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Abstract—Cloud removal is an important goal for enhancing
the utilization of optical remote sensing satellite images. Clouds
dynamically affect the signal transmission due to their different
shapes, heights, and distribution. In the case of thick opaque
clouds, pixel replacement has been commonly adopted. For thin
clouds, pixel correction techniques allow the effects of thin clouds
to be removed while retaining the remaining information in the
contaminated pixels. In this paper, we develop a new method
based on signal transmission and spectral mixture analysis for
pixel correction which makes use of a cloud removal model that
considers not only the additive reflectance from the clouds but
also the energy absorption when solar radiation passes through
them. Data correction is achieved by subtracting the product of
the cloud endmember signature and the cloud abundance and
rescaling according to the cloud thickness. The proposed method
has no requirement for meteorological data and does not rely
on reference images. Our experimental results indicate that the
proposed approach is able to perform effective removal of thin
clouds in different scenarios.

Index Terms—Cloud removal, cloud thickness, data correction,
signal transmission, spectral unmixing.

I. INTRODUCTION

R EMOTE sensing satellite images generated using frequen-

cies in the optical to microwave electromagnetic spectrum

have been widely applied in Earth Observation. Optical remote

sensing, in particular, is popular since it is relatively easier to

interpret and analyze. Recently, new optical multispectral data

have become available from Landsat 8 Operational Land Im-

ager (OLI), which was launched in 2013 [1] and SPOT 7, which

was launched in June 2014 (http://www.astrium-geo.com) These

sensors provide continued monitoring of land surface, ocean,

and atmosphere with medium and high spatial resolution.

However, one of the primary limitations of optical sensors

is their sensitivity to atmospheric conditions. Cloud cover is

a key problem which degrades the utilization of optical data

and increases the difficulty of image analysis [2], [3]. Clouds

dynamically affect the electromagnetic signal transmission due
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to their different shapes, heights, and distribution. Thick opaque

clouds may block all the reflectance from the Earth’s surface,

while thin transparent clouds attenuate the incident energy to

the ground and contaminate the upwelling signal received by

the sensor [4]. Data replacement for the blocked areas and data

correction for the distorted pixels are a valuable pre-processing

step to restore the quality of collected images for subsequent

applications. [5] proposed a method which uses similar pixels

in neighboring areas of the target image to fill the blocked

pixels, and multitemporal data are required as a reference to

identify similar pixels. In addition, Li et al. [6] introduced a

multitemporal dictionary learning approach to achieve thick

cloud replacement. In this paper, we mainly address the data

correction issue, i.e., removing the effect caused by thin clouds.

To derive cloud free images, identifying cloud affected pixels

using cloud detection techniques is a primary task. An auto-

mated cloud-cover assessment (ACCA) algorithm was designed

to estimate the fraction of cloud cover in images captured by the

ETM+ on Landsat 7. ACCA makes use of the spectral proper-

ties of landscape features and cloud signatures in the thermal

band (Band 6 of ETM+) to mask cloudy pixels [7], [8]. In [9],

the author developed the function of mask (Fmask) algorithm

for detecting cloud and cloud shadow in Landsat imagery over

land and water, separately. Fmask improved the cloud detection

performance when compared with ACCA and addressed the

snow interference issue. Several methods, using multispectral

analysis, have been proposed to identify cloud cover based

on an assumption that cloud is normally brighter and colder

than the underlying land surface [10], [11]; however these

methods will fail when the cloud is relatively thin and warm [9].

Gao et al. [12] proposed a method to detect cirrus cloud using

the 1.38 µm band from MODIS. This short wave infrared band

has very strong water vapor absorption, such that only high

level clouds in the atmosphere are visible in this narrow band

and the ground appears totally black [13]. A multi-temporal

cloud detection (MTCD) method was presented in [14] by tak-

ing advantage of the high revisit frequency of Landsat sensors

and was shown to be able to identify any significant increases

in reflectance on a per pixel basis between cloudy images and

cloud-free images acquired on different dates. However, the

result produced by MTCD is strongly dependent on the quality

of the reference images. More sophisticated detection methods

have been proposed in recent years based on image fusion [15],

[16], neural networks [17] and a Bayesian approach [18].

Several methods have been developed to retrieve the re-

flectance from the objects beneath the cloud. The dark object

subtraction algorithm [19], [20] is simple and effective for

approximate bulk correction of atmospheric effects, with no
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requirement for meteorological data [4]. The haze optimized

transformation (HOT) was proposed in [21] based on the obser-

vation that spectral responses of various types of land surfaces

in the red band have high correlation to the blue band under

clear atmospheric conditions [22]. This linear relationship will

be contaminated when clouds are present. Therefore, cloud

removal was implemented by moving the cloudy pixels’ data

to the clear line which represents the linear relationship of

the two bands in spectral space. A principal component based

haze masking approach was developed in [23] which combines

spatial and spectral features of cloud in the transformed space.

While these image-based methods are easy to implement, the

signal transmission theory is not considered.

A physical cloud distortion model was first developed in [24]

to describe the sunlight transmission process in the presence

of clouds. This model treats clouds as low frequency noise

effects and makes use of a Wiener filter to separate the signal

from the noise. Kechu and Wentao [25] improved this model

by establishing a mathematical model for various layers of

clouds. To apply this model, there is a need to know the noise

statistics of the clouds, which has to be estimated since it is

not available a priori [26]. Shen et al. [27] developed a locally

adaptive thin cloud removal algorithm which was executed

in the frequency domain. In [28], the authors used a Kaiser

window function to estimate noise statistics in cloudy images.

A problem encountered in this approach is that it is difficult to

identify the densities of the cloud cover in optical images [29].

Another weakness of these models is the lack of consideration

of cloud absorption. In this paper, we develop an improved

cloud model to include the cloud absorptance in the signal

transmission path.

Alternatively several cloud screening methods have been

developed based on spectral unmixing techniques [30]–[32].

Due to limited spatial resolution, most pixels in a remote

sensing image are mixed pixels and they contain more than

one ground cover type (endmember classes). The spectrum of

a pixel recorded by satellite scanners is often a mixture of the

reflectance from more than one distinct material. Spectral un-

mixing techniques have been developed to find the fraction

(abundance) of each endmember class [33]–[35]. The paper

[30] treated cloud as one of the endmember classes and selected

a pure cloud spectrum as the endmember to represent the cloud

signature. The cloud-abundance product is obtained after mix-

ture model inversion. A linear mixture of cloud and background

modeled for MODIS radiance was proposed in [32], where

cloud fractions were estimated by a multiple-kernel learning-

based unmixing algorithm. These methods yield subpixel

cloud fraction results. Cloud effect removal, however, was not

addressed. In this paper, we combine spectral unmixing analysis

with the physical model to achieve data correction.

More specifically, we develop a new cloud removal method

based on signal transmission and spectral mixture analysis

(ST-SMA) which considers not only the additive reflectance

from clouds but also the energy absorption when solar radiation

passes through them. Spectral unmixing is applied to estimate

cloud thickness, which is equivalent to the cloud abundance

fraction within a pixel. Data correction is finally achieved

by subtracting the product of the cloud endmember signature

and the cloud abundance and rescaling according to the cloud

thickness.

The rest of this paper is organized as follows. Section II

briefly reviews related work on physical cloud distortion mod-

eling and linear spectral mixture analysis used in cloud map-

ping. Section III describes the proposed method ST-SMA for

modeling cloud effects and correcting cloud contamination.

Section IV presents a series of experiments to validate the

ST-SMA approach. Finally, discussions and conclusions are

given in Section V.

II. RELATED WORK

A. Cloud Distortion Model

A physical model of cloud distortion was first developed in

[24]. The authors assumed that the received signal at the sensor

is given by

s(x, y) = aIr(x, y)t(x, y) + I [1− t(x, y)] (1)

where I is the solar irradiance, r(x, y) is the reflectance from

ground, and t(x, y) is the cloud transmittance. a is the sunlight

attenuation coefficient. The values of a, r(x, y) and t(x, y)
range from 0 to 1. The first part of (1) indicates the degraded

reflectance from the ground, and the second part denotes the

reflected signal from cloud with an assumption of 0% cloud

absorption. After subtracting s(x, y) from I and taking the

logarithm, we obtain

log [I − s(x, y)] = log [I − aIr(x, y)] + log [t(x, y)] (2)

where log[I − aIr(x, y)] and log[t(x, y)] are associated with

the original signal and cloud noise, respectively. Thus, cloud

removal can be conducted by using a homomorphic Weiner

filter in the frequency domain by assuming that clouds contain

only low spatial frequencies.

This distortion model considers the spectral characteristics of

clouds. It treats the sum of reflectance and transmittance from

cloud as one, with an assumption of zero cloud absorption.

Therefore, the loss of radiation energy when passing through

clouds is not considered. In fact, clouds have variable structure

and thickness. Therefore, it is important to quantify the loss of

energy when estimating cloud effects. Another weakness of this

method is that there is a need to estimate the noise statistics of

the cloud, which is nontrivial.

