## Nanoscale



View Article Online

## CORRECTION

Check for updates

Cite this: Nanoscale, 2018, 10, 20054

## Correction: Thickness-dependent in-plane thermal conductivity of suspended MoS<sub>2</sub> grown by chemical vapor deposition

Jung Jun Bae,<sup>a,b</sup> Hye Yun Jeong,<sup>a,b</sup> Gang Hee Han,<sup>a,b</sup> Jaesu Kim,<sup>a,b</sup> Hyun Kim,<sup>a,b</sup> Min Su Kim,<sup>a,b</sup> Byoung Hee Moon,<sup>a,b</sup> Seong Chu Lim\*<sup>a,b</sup> and Young Hee Lee\*<sup>a,b,c</sup>

DOI: 10.1039/c8nr90227e

rsc.li/nanoscale

Correction for 'Thickness-dependent in-plane thermal conductivity of suspended MoS<sub>2</sub> grown by chemical vapor deposition' by Jung Jun Bae *et al., Nanoscale*, 2017, **9**, 2541–2547.

The authors have noticed that ref. 12 was mis-cited in the published article, and so the corrected reference is given in the reference list below.<sup>1</sup>

Additionally, the authors wish to account for the difference between the trends observed in ref. 12 and their work. To clarify the origin of this trend for the thickness-dependent thermal conductivity, the authors would like to add the following paragraph:

"This finding is in stark contrast to that observed for graphene<sup>9</sup> and exfoliated  $MoS_2$ ,<sup>12</sup> *i.e.* the in-plane thermal conductivity drops sharply with increasing thickness. The thickness-dependent thermal conductivity of  $MoS_2$  cannot be explained by the out-of-plane acoustic vibration mode, the ZA phonon, owing to the breaking of a selection rule in a non-centrosymmetric material (S10 in the ESI). Hence, the thickness dependence of  $MoS_2$  can be rationalized as follows".

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

## References

1 X. Zhang, D. Sun, Y. Li, G. Lee, X. Cui, D. Chenet, Y. You, T. F. Heinz and J. C. Hone, ACS Appl. Mater. Interfaces, 2015, 7, 25923.

<sup>c</sup>Department of Physics, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea