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Abstract

Traditional visualisation of time series data often consists of plotting the time series
values against time and “connecting the dots”. We propose an alternative, multiscale
visualisation technique, motivated by the scale-space approach in computer vision. In
brief, our method also “connects the dots”, but uses a range of pens of varying thick-
nesses for this purpose. The resulting multiscale map, termed the Thick-Pen Transform
(TPT) corresponds to viewing the time series from a range of distances. We formally
prove that the TPT is a discriminatory statistic for two Gaussian time series with dis-
tinct correlation structures. Further, we show interesting possible applications of the
TPT to measuring cross-dependence in multivariate time series, classifying time series,
and testing for stationarity. In particular, we derive the asymptotic distribution of our
test statistic, and argue that the test is applicable to both linear and nonlinear processes
under low moment assumptions. Various other aspects of the methodology, including
other possible applications, are also discussed.

1 Introduction

Traditional objectives of time series analysis are at least twofold: to obtain an understanding
of certain aspects of the data, and to forecast future values, although other objectives, such
as for example process control, have also been extensively studied. Naturally enough, not
all of these aims are relevant to or present in every case study: for example, in time series
classification problems, the focus will typically be on understanding and summarising the
data rather than forecasting.

Statistical time series analysis typically tackles these aims by firstly assuming a statistical
model, which can be either parametric or nonparametric, and then using suitable tools
to estimate its parameters. Classical modelling, estimation and forecasting techniques for
processes which are linear in their innovations and either stationary or easily transformed
into such, have been extensively covered in many excellent monographs, including Brillinger
(1975), Priestley (1981), Brockwell and Davis (1987) and Shumway and Stoffer (2006), while
stationary but nonlinear processes, including some of the models widely used in finance, are
described, for example, in Fan and Yao (2003).

Comparatively less literature exists on statistically rigorous modelling and estimation ideas
for nonstationary time series, where, necessarily, some modelling effort is needed to control
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the degree of nonstationarity in the process before consistent statistical inference is possible.
Not attempting to be exhaustive, we mention the seminal work of Priestley (1965), who in-
troduced models based on a time-dependent transfer function in the spectral representation
of nonstationary processes, and Dahlhaus (1997), who set up a framework for asymptotic
considerations in nonstationary models by employing the rescaled-time principle.

In the following discussion, let Xt denote a generic univariate real-valued time series, or a
real-valued univariate component of a multivariate time series (we note that the method-
ology proposed in this work is applicable in both univariate and multivariate time series
analysis). Regardless of the nature of the problem to be solved, of the time series model
to be used, and of the statistical techniques employed in the chosen model, the first step
in the exploratory analysis of Xt is often the plotting and visual inspection of its values.
While subsequent steps of the analysis, starting with the model choice, have understand-
ably received enormous attention in the statistical literature over the years, it appears to us
that the initial visualisation has been overwhelmingly skewed towards plotting the values of
(t,Xt) and “connecting the dots”. Useful as it undoubtedly is, the relative lack of variation
in this initial step across time series literature prompts us to ask whether more can be
achieved at this stage, perhaps by employing a more informative visualisation technique.

At the core of our alternative proposal for visualising time series data, which we later
term the “thick-pen transform” for time series, lies the idea of looking at time series data
at multiple scales, or equivalently from multiple distances. To clarify and motivate our
proposal, we consider the following visual experiment. The left-hand plot of Figure 1
shows conventional “connect-the-dots” visualisation of a piecewise-stationary time series,
consisting of white noise followed by a low-frequency sine wave. Moving away from the
image, or alternatively looking at the image with eyes half-closed, we are likely to observe
the illusory “disappearance” of the sine wave. If we believe that visibility of the time series
from a distance is linked to the “volume” created by the line used to connect the dots, we
can prevent this phenomenon simply by using a thicker pen to plot the second half of the
data, which is done in the right-hand plot of Figure 1.

One possible lesson from this experiment is that the degree of visibility of time series data
from a distance can be a helpful indicator of local structural properties of the data, as it
is clearly able to discriminate between fast- and slowly-oscillating signals. Since, as argued
above, it is possible to associate “visibility” from a certain distance with the “volume”
created by a pen of a certain thickness used to connect the points (t,Xt), we propose to
visualise a time series by plotting it using pens of various thicknesses, hoping that the
resulting set of plots will provide interesting and useful information about the structure of
the time series, not only in a heuristic, but also in a formal probabilistic sense.

The above discussion leads us to the first preliminary definition of our “thick-pen transform”
for time series, which, without making it precise at this stage, we mean to denote a set
of plots of the time series values, each performed using a pen of a different thickness.
The transform is clearly multiscale, with larger thickness values bringing out coarser-scale
features of the data. As a taster, we show in Figure 2 the same time series plotted with
pens of thickness 5 and 30 (units are arbitrary but their ratio correctly reflects relative
thickness). As the rest of this article will argue, the thick-pen transform can be useful in
tasks such as nonstationarity detection, time series classification, or measuring dependence
between time series, amongst others.

Time series literature is no stranger to the concept of “looking at data at multiple scales”,
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Figure 1: White noise followed by slow wave, plotted with pen of thickness 1 (left plot) and
1 followed by 20 (right plot).

and references are diverse and rather loosely connected. Wavelets, which provide linear,
multiscale and local decomposition of data, have been used extensively in time series anal-
ysis; the reader is referred to the monographs of Vidakovic (1999), Percival and Walden
(2000) and Nason (2008) and the references therein. Self-similarity and (multi-)fractality
are often-recurring concepts in time series analysis, aiming to study parametric relation-
ships between distributions of the process at different scales, particularly in the context of
long-range dependent processes, see e.g. Doukhan et al. (2003). Other uses of multiscale
methods in time series are rarer, but include, for example, Van Bellegem and von Sachs
(2008), who use a multiscale technique based on iterative testing for intervals of homogene-
ity for the purpose of second-order structure estimation in locally stationary time series.
Besides using different methodology, our approach differs from the above in that in its
philosophy, it is primarily a visualisation technique (although its ultimate aim is to aid in
solving some well-established time series tasks such as those listed above). Unlike wavelets,
it is not linear, and is not concerned with estimation: in particular, we do not define or
attempt to estimate parameters such as the long-memory parameter, fractal dimensionality
or the Hurst exponent. Indeed, the thick-pen transform can also be meaningfully applied
to nonparametric time series models.

Although different in terms of its aims and methodology, our approach shares some of
its spirit with SiZer (Chaudhuri and Marron (1999)), a data visualisation technique for
displaying features of kernel-smoothed data as a function of location and bandwidth, si-
multaneously over a range of bandwidths. The similarity with thick-pen is that the latter
displays the time series simultaneously over a range of pen thickness values, without at-
tempting to choose a “best” thickness. Secondly, like SiZer, the thick-pen transform is also
motivated by the “scale-space” theory in computer vision (Lindeberg (1994)) in that as ar-
gued above, large thickness values (or: larger bandwidths in SiZer) bring out features of the
data best seen from a large distance. Similarly, small thickness values (smaller bandwidths
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Figure 2: White noise followed by slow wave, plotted with pen of thickness 5 (left plot) and
30 (right plot).

in SiZer) permit visualisation of features observable when zooming in closer. The funda-
mental difference with SiZer is that the thick-pen transform (a) is designed for exploring
the dependence structure of time series rather than the shape of curves, and (b) is based on
nonlinear operations (as described in Section 2), as opposed to the linear smoothing used in
SiZer. We note that SiZer for time series, also based on kernel smoothing, has been studied
in Rondonotti et al. (2007) and Park et al. (2009).

The paper is organised as follows. Section 2 outlines the basic methodology of the thick-
pen transform, and demonstrates its variation-diminishing and discrimination properties.
Section 3 focuses on three possible applications of the thick-pen transform: testing for
stationarity (where we propose the test, derive its asymptotic distribution under the null
hypothesis and illustrate with simulated and real-data examples), classifying time series
(where we propose the algorithm and apply it to a well-known geophysical dataset) and
measuring dependence between time series (where we propose the measure and investigate
via simulated and real-data examples). Finally, Section 4 lists possible avenues for further
research.

2 Basic methodology and theory of the thick-pen transform

For the purpose of this and subsequent sections, we qualitatively define the thick-pen trans-
form of a real-valued univariate process (Xt)

n
t=1 as follows. Let T denote the set of thickness

parameters. For each τi ∈ T , i = 1, . . . , |T |, let U τi

t denote the upper boundary of the area
covered by a pen of thickness τi while connecting the points (t,Xt)

n
t=1. Similarly, let Lτi

t

denote its lower boundary. The thick-pen transform TPT (Xt) is the sequence of all pairs
of boundaries, i.e.

TPT (Xt) = {(Lτi

t , U τi

t )nt=1}i=1,...,|T |.
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The precise mathematical form of TPT (Xt) depends on the shape of the pen used. The
examples below describe two possibly the most natural pen shapes, as well as briefly dis-
cussing other possible shapes. In all of the examples below, we let the set T of thickness
parameters be the set of positive integers, i.e. T = {1, 2, . . .}.