B. Cloud Assessment Using Spectral Unmixing Techniques

The limited spatial resolution of sensors and the complexity

of Earth surface materials usually lead to mixed pixels in

most areas of a remote sensing image. Spectral unmixing is

a technique that is used to address the mixture problem by

decomposing a mixed spectrum into a fractional set of spectra

of pure materials (known as endmembers) [33], [35]. Cloud

assessment using spectral unmixing techniques has taken the

approach of treating cloud as one of the endmembers. Suppose

there are M endmembers in the mixed pixel. When a linear

mixture model is applied, the reflected solar electromagnetic

radiation x can be expressed as

x =
M
∑

m=1

amsm + e = Sa+ e (3)
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where x is an L× 1 column vector, representing the reflectance

of the observed pixel, L is the number of spectral bands in

the image, S = (s1, . . . , sM) denotes an L×M endmember

signature matrix whose mth column vector represents the mth

endmember signature. a = (a1, . . . , aM )T is an M × 1 abun-

dance vector representing the fraction of each endmember. e is

an L× 1 noise vector which can be considered as model error.

A cloud-screening algorithm that used spectral unmixing

techniques to produce a cloud abundance map instead of binary

indicators for cloud or non-cloud was developed in [30]. In

their model, cloud is assumed to be one of the endmember

classes, and its mean spectrum was chosen as the endmember to

represent the cloud signature. Cloud fractions can be obtained

by inverting (3)

a = (ST
S)

−1
S
T
x. (4)

The linear spectral mixture model (LSMM) is usually subject to

the following two constraints to make the results meaningful:

1) Sum-to-one:

M
∑

m=1

am = 1. (5)

2) Nonnegativity:

am ≥ 0. (6)

This approach is referred to as fully constrained linear mix-

ture analysis [36].

In this method, the reflectances from the ground cover types

and from cloud are considered separately. The attenuation of

the sunlight during the propagation of cloud is ignored. It is also

worth noting that this method is mainly for cloud assessment.

While the cloud fractions were mapped, cloud effect removal

could bring additional issues, which were not presented in [30].

In this paper, we address the aforementioned issues by

presenting a new method, ST-SMA, which can estimate the

absorption and transmission for various thicknesses of cloud,

and achieve cloud removal with the aid of spectral unmixing

techniques.

III. PROPOSED METHOD

A. Physical Cloud Effect Modeling

The proposed cloud removal method ST-SMA starts with

the application of an electromagnetic energy balance equation.

During propagation of solar radiation, scattering and absorption

occurs [37]. Scattering can occur in two ways, reflection and

transmission. The sum of reflected, transmitted, and absorbed

radiation equals the incident radiation according to the law of

conservation of energy [38]. This fact can be expressed as

I = R+A+ T (7)

where I is the incident radiation, R is the reflected radiation, A
is the absorbed radiation, and T is the transmitted radiation. If

we use reflectance ρr, absorptance ρa, and transmittance ρt to

Fig. 1. Spectral reflectance and absorptance of an opaque cloud.

describe (7), then R = ρrI , A = ρaI and T = ρtI . (7) can be

rewritten as

ρr + ρa + ρt = 1. (8)

Based on this principle, we propose a means to estimate

cloud transmittance as a function of cloud thickness. We first

consider the relationship between an opaque cloud’s spectral

reflectance and its absorptance, as shown in Fig. 1. We regard

this case as zero transmittance, i.e., no sunlight is transmitted

through the opaque cloud and all the remaining energy is

absorbed by cloud after reflection. Therefore, the absorptance

of opaque clouds is given by

ρa = 1− ρr, (9)

where ρr and ρa are the reflectance and absorptance of opaque

cloudy pixels in the given band l, respectively. In this case,

transmittance ρt = 0.

To find the cloud absorptance, the cloud spectral reflectance

characteristics need to be defined. While there is a general un-

derstanding of high reflectance over the wide range of spectral

wavelengths from visible to mid infrared, the cloud spectrum

is more reliably extracted from the image data of the current

scene to accommodate the local conditions. We assume that

pure cloud pixels exist in the cloudy imagery, and this pure

cloud is opaque enough to block all sunlight from reaching

the Earth’s surface. In general, thick clouds are much brighter

than the land surface in visible bands. It should be mentioned

that snow also emerges with very high reflectance in visible

bands. Therefore, the presence of snow may cause errors in the

cloud spectrum extraction process. However, snow reflectance

drops significantly in shortwave-infrared bands while cloud still

reflects a large proportion of solar radiation in this spectral

region [39]. According to these characteristics of clouds, we

propose to extract the cloud signature by searching for

argmax
n

L
∑

l=1

xn(l), n = 1, 2, . . . , N (10)

where xn(l) is the reflectance of the n th pixel in the lth spectral

band. L and N are the number of bands and total number of

pixels in the image, respectively. If the sum of reflectances at

each band xn is maximal, then the pixel is regarded as pure

cloud. To reduce the effect of noise, the top few pixels may be

identified, and their averaged spectrum is adopted as the cloud
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Fig. 2. Spectral response of transparent thin cloud (reflection, absorption, and
transmission).

spectrum. Let sc be the vector representing the cloud spectrum,

which will be used in the following derivation.

