leads to Asym = − p

(1+s)2 . Here G = 1, as expected,

implying a zero eigenvalue for Âh=0 and hence ψ1 = θ . (The

MM gives identical results for h = 0.)

With all-grating terms included, i.e., for h = 1, we obtain

Âall =
(

(1 + s)/W 3 − A −2q/W 3

−2p/W 3 (1 + s)/W 3 − AT

)

, (21)

where AT (p,q) = A(q,p). For equal intensities W =√
1 + 2s and ξ = 0. Some calculation then shows that G

is approximately 2 + 2s for small s. For larger s, however,
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FIG. 10. Threshold and envelope curves (scaled to Isδ): blue

dashed curves, envelope curves calculated from (23) for a two-level

medium described by Âall, with h = 1, a quasi-Kerr coefficient

|αlL
| = 8, and detuning δ/Ŵ = 13.1; orange solid curves, thresh-

old curves with a feedback mirror at negative effective distance

(D = −1.3) from the end of the medium, which touches the envelope

curves.

there is a strong departure from Kerr-like behavior, in that A11

changes sign at s = 1 +
√

2, and it follows that G is negative

for higher values of s.

Using analysis analogous to that in Refs. [17,18], but with

SFM boundary conditions f0 = 0 and b1 = exp −2iψDf1,

we obtain, for perfect mirror reflection (R = 1), the SFM

threshold condition

c1c2 +
(

ψ2

ψ1

c2
D +

ψ1

ψ2

s2
D

)

s1s2 = cDsD(β1s1c2 − β2s2c1).

(22)

Here ci = cos ψi , si = sin ψi , cD = cos ψD , sD = sin ψD , and

βn = (
ψn

θ
− θ

ψn
).

In the quasi-Kerr case the envelope condition whereby the

gain circle in diagrams like Fig. 4 touches the unit circle

corresponds to transitions between complex and real ψD as

roots of (22). This leads to the following envelope condition:

4

(

c1c2 +
ψ1

ψ2

s1s2

)(

c1c2 +
ψ2

ψ1

s1s2

)

= (β1s1c2 − β2s2c1)2.

(23)

As an example, Fig. 10 illustrates envelope and threshold

curves for the all-grating quasi-Kerr model, for a fairly

small quasi-Kerr coefficient |αlL
| = 8. There is very good

correspondence to the full model for the same parameters

(Fig. 8). The main difference is that removing the small

absorption losses makes the instability and envelope domains

slightly larger for the quasi-Kerr model. In particular, the range

of θ is larger, extending to ∼40, but still finite, so there is no

phase-conjugate instability.

A key question is how useful the quasi-Kerr approximation

is. To test this, we compare quasi-Kerr and “exact” two-level

thresholds over a range of tunings with other parameters equal,

except that R = 1 for the quasi-Kerr. Figure 11 shows such a

comparison. Unsurprisingly, the fit is best at large detunings,

with the quasi-Kerr model predicting lower thresholds that

10.10.01

pump intensity (W/cm2)

/

0

5

10

15

FIG. 11. Two-level instability domain, range of threshold input

intensity in terms of δ/Ŵ, with a logarithmic horizontal scale. The

red solid closed loop is that calculated from (15) with absorption and

all reflection gratings included (h = 1). Here R = 0.95, D = −1.3,

and the OD is equal to 210, as in Fig. 9. The black dotted open curve

is calculated for the same parameters from (22), as derived from the

quasi-Kerr model equations Eq. (18). The latter curve is calculated

only for δ/Ŵ > 7.5, because the neglect of absorption in Eq. (18) is

untenable at small detunings.

are increasingly underestimated as the detuning is decreased.

Given that αlL is about 0.93 at δ/Ŵ = 7.5 for OD 210,

corresponding to a single-pass transmission of only about 0.4,

the quasi-Kerr model seems to provide a useful guide to the

true instability range even into regions where the absorption

is far from negligible. The fit to the upper threshold curve

is very good over the whole tuning range shown, because the

absorption is strongly saturated in this region. The nonlinearity

is saturated too, but the quasi-Kerr model fully accounts for

that.

The similarities between the two-level quasi-Kerr and pure

Kerr analyses can be exploited “in reverse” to calculate

thresholds for SFM pattern formation in Kerr media beyond the

thin-medium models, for which some results (without detailed

analysis) were reported in Ref. [8]. Further, envelope curves

can be calculated so as to capture the range of thresholds

afforded by varying the mirror displacement D and to illustrate

the thin-medium limit as discussed above.

Figure 12 illustrates this for a Kerr medium with no grating

term (h = 0). Here two distances (D = 2.5,10) are shown and

we begin to see how the faster oscillations of the threshold

for larger mirror displacements allow a better exploration of

the envelope and thus potentially lower thresholds. For the

self-focusing case, where the envelope has a minimum at

finite θ , we can see a transition of the lowest threshold from the

second-lowest Q for D = 2.5, to the sixth-lowest-Q band for

D = 10. Assuming that the dominant pattern is determined by

the lowest threshold, we would expect that, as D is increased,

the pattern period will slowly increase and then suddenly

drop back, in a sawtooth pattern. This phenomenon is indeed
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FIG. 12. Threshold intensity (in units of αlL
p/2) vs diffraction

parameter θ = Q2L/2k. Blue dashed curves are envelope curves

calculated from (23) for a Kerr medium with h = 0. Positive

and negative intensity values correspond to self-focusing and self-

defocusing Kerr media, respectively. Also shown are threshold curves

with a feedback mirror at positive effective distance from the end of

the medium. The black solid curves with fewer wiggles show D = 2.5

and the orange solid curves with more wiggles show D = 10.0. In

both cases the threshold curves touch the envelope curves and are

confined by them.

observed, as shown in Fig. 15, where the dominance of the

first Talbot ring for small |D| is replaced by the second Talbot

ring for larger |D|.
Conversely, for self-defocusing the lowest threshold always

decreases as D is increased, so the patterns with lowest

threshold are found at large mirror displacements and have

large spatial scales, with pattern wavelength scaling like√
d/k, as is well known from thin-medium theory [6]. In

contrast, CP thresholds for h = 0 defocusing Kerr media

decrease with increasing Q (see, e.g., [18]), so the phase-

conjugate oscillation is the dominant instability. This SFM

advantage can be attributed to the ability of the feedback

phase to compensate for both the diffractive and nonlinear

phase shifts in the medium, which have the same sign for

defocusing and thus cannot cancel each other as they can for

self-focusing. This no-grating Kerr case is also interesting in

that the envelope curves cross and hence the threshold curves

must thread through the intersection (Fig. 12). It follows that

the threshold is actually independent of mirror displacement at

these crossings. Note that the threshold will normally be lower

at a different diffraction parameter (as occurs in Fig. 12), so

observing the phenomenon would probably require isolating

the specific wave number by Fourier filtering in the feedback

loop [29].

The finite limit for small diffraction θ → 0 of the envelope

is ±0.5 in Fig. 12 and corresponds exactly to the thin-slice

value [6]. It is clear from the above discussion that the small-θ

region of the envelope can only be accessed for large D and

hence that the θ → 0 limit corresponds to D → ∞, i.e., the

thin-medium limit [6]. While previous thick-medium analyses

[21,22] are valid in this limit, these authors did not explicitly

consider it. The finite slope at θ = 0 means that the pattern-

forming modes are not, in fact, threshold degenerate when

the medium thickness is taken into account. As is illustrated

in Fig. 12, the multifractal patterns predicted in the thin-slice

limit [30] and dependent on mode degeneracy are not expected

to occur in practice, unless other mechanisms or devices are

able to restore degeneracy. This effect of diffraction within the

nonlinear medium was recognized earlier in Ref. [22].

VIII. TALBOT FANS

The above figures demonstrate how the threshold extrema

move vs θ as mirror displacement D is varied. An interesting

and relevant way to examine this is to plot the pattern scale

(∼1/
√

θ) vs D for fixed intensity. This is demonstrated in

Fig. 13, where the parameters are chosen to match those of

[9] and the intensity s = 0.085 is just above the minimum

threshold, so the unstable regions appear as long narrow

islands. The fan shape of the island group is due to the

Talbot effect: The threshold values satisfying (22) are evidently

periodic in ψD = Dθ , which means that at fixed θ (size)

and intensity, threshold values are periodic in D. This is

particularly clear at the bottom of the fan in Fig. 13, where

the tips of the islands are equally spaced in D. The Talbot

periodicity is inversely proportional to θ , which is why the

islands fan out as the pattern scale increases (i.e., as θ

decreases).

FIG. 13. Pattern period (arbitrary units) vs mirror displacement D

at fixed intensity s = 0.085. Threshold curves were calculated from

(22) for a two-level medium described by Âall, with h = 1. The quasi-

Kerr coefficient αlL
 = 13.94, corresponding to blue detuning. For

optical density 210 [9], this corresponds to detuning 
 = 2δ/Ŵ = 15.
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(a)

(b)

FIG. 14. (a) Diffracted power (experiment, left axis) and pre-

dicted threshold intensity (p0, scaled to Isδ) vs scaled mirror

displacement D. The cloud thickness is L = 9 mm. (b) Pattern

period � vs mirror displacement. In physical units, the x axis

corresponds to −60 mm to +40 mm measured from the center of

the cloud. The parameters are blue detuning and 
 = 15 (see [9]).

The diffracted power is normalized to its maximal value. The red

closed dots show the experimental data for the first Talbot balloon

(lowest wave number) and gray circles the experimental data for

the second Talbot balloon [next highest wave number excited in

(a) enhanced by factor of 5]. The red and gray curves are the

corresponding theoretical predictions and are calculated from (22)

using the all-grating two-level model. The inset shows the measured

D period as a function of the pattern size (stars), together with the

Talbot effect prediction (line).

Such Talbot fans are readily observed experimentally. The

fan reported in Ref. [9] is shown in Fig. 14, where the

experimental data fit well to threshold data from (22) using

our two-level all-grating model based on Âall. Figure 14(b)

plots the pattern period against mirror displacement. Around

D ≈ 0 the length scale with the smallest wave number (largest

period) is selected. At higher |D|, two length scales are found

in the pattern. Both are in good agreement with the prediction

from the theory. The inset shows excellent agreement between

the measured and calculated D periodicities. In the earlier

optomechanical patterns paper [8], there is a more limited fan,

to which threshold data from (22) are fitted using a Kerr model

(h = 0, because the slow time scale allows atomic motion to

eliminate the longitudinal grating).

Figure 14(a) plots the power diffracted into the first and

second unstable wave numbers obtained by integrating the

measured far-field intensity distributions over an annulus with

the respective radius. We did not measure thresholds, but

to a first approximation one can argue that the diffracted

power increases with increasing distance to the threshold and

hence the measured data can be interpreted as indicators of

inverted threshold curves. We compare them with the threshold

curves obtained from the all-grating quasi-Kerr model as

the detuning is reasonably large and absorption not very

important. As indicated in the discussion of Fig. 14(a), around

D ≈ 0, only the lowest wave number (i.e., the one from

the first Talbot balloon) is excited. For a mirror within the

medium (D = −1, . . . ,0), the diffracted power is low and the

predicted thresholds are high. For increasing |D| thresholds

are predicted to fall dramatically and indeed well-developed

patterns, indicated by high diffracted power, are observed.

For further increasing |D| the theory predicts that the second

Talbot balloon at higher wave number has the lowest threshold.

Indeed, excitation of this length scale is observed, but it does

not take over completely in the experimental data.
For a further investigation of the Talbot fan phenomenon

we analyze a somewhat different experimental SFM situation
in which optical pumping between Zeeman substates, rather
than two-level electronic excitation, is the main nonlinearity
[31–34]. Experimental parameters in this setup are (more
details can be found in Ref. [35]) an effective-medium
length L = 3.2 mm, a beam intensity I = 18 mW/cm2, and a
detuning 
 = −14. The homogenous solution is not saturated
in this case [36], so it is reasonable to compare the data
to the length scales and threshold curves obtained from a
self-focusing thick-medium Kerr theory.

Experimental measurements of diffracted power and pattern

length scale vs mirror displacement are shown in Fig. 15.