Square pen. In this example, the pen is a closed square of side length τ ∈ T , positioned
so that two of its sides are parallel to the time axis. For each point along the straight
line connecting (t,Xt) with (t + 1,Xt+1), we place the pen so that the given point is
at the centre of the right-hand side of the pen. In this set-up, we have

U τ
t = max(Xt, . . . ,Xt+τ ) +

τ

2
(1)

Lτ
t = min(Xt, . . . ,Xt+τ ) − τ

2
. (2)

Importantly, we note the following recursive formula for computing U τ
t thickness-by-

thickness: U τ
t = max(U τ−1

t , U τ−1
t+1 ) + 1

2 . Obviously, an analogous formula holds for
Lτ

t . For extra flexibility, we admit the possibility of replacing the constants ± τ
2 with

±γ τ
2 , where the constant γ is termed the “scaling factor” and is to be chosen by the

analyst. We do not dwell on the choice of γ in this work, and set it by default to one
in the examples below, unless mentioned otherwise.

Round pen. Let the pen be a closed circle with diameter τ ∈ T , positioned so that for
each point along the straight line connecting (t,Xt) with (t + 1,Xt+1), the pen is
centred at the given point. Denoting by Z the set of integers, we have

U τ
t = max

k∈[−|τ |/2,|τ |/2]∩Z

{Xt+k +
√

τ2/4 − k2} (3)

Lτ
t = min

k∈[−|τ |/2,|τ |/2]∩Z

{Xt+k −
√

τ2/4 − k2}. (4)

As with the square pen, for extra flexibility, the additive terms ±
√

τ2/4 − k2 could
be replaced by ±γ

√

τ2/4 − k2. In what follows, the scaling factor γ is always set to
one unless mentioned otherwise.

Other possible pen shapes. We note the following interesting connection between the
above formulae (1) – (4) and kernel smoothing. Replacing the addition and subtraction
by multiplication, and the “max” and “min” operators by the summation operator,
we obtain, up to a multiplicative factor proportional to τ2, kernel-smoothed versions
of Xt using the one-sided uniform kernel (in the square-pen case) and the two-sided
circular kernel (in the round-pen case). Obvious generalisations of the square and
round pens could be obtained by employing other kernel shapes.

More on the duality between kernel smoothing and the thick pen. Despite the du-
ality between kernel smoothing and the thick pen (as described above), these two are
entirely different operations and they serve different purposes. Computed using a
single bandwidth/thickness, kernel smoothing of Xt produces one linear output se-
quence (weighted local means of Xt), whereas the thick-pen transform produces two
nonlinear output sequences Lτ

t and U τ
t . Unlike the kernel-smoothed version of Xt

(which can serve to estimate the trend but not the local dependence structure of Xt),
the thick-pen transform of Xt provides useful information on both the trend and the
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local dependence structure, which we explain later in this section, and in particular
in Theorem 2.1. By contrast, in order to use kernel smoothing to estimate or make
inference on the local dependence structure of Xt, one would have to kernel-smooth
not Xt, but other local statistics of Xt (e.g. the sequence XtXt+1 to estimate the local
covariance at lag one; or local periodograms to estimate the local spectral density).

We note that for a fixed value of τ (i.e. focusing on a “single scale” of our thick-pen
transform), and disregarding the additive constant τ/2, formulae (1), (2) are reminiscent of
the running maximum and minimum filters, used in signal and image processing for tasks
such as edge detection (Lee et al. (1987), Douglas (1996), Vemis et al. (1995)), texture
description (Werman and Peleg (1985)), character extraction (Ye et al. (2001)), indexing
of dynamic time warping (Keogh and Ratanamahatana (2005)), or the suppression of over-
and under-shoot (Cho and Bae (2006)). However, the fundamental difference with our
approach is that the thick-pen transform puts these filters in a multiscale context (which,
incidentally, is precisely what SiZer does to kernel smoothing) by considering a range of
thickness parameters τ simultaneously. This is done with the initial aim of visualising time
series data, and the eventual aim of solving some classical problems in statistical time series
analysis mentioned earlier. Also, in contrast to the above heuristic approaches, ours is
more rigorous in that we formally prove, later in this section, that the thick-pen transform
discriminates between two time series with different correlation structures (see Theorem
2.1). One essential ingredient of this result is the multiscale context in which the thick-pen
transform operates.

We now consider a toy example which shows one possible way of visualising the thick-pen
transform. The top plot in Figure 3 shows the conventional visualisation of a time series
consisting of Gaussian white noise in the first half, and the Gaussian AR(1) process with
parameter 0.9 in the second half. Both processes have the same variance. The middle
plot shows the thick-pen transform using the round pen, with pen thicknesses ranging from
10 to 100 in multiples of 10, where each trajectory is superimposed on the next thicker
one. The bottom plot shows the same object plotted with a different colour pattern. The
reader is invited to think of this object as the “thick-pen map” of the given process. While
visual inspection of the top plot reveals obvious visual difference between the structure of
the process in the first and second half, a look at the thick-pen map reveals the multiscale
nature of this difference. For instance, considering the bottom plot at the “thinnest” scale,
we observe the frequent brief but deep incursions of non-white colours into the white area in
the second, more structured half. On the other hand, at the “thickest” scales, by looking at
the darkest colours, the incursions in the second half are still present but are much longer-
lasting and more shallow: consider, for example, the incursions around time t = 350 (lower
boundary) or time t = 400 (upper boundary). We note that none of these features are
obvious from the visual inspection of the top plot, but could serve as potentially interesting
“markers” for discriminating between the two halves or detecting the change-point.

However, it is important to bear in mind that the analyst does need to rely on her or
his vision to take advantage of the thick-pen transform of the data. In what follows, we
describe certain summary statistics, involving the sequences U τ

t and Lτ
t , which can be viewed

as automatic “scanners” for reading off certain properties of the thick-pen map.

We first note that in the thick-pen transform as described above, one thickness value τ
generates two sequences: U τ

t and Lτ
t . In some time series problems, for example nonsta-

tionarity detection (as described later), it might be more convenient to use a single summary
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Figure 3: White noise followed by AR(1) process with parameter 0.9, top: conventional
visualisation; middle and bottom plots: thick-pen visualisation.
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sequence, instead of a pair. (By way of analogy, we mention that, for instance, a single scale
in a wavelet transform is typically also represented by a single sequence: that of the wavelet
coefficient values at a given scale.) Below, we identify and describe some particular sum-
mary statistics involving the sequences U τ

t and Lτ
t which will be used later in the paper for

the purposes of nonstationarity detection as well as measuring dependence between time
series. We divide them into two classes: “basic” and “derivative” summary statistics.

Basic summary statistics. We define the following basic summary statistics involving
U τ

t and Lτ
t .� Volume of the pen, defined as V τ

t = U τ
t − Lτ

t .� Mean of the pen, defined as M τ
t = 1

2{U τ
t + Lτ

t }.

Derivative summary statistics. We define the following derivative summary statistics
involving U τ

t and Lτ
t .� Rate of change of volume with respect to time t, defined as

∆V τ

t

∆t = V τ
t − V τ

t−1.� Rate of change of volume with respect to thickness τ , defined as
∆V τ

t

∆τ = V τ
t −

V τ−1
t .� Rate of change of mean with respect to time t, defined as

∆Mτ

t

∆t = M τ
t − M τ

t−1.� Rate of change of mean with respect to thickness τ , defined as
∆Mτ

t

∆τ = M τ
t −

M τ−1
t .

V τ
t measures the local width of the area created by the pen of thickness τ , and M τ

t measures
its local mean level. The derivative summary statistics measure how those two quantities
change with respect to t or τ . Depending on the nature of the time series and problem at
hand, more complex summary statistics are also possible. One such example is described
in Section 4. A few remarks are in order.

Complementarity of V τ
t and M τ

t . We note that V τ
t and M τ

t are constructed by applying
the complementary operations of subtraction and addition (respectively) to U τ

t and
Lτ

t , and thus can be viewed as “symmetric” quantities. To recover U τ
t and Lτ

t from
V τ

t and M τ
t we use the very similar operations

U τ
t = M τ

t +
1

2
V τ

t

Lτ
t = M τ

t − 1

2
V τ

t .

Link between V τ
t and tube formula. Out of the basic and derivative summary statis-

tics described above, V τ
t deserves special attention because of the fact that statistical

literature has previously explored the concept of “the volume of a covering of data”,
albeit in other contexts. Weyl (1939) derived the famous “tube formula” for calculat-
ing the volume of a tube surrounding a smooth manifold embedded in a k-dimensional
unit sphere, for a finite k, extending a previous result by Hotelling (1939). These re-
sults were more recently discussed, extended and applied in various statistical contexts
involving smooth (but not always deterministic) curves or surfaces by, amongst oth-
ers, Knowles and Siegmund (1988), Johansen and Johnstone (1990) and Sun (1993).
We are unaware of any applications of tube formulae in classical time series, where
sample paths are often intrinsically non-smooth.
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Link between V τ
t and estimation of fractal properties. On the other hand, in esti-

mating the Hurst exponent or the fractal dimension of stochastic processes, two tech-
niques involving statistics related to our V τ

t are the Rescaled Range Analysis (Hurst
(1951)) and the “box-counting” method, whose statistical properties in estimating the
fractal dimension of a stationary continuous-time Gaussian process were studied in
Hall and Wood (1993). In contrast to the above methodologies, we emphasise here
again that our statistic V τ

t is not an estimator of any quantity; it is merely one pos-
sible summary statistic for the multiscale thick-pen transform of any, not necessarily
stationary time series, at location t and thickness (“scale”) τ . If taking the thick-pen
transform corresponds to viewing the time series from a range of distances, V τ

t (or
any other summary statistic derived from the thick-pen transform) can be thought
of as a particular form of “eye” or “scanner” used to record certain properties of the
given time series, at time t, viewed from the given range of distances. We also em-
phasise that the above-mentioned methodologies, Rescaled Range and box counting,
have traditionally been used for stationary, possibly long-memory processes. In con-
stract, our statistic V τ

t is being put to work mainly in the context of nonstationary
processes. For example, the following Section 3.1 demonstrates its usefulness in de-
tecting nonstationarities in time series. Finally, we mention that while estimators of
fractal properties of time series are typically considered in the limit as their “scale”
parameter approaches either zero or infinity, our statistic V τ

t is also meaningful and
informative (both theoretically and empirically) for a finite number of thicknesses τ ,
for example when the task at hand is to detect nonstationarities in time series.

V τ
t as a measure of self-overlap. We also mention an interesting interpretation of V τ

t as
measure of the extent to which the pen “overlaps with itself” whilst plotting a given
time series. For each fixed time t, the quantity

∑t
i=1 V τ

i is a total measure of the
area created by the pen at thickness τ up to time t. Thus, V τ

t =
∑t

i=1 V τ
i −∑t−1

i=1 V τ
i

measures how much new area appeared at time t. Subtracting V τ
t from the area of

the “tip” of the pen (for example, τ2 for the square pen), we obtain a measure of how
much the pen overlaps with itself whilst plotting the data.

Smoothness of U τ
t , Lτ

t . Recalling the analogy between pens and kernels described earlier,
we mention that pens corresponding to differentiable kernels (e.g. the round pen) will
lead to smoother sequences U τ

t , Lτ
t than pens corresponding to non-differentiable

kernels, such as the square pen.

We are now ready to prove two theoretical properties of the thick-pen transform, both
of which focus on the square pen (which we have found the least challenging to analyse
theoretically). The first one, in analogy to SiZer, establishes a “variation diminishing prop-
erty” of the thick-pen transform. The second one establishes the fundamental property that
the thick-pen transform is discriminative for Gaussian time series, i.e. that the thick-pen
transforms of two different Gaussian time series are distributed differently.

Proposition 2.1 Variation diminishing property. Let (Xt)
n
t=1 be a time series, let T =

{1, 2, . . .} and let TPT (Xt) be the thick-pen transform of Xt. For any sequence (ft)
m
t=1, we

define its total variation functional by

‖f‖TV =

m
∑

t=2

|ft − ft−1|.
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Both ‖U τ‖TV and ‖Lτ‖TV are non-increasing functions of τ .

At this point, we mention an interesting link between the thick-pen transform and SiZer.
Lindeberg (1994), Section 3.5.1 describes the variation dimishing property of kernels in
linear smoothing (as used in SiZer), in the sense that, roughly speaking, the number of sign
changes in the estimated function decreases as a function of the bandwidth if and only if
the kernel used is either Gaussian or one-sided exponential. In the case of the thick-pen
transform, note first that if Xt were a sequence of −1’s and 1’s, then ‖U τ‖TV and ‖Lτ‖TV

would simply count, up to a multiplicative factor, the number of sign changes in U τ
t and

Lτ
t . The above proposition implies that in this special case, the thick-pen transform enjoys

a similar variation diminishing property, or, in other words, it demonstrates a “smoothing”
property of the (nonlinear) max/min filter.

The discrimination property follows. Before we formulate the result, we introduce the
following mild technical assumption, and explain it underneath.

Assumption 2.1 For a given fixed lag τ > 0, a process Xt satisfies

∃λ0, δ ∈ [0, 1) ∀λ > λ0 ∀ t

P





⋃

t≤i,j≤t+τ ;{i,j}6={t,t+τ}

|Xi − Xj| > |Xt − Xt+τ |
∣

∣

∣
|Xt − Xt+τ | > λ



 ≤ δ.

More descriptively, the above assumption means that uniformly over all time locations t,
conditioning on the fact that the absolute difference |Xt −Xt+τ | is “large”, it is not entirely
unlikely that it achieves the maximum absolute difference amongst all |Xi−Xj | for i, j lying
between t, t + τ . Since there is no requirement on δ other than that it should be less than
one, the above assumption should be viewed as a mild one. An extra discussion of this
assumption appears underneath the proof of Theorem 2.1 in the Appendix.

We are now ready to state the discrimination result.

Theorem 2.1 Let Xt, Yt be two zero-mean Gaussian time series such that for some s < t,
the distribution of Xs − Xt is not the same as the distribution of Ys − Yt, and let both Xt

and Yt satisfy Assumption 2.1 with τ = t − s. Let TPT (Xt), TPT (Yt) be the thick-pen
transforms of Xt, Yt respectively, both with the square pen where the set T of thickness
parameters is T = {1, 2, . . .}, and let V τ

t (X), V τ
t (Y ) be the corresponding volumes. Then,

TPT (Xt) and TPT (Yt) follow different probability distributions in the sense that the tri-
variate random vectors (V τ−1

s (X), V τ−1
s+1 (X), V τ

s (X)) and (V τ−1
s (Y ), V τ−1

s+1 (Y ), V τ
s (Y )) are

distributed differently.

Theorem 2.1, although of a purely “existential” nature, gives us hope that the thick-pen
transform can act as a successful discriminator for time series, as it uniquely determines
their distribution (clearly, identically distributed time series yield identically distributed
thick-pen transforms, and by the above theorem, differently distributed time series lead to
differently distributed thick-pen transforms). Furthermore, the above theorem also gives
us a hint as to the range of thickness parameters in which to look for the distributional
differences: roughly and approximately speaking, if the autocorrelation structures of the two
time series differ at lag τ , differences in the distributions of the thick-pen transforms can
also be expected “around” thickness τ . To the best of our knowledge, the proof technique
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for Theorem 2.1 is new. With some effort, it can be extended to certain non-Gaussian
distributions; we leave this for future work. Note that since V 0

t = 0, in the case τ = 1, the
statement of the theorem reduces to “V 1

s (X) and V 1
s (Y ) are distributed differently”.

3 Possible uses of the thick-pen transform

3.1 Testing for nonstationarity via the thick-pen transform

In this section, we demonstrate, via both theoretical and empirical arguments, that the
thick-pen transform can serve as an efficient tool for detecting nonstationarities in time
series. The logic we use for this purpose is as follows. Let Kτ

t denote any generic basic,
derivative or other summary statistic involving the sequences U τ

t and Lτ
t which the analyst

believes is likely to capture the nature of possible nonstationarity in the underlying process
Xt, if there is any. As a general guidance, taking Kτ

t = V τ
t (volume) appears to be a good

choice when analysing possible changes in the dependence structure of the process, whereas
taking Kτ

t = M τ
t is a good idea when analysing changes in the trend. Our simulation study

in the latter part of this section offers more specific practical advice on the choice of Kτ
t .

Let the values of τ be positive integers. If Xt is stationary, then the vector-valued time
series (Kτ1

t , . . . ,Kτ2
t )t, where the choice of τ1, τ2 will be discussed later, is also stationary.

For the time being, fix τ ∈ {τ1, τ1 + 1, . . . , τ2}. The following result will form the basis of
our test for stationarity.

Theorem 3.1 Let {Xt}n
t=1 be a stationary process satisfying E|Xt|r < ∞ for some r > 2.

In addition let Xt be α-mixing with the mixing coefficients αm satisfying αm = O(m−s) for
some s > r

r−2 . Let TPT (Xt) be the thick-pen transform of Xt using an arbitrary pen but such
that both U τ

t and Lτ
t are functions of Xt−Cτ , . . . ,Xt+Cτ only, for some C > 0. Further let the

summary sequence Kτ
t be such that for each fixed τ , we have n−1Var(

∑n
t=1 Kτ

t ) → σ2
τ < ∞,

and |Kτ
t | ≤ A+B|max(Xt−Cτ , . . . ,Xt+Cτ )| for some constants A,B > 0, possibly depending

on τ . Under these conditions, the following functional central limit results hold for each fixed
τ .

(i) Let u ∈ [0, 1]. We have

Y τ
n (u) :=

1

στ
√

n

⌈nu⌉
∑

t=1

Kτ
t − E(Kτ

t )
d→ Bu, (5)

where Bu is the standard Wiener process on [0, 1].

(ii) Further, we have

Zτ
n(u) := Y τ

n (u) − ⌈nu⌉
n

Y τ
n (1)

d→ B0
u,

where B0
u is the standard Brownian bridge process on [0, 1].

The cumulative distribution function of the range of a Brownian bridge is well-known
(Kennedy (1976)) and is given by

FB0(x) = 1 + 2
∞

∑

k=1

(1 − 4k2x2) exp(−2k2x2).

11



The above result naturally suggests the following procedure for testing stationarity:

1. Fix the thinnest scale τ1 and the thickest scale τ2. The simulation study in the latter
part of this section offers some insight into suitable choices of these parameters.

2. Set the desired significance level α. With the Bonferroni correction, this becomes
αB = α/(τ2 − τ1 + 1).

3. For each τ ∈ {τ1, τ1 +1, . . . , τ2}, estimate E(Kτ
t ) (which is independent of t under the

null hypothesis of stationarity) by 1
n

∑n
t=1 Kτ

t .

4. Estimate σ2
τ as ŝτ

0 + 2
∑M

k=1 ŝτ
k, where {ŝτ

k}k is the sample autocovariance sequence of
Kτ

t . The simulation study below discusses the choice of M .

5. Using the estimated versions of E(Kτ
t ) and στ , form the Brownian bridge processes

Zτ
n(u), and calculate their ranges Rτ = maxu Zτ

n(u) − minu Zτ
n(u).

6. If FB0(maxτ Rτ ) > 1−αB , then reject the hypothesis of stationarity; otherwise accept.

A few remarks are in order.

Low moment requirements. We note the low moment requirements of the proposed
test. Indeed, we only require that E|Xt|r < ∞ for some r > 2. This is because,
obviously but interestingly, moments of maxima of random variables exist if an only if
the corresponding moments of the variables themselves exist. By contrast, a variety of
nonstationarity tests proposed in literature, see e.g. Neumann and von Sachs (2000)
and the references therein, are based on local second-order statistics of the process,
e.g. local periodograms. If Kτ

t were to be such a local quadratic form of Xt, we would
automatically need to require the existence of E|Xt|2r for some r > 2.

Difference with Rescaled Range Analysis. In the earlier part of the paper, we men-
tion differences between our methodology in the case where our summary statistic of
interest is V τ

t , and the Rescaled Range Analysis. Another difference emerges now.
Taking Kτ

t = V τ
t , the operations taken in (5) correspond to taking the local volume

(where the ‘locality’ is determined by the thickness parameter τ) and rescaling by
the global quantity στ . This is in contrast to the Rescaled Range Analysis, which,
in its local version, would take the local range and rescale it by the local standard
deviation. However, this would not be of use in detecting nonstationarities: we invite
the reader to think of a stationary process mutliplied by a time-varying standard de-
viation function, for which such a local Rescaled Range Analysis would annihilate the
effect of the time-varying standard deviation (due to the fact that for such a process,
the local range is roughly proportional to the local standard deviation) and thus make
it impossible to detect the nonstationarity of the process.

Suitability for both linear and nonlinear time series. A unique feature of our test
is that it is equally valid for linear and nonlinear processes, provided they satisfy
the requirements of Theorem 3.1. This is in contrast to, for example, the variety of
tests based on local second-order statistics of the process, which, by construction, are
not applicable to certain well-known nonlinear time series models such as (G)ARCH,
which are simply “white noise” as far as their second-order properties are concerned.

12



Exact p-value available when τ1 = τ2. When τ1 = τ2, the test is performed using a
single thickness τ only, and there is no need to perform the Bonferroni correction. In
this case, it is possible to specify the exact p-value, which equals 1 − FB0(Rτ ).

In the simulation study that follows, we test using a single thickness τ only. This is done
to “separate out” the performance of the test from the effect of the Bonferroni correction,
which has a chance of spoiling things when the dependence across τ amongst Kτ1

t , . . . ,Kτ2
t

is too high. However, later in this section, we propose a way of alleviating this issue by
constructing Kτ

t in such a way that this dependence hopefully remains low. Also, by using
a single thickness only, we are able to report the exact p-value.

Our simulation study is in five parts. In part one, our test process is white noise with
standard deviation changing abruptly halfway through. In parts two and three, respec-
tively, the test processes are AR(1) and ARCH(1), for which the autoregressive parameters
change halfway through, but the variance remains constant. In part four, we evaluate the
performance of our test for some challenging nonlinear processes from Davis et al. (2008).
In part five, we use an interesting example of an “on-off” process to exhibit the multiscale
aspect of our test and explain why its performance naturally depends on the thickness used
in the test. Since we test for structure rather than trend, our summary statistic of choice
is Kτ

t = V τ
t . We use the square pen, and the maximum autocovariance lag M from step 4

of the testing procedure above is set equal to max(τ, log n) (the τ in this expression “takes
care” of the dependence arising from the construction of Kτ

t , whereas the log n is respon-
sible for picking up the most significant autocovariances arising from the autocovariance
structure of the original process Xt). We use thickness τ = 1 in parts one to four (the
reason for this is given in part five). In part five, we also test using a single thickness at a
time, but we investigate how the performance of the test varies with the thickness used. For
testing using multiple thicknesses, our recommendations for the choice of τ1, τ2 are given
later in this section.

(a) The model is Xt = σtεt, where {εt}500
t=1 are i.i.d. N(0, 1), and σt changes from 1 for

t = 1, . . . , 250 to σ for t = 251, . . . , 500. Average p-values based on 100 simulations
are shown in Table 1. We note that even in the case σ = 1.35, for which the p-value is
below 10%, it is still extremely difficult to detect the nonstationarity by simple visual
inspection, so our test genuinely appears to help in this case.

(b) The model is Xt = {1−a2
t}1/2Yt, where Yt = at Yt−1 +εt with {εt}500

t=1 as above, and at

changes at t = 251 from a(1) to a(2). Note that Xt has a constant variance throughout,
so the only change is in the autoregressive parameter. We report the results in Table
2. It is remarkable that for a pair of parameters (a(1), a(2)) = (a, a + δ) for a fixed δ,
it is becoming easier for our test to detect the nonstationarity as a increases. This,
we believe, has an appealing physical interpretation: indeed, the quantity V τ

t can be
regarded as an “eye” or “scanner” used to view the time series from a distance. Thus,
it should not suprise us that the test is more sensitive for higher values of a: after all,
the human eye also tends to be better at detecting the change for larger values of a,
since lower values of a imply noisier appearance of the data.

(c) The model is Xt = {1 − at}1/2Yt, where Yt = σtεt with {εt}1000
t=1 as above, and σ2

t =
1 + atY

2
t−1. (The sample paths now have length 1000 in preparation for the next

example.) The parameter at changes at t = 501 from a(1) to a(2). Again, Xt has a
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constant variance throughout, and the only change is in the autoregressive parameter.
Obviously, the p-values are now not as impressive as in model (b), which is not
surprising, as nonstationarity detection for ARCH is known to be a harder problem
than for Gaussian AR processes. However, the next simulation example reassures us
that this is still not a bad result and in fact outperforms what we have been able to
establish is the state of the art, which is all the more interesting given the fact that
our method is in no way specifically designed for ARCH or even nonlinear processes.
The example follows.

(d) Davis et al. (2008) consider, amongst others, three challenging examples (from the
point of view of breakpoint detection) of the GARCH(1,1) model Xt = σtεt, with

{εt}1000
t=1 as above, and σ2

t = a
(0)
t + a

(1)
t X2

t−1 + b
(1)
t σ2

t−1, where the triple of parameters

(a
(0)
t , a

(1)
t , b

(1)
t ) changes, at time t = 501, as follows:

(i) (0.4, 0.1, 0.5) → (0.4, 0.1, 0.6)

(ii) (0.1, 0.1, 0.8) → (0.1, 0.1, 0.7)

(iii) (0.4, 0.1, 0.5) → (0.5, 0.1, 0.5)

We ran our nonstationarity test on these three models, and Table 4 shows the percent-
age of times (over 1000 simulations) that our test failed to detect their nonstationarity
at 5% significance level. Comparing this to the percentage of times Davis et al. (2008)
[Auto-Seg] and the competing method from Andreou and Ghysels (2002) [AG] failed
to detect any breakpoints (i.e. classified the series as stationary), we can see that
our method (which has not been particularly fine-tuned for GARCH or even nonlin-
ear processes) outperforms these two state of the art techniques on these challenging
examples. To check calibration, we also ran our test on the stationary examples
considered in Davis et al. (2008), in which the triples of parameters were

(iv) (0.4, 0.1, 0.5)

(v) (0.1, 0.1, 0.8)

The results are in Table 5. The empirical results for our test are not far off the
theoretical value of 5%.

(e) In this example, we demonstrate that results of the thick-pen test for stationarity
can, understandably and interpretably, depend on the thickness at which the given
process is being considered. This should not be viewed as a weakness of the thick-pen
methodology, but rather as a natural implication of the fact that certain processes do
not “appear” stationary when inspected at certain scales (= thicknesses) but do so at
others.

For example, we saw in parts (a)–(d) that the thinnest pen (with τ = 1) was “suf-
ficient” in testing for stationarity of classical time series models such as AR(1),
ARCH(1) and GARCH(1,1). This is because when the values of their parameters
change, it follows that the stochastic relationship between two consecutive variables
comprising the series also changes, which is why it suffices to consider these processes
at the smallest thickness value to detect the parameter change.

However, in this example, we consider an altogether different stochastic process, which
switches, in a Markovian way, between being constant and equal to zero, and being
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Gaussian white noise with mean zero, variance one. (This could serve e.g. as a very
rudimentary “cartoon” of a speech signal.) Consider the following cases:

Case A. The switching probability, at any particular time t, is 1
20 .

Case B. The switching probability, at any particular time t, is 1
50 .

Case C. The switching probability, at any particular time t, is 1
20 , but overall the

time series is non-stationary in the sense that is it always equal to zero for the
last 30% of the time (so it is as in Case A times zero for the last 30% of the
time).

Simulated sample paths for each of the cases: A, B and C, are in Figure 4.

We perform exactly the same test on cases A, B, C as in parts (a)–(d), the only
difference being that we now vary thickness values from 1 to 14. Figure 5 shows the
average p-value of the test as a function of thickness, averaged over 100 simulated
sample paths from models A (red), B (blue), C (green), each for a sample path of
length 1000.

As expected, the p-value increases with thickness, for models A and B. This is to be
interpreted as saying that the series begins to “look” stationary for higher thickness
values, as it is for those values that we are beginning to “bridge the gaps” between
the white noise parts and therefore obtain a more complete, broad scale picture of
the process. For lower thickness values, the scale at which we view the process is “too
fine” given the nature of the process: at those thicknesses, the transitions between
the white noise and zero parts are mistakenly interpreted as breakpoints.

In particular, we note that p-values for model A begin to exceed 10% for thicknesses
3 and above. A similar threshold thickness for model B is 8. It is unsurprising that
the blue curve lies underneath the red curve: model B displays fewer changes, which
are in addition further apart, and therefore are more likely to be misinterpreted as
breakpoints (or in other words in takes a higher thickness value, or a further zoom-out,
to appreciate the stationarity of the process). On the other hand, process C is, on
average, correctly interpreted as non-stationary for all thicknesses in the considered
range.

Finally, we run our stationarity test (with exactly the same parameters as above and with
τ = 1) on the time series of logged and differenced daily closing values of the S&P 500
index, for the 500 trading days (approximately 2 years) ending 25 November 2009. Thus,
the considered period overlaps with the recent financial crisis. The data are plotted in
Figure 6. Our choice of the thickness parameter is motivated by the good performance of
our test with τ = 1 for (G)ARCH models, as illustrated above. Since our test is equally
suitable for linear and nonlinear processes, the test hypothesis is “whether any stationary
model, possibly nonlinear, which satisfies the assumptions of Theorem 3.1, can explain the
changing volatility of the S&P 500 index over this period”. However, the p-value of our test
is less than 4 × 10−4. This provides extremely strong evidence against the null hypothesis
of stationarity, and in particular against nonlinear stationary models such as GARCH or
its many variants. To place this result in a broader context, we mention that recently
some authors have advocated the use of nonstationary models for the evolution of financial
log-returns, see e.g. Starica and Granger (2005) and Fryzlewicz et al. (2008).

We conclude the section on testing for nonstationarity with a few important remarks.
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Figure 4: Simulated sample paths for cases A (top), B (middle), C (bottom) in simulation
study (e), Section 3.1.
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Figure 5: p-value as a function of thickness, averaged over 100 simulated sample paths from
models A (red), B (blue), C (green), each for a sample path of length 1000, in simulation
study (e), Section 3.1. Horizontal lines at 0.05 and 0.1 for reference.

Table 1: Average p-values for simulation model (a).

σ 1 1.1 1.2 1.3 1.35 1.4

p-value 0.59 0.47 0.29 0.1 0.07 0.04

Choice of τ1 and τ2. Our recommendations for the choice of τ1 and τ2 are as follows. Since
the majority of commonly encountered nonstationary processes, such as piecewise
ARMA and (G)ARCH processes, exhibit changes in their dependence structure at
small lags, we suggest setting τ1 = 1 when dealing with data which could be modelled
in such frameworks. In light of Theorem 2.1, it may be helpful to perform some
preliminary data analysis before selecting τ2 as, for example, the largest significant
lag for which the autocovariance of the process is likely to change over time. It is much
more challenging to advise on a suitable choice of τ1, τ2 for processes resembling that
of our simulation study (e) above, and we leave this interesting question for future
work.

Choice of Kτ
t for τ > τ1. When testing using multiple thicknesses τ , it must be borne in

mind that for the most common choices of the summary statistic Kτ
t (e.g. volume,

mean), the degree of dependence between Kτ
t for different consecutive values of τ will
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Figure 6: Logged and differenced daily closing values of the S&P 500 index, for the 500
trading days ending 25 November 2009.

typically be non-negligible, and therefore the Bonferroni correction may not be very
effective. In order to “break” this dependence, instead of taking, say, Kτ1

t = V τ1
t ,

Kτ1+1
t = V τ1+1

t , Kτ1+2
t = V τ1+2

t (etc.), we suggest taking Kτ1
t = V τ1

t , Kτ1+1
t =

V τ1+1
t − V τ1

t (=
∆V

τ1+1

t

∆τ ), Kτ1+2
t = V τ1+2

t − V τ1+1
t (=

∆V
τ1+2

t

∆τ ), etc. Empirically, we
have observed that this adjustment reduces the degree of dependence and thus makes
the Bonferroni correction more effective.

We illustrate the above choice of Kτ
t with a challenging example of a non-stationary

process Xt, which is Gaussian throughout, with variance one and lag-one autocorrela-
tion equal to 1/2; however, it is AR(1) in the first half and MA(1) in the second half
(we refer to this model as AR(1)-MA(1) below). Since the change in the autocorrela-
tion structure only occurs at lag two, it is clear that in this case it will be insufficient
to test using K1

t = V 1
t as V 1

t only uses lag-one information. Thus, we also test using
K2

t = V 2
t − V 1

t . Average p-values for our thick-pen test for stationarity as a function
of the sample size, based on 100 simulated sample paths, for both K1

t and K2
t , are

shown in Figure 7.

It is unsurprising but interesting to observe that K1
t performs extremely poorly and

that K2
t performs well at detecting the non-stationarity in this model, since the largest

lags examined by K1
t and K2

t are, respectively, 1 and 2. To assess how well K2
t

performs, we compared the performance of our test to an analogous test based directly
on the local autocorrelation at lag two; in other words, we built the Brownian bridge
statistic exactly like in our test but based on the sequence XtXt+2 instead of Kτ

t .
Since Xt is Gaussian and its autocorrelation varies the most prominently at lag 2, we
would expect this autocorrelation-based test to be close to optimal; with some abuse
of terminology, we henceforth refer to it as the “oracle” test. It is unsurprising to note
that the oracle test does better than our thick-pen-based test since the former was
fine-tuned to this particular Gaussian example; however, it is also interesting to note
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Table 2: Average p-values for simulation model (b).

a(1) \ a(2) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 0.59 0.51 0.39 0.29 0.1 0.03 0.01 0 0 0
0.1 0.53 0.47 0.36 0.19 0.05 0.01 0 0 0
0.2 0.58 0.5 0.28 0.15 0.02 0 0 0
0.3 0.59 0.50 0.22 0.04 0 0 0
0.4 0.57 0.39 0.15 0.01 0 0
0.5 0.58 0.45 0.09 0 0
0.6 0.52 0.35 0.01 0
0.7 0.56 0.14 0
0.8 0.61 0.01
0.9 0.57

Table 3: Average p-values for simulation model (c).

a(1) \ a(2) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 0.57 0.53 0.51 0.51 0.49 0.39 0.3 0.17 0.13 0.06
0.1 0.56 0.54 0.53 0.5 0.4 0.33 0.2 0.15 0.02
0.2 0.59 0.57 0.5 0.46 0.38 0.21 0.1 0.05
0.3 0.55 0.6 0.48 0.39 0.33 0.17 0.05
0.4 0.54 0.55 0.48 0.30 0.22 0.05
0.5 0.55 0.54 0.45 0.29 0.08
0.6 0.53 0.54 0.34 0.12
0.7 0.59 0.46 0.2
0.8 0.6 0.33
0.9 0.61

that it does not do dramatically better. On the other hand, it is worth emphasising
that a similar test based on local autocorrelations would by definition be of no use
when investigating changes in the dependence structure beyond the second moment.
In particular, it would have to fail in the (G)ARCH framework (a set-up where our
thick-pen test does well, as demonstrated earlier in this section) as (G)ARCH processes
are simply white noise as far as their second-order structure is concerned.

Testing using multiple summary statistics. If there are good reasons to believe that
multiple characteristics of the time series under consideration (e.g. mean level and
dependence structure) change over time, it may make sense to test using multiple
summary statistics simultaneously (e.g. M τ

t and V τ
t ) instead of, or in addition to,

looking at multiple thicknesses τ simultaneously. The same procedure applies, includ-
ing obviously the Bonferroni correction.

Thick-pen as the last stage in a cascade of tests. Since, as demonstrated above, the
thick-pen-based test is also applicable to situations where changes in the dependence
structure occur beyond the second moment, it is an option to use it as the last stage
in a cascade of tests, where a test for changes in the mean is performed in the first
stage, a test for changes in the second-order dependence structure in the second stage
(for example that proposed in Paparoditis (2009)) and the thick-pen-based test in the
final, third stage.
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Table 4: Percentage of times the (nonstationary) models (i)–(iii) were considered stationary
in the Auto-Seg, AG and thick-pen (TP) procedures, in simulation (d).