Obviously thinner clouds reflect less and absorb less, and

hence transmittance is no longer zero. Let Γ represent cloud

thickness. When Γ = 1, we have the case of opaque cloud.

If Γ = 0, we have the cloud free case, which means 100%

transmittance without reflection and absorption. Γ lies between

0 and 1 in other cases. Fig. 2 depicts the relationship between

reflection, absorption, and transmission when solar radiation

propagates through transparent thin clouds. We assume the

reduced reflectance and absorptance, which become Γρr and

Γρa at a given band l, respectively, are both proportional to the

thickness factor Γ. For example, if Γ = 0.2, the reflectance and

the absorptance will be reduced by 20%, then the transmittance

through the cloud is 1− 0.2ρr − 0.2ρa = 0.8 (note that ρr +
ρa = 1 for opaque clouds). Based on (8) and (9) the thin cloud

transmittance ρ̂t can be defined by

ρ̂t = 1− Γρr − Γρa = 1− Γ. (11)

This represents the transmitted radiation that reaches the Earth’s

surface. Fig. 3 illustrates the signal interactions between the

sun, the cloud, and the Earth’s surface. If the spectral reflectance

of a given pixel on the ground is r (an L× 1 vector), the signal

collected at the sensor becomes

x = (1− Γ)r+ Γsc + e (12)

where x is an L× 1 column vector representing the observed

pixel value and Γsc denotes the contributed reflectance from

cloud. (12) represents the physical model of the effect of cloud

on the recorded signals. In (12), there are L+ 1 unknowns in

the L simultaneous equations, apart from the error term. They

are the cloud thickness Γ and the reflectance at L bands, r, of

the given pixel. Therefore, cloud removal cannot be resolved

using this model alone. In the next section, we introduce

spectral mixture analysis to solve this problem.

B. Geometric Modeling of Mixed Pixels on the Ground

Considering the pixel on the ground which receives the atten-

uated solar radiation due to the cloud effect, the reflected signal

is determined by the spectral characteristics of the materials

present in the corresponding pixel. Often there is more than

Fig. 3. Diagram of the cloud effect model.

one material due to the limited spatial resolution of the sensors.

We adopt linear spectral unmixing techniques to decompose the

reflected signal from the ground, r, as a weighted sum of M
endmembers as follows:

r =

M
∑

m=1

amsm + e (13)

where am is the proportion of the mth endmember. To make the

analysis meaningful, fully constrained least squares unmixing

can be applied [36]. am can be interpreted as the fraction of

a pixels area that the mth endmember occupies. Therefore, we

can call this model a geometric description. (13) is different

from (3). In (3), cloud is one of the endmember classes, which is

not the case in (13). In our cloud model, we separate cloud from

the other materials present in the pixel on the Earth’s surface.

Endmember extraction is an important issue to address.

A large number of unsupervised endmember extraction algo-

rithms (EEAs) have been developed, e.g., Pixel Purity Index

[40], [41], N-FINDR [42], vertex component analysis (VCA)

[43], and minimum volume constrained non-negative matrix

factorization [44], among many others [35]. When these methods

are applied, a cloud endmember may be identified as well.

However, in our method the cloud endmember needs to be

treated separately as discussed in the next section. Supervised

endmember extraction is more effective, when training data for

pure classes are available to use. The endmember spectrum can

be derived by averaging the training data. When the number of

endmembers is fewer than the number of measurements, i.e.,

the number of spectral bands, an overdetermined problem is

formed which can reduce the effect of noise and provide better

estimates of the fraction of each endmember class using the

least squares solution.

This geometric model will be combined with the physical

model in the next section. A cloud removal method will then be

generated.

C. Cloud Removal Model

The proposed cloud removal model ST-SMA is achieved by

combining the physical analysis of the cloud effect and the
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TABLE I
FOUR IMAGES FROM THE LANDSAT 8 OLI AND EO-1 HYPERION USED IN THE EXPERIMENTS

geometric description of the mixed reflectance from the ground

as detailed below. If we substitute (13) into (12), we have

x =(1− Γ)

M
∑

m=1

amsm + Γsc + e (14)

s.t.