It is apparent that the behavior is very similar to the one

observed for the electronic two-level case in Fig. 14, but there

is one crucial difference. For large enough |D| (D > 0.7 and

D < −2.5) the power in the first Talbot ring is suppressed

down to 3 × 10−3 relative to the second one and the length

scale of the second balloon takes over completely. This

is in good, although not quantitative, agreement with the

thick-medium model as discussed earlier in connection with

Fig. 12, though the transition is predicted to occur at somewhat

larger |D|. Nevertheless, it is an important confirmation of the

importance of the diffraction within the medium influencing

length-scale selection. In view of the fact that the atomic

clouds have an approximately Gaussian density distribution

and the theory assumes a rectangular distribution, quantitative

deviations between theory and experiment are not surprising.

We note that a similar phenomenon was predicted in pho-

torefractive materials [37,38], in spite of different mechanism

of nonlinearity. However, the experimental observation of the

essentially complete extinction of patterns with the smallest

Talbot wave vector in favor of the second Talbot wave vector

was not reported before in the literature, only the excitation

of the second wave number [see Fig. 4 of [9], quantified in

Fig. 14(b) of this paper, for the two-level case and Fig. 7 of [37]

for the photorefractive case]. In hot atomic vapours, an early

and not very systematic study [39,40] showed coexistence

between the first Talbot wave vector and the second one for

D ≈ 2.4 and between the first Talbot wave vector and the

third one for D ≈ 3.9. For even higher distances (D ≈ 8.3)

an excitation of a single, quite-high-order (five or six) Talbot
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FIG. 15. (a) Predicted threshold intensity (p0, scaled to Isδ),

(b) experimentally observed diffracted power (normalized to its

maximal value), and (c) pattern period vs mirror displacement D.

The lower curve in (a) is for the first (lowest wave number) and the

upper curve is for the second (next highest wave number excited)

Talbot balloon, with both curves calculated for a self-focusing Kerr

medium with h = 1 described by ÂKerr. The experimental parameters

are an effective-medium length L = 3.2 mm, beam intensity I =
18 mW/cm2, and detuning 
 = −14. Red closed circles show the

experimental data for the first Talbot balloon and blue open circles

the experimental data for the second Talbot balloon. The two curves

in (c) are the corresponding theoretical predictions for the first (upper

red) and second (lower blue) Talbot balloons, calculated as in (a). The

insets show far-field patterns obtained at the mirror positions indicated

illustrating the length scale competition. In unscaled parameters, the

x axis corresponds to −12.8 mm to +10.2 mm measured from cloud

center.

wave vector was found. It should be noted that these results

were influenced by atomic diffusion lifting the degeneracy

present in the thin-slice model and a limited aspect ratio

preventing patterns with the first Talbot wave vector for D > 4.

Figures 14 and 15 indicate that a change of mirror

displacement can drag the pattern period along qualitatively

as in a diffractively thin medium but only up to a point. Then

the system jumps back to a smaller length scale it seems to

tend toward, which can be changed again to some extent by

changing mirror displacement. The origin of this behavior

lies in the interaction between the threshold curves and the

envelope as discussed before. For increasing |D| the threshold

curves move to lower Q and have more wiggles in a certain

range of θ on the envelope curve, which means they can explore

more effectively the potentially lowest threshold condition.
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FIG. 16. (a) Pattern length scale (characterized by diffraction

parameter θ ) and (b) threshold intensity (p0, scaled to Isδ) vs

mirror displacement D for a self-focusing Kerr medium with h = 1

described by ÂKerr. The red solid curve shows the minimum threshold,

the blue dashed curve the lowest-wave-number (first Talbot), and the

blue dotted curve the second-lowest-wave-number (second Talbot)

balloon.

Another way to illustrate this point is visualized in Fig. 16.

The red solid curve in Fig. 16(a) denotes the length scale

of the minimum threshold mode vs mirror displacement.