(i) (ii) (iii)

Auto-Seg 80.4 37 87.8
AG 72 21 85
TP 71.5 8.9 81.8

Table 5: Percentage of times the (stationary) models (iv)–(v) were considered nonstationary
in the Auto-Seg, AG and thick-pen (TP) procedures, in simulation (d).

(iv) (v)

Auto-Seg 4 4
AG 4 12
TP 3 6

3.2 Measuring time series dependence via the thick-pen transform

The purpose of this section is to argue the potential usefulness of the thick-pen transform
as a measure of association/dependence between time series, especially in cases where tra-
ditional measures (e.g. cross-covariance, cross-spectrum, coherence) fail due to insufficient
moment conditions, or where a more “visual” measure is required. We illustrate and expand
on this below. We aim at conveying the main idea, rather than at a detailed analysis.

Let Xt and Yt be two univariate zero-mean (or zero-median if mean does not exist) time
series, roughly on the same scale (by which we mean variance if it exists or another robust
measure of scale if it does not). Our main basic idea is to measure the overlap between
the areas created by the thick-pen transforms of X and Y . Denoting by Lτ

t (Z) (U τ
t (Z))

the lower (upper) thick-pen boundary for a generic process Z at time t, thickness τ , we
define the localised Thick-Pen Measure of Association (TPMA) between X and Y at time
t, thickness τ as

ρτ
t (X,Y ) =

min{U τ
t (X), U τ

t (Y )} − max{Lτ
t (X), Lτ

t (Y )}
max{U τ

t (X), U τ
t (Y )} − min{Lτ

t (X), Lτ
t (Y )} .

Note that if the intersection between [Lτ
t (X), U τ

t (X)] and [Lτ
t (Y ), U τ

t (Y )] is non-empty, then
ρτ

t (X,Y ) simply measures the length of this intersection as a proportion of the length of the
union of these two intervals. Indeed, if X = Y , then ρτ

t (X,Y ) ≡ 1. If [Lτ
t (X), U τ

t (X)] and
[Lτ

t (Y ), U τ
t (Y )] do not intersect, then ρτ

t (X,Y ) measures the length of the “gap” between
them as a proportion of the length of the shortest interval containing their union, times
minus one. If X and Y are stationary between times t1 and t2, a natural averaged version
of ρτ

t (X,Y ) is

ρ̄τ
t1,t2(X,Y ) =

1

t2 − t1 + 1

t2
∑

t=t1

ρτ
t (X,Y )

Note that the range of ρτ
t (X,Y ) is (−1, 1] and so it is a bounded random variable, which

in particular possesses all finite moments, irrespective of the degree of heavy-tailedness of
X or Y . This, in particular, implies that under appropriate mixing conditions (see e.g.
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Figure 7: Average p-values (over 100 simulated sample paths) in detecting the non-
stationarity of the AR(1)-MA(1) model, as a function of the sample size. Solid black:
thick-pen test based on K1

t . Green: thick-pen test based on K2
t . Dotted black: “oracle”

test. Dashed horizontal line at 0.1 for reference.

Davidson (1994), Chapter 19, for a review), we have

lim
t2−t1→∞

ρ̄τ
t1,t2(X,Y ) = E(ρτ

t (X,Y ))

in the almost-sure sense, if X and Y are stationary (but not necessarily light-tailed). How-
ever, a similar convergence result does not hold for the sample correlation between X and
Y if their second moments do not exist.

Although the range of ρτ
t (X,Y ) is (−1, 1], the reader should not fall into the trap of iden-

tifying values of ρτ
t (X,Y ) close to −1 (0, 1) with “perfect negative” (“lack of”, “perfect

positive”) correlation between X and Y . The TPMA ρτ
t (X,Y ) describes how the two time

series appear to co-vary when seen from the distance corresponding to thickness τ . For ex-
ample, if {Xt}100

t=1 and {Yt}100
t=1 are two independent Gaussian white noise sequences, they

will invariably appear very similar when viewed from a sufficiently large distance. The
numerical analysis of the quantity ρ̄99

1,100(X,Y ) (note the extremely high value of the thick-
ness parameter) applied to this example confirms this observation: indeed, in 100 simulated
realisations, the value of this quantity, in this particular example, never fell below 0.97.
However, when computed at a range of (lower) thickness values, TPMA is well able to
discriminate between different degrees and types of dependence in time series, also in cases
where covariance fails. This is demonstrated next. (As an aside, we mention that TPMA
is a “visual” measure in the sense that it is often possible to deduce an approximate value
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of ρτ
t (X,Y ) simply by the visual inspection of the graphs of X and Y . However, the same

cannot be said of covariance as it involves multiplication, which is not an obvious operation
to perform graphically.)

We demonstrate the advantages of the TPMA using three examples. The first one involves
TPMA analysis of the DJIA and FTSE 100 stock indices, with an interesting possible in-
terpretation of the results. The second one involves variable selection where the covariates
(and the response) are extremely heavy-tailed. The final example demonstrates the sensi-
tivity of TPMA to the phase between the two input time series. We use the square pen
throughout.

Example 1. In this example, we perform the Thick-Pen Measure of Association (TMPA)
analysis for a pair of time series: daily log-returns on the Dow Jones Industrial Average
(Xt) and FTSE 100 (Yt) indices, on 2048 trading days ending 10 March 2010; both series are
scaled so that their variance is 1. We note that the initial part of both series corresponds
to the final part of the burst of the “dotcom bubble” in the early 2000s, while the final
part of both series covers the period of the recent financial crisis. Both of those periods are
characterised by a dramatic increase in volatility. The series are displayed in Figure 8.

To analyse the series, we use the TPMA with the square pen, the thickness parameter
τ ranging from 1 to 199, and the scaling factor γ equal to zero: this is done to ensure
that the TPMA is invariant to changes in the marginal volatility of each series (indeed,
with the scaling factor equal to zero, the value of the TPMA remains the same if each
series is multiplied by the same constant σ). For each thickness parameter τ , for ease of
visual interpretation, we additionally smooth the TPMA sequence ρτ

t (X,Y ) by means of a
Gaussian kernel smoother with bandwidth 200. For comparative purposes, we also compute
the localised cross-correlation sequence γt(X,Y ) between X and Y , where the localisation is
also achieved by means of the Gaussian kernel with bandwidth 200. For ease of comparison,
we further normalise each sequence ρτ

t (X,Y ) so that its overall (global) sample mean and
variance match those of γt(X,Y ).

Results are visualised in Figure 9. The top plot shows γt(X,Y ) as well as ρτ
t (X,Y ) for

τ = 1, 4, 19. The peak present in all the sequences around time t = 300 indicates increased
co-dependence between the two time series during the dotcom crisis. Similarly, the peak
around time t = 1800 indicates increased co-dependence during the recent financial crisis.
It is interesting to see that the two peaks are apparent in all four indicators.

However, it is fascinating to observe that the relationship between the levels of the two
peaks differs depending on the value of the thickness parameter. For τ = 1, which roughly
corresponds to the ‘daily’ scale of the data, the value of ρτ

t (X,Y ) at the later peak is higher
than that at the earlier peak. However, the opposite is true for τ = 4 (‘weekly’ scale) and
τ = 19 (‘monthly’ scale). This is illustrated further in the middle plot, which shows the
time-thickness “map” of ρτ

t (X,Y ) (the darker the colour, the larger the value) and in the
bottom plot, which shows (in red colour) the time-thickness regions where ρτ

t (X,Y ) exceeds
the threshold of 0.566.

Although this finding appears challenging to interpret, we note that the dotcom crisis was
a single-sector crisis, affecting mainly companies from the highly-globalised IT sector. On
the other hand, the recent financial crisis was a more complex phenomenon, involving both
global-scale events (e.g. spectacular shocks in the global banking sector) and country-
specific events (e.g. bailout packages, announcements of macroeconomic indicators). We
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Figure 8: Left: FTSE 100 index; right: DJIA index, both on 2048 trading days (roughly 8
years) ending 10 March 2010.

can only hypothesise that it might have been the presence of those country-specific effects
that led to the decreased dependence between DJIA and FTSE 100 as measured by the
TPMA for larger thickness values. In other words, during the recent financial crisis, DJIA
and FTSE 100 might have been responding in unison to abrupt global shocks (hence the
extremely high co-dependence of the two series for smaller thickness values) but might have
been less co-ordinated over longer time-scales (corresponding to higher thickness values) due
to the possibly longer-term effects of country-specific factors affecting the value of these two
stock indices.

Finally, we mention that a similar analysis would not have been possible only based on the
local cross-correlation sequence γt(X,Y ), as the latter quantity does not reflect the concept
of “viewing” the data at multiple time-scales.

