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Abstract

This paper deals with the thickness optimisation of layers of a bi-stratum
composite structure having infinite lateral dimensions. The composite is
considered as a one-dimensional structure. Using a direct integration of the
behaviour equation an analytical solution can be obtained without expensive
calculation time. This approach is based on the techniques which are applied to
acoustic analysis of multi-layer structures and can be extended to calculate a
general composite laminate structure. The advantage of such a method is a short
calculation time.

The objective of this paper is to minimise the Von Mises stress in average with
respect to the position of the interface between two layers. The analytical
solution is obtained in a similar way as for analysis problem. This analytical
solution is compared with the numerical results obtained by using the finite
element system ANSYS. A very good correlation between analytical and
numerical solutions is observed.

1 Introduction

This paper deals with the thickness optimisation of layers of a bi-stratum
composite structure having infinite lateral dimensions. The composite is
considered as a one-dimensional structure. Using a direct integration of the
behaviour equation an analytical solution can be obtained without expensive
calculation time. This approach is based on the techniques which are applied to
acoustic analysis of multi-layer structures and can be extended to calculate a
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general composite laminate structure. The advantage of such a method is a short
calculation time.

The objective of this paper is to minimise the Von Mises stress in average with
respect to the position of the interface between two layers. The analytical
solution is obtained in a similar way as for analysis problem. This analytical
solution is compared with the numerical results obtained by using the finite
element system ANSYS. A very good correlation between analytical and
numerical solutions is observed.

2 Notations

z direction orthogonal to the plane of layers of laminated composite and e% is
a unit vector in this direction; x and y are in-plane orthogonal axes (see
fig.n.1).
The origin of coordinate system is placed on the inferior layer. H is the total
thickness of composite, ei et 62 are the thickness of each layer (see figure 1).
u is a displacement vector, a represents a stress tensor and s denotes a strain
tensor:

The materials properties used are :
p - mass density, g - gravity force and X, \JL - Lame coefficients

The symbol div denotes divergence operator :

(divcr\ = — + 1 — (/ = x,y ou z) (2)

3 Hypotheses

HI) The bi-layer composite is considered to have infinite dimensions in x and y
directions.
H2) The layers are homogeneous, elastic and isotropic.
H3) The hypothesis of small perturbations is assumed and static case is
considered.
H4) The contact between layers is perfect (there is neither sliding nor
unsticking).
H5) The lower surface of the inferior layer is fixed, and a uniform pressure in the
direction of gravity is applied on the upper surface of the composite (see fig. 1).
H6) The gravity forces are taken into account in order to have a quadratic
objective function.
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Figure 1

4 Displacement and stress analysis

The hypothesis HI concerning the geometry of the composite implies that the
displacement and the strains should satisfy the following conditions :

Ux=uy=0;uz(z)=f0 (3)

(U)=8 yy (U)=G xy(u)=S %z (u)=S ̂ (u)=0 ; Q (u)=
uz

(4)

The stresses can be obtained by using the hypothesis H2 (elastic and isotropic
materials) :

After the substitution of these stresses into the equilibrium equation :

(5)

Q (6)

The differential equation governing the displacements in each layer is

determined :

Where 1 et ̂  are independent of z because the layers are homogeneous
(hypothesis H2).
The solution of (7) is very easy to obtain :
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where A and B are integration constants and will be calculated using the exterior
and interface boundary conditions.
Using (5) the stresses are calculated in the following way :

= pgz + (A + 2fj)A; â â â O (9)

and the von Mses stress is given by :

Having calculated A, one can prove that

and then the von Mises stress is expressed as :

The displacement u% (8) is a quadratic function of z and the stresses (7) are linear
because the gravity forces have been taken into account.
In order to determine the solution for the displacement and stresses the
integration constants should be calculated. There are in total four constants ; it
means two constants for each of two layers. They are calculated using the
boundary conditions (H5) and the interface conditions (H4). This involve :

Uz(0)=0 ; Ozz(H)=-F ; %l (<%) = «| W ; <rL W = ̂  W

where the signs 1 and 2 denote the number of the layer.
The four conditions (12) lead to a system of four linear equations which can be
easily solved to obtain four constants.

In the case of a laminar composite of n layers, the code CAST AN has been
developed. This code adopts the same computing method presented above for a
two-layer composite.