For D = −3, . . . ,1 it mirrors the first Talbot balloon, until

it jumps to the second and follows it for D = −6, . . . ,−4

and D = 1.5, . . . ,4. Afterward it jumps again and wiggles

around a horizontal. The changes of length scale imply that the

minimum of the envelope curve is at finite θ and the system is

trying to stay close to this value as long as it is compatible with

the specific boundary conditions, i.e., diffractive phase shift θ

at the feedback distance D. This approach to the envelope

curve is also nicely illustrated in the behavior of the threshold

intensity vs D [Fig. 16(b)], becoming nearly independent of

distance for large mirror distances as the minimum of the

envelope curve can be attained.

IX. CONCLUSION

In this paper we have undertaken a largely analytic inves-

tigation of thresholds and length scales for pattern formation

in a saturable two-level medium, optically excited close to
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resonance from one side and with a feedback mirror to reflect

and phase shift the light fields after they have traversed the

medium. In that scenario, we have established a number of

results, in encouraging agreement with recent experimental

results in several cases.

We have considered, and compared to experiment, the

Talbot fan characteristics that characterize the evolution of

pattern scales as D is varied and explained observed sudden

changes of scale in terms of mode competition in the

neighborhood of the minimum possible (in D) threshold. The

additional degree of freedom offered by finite D also implies

an additional complexity in the analysis. We have shown,

however, that thresholds are constrained by envelope curves

to which the threshold curves are tangent and along which

they evolve as D is varied. Hence important properties of

the SFM system, such as the minimum possible threshold,

and the domains within which pattern formation is possible

(or impossible) can be found, often analytically. Again, the

envelope property is likely to be general, because it follows

from the structure of the feedback boundary condition.

Importantly, the envelope functions enable a quantitative

investigation of the limit D → ∞, which correspond to

diffraction in the medium being negligible compared to that

in the feedback loop, i.e., the thin-slice limit. We find that

threshold values tend to precisely the thin-medium values, but

with finite slope. As a consequence, we have demonstrated

that the degeneracy of the unstable modes predicted in thin-

medium theory does not survive inclusion of finite medium

length, even at lowest order.

Diffusive damping removing the degeneracy was intro-

duced in the treatments [6,19] to model carrier diffusion in

semiconductors or elastoviscous coupling in liquid crystals,

which will make these media deviate from purely local Kerr

media. In hot-atom experiments [20,31,39] the thermal motion

of the atoms, which can be modeled as diffusive motion under

appropriate conditions [20,40], will tend to provide a stronger

elimination for transverse gratings at larger wave number and

thus remove the degeneracy. In cold atoms this effect is not

very strong and the finite medium thickness appears to be the

main mechanism responsible for the emergence of a defined

length scale in the investigations reported in Refs. [8,9]. The

possibility of a cutoff at high transverse wave numbers due to

the diffraction within the nonlinear medium (at least for some

parameter combinations) was realized before in Ref. [22].

In the specific context of the two-level nonlinearity, we

have analyzed different models to take account of wavelength

scale (reflection) gratings in the steady-state susceptibility

applicable to counterpropagation problems. We have found

that models in which only the lowest-order (2k) intensity

gratings are considered predict a zero-order bistability as

resonance is approached. This bistability disappears when

all orders (m × 2k) of gratings are included and is therefore

probably spurious. We have been able to develop models that

include all grating orders, numerically for the fully absorptive

system and analytically in the quasi-Kerr and thin-medium

limits, and have demonstrated reasonable agreement with

experiment using these all-grating models.

In summary, we have developed a firm and systematic foun-

dation for the analysis of the effects of in-medium diffraction

and of reflection gratings in SFM pattern formation. Though

we have focused here on the saturable two-level electronic

nonlinearity, our approach and techniques have applicability

across a wide class of nonlinearities. While our present analysis

deals only with thresholds and steady-state instabilities, these

are an important, and even essential, preliminary to more

extensive numerical simulations, necessarily involving many

additional parameters and many spatial and temporal scales.

We already showed [8] that a simple thick-medium Kerr model

gives useful insight into optomechanical SFM patterns and

in this work we have shown that a similar analysis helps

one understand important features of polarization-mediated

SFM patterns in cold atoms. Patterns in cold-atom clouds with

laser irradiation and mirror feedback are proving to a be a

very rich field, with diverse implications, and a secure basis

for the interpretation of experimental results and the devel-

opment of appropriate theoretical models is therefore very

important.
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