Example 2. Unlike the other two examples, this one exceptionally departs from the domain
of time series and considers a possible application of the TPMA to the problem of variable
selection for heavy-tailed data. Such data arise naturally in finance (returns on financial
instruments) and biostatistics (gene expressions), amongst others. The Cauchy distribution
displays an extreme degree of heavy-tailedness in the sense that even its first moment does
not exist. In the first part of the example, we attempt to measure the degree of linear
association between X and Z = aX + Y , where X and Y are independent Cauchy vari-
ates. Having observed {Xt}n

t=1 and {Zt}n
t=1, we apply (a) the sample (Pearson) correlation

between X and Z, (b) Kendall’s tau rank correlation, (c) Spearman’s rho rank correlation,
and (d) the TPMA ρ̄1

1,n(X,Z), in an attempt to quantify the degree of dependence between
X and Z, for a range of values of a. While we should not hope for either of these estimators
to return a value close to a itself, it would be desirable for the sample distributions of the
estimators to concentrate around values whose magnitude increases with a, to reflect the
increasing degree of dependence of X and Z as a increases.
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Figure 9: Top: γt(X,Y ) (black), ρτ
t (X,Y ) for τ = 1, 4, 19 (red, blue, green, respectively).

Middle: time-thickness plot of ρτ
t (X,Y ) (darker colour means larger value). Bottom: regions

where ρτ
t (X,Y ) exceeds 0.566 (red).
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Figure 10: Left column: histograms, over 1000 simulations, of Kendall’s tau correlations be-
tween {Xt}1000

t=1 and {Zt}1000
t=1 , Zt = aXt +Yt; X,Y independent Cauchy, for a = 0, 0.4, 0.7, 1

(from top to bottom). Middle column: Spearman’s rho; right column: ρ̄1
1,1000(X,Z), for

the same values of a.
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Figure 10 shows the sample distributions of Kendall’s tau correlations between {Xt}n
t=1 and

{Zt}n
t=1, for n = 1000, for a range of values of a, as well as the sample distributions of

Spearman’s rho and ρ̄1
1,n(X,Z). It is clear that all three statistics provide concentrated and

peaked distributions, and that their average values appear to increase with a, as required.
However, the advantage of ρ̄1

1,n(X,Z) is that it is computationally fast (unlike Kendall’s tau
and Spearman’s rho, it does not involve a full sorting of the observations), a property which
would be of particular significance in tasks such as high-dimensional variable selection.
We note that the computational complexity of ρ̄τ

1,n(X,Z) is O(n). The sample (Pearson)
correlation is also rapid to compute, but it exhibits extremely poor performance in this
example, which is not surprising as the Cauchy distribution does not possess a finite variance
or mean.

To investigate this issue further, the second part of Example 1 continues this theme but in
the context of variable selection. Sample correlation is the basic ingredient of most modern
variable selection techniques, including, amongst others, LARS (Efron et al. (2004)) and
its various special cases such as Lasso (Tibshirani (1996)) or forward stagewise selection.
It could be replaced by Kendall’s tau or Spearman’s rho if the data were extremely heavy-
tailed. We consider a simple linear regression model

Y = β1X
1 + β2X

2 + ε,

where X1, X2 and ε are independent Cauchy-distributed variables, and suppose that we
collect n = 1000 independent observations. We fix β1 = 1, and vary β2 from 0.7 to just
short of 1. Since β1 > β2, and thus the degree of dependence between Y and X1 is greater
than that between Y and X2, it would be desirable for any measure of vector dependence
to return a larger value for the pair (Y,X1) than for (Y,X2), i.e. to rank X1 ahead of X2 in
importance. Table 6 shows the percentage of times (over 1000 simulations) that this correct
ranking was achieved by simple sample correlation (Marginal Correlation Ranking; MCR),
Kendall’s tau, Spearman’s rho and the TPMA. The latter three are extremely competitive,
with the TPMA being marginally superior in all cases. We also emphasise again its lower
computational complexity. This provides evidence of its potential usefulness in variable
selection contexts where the number of covariates is large. We emphasise that TPMA
performed well in this setting even though no rescaling of Y was performed, i.e. Y and Xi

were not exactly on the same “scale”. Also, we note that, unlike the three other measures,
TPMA is not invariant with respect to permutations of the data (as it is designed as a “time
series” measure). Thus, further performance improvement could be expected if we were to
average over some permutations of the data, at the expense of computational efficiency.

Table 6: Percentage of cases the covariates were correctly ordered (over 1000 simulations)
by Marginal Correlation Ranking (MCR), Kendall’s tau (tau), Spearman’s rho (rho) and
the Thick-Pen Measure of Association with thickness τ = 1 (TPMA), as a function of β2.

β2 0.7 0.8 0.9 0.95 0.99

MCR 62 59 55 52 51
tau 99 96 83 65 51
rho 99 95 81 66 53
TPMA 100 97 83 66 53

Example 3. The final example illustrating the potential applicability of the TPMA in
multivariate time series analysis concerns the detection of phase between time series. In
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Figure 11: Thick-pen cross-spectra from Example 2. Top: cross-spectrum for q = 1 (red),
q = 2 (green), q = 3 (blue), q = 4 (magenta), q = 5 (grey) and the independent case (black).
Bottom: differences between the coloured curves and the black curve; colours correspond.

this example, both {Xt}200
t=1 and {Yt}200

t=1 are i.i.d. Gaussian sequences (the reader is invited
to think of them as, for example, representing residuals from two univariate model fits),
which are however dependent on each other in the sense that Y is a shifted version of X:

Yt = Bq Xt,

where B is the shift operator, and q ranges from 1 to 5. We also test the case where X
is independent of Y . Figure 11 shows what we term the Thick-Pen Cross-Spectrum of
X and Y , i.e. the sequence {ρ̄τ

1,200(X,Y )}τ , here for τ ranging from 1 to 9, plotted for
various values of q as well as for the case of X and Y being independent, averaged over
1000 simulated sample paths.

If Yt = Bq Xt, then Xt, . . . ,Xt+q−1 is independent of Yt, . . . , Yt+q−1 and thus, for τ =
1, . . . , q − 1, we have that E(ρ̄τ

1,200(X,Y )) = E(ρ̄τ
1,200(X,Z)), where Z is independent of X.

This is illustrated in Figure 11, which shows that the averaged Thick-Pen Cross-Spectrum
only diverges from the spectrum for independent series for thickness values starting from
τ = q, thus providing a natural way of estimating the phase q between X and Y . Exactly
the same phenomenon was observed in a similar example using the Cauchy distribution.

To conclude this section, we note that unlike covariance and related measures which only
make sense for a pair of time series, the TPMA naturally generalises to more than two time
series. For a collection of time series X1, . . . ,XM , we define

ρτ
t (X

1, . . . ,XM ) =
mini{U τ

t (Xi)} − maxi{Lτ
t (Xi)}

maxi{U τ
t (Xi)} − mini{Lτ

t (Xi)} .
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It is our belief that this extension can potentially pave the way for the application of the
TPMA in tasks such as time series clustering.

3.3 Non-stationary time series classification via the thick-pen transform

In this section, we show how the TPT can be used to classify not-necessarily-stationary
time series. The setting is as follows: we have C ≥ 2 groups of time series, where time
series within each group follow the same distribution, but the distributions differ across
the groups. Within each group c, we have already observed Nc time series. Given a “new
arrival” Xt, we wish to classify it as belonging to one of the C groups. The generic TPT-
based classification algorithm proceeds as follows:

1. Decide on a suitable summary sequence Kτ
t .

2. Compute Kτ
t for each series in each group, and average this summary sequence con-

temporaneously over the series within each group, to produce K̄τ,c
t for each of the

groups c = 1, . . . , C.

3. Compute Kτ
t (X) for the new arrival Xt.

4. Using a pre-selected distance function d(·, ·) : R
n × R

n → R, compute the distances
between Kτ

t (X) and K̄τ,c
t for c = 1, . . . , C.

5. Classify Xt to the group which corresponds to the smallest distance.

By comparing Kτ
t (X) and K̄τ,c

t , we essentially compare the (suitably understood) “shape”
of the new arrival against the average “shapes” of the time series within each group, and
classify the new arrival to the group where the average shape of the time series (viewed at
thickness τ) resembles the most closely that of the new arrival.

We illustrate the use of the above algorithm on a well-known geophysics dataset. In the
monitoring of a comprehensive test ban treaty, it is critical to develop methods for discrimi-
nating between nuclear explosions and earthquakes. We applied the proposed methodology
for classifying a time series as either an explosion or an earthquake. The proliferation of
nuclear explosions is monitored in regional distances of 100 – 2000 km and the record-
ings of mining explosions can serve as a reasonable proxy. A data set of regional (100
– 2000 km) recordings of several typical Scandinavian earthquakes and mining explosions
measured by stations in Scandinavia are used in this study. The data set, consisting of
8 earthquakes and 8 explosions, is given in Kakizawa et al. (1998). The problem is dis-
cussed in detail in Shumway and Stoffer (2006), and the data are available online from
http://lib.stat.cmu.edu/general/tsa2.

Prior to the analysis, we center and scale each time series so that its sample mean is zero
and its sample variance is one. We use the following selection of parameters: the square
pen, Kτ

t = V τ
t (volume), d2(f, g) = 1

n

∑n
t=1(ft − gt)

2. We remove each of the 2 × 8 = 16
series one by one, and classify it using the above algorithm. As a result, each time series
is classified either to the group consisting of the 7 remaining series from the same category
(successful classification) or to the group consisting of the 8 series from the other category
(failed classification).
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Figure 12: Top: number of successful classifications (out of 16) as a function of thickness
in the data analysis of Section 3.3. Bottom: classification success for time series no. 11 as
a function of thickness.
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The top plot in Figure 12 shows the number of successful classifications (out of 16) as a
function of thickness. The number of successes peaks at 15 for a certain range of thicknesses,
demonstrating the effectiveness of the methodology. The “double bump” in the plot is
caused by the series number 11, for which the classification success as a function of thickness
is plotted in the bottom plot of Figure 12 and also exhibits the double bump. Albeit an
unusual feature, it is very much in line with the multiscale philosophy of “viewing the data
at multiple thicknesses / scales”. The result can be interpreted as saying that series number
11 resembles other series from the same group when “viewed” at thickness 100 and around,
as well as 300-400 and around, but not at thickness 200 and around.

