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Abstract 

Incremental sheet forming (ISF) is a cost effective process for rapid manufacturing of sheet metal 

products. However, ISF also has some limitations such as severe sheet thinning and long processing 

time. These limitations hamper the forming part quality and production efficiency thus restricting the 

ISF application in industrial practice. To overcome the problem of sheet thinning, a variety of 

processes, such as multi-step ISF, have been proposed to improve the material flow and thickness 

distribution. In this work, a new process has been developed by introducing multi-point forming 

(MPF) as preforming step before conducting ISF processing. Employing an established hybrid sheet 

forming system and the corresponding thickness prediction model, the preform shape can be 

optimized by employing a two-step optimization approach to improve the sheet thickness distribution. 

Two case study examples, including a hemisphere part and an aerospace cowling part, are fabricated 

by using the developed hybrid flexible process in this study. The experimental results show that the 

hybrid flexible forming process with the optimal preform design could achieve sheet parts with more 

uniform thickness distribution and reduced forming time.  

 

Keywords: Flexible sheet forming; Incremental sheet forming; Preform shape optimization; 

Thickness distribution; Multi-point forming  

1. Introduction 

When producing sheet metal parts with a relatively small lot size, conventional sheet forming 

technologies, such as stamping, have many limitations due to the long lead time and costly tool set 

manufacturing. Alternatively, the flexible sheet forming approach becomes a better solution for rapid 

manufacturing of small-batched and customized products. With the advantage of reduced lead time 

and tool costs, flexible sheet forming processes show a great potential in rapid prototyping and small-



Proceedings of IMechE Part B: Journal of Engineering Manufacture 2017, Vol. 231 (5) 779-791 

DOI: 10.1177/0954405417694061 

batch manufacturing. This method is especially useful in the manufacturing applications of aerospace, 

biomedical and automotive prototyping development. Concerning the technologies of flexible 

forming, incremental sheet forming (ISF), multi-point forming (MPF) and asymmetric spinning are 

three typical flexible sheet forming processes.  

In the MPF process, matrices of tool pins are employed as an alternative to traditional rigid die 

[1]. By adjusting the height of individual pins, 3D freeform surface can be obtained. The idea of 

forming sheet metal parts by using discrete pins was first proposed by Nakajima in the 1970s [2]. 

However, challenges come from surface defects such as dimples caused by discontinuous contact 

between the sheet and the punch [3]. Li et al [4-6] improved the MPF process by developing 

homogeneous deformation forming path, blank-holding strategies and improving the cushion 

conditions. Hardt et al. [7] introduced the closed-loop shape control into the MPF system. However, 

due to the use of the discrete pins as the forming die, sheet geometries that can be produced by using 

this approach are still limited. Asymmetric spinning was developed based on the traditional spinning 

technology [8]. In this process, rollers are employed to replace the traditional full mandrel. In addition, 

synchronized movements are maintained between the roller and mandrel to generate asymmetric 

geometry. Xia et al. [9] produced a comprehensive review of the asymmetric spinning processes. 

However, achieving geometries with strong asymmetric features is still a challenging task in 

asymmetric spinning.  

ISF is another flexible sheet forming approach. In the ISF process, a stylus-type forming tool 

moving along a predefined 3D trajectory, locally deforms the clamped blank peripherally and 

gradually achieves the designed geometry [10]. Freeform 3D shapes can be gradually obtained with 

the predefined tool movement. Since the development of ISF concept in 1960s [11], efforts have been 

made to explore various variations of the ISF process. Matsubara et al. [12] proposed a two-point 

incremental forming (TPIF) process, in which the blank was deformed under the support of a male 

die. Meier et al. [13] developed a double-sided incremental forming (DSIF) process by using two 

forming tools at both side of the sheet. Malhotra et al. [14] proposed an accumulative double-sided 

incremental forming (ADSIF) process with improved thickness distribution. Araghi et al. [15] 

presented a hybrid sheet forming process combing the stretching and ISF process together. In these 

processes, complex sheet parts can be formed by applying geometry specified tool paths. 

Although ISF possesses high process flexibility, its industrial application is still limited due to 
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low geometrical accuracy, long processing time and severe sheet thinning. Adams and Jeswiet [16] 

recently summarized some guidelines and design rules for multi-step incremental forming processes. 

To improve the geometrical accuracy, Micari et al. [17] investigated the key ISF parameters that 

affecting the geometrical accuracy. Allwood et al. [18] employed stereovision cameras to obtain 

geometrical feedback and to implement on-line compensation on the pre-designed toolpath. Asghar 

et al. [19] developed an analytical model to compensate for the sheet deflection and tool deflection. 

Hussain et al. [20] focused on the pillow tendency defect in the middle of the parts and the 

experimental results show that lower hardening exponent had a positive effect on control pillowing. 

Malhotra et al. [21] developed a squeezing toolpath strategy in DSIF to improve the geometrical 

accuracy. These approaches could effectively enhance the ISF geometrical accuracy. Another ISF 

challenge comes from severe sheet thinning after forming. To predict the thickness distribution, 

Bambach [22] developed a geometrical model to calculate the sheet thickness by assuming that 

surface points always move along the normal direction of the surface. To improve the thickness 

distribution, Duflou et al. [23] developed the multi-pass forming strategy. Manco et al. [24] adopted 

four multi-step strategies to investigate the influence of forming path on thickness distribution. Zhang 

et al. [25] designed a number of intermediate shapes in multi-step ISF by employing the hydro-

bulging forming concept. Liu et al. [26] carried out further work in designing the intermediate shapes 

by using a systematic methodology. However, one drawback of multi-step strategy is the increased 

processing time. Different from the multi-step strategy, DSIF [21] and ADSIF [14] strategies may 

also be used to improve the sheet thickness by controlling the amount of sheet squeezing under 

forming load. In addition, a hybrid forming process by combining the stretching process and ISF 

process together was proposed by Araghi et al. [15]. This process could also improve the thickness 

distribution. However, in this hybrid process, a specified supporting die is required. In the ISF process, 

as the sheet is peripherally clamped, no material could flow into the region of the shape formed 

therefore sheet thinning becomes unavoidable. 

In this work, an improved flexible forming process combining MPF as preform process and ISF 

as finish forming process has been developed. To determine the preform shape in the MPF process, a 

two-step optimization approach has been developed based on a thickness prediction model. Key 

parameters, such as the drawing depth and the preform shape, are determined by using the developed 

optimization approach. Two case study problems, including forming a hemisphere part and an 
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aerospace cowling, are investigated to validate the developed hybrid flexible process. The validation 

results suggest that the new hybrid flexible forming process could achieve sheet parts of greater depth 

with more uniform thickness distribution. Finally, discussions and conclusions are made based on the 

results of numerical and experimental investigation. 

 

2. Methodology 

2.1 The hybrid flexible forming approach 

By combining the MPF and ISF, the concept of the hybrid flexible forming process is illustrated 

in Fig. 1. In the preforming step, the MPF process is implemented to produce a preform, which allows 

materials at the blanking area to flow into the deformation region. While the baseplate is stationary, 

the pins on the baseplate are adjusted to the designed height to represent the preform shape. Then the 

blank, clamped by the blank holder, travels down against the pin die and a preform shape is obtained. 

To control the dimples and to reduce the other effects caused by the discontinued pins, rubber cushion 

is used in the process between the pin die and the sheet. After preforming, an ISF process is then 

performed to finalize the sheet metal part. In the ISF process, the versatile tool moves along the 

toolpath and gradually deforms the sheet metal into the desired geometry. To avoid geometrical errors, 

the inflow of material is not allowed in the ISF process. Particularly, in the ISF process, the tool 

deforms the sheet from the concave side of the preform. In this way, the sheet can be further deformed 

by the subsequent ISF process and therefore the dimples left by the MPF process could be removed. 

This hybrid process has many benefits, including:  

(1) Avoidance of extreme sheet thinning: the MPF process and the ISF process are 

complementary in the thickness distribution. In the MPF step, inflow of material is allowed 

as shown in Fig. 1. With the material supplement, the average thickness is improved 

compared with conventional ISF. Deformation mode and main thinning area in the MPF step 

are also different from the ISF step, as shown on the part cross section in Fig.1. In the MPF 

step, thinning occurs at the center region of the part. In the ISF step, thinning occurs at the 

boundary due to the large forming angle. With the different thinning regions, a comparatively 

even thickness distribution can be achieved.  

(2) Higher process flexibility: As the multi-point pin die is reconfigurable, the flexibility of this 

hybrid process can be maintained without using expensive dies.  

(3) Higher formability: although the formability at preform step is similar to that in the 
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conventional stamping, the formability can be further improved in the final ISF process.  

(4) Improved efficiency: unlike the conventional multi-pass ISF process, with the involvement 

of MPF, only a single-step ISF operation is required to form the desired part. In this way, the 

process efficiency is improved comparing with the conventional multi-pass ISF. 

 

Fig. 1 The new hybrid ISF process: Step 1: Multi-point forming process; Step 2: Incremental sheet 
forming process 

 

To realize the proposed hybrid flexible forming process, a hybrid flexible forming system has 

been developed as shown in Fig. 2. This forming system consists of a hydraulic preforming module 

and a robotic ISF module. In the preforming module, the pins are fixed onto the stationary baseplate 

and the heights of pins are adjusted by rotating the pin through its thread. The blank holder is mounted 

on the MPF frame during the preforming, as shown in Fig. 2(a). The hydraulic cylinders are employed 

to drive the MPF frame to move towards or away from the pin die. When the MPF step is completed, 

the preformed part together with the blank holder is detached from the MPF frame, rotated by 90 

degrees to the vertical position and fixed onto the ISF frame, as shown in Fig. 2(b). The ISF process 

is implemented and the sheet metal is further deformed by a 6-axis industrial robot. 
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(a)                                   (b) 

Fig. 2 Hybrid ISF rig: (a) hydraulic preforming module; (b) robotic ISF module 

 

Although this new flexible and hybrid process has many advantages, the implementation of this 

hybrid process still faces challenges. In the hybrid process, the preform shape plays a key role in 

producing uniform thickness distribution. To obtain an optimized preform, design and shape 

optimization procedures are employed through numerical process modeling for the prediction of final 

thickness distribution of the formed part. 
 

2.2 Numerical prediction of thickness distribution 

Before implementation of preform shape optimization, a thickness distribution model is 

developed in this work. This thickness prediction model includes two steps as shown in Fig. 3: the 

MPF thickness prediction step and the ISF thickness prediction step. For the MPF step, the thickness 

distribution is predicted by using the finite element (FE) approach. For the ISF step, although FE 

approach could provide an accurate thickness prediction result [27], the long simulation time is a 

challenging issue in the shape optimization procedure because many thousand iterations are required. 

In this work, the thickness distribution is predicted by using a more efficient geometrical approach 

[28].  

 

 

 

 

 

Fig. 3 Material flow and sheet thickness prediction model 
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In the work, ABAQUS explicit code is employed to simulate the preforming process as shown 

in Fig. 4(a). In the FE model, to ensure the simulation efficiency and accuracy, for the blank, shell 

elements S4R are used with 5 integration points along the thickness direction. The side length of each 

element is 1 mm. For the rubber cushion, Ogden model (N = 3) is adopted to represent the constitutive 

relation. Detailed parameters for the rubber can be found in Liu’s work [29]. In the material model, 

von Mises yield criterion and isotropic hardening are employed. For the ISF step, as the numerical 

simulation is less efficient, a geometrical approach has been employed. In the approach, as the sheet 

is under stretching condition, the material is assumed to move along the sheet normal direction [24]. 

In this way, the nodal position can be updated and the thickness can be calculated based on the updated 

position of nodal points. Using this approach, the final thickness distribution of the part can be 

obtained in a relatively short time. To enable the proposed sheet thickness prediction model to run 

automatically, an in-house developed program is employed to integrate the ABAQUS simulation, 

extract the simulation results and calculate and output the final sheet thickness.  

  
(a)                                 (b) 

Fig. 4 Two-step sheet thickness prediction: (a) preforming ABAQUS explicit simulation; (b) final 
forming geometrical prediction approach 

 

2.3 Determination of preform height and shape 

In the hybrid forming method, the MPF drawing depth (preform height) and the preform shape 

are the two main parameters that affect the final thickness distribution. The drawing depth determined 

the amount of sheet flowing into the cavity and the preform shape determined the uniformity of 

thickness distribution. In the optimization, as there are many parameters, the optimization of drawing 

depth and preform shape are considered separately and a two-step optimization process is employed: 

1. Determination of drawing depth; 2. Optimization of preform shape. 

Concerning the determination of drawing depth, with the increasing of drawing depth, more 

material will be drawn into the forming area. This can result in higher average thickness. However, if 
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the drawing depth is too large, defects such as fracture, severe wrinkling or ISF rigid body motion 

may occur in the hybrid forming process. An appropriate drawing depth is required to maximize the 

uniform thickness distribution but avoid sheet failure. Concerning the determination of preform shape, 

as the geometry of the preform is described by a series of NURB curves with control points, the 

preform shape is optimized by varying the position of control points. This kind of optimization model 

may involve in considerable number of optimization variables. In this work, an un-coupled two-step 

optimization strategy is employed. In the first step, the optimization objective is to find the maximum 

MPF drawing depth without forming defects, such as severe wrinkling. In the second step, the 

preform shape is optimized based on the optimized drawing depth with the conventional gradient-

based search method [30]. 