5 Comparison with the results obtained by using ANSYS

In order to validate our approach the computations with ANSYS code have been
realised. Let us consider a two-layer composite. This structure is composed of
two plates; one is of steel and another is of aluminium. The thickness of each
plate is 2cm and in-plane dimensions are 200cm. In this way the hypothesis HI
is satisfied.
The mesh of this structure is done using solid twenty-node brick elements (solid
95 in ANSYS). There are eight divisions in the thickness and 10x10 divisions in
the plane of the structure. The bottom surface is fixed and an uniform pressure of
lOOPa is applied on the upper surface. The low magnitude of this pressure is
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chosen in order to reduce the influence of the linear component in the expression
of displacement (8). If the linear component is dominant then the objective
function will be quasi-linear and it will not be interesting to test the robustness of
the optimization algorithms. The low magnitude of pressure implies the small
values of displacements and stresses (tables 1 and 2).

The comparison of the analytical results with the numerical computations by
ANSYS is established for nine nodes (in the thickness) in the center of the
composite. In such a way the influence of the boundary conditions is reduced
and the hypothesis HI becomes more true. The figures 2 to 5 show the
distribution of displacement u%, â  and â  stresses, and von Mises stress in z-
direction in the center of the composite. The displacement u% seems to be
quadratic in each layer and the stresses are linear.
One can say that the displacement u% and the stress â  are continuous at the
interface between two layers . This fact is in conformity with the hypothesis H4.
On the contrary, â  stress and von Mises stress are discontinuous. This can be
explained by the fact that there is any continuity condition on <j%x, and the von
Mises stress is a combination of cr̂  (discontinuous) and â  (continuous).

z(m)

1500

z(m)

Figure 2 Figure 3

Figure 4

z (m)

Figure 5
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In the table 1, the analytical (CASTAN) and numerical (ANSYS) results are
given. The table 2 gives Von Mises. For the discontinuous von Mises stress two
values are given on the interface (z=2cm). In general, the differences between
analytical and numerical results are very small (of order 10"̂  %). A good
correlation of these results proves that the established hypotheses are valid.

z(m)
0

5,OE-03
1,OE-02
1,5E-02
2,OE-02
2,OE-02
2,5E-02
3,OE-02
3,5E-02
4,OE-02

CASTAN (Pa)
1291,73
1063,96
836,19
608,42
380,65
326,54
257,59
188,64
119,69
50,75

ANSYS (Pa)
1291,76
1063,95
836,19
608,43
380,66
326,55
257,6
188,65
119,7
50,75

Error (%)
-2,32E-03
9,40E-04

0
-1,64E-03
-2,63E-03
-3,06E-03
-3,88E-03
-5,30E-03
-8,35E-03

0
table 1 : Von Mises stress

6 Optimization

Now the objective is to minimize an average value of the von Mises stress. The
objective function is defined in the following manner :

The total thickness H of the composite is constant and we have :

e\ +ei ~ H
where Q\ and 62 are the thickness of two layers.

The optimization problem is stated in the following way

(13)

(14)

Min^Jvi
e\,ei

Objective function :<r̂  = — (15)

design variables : e\ ̂  0,̂ 2 ̂ 0

constraints '.ee = H

The variable 63 can be eliminated using constraint equation and after introducing
a new normalized variable

H
(16)
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The objective function can be rewritten as

Min
f e [0,1]

171

(17)

This means that our optimization problem consists in finding the best position of
the interface. Finally, it is possible to obtain an analytical expression of the
objective function. The integral (13) can be easily calculated since 0̂(2) is a
linear function (see (1 1)). After analytical integration we obtain the average von
Mises stress which is a quadratic function of X :

(18)

where the coefficients a, b and c are given by the following formulas :

(19)

In these formulas, we have only a quotient p/(l+2|i) which is dependent only on
the Poisson's coefficient. This means that the Young's moduli have any influence
on the solution of our optimization problem.

If the gravity force is neglected (g=0) the coefficient a is equal to zero and the
objective function becomes linear. We haven taken into account the gravity force
(g =0) in order to have a quadratic objective function and test the optimization
procedure of ANSYS for this function.

Since the objective function is quadratic there are five cases of the position of
minimum:

1) Minimum for 10, U
(<»b<0and2a+b>0)

Figure 6

2) Minimum for X= 0
(<=> b>0 and a+b>0)

Figure 7
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3) Minimum for X= 1
(<̂ (b<0and2a+b<0)
or(b>Oanda+bcO))

4) Minimum for = 0 and X=l
(<=> b>0 and a+b=0)

Figures Figure 9

5) Minimum ei
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Figure 10

In the first case, the minimum corresponds to X=-b/(2a) where the derivative is
null. In the next three cases, the minimum is reached for X=0 or X=l, it means
on the boundary limits. The last case is not interesting since it corresponds to a
composite with two layers of the same material. In this case, the average von
Mises stress does not depend on the position of the interface.