The leave-one-out cross-validation as described above is a practical way of choosing the
“right” thickness value(s) in classification problems.

4 Discussion

In this section, we mention a few further aspects of the thick-pen methodology, which in
our view would merit further study.

Local extrema of U τ
t , Lτ

t as a marker. Depending on the nature of the time series and
problem at hand, more complex “markers” involving U τ

t and Lτ
t are possible. Keeping track

of local maxima of U τ
t and local minima of Lτ

t is one such example. As illustrated in Figure
3, for certain thicknesses, U τ

t appears to attain local maxima more often for time series with
less dependence structure. If this were indeed the case, the same would obviously hold for
local minima of Lτ

t , for symmetrically distributed time series. Thus the following binary
markers might be of use in nonstationarity detection and classification:

U
τ
t = I(U τ

t > U τ
t−1 ∧ U τ

t > U τ
t+1)

Lτ
t = I(Lτ

t < Lτ
t−1 ∧ Lτ

t < Lτ
t+1),

where I(·) is the indicator function.

Adaptive-thickness pens. The analogy between pens and kernels, mentioned in Section
2, raises the question of whether it would be meaningful and valuable to consider pens
whose shape or thickness varies over time t according to local properties of the time series
Xt, e.g. its visibility from a distance.

Unequispaced time series. The thick-pen transform, unlike many linear transforms such
as the Fourier or wavelet transforms, extends naturally and easily to non-equispaced time
series.
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A Proofs

Proof of Proposition 2.1. Consider the total variation of Υτ
t := U τ

t − τ
2 (clearly the

additive constant τ
2 has no impact on the total variation). For any sequence f , define the

shift operator B by (Bf)t = ft+1. Note the recursive relationship

Υτ
t = max(Υτ−1

t , BΥτ−1
t ).

It now suffices to observe that since BΥτ−1
t is the shift of Υτ−1

t in the horizontal direction,
taking this shift and taking the maximum of the two resulting functions cannot possibly
increase their total variation. Thus we have ‖Υτ−1

t ‖TV = ‖BΥτ−1
t ‖TV ≥ ‖Υτ

t ‖TV , and the
proof is complete. �

Proof of Theorem 2.1. We first define T s,s+τ
X = V τ

s (X) − τ and note that

T s,s+τ
X = max

s≤i,j≤s+τ
(Xi − Xj).

Without loss of generality, we consider s = 1; note that t = τ + 1. In the new notation, our
task is to show that the joint distributions of {T 1,t−1

X , T 2,t
X , T 1,t

X } and {T 1,t−1
Y , T 2,t

Y , T 1,t
Y } are

different. Proceeding by contradiction, let us suppose that they are the same. If this were
true, then in particular, we would have the equality

P (T 1,t
X − T 1,t−1

X > 0 ∧ T 1,t
X − T 2,t

X > 0 ∧ T 1,t
X > λ) =

P (T 1,t
Y − T 1,t−1

Y > 0 ∧ T 1,t
Y − T 2,t

Y > 0 ∧ T 1,t
Y > λ) =: a

We now note that if T 1,t
X −T 1,t−1

X > 0, this implies that T 1,t
X necessarily achieves its maximum

at |Xt − Xq| for some q. Also (symmetrically), if T 1,t
X − T 2,t

X > 0, then T 1,t
X achieves its

maximum at |X1 − Xq| for some q. Therefore,

T 1,t
X − T 1,t−1

X > 0 ∧ T 1,t
X − T 2,t

X > 0

means that T 1,t
X achieves its maximum at |Xt − X1|. Thus we have the event equality

T 1,t
X − T 1,t−1

X > 0 ∧ T 1,t
X − T 2,t

X > 0 ∧ T 1,t
X > λ =

T 1,t
X − T 1,t−1

X > 0 ∧ T 1,t
X − T 2,t

X > 0 ∧ |Xt − X1| > λ,

and similarly for Y .

We now introduce σ1, σ2, such that Xt − X1 ∼ N(0, σ2
1) and Yt − Y1 ∼ N(0, σ2

2). By the
assumptions of the Theorem they are different, and without loss of generality, we assume
σ1 > σ2.

Denoting AX,t = {T 1,t
X − T 1,t−1

X > 0 ∧ T 1,t
X − T 2,t

X > 0}, we decompose

P (|Xt − X1| > λ) = P (|Xt − X1| > λ ∧ AX,t) + P (|Xt − X1| > λ ∧ Ac
X,t)

= a + P (|Xt − X1| > λ ∧ Ac
X,t).

Similarly,
P (|Yt − Y1| > λ) = a + P (|Yt − Y1| > λ ∧ Ac

Y,t).
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Observe now that Assumption 2.1 simply means that if λ is large enough, we have

P (Ac
X,t

∣

∣ |Xt − X1| > λ) ≤ δ < 1,

and similarly for Y . This implies that

(1 − δ)P (|Xt − X1| > λ) ≤ P (|Xt − X1| > λ) − P (|Xt − X1| > λ ∧ Ac
X,t)

= a ≤ P (|Xt − X1| > λ).

Similarly,
(1 − δ)P (|Yt − Y1| > λ) ≤ a ≤ P (|Yt − Y1| > λ).

In particular, the above inequalities hold in the region λ ≥ σ2
√

2 log n where n → ∞.
However, setting λ = σ2

√
2 log n and using simple properties of the tails of univariate

normal distributions, we then have that a = an (ignoring irrelevant logarithmic terms) is
simultaneously of the order n−1 (based on the inequality for Y ) and of the order n−σ2

2
/σ2

1

(based on the inequality for X), which is a contradiction. This completes the proof of the
theorem. �

Further clarification of Assumption 2.1. In the following, we identify an easy-to-
verify, mixing-type assumpion which implies Assumption 2.1. We have, using the Bonferroni
inequality on the way

P (Ac
X,t

∣

∣ |Xt − X1| > λ) ≤
P (T 1,t

X − T 1,t−1
X = 0 ∨ T 1,t

X − T 2,t
X = 0

∣

∣ |Xt − X1| > λ) ≤
P ( max

(i,j)6=(1,t)
|Xi − Xj | ≥ |Xt − X1|

∣

∣ |Xt − X1| > λ) ≤

P ( max
(i,j)6=(1,t)

|Xi − Xj | ≥ λ
∣

∣ |Xt − X1| > λ) =

P
(

⋃

(i,j)6=(1,t){|Xi − Xj| ≥ λ ∧ |Xt − X1| > λ}
)

P (|Xt − X1| > λ)
≤

∑

(i,j)6=(1,t) P (|Xi − Xj | ≥ λ ∩ |Xt − X1| > λ)

P (|Xt − X1| > λ)

At this point, we assume that for all (i, j) 6= (1, t),

P (|Xi − Xj | ≥ λ ∩ |Xt − X1| > λ) ≤ αλP (|Xi − Xj| ≥ λ)P (|Xt − X1| > λ),

where the sequence of constants αλ is uniform over all i, j, t, and its permitted rate of
increase with λ is specified below. Note that this assumption involves no maxima or minima
and can be verified via simple Gaussian integration for a particular process. Applying this
assumption and continuing the above chain of inequalities, we get

. . . ≤ αλ

∑

(i,j)6=(1,t)

P (|Xi − Xj | ≥ λ).

Denote σi,j = Var1/2(Xi − Xj). Continuing,

. . . ≤ αλt2 exp(−λ2/{2max
i,j

(σ2
i,j)}),

32



which, provided that αλ does not go to infinity too fast with λ, can be made arbitrarily
small if λ is large enough.

Proof of Theorem 3.1. We first note that since the existence of moments of a sequence
of random variables implies the existence of the corresponding moments of local maxima
of these variables, we have that E|Kτ

t − E(Kτ
t )|r < ∞. Further, by Theorem 14.1 in

Davidson (1994), the sequence Kτ
t − E(Kτ

t ), for any fixed τ , inherits the mixing properties
of Xt, that is, is also α-mixing with the mixing coefficients αm satisfying αm = O(m−s)
for some s > r

r−2 . Thus, for any fixed τ , the sequence Kτ
t − E(Kτ

t ) satisfies the conditions
of Corollary 29.7 in Davidson (1994), and the proof of (i) is complete. For (ii), since the
sequence of functions hn that map Y τ

n (u) to Zτ
n(u), with the limiting mapping h taking

Y τ
n (u) to Y τ

n (u) − uY τ
n (1), satisfies the Extended Continuous Mapping Theorem (see e.g.

Billingsley (1968)), we have that

Zτ
n(u) = hn(Y τ

n (u))
d→ h(Bu) = B0

u,

which completes the proof. �
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