The detailed optimization procedure is described by Fig. 5. Started from an initial preform shape, 

preform process is simulated and the drawing depth is optimized by gradually increasing it. This 

process will be stopped when reaching the limit to avoid possible stepped feature in ISF process, 

wrinkles unable to be removed and fracture. With the optimized drawing depth, thickness distribution 

can be optimized by using the geometrical approach. The shape optimization can be implemented by 

modifying the control points. The above described procedure is achieved by an in-house developed 

optimization code.  

 

Fig. 5 Two-step optimization procedure 
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3. Case study  

To validate the developed approach on preform shape design, two case studies, including 

forming a hemisphere part and an aerospace cowling part, are implemented. Using these two case 

studies, the accuracy of the thickness prediction model and the effect of the preform shape 

optimization methods are evaluated. In both cases, aluminum alloy 2A12-O with initial sheet 

thickness of 1.2 mm is employed in this work. In the material model, Young’s modules of 55GPa and 

Poisson’s ratio of 0.35 have been used. For the plastic model, the flow stress which provided by 

discrete points from tensile test has been given by Fig. 6. For the annealed AA 2A12-O, the material 

is considered as isotropic. Concerning the friction coefficient, Figueirdo et al. [31] measured the 

friction coefficient as 0.1-0.15 from draw bead test for aluminum sheet AA 1100. Sanchez et al. [32] 

and Wei et al. [33] also measured friction coefficient for sheet metal forming, in which the value is 

around 0.15. According to these studies, the friction coefficient of 0.15 has been employed in the 

simulations in this work. 

 

Fig. 6 2A12-O flow stress-strain diagram 
 

3.1 Case Study 1: Hemisphere 

In the first case, a commonly used hemisphere part, shown in Fig. 7, is fabricated to validate the 

developed hybrid forming process. The diameter of the hemisphere is 150 mm. Concerning the blank 

size, if it is too small, it may not provide enough material inflow in the forming process. On the 

contrary, if it is too large, wrinkling and other defects may occur during the process. In this work, 

both blank diameter of 200 mm and 250 mm have been tried and the diameter of 200 mm has been 

employed due to better material inflow without obvious wrinkling. In the ISF process, a forming tool 
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with radius of 5 mm is employed. Helical tool path with constant scallop height 0.005 mm is employed 

in order to achieve uniform surface roughness at different forming angles. In order to validate the 

developed sheet thickness prediction model, a series of verification has been implemented. The 

developed thickness prediction model is compared with the experiment result and the different 

optimization steps are individually compared. Finally, the optimized result is then compared with the 

conventional multi-step ISF process. 

 

Fig. 7 The designed hemisphere (Units: mm) 
 

3.1.1 Preform shape optimization 

Due to the axisymmetric feature of the geometry, a 2D spline curve controlled by 5 points P1 to 

P5 is employed to describe the cross section, as shown in Fig. 9(a). Concerning the initial preform 

shape design, the initial drawing depth is assigned to be 35 mm and the maximum sheet thinning is 

6.7% according to the prediction. In the optimization, the drawing depth is increased gradually by 

moving upward points with an interval of 5 mm as illustrated in Fig. 8. When the drawing depth 

reaches 50 mm, the maximum sheet thinning is about 12.58%. However, this drawing depth cannot 

be further increased when the drawing depth reaches 55 mm. This is because the stepped feature can 

be found in the following ISF process, which is caused by the rigid-body motion [34]. In this way, 

the forming depth of 50 mm is obtained in the preforming step. 