The first four cases have been tested using optimization possibilities of ANSYS
code. In each layer, there were ten by ten solid brick elements "solid 95". So in
total the mesh compounded 200 elements. It was sufficient to use only one row
of elements in each layer because the element "solid 95" involves shape
functions of second order, and even with few elements in the thickness it is
possible to approximate correctly the displacements u%.
In the first case, one layer was of steel material, and the second layer was of a
fictitious material for which the Poisson's coefficient was 0.25 and the mass
varied from 3500kg/m̂  to 7700kg/m\ The objective of this test was to compare
the analytical and numerical (ANSYS) results concerning the position of the
minimum. The results are presented in the table 2.
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Mass (kg/m*)

3500

5000

6000

6500

6900

7200

7400

7580

Position of min.
(ANSYS)

0,09953

0,19157

0,30415

0,39425

0,49738

0,60493

0,69908

0,80670

Position of min.
(analytical)

0,09945

0,19148

0,30409

0,39430

0,49751

0,60516

0,69947

0,80719

Error (%)

-0,08389

-0,04437

-0,01973

0,01268

0,02714

0,03885

0,05650

0,06074
table 2 : minimum reached between 0 and 1

The comparative error is smaller than 0.1%. The correlation between analytical
approach and numerical computations by finite elements is very good. This is
certainly due to the parabolic shape of the objective function. The optimization
procedure used in ANSYS [1] consists in solving an approximated problem (sub-
problem) in which the objective function starting from randomly generated
points (radom design). In our problem, the objective function is quadratic. So its
approximation is exactly the same. This fact explains a very good correlation
between analytical and numerical results. The more complex cases (involving
e.g. geometrical or material non-linearities) should be studied in order to verify
the robustness of optimization capabilities of ANSYS.
In the cases where the minimum is reached on the boundary of admissible
domain (table 2) the error of the numerical solution relating to the analytical
solution is about 1,2%. The thickness of one of two layers tend towards zero and
the solid elements in this layer become degenerated. This fact does not enable a
good and rapid convergence to the optimal solution.

For information, the case where the minimum is reached for X=0 corresponds to
a composite with one layer of steel and the other of aluminium. The minimum
located in 1 is obtained for a composite with one layer of steel and another layer
of the material for which the Poisson's coefficient is equal to 0.25 and the mass is
equal to 7850kg/m̂ . Finally, when the minimum is in 0 and in 1 the associated
composite has one layer of steel and the other of the material corresponding to
the Poisson's coefficient is equal to 0.33 and the mass is equal to 9235.2kg/m̂ .
In the case where the objective function has two simultaneous analytical minima
in 0 and in 1 the iterative procedure in ANSYS can converge towards one or the
other. It depends on the set of points generated randomly by the procedure
"random design". For example, starting with a random set of ten points the
procedure converges towards the minimum in 0. If the point neighbouring zero is
eliminated and the procedure "sub-problem" is restarted the convergence
processus will give the minimum in 1.
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1 Conclusions and future developments

In this paper we have presented a method for analysis and optimization of two-
layered elastic composite. The simplified hypotheses (infinite in-plane
dimensions orthogonal to the thickness) have been assumed in order to obtain the
analytical solutions and compare them with the numerical finite element
computations using ANSYS code. The objective of the paper was to test and
validate the optimization methods for the simple cases before passing to more
complex structures (like strongly heterogeneous composite structures in the
domain of non-linear behaviour).
It will be interesting to optimize an heterogeneous composite structure using the
method developed in this paper and compare the results with another approach
using the homogeneization techniques ([2], [3], [5], [7]). This comparison could
give some information about the precision of the homogeneization methods
coupled with the optimization algorithms.
It will be also interesting to develop an analytical approach for the multilayered
composite structures in the range of the large deformations. In this cases the
objective function would be no longer quadratic but strongly non-linear.
These two developments concerning the homogeneization techniques and the
non-linear behaviour for optimization of multilayered composite structures (with
the same hypotheses assumed in this paper, i.e. one dimensional problem) should
be realized before passing to the 3D problem.
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