To achieve a higher and more uniform thickness distribution, shape optimization of the preform 

has also been implemented. In the shape optimization, control points P1, P2, P4 and P5 are fixed to 

ensure the C0 and C1 continuity at two ends, as shown in Fig. 9(a). Only the control point P3 can be 

varied and position of P3 is modified along the normal direction of spline to obtain the best preform 

shape. As shown in Fig. 10, when the preform shape varies from C1 to C3, the final thickness 

distribution was improved. However, further preform optimization to C4 failed to improve the 

thickness distribution. Thus the preform shape C3 is employed in this work. The thickness 

distributions by using preform C1 and C3 are compared in Fig. 9(c) and 9(d).  
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(a)                              (b) 
Fig. 8 Preform height optimization: (a) preform height optimization (Units: mm); (b) maximum 

sheet thinning in preform height optimization 
 
 

 

Fig. 9 Preform shape optimization: (a) shape control method; (b) optimization process: c1-c4; (c) 
part thickness distribution under C1; (d) part thickness distribution under C4 
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Fig. 10 Predicted final part maximum sheet thinning during preform shape optimization 
 

Using the optimized drawing depth and preform shape, physical experiments are implemented 

by using the developed forming system. As shown in Fig. 11, the hemisphere part could be 

successfully obtained. In the MPF step as shown in Fig. 11(a), dimples can be observed on the part 

surface. These dimples are caused by the pin die as rubber cushion does not provide enough support 

in the MPF process. However, these defects are removed in the ISF process and smooth surface is 

obtained, as shown in Fig. 11(b).  

  

(a)                           (b) 
Fig. 11 Procedure for hemisphere with the new hybrid ISF process: (a) preforming; (b) final 

forming 

 

3.1.2 Thickness prediction model validation  

Using the preform shape C3 that given in Fig. 9, the predicted and measured thickness 

distributions are compared as shown in Fig. 12. As can be seen in the figure, the minimum thickness 

obtained from FE modeling is about 0.7 mm, which is similar to the experimental results. The location 

where the minimum thickness occurs is also predicted with satisfaction. This result suggests the 
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robustness of the developed thickness prediction model. However, some deviations can also be 

observed around the edge and center of the hemisphere part. These inaccuracies may be because of 

the limited prediction accuracy of the geometrical approach.  

 
Fig. 12 Thickness distribution comparison: prediction and experiment 

 

3.1.3 Verification of Preform Optimization 

To verify the effectiveness of the preform optimization, forming cases with preform high of 35 

mm and 50 mm are compared. As can be seen in Fig. 13, under the drawing depth of 35 mm, the 

minimum thickness is about 0.5 mm, which implies a thickness reduction of about 60%. When the 

drawing depth is increased to 50 mm, the minimum thickness increases to about 0.6 mm, which 

indicates an increase of 10%. This result suggests that increasing drawing depth is a quite effective 

way to reduce the thickness reduction.  

 
Fig. 13 Experimental sheet thickness distribution comparison: Preform height 35 mm and Preform 

height 50 mm 
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Concerning the shape optimization, by holding the drawing depth of 50 mm, thickness 

distributions before and after the shape optimization are compared as shown in Fig. 14. As can be 

seen in the figure, the distribution of thickness is slightly changed. This is because in the shape 

optimization, the preform shape can only be modified locally with limited amount. However, due to 

this optimization, the minimum thickness is further increased to 0.7 mm, which suggests another 

increase of 10%. This result suggests that optimizing the preform shape could also improve the 

thickness distribution.  

 
Fig. 14 Experimental thickness distribution comparison: Preform shape C1 and Preform shape C3 

3.1.4 Comparison with the conventional ISF process 

To verify the effectiveness of the developed hybrid flexible process, the thickness distributions 

obtained in both hybrid process and conventional ISF process are compared. For the ISF process, as 

the wall angle of this hemisphere part is approach 90レ, it is difficult to directly produce the part with 

one forming step. Alternatively, a 5-step forming strategy has been employed as shown in Fig. 15. In 

this strategy, four forward forming pass and a backward forming pass are employed.  

 
Fig. 15 Intermediate steps for multi-step ISF process 



Proceedings of IMechE Part B: Journal of Engineering Manufacture 2017, Vol. 231 (5) 779-791 

DOI: 10.1177/0954405417694061 

Even with 5 forming steps, the designed hemisphere part cannot be produced due to the limited 

formability of 2A12 material. In the experiment, fracture occurs in the 3rd step. The thickness of the 

failed part is measured and comparison results are illustrated in Fig. 16. As can be seen in the figure, 

extreme sheet thinning occurs during the ISF process and the minimum thickness is about 0.46 mm. 

This thickness is much lower than the value of 0.68 mm that obtained in the hybrid process. This 

result suggests that by taking of advantages of drawing and ISF, sheet parts with deep cavity can be 

fabricated successfully. 

 

Fig. 16 Experiment thickness distribution comparison: 5-step ISF process and hybrid flexible 
forming process 

 

3.2 Case Study 2: Aerospace cowling 

In previous case study, a commonly used hemisphere part has been fabricated with improved 

thickness distribution. To further validate the enhanced capability of the developed hybrid process, 

an aerospace cowling part that from a real industrial application is investigated in this case study. This 

part has strict thickness specification to ensure its stiffness and rigidity in service. The geometrical 

dimensions of this cowling are specified in Fig. 17(a), which is 516 mm in length, 156 mm in width 

and 118 mm in height. As shown in Fig. 17(b), the part geometry is mainly controlled by cross sections 

A-A and B-B thus closer attention is paid on these two cross sections in the study. Due to deep cavity 

features, this part cannot be formed by either deep drawing or ISF approach individually. According 

to the study of Hussain [35], tool radius of 5 mm is a reasonable choice to maintain a high level of 

formability. However, in this case, considering the large size of the part with corresponding forming 

efficiency and tool stiffness, 10 mm tool radius has been employed instead. A helical tool path with 

constant scallop height of 0.005 mm is employed in all the ISF steps to achieve uniform surface 

roughness.  
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Fig. 17 The designed cowling: (a) Part geometry (b) Main frame (Units: mm)  
 

3.2.1 Optimization of drawing depth and preform shape 

To determine the best drawing depth, an initial drawing depth of 100 mm is employed. In the 

first optimization, drawing depth is gradually increased with an interval of 3 mm. The evolution of 

preform can be observed in Fig. 18. As shown in the figure, most of the shape changes occur in the 

optimization of drawing depth, while there is only limited shape change in shape optimization.  

 

    

(a)                                (b) 
Fig. 18 Preform optimization (1-4 are height optimization and 4-5 is shape optimization): (a) Cross 

section A-A; (b) Cross section B-B 
 

Concerning the optimization result, in the initial design, the maximum sheet thinning is about 

9.4% in preform and 36.8% in final geometry. With the optimization iterations, the final sheet 

thickness thinning gradually decreased to a value of 26.7%, as shown in Fig. 20 (preform shape 4). 
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However, further increase of forming depth will result in severe wrinkling and the optimization of 

drawing depth stops at the value of 109 mm. This result suggests that with the increasing of drawing 

depth, the overall thickness is increased by 10.1%. Based on the drawing depth optimization, as 

shown in Fig. 18, further shape optimization is implemented and the thickness increased about 0.02 

mm. After the optimization, the minimum thickness is predicted to be 0.90 mm and the thickness 

reduction is about 24.7%. The thickness distributions of preform 1 and 5 are compared in Fig. 19. As 

can be seen in the figure, the sheet thickness thinning situation at the top of the cowling has been 

improved. 

 
Fig. 19 Predicted sheet thickness distribution: (a) Preform 1 (b) Preform 5 

 

Concerning the reduction of sheet thickness thinning as shown in Fig. 20, the major 

improvement occurs in the first procedure of increasing the drawing depth (shape 1-4 in Fig. 18). 

There is only limited improvement in the second procedure of shape optimization (shape 4-5 in Fig. 

19). This is because, in the second step, as the drawing depth of 109 mm is approaching the total depth 

of 118 mm, there is only limited space for shape optimization and the shape is slightly changed in the 

second optimization step.  

 
Fig. 20 Predicted final part maximum sheet thinning during preform optimization 
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3.2.2 Experimental validation 

Based on the optimized design, experiment has been implemented to validate the numerical 

results. The finished part is shown in Fig. 22(a). As can be seen in the figure, the part can be finished 

successfully. Thickness on cross section A-A for both experiment and prediction are shown in Fig. 

22(b). The maximum measured thickness reduction is 25.4% within the industrial tolerance. For the 

section A at the vertical wall, since the preform shape is almost the same as the final geometry and 

has no wrinkles in this area, the ISF step does not have much influence on this area and the prediction 

values are consistent with the experiment results. For the section B from vertical wall (90 degrees) to 

about wall angle with 55 degrees, the deviation can be observed and the prediction result is higher 

than the measurement. This deviation may be caused by limited accuracy of geometrical approach. 

For the section C at the top of part, slight deviation can still be observed. New thickness prediction 

model in ISF process is required to improve the overall thickness prediction. 

 

(a) 

 
(b) 

Fig. 21 Experiment results: (a) Obtained cowling part; (b) Sheet thickness distribution on cross 
section A-A 
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3.3 Discussion of results 

In the conventional ISF process, severe sheet thinning and the resulting limited formability is 

one of the main constrains for its industrial application. This is especially true for parts with deep-

cavity, such as the two study cases employed in this paper. The hybrid flexible forming process that 

combining both the MPF and the ISF processes becomes a possible solution. Using these two 

processes, the advantages, such as process flexibility, the draw-in effect for material supplement, the 

localized effect for increased formability, are included. The disadvantages, such as extreme sheet 

thinning, long processing time and limited geometric complexity can also be avoided in this hybrid 

process.  

Comparing with the relevant flexible forming process such as ISF, the deformation modes 

between these two processes are quite different. In ISF, plane strain deformation is the dominate 

deformation mode and the thickness reduction is determined by the forming angle [36]. Multi-stage 

ISF inherits the ISF deformation mode of plane strain, but the thickness reduction is varied for each 

step according to the deformation order and ratio [37]. However, for the hybrid forming process, as 

can be observed in this work, the majority of sheet deformation finished in the MPF step in which the 

sheet thinning follows the conventional sheet forming deformation mode. At the final forming stage, 

the deformation mode becomes ISF. However, this deformation is quite limited thus the effect from 

ISF would not be obvious. 

Concerning the achieved geometry in the hybrid forming, as it also inherits from ISF, pillow 

effect and stepped feature may also occur in the forming process. However, for the two cases in this 

work, no obvious pillow effect can be observed. Possible reasons are: 1. the work hardening in the 

MPF step could reduce the pillow effect; 2. pillow shape occurs in the opposite forming direction and 

only is left when the part center is flat and unformed [38]. Stepped feature in the forming direction 

may need to be concerned in the hybrid forming for certain geometric shape [23, 39]. Instead of 

bouncing back and causing pillowing, rigid body motion may push the center material further down, 

which cause the inaccurate geometry. This effect may be avoided by using proper designed 

intermediate shapes [34]. 

The remaining challenge of implementing this process is the determination of the drawing depth 

and the preform shape. To determine these parameters, a simplified thickness prediction model has 

been developed in this work. To validate this new forming process and corresponding thickness 
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prediction model, two case problems, a hemisphere part and an aerospace cowling have been 

fabricated based on the numerical calculation. The experiment results suggest that these parts, can 

neither be obtained in the two single processes, could be successfully formed in this hybrid process 

with good thickness distribution. The hybrid flexible forming process proves to be effective in 

thickness control and time saving.  

However, there are still some limitations in current process. The accuracy of thickness prediction 

model is still limited especially for the ISF process. In addition, an un-coupled optimization procedure 

is employed and the drawing depth and preform shape are optimized separately. The obtained 

parameters may not be the global optimum. Improved thickness prediction model and optimization 

procedure are necessary in the future development. 
 

4. Conclusions 

In this work, a hybrid flexible sheet forming process has been developed to improve the 

thickness distribution of two sheet metal parts. The process maintains the advantages from both 

forming processes: the material draw-in effect from MPF process and high formability from ISF 

process. Numerical models to predict the thickness distribution and optimize the preform parameters 

have also been developed. Key parameters such as drawing depth and preform shape are determined 

and the thickness prediction and optimization models are validated by using two case studies. The 

conclusion of this work may be summarized as follows: 

1) The hybrid process combining MFP and ISF could achieve higher formability comparing to 

conventional sheet forming processes. This is realized by taking advantage of material inflow 

in MPF and high formability in ISF.  

2) The hybrid process could fabricate sheet metal parts with improved thickness distribution 

due to the different sheet deformation modes in MPF process and ISF process. In the 

hemisphere case, the thickness is improved by 46%. In the case of aerospace fairing, the 

maximum thickness reduction is only 25.4%. 

3) The hybrid process shows high process flexibility and improved process efficiency. As both 

MPF process and ISF process are flexible, the combination of the two processes also does 

not require any specified forming tools. With MPF process, the preform time is greatly 

reduced compared to multi-stage ISF. 
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4) The developed thickness prediction model shows a satisfied modeling accuracy and 

efficiency. This model has been validated by results obtained from the two case studies. The 

maximum sheet thinning is predicted accurately in the case of hemisphere and the maximum 

thinning prediction error is within 0.15 mm for the aerospace fairing. 
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