M
∑

m=1

am =1, am ≥ 0, 0 ≤ Γ ≤ 1. (15)

If we let aM+1 = Γ/(1− Γ) and sM+1 = sc, (14) becomes

x = (1 − Γ)

M+1
∑

m=1

amsm + e. (16)

Then if we let bm = (1 − Γ)am, (16) becomes

x =

M+1
∑

m=1

bmsm + e (17)

s.t.

M
∑

m=1

bm = 1− Γ, 0 ≤ bm ≤ Γ, 0 ≤ Γ ≤ 1. (18)

We can see that (17) has a form similar to the standard form

of LSMM, but with different constraints. Also, in the proposed

model we can interpret cloud as one of the endmember classes.

Then the new endmember signature matrix can be considered as

[s1, s2, . . . , sM, sc]. Γ can be regarded as cloud fractional abun-

dance. In the aforementioned set of simultaneous equations

(L equations), there are M + 1 unknowns, i.e., M fractions

for M endmembers, plus the cloud thickness factor Γ. As long

as L > M + 1, all the unknowns can be estimated with the

new constraints. After Γ is estimated, the cloud effect can be

removed as follows for 0 <= Γ < 1:

x
∗ =

1

1− Γ
(x− Γsc) (19)

where x
∗ is the corrected image after cloud removal. Γsc is

a side product which represents various cloud contributions

depending on their thickness at a subpixel level. This cloud

retrieval result provides more detailed information than a binary

mask file for cloud detection only. Specifically, cloud detection

is achieved in the proposed cloud removal model after the cloud

abundance is obtained. The fractional maps of the other ma-

terials are intermediate products as well. However, we mainly

focus on cloud thickness in this paper.

The correction fails when Γ = 1. If Γ = 1, according to

(14), x ≈ sc. Applying (19), x∗ = 0. This refers to the case of

opaque clouds, which means that the underlying ground signal

has been completely blocked. In this situation, reconstruction

methods can be applied, e.g., by using multitemporal images to

estimate the data of the blocked pixels [45]–[48]. In this paper,

we focus on transparent thin cloud cases only.

IV. EXPERIMENTAL RESULTS

A. Study Area and Data

To test the performance of the ST-SMA method, multispectral

and hyperspectral images from the Landsat 8 OLI and EO-1

Hyperion, respectively, were used in our experiments. The

details of the experimental images are summarized in Table I.

1) Landsat 8 OLI Data: Landsat 8 OLI multispectral im-

ages contain eight spectral bands with a spatial resolution of

30 m. The study areas selected from OLI were in Australia

encompassing three typical landscapes with different types of

clouds.

Validation of the performance of a cloud removal approach

is not an easy task since there is no ground reference in the

simultaneous atmospheric conditions. Fortunately, OLI cap-

tures a new spectral band (Band 9) at wavelengths ranging

from 1.36 µm to 1.38 µm for detecting cirrus clouds. This

narrow band has a strong ability to identify water vapor ab-

sorption and cirrus signal scattering [12], [49]. Cirrus cloud

will appear bright in this band while sunlight reflected from

the land’s surface will be entirely absorbed. Hence, this band is

advantageous for cirrus cloud detection. This cirrus band with

center wavelengths at 1.375 µm was used to validate the cloud

detection results in this study.

2) EO-1 Hyperion Data: The Hyperion hyperspectral data

were collected by the EO-1 satellite which was launched in

November 2000. Hyperion images contain 242 spectral bands

with wavelengths from 400 nm to 2500 nm with 30-m spatial

resolution. The first 70 bands cover the visible/near-infrared re-

gion, and the bands from 71 to 242 cover the shortwave-infrared

region. Level 1R data downloaded from the USGS website

(http://earthexplorer.usgs.gov/) gave radiometrically corrected

images which were used in this study. A subset of the Hyperion

data with 122 bands was kept after calibration and noisy band

removal. The Hyperion test data were selected in the Lulea

region in Sweden as scene 4 showed in Table I. The water area

is Lulealven river in the east of Sweden.

We also selected cloud free images from the closest date to

each scene from the USGS website (http://earthexplorer.usgs.

gov/) and used them to assess the quality of the corrected data.

We assume that little change happened in the period between

the two acquisition dates and only the atmospheric condition

was different between the cloudy and cloud-free images. The

images tested in the study were of size 400 × 400 pixels for the

OLI image and 1000 × 256 pixels for Hyperion data. Image

normalization was performed by converting the raw digital

number to top-of-atmosphere reflectance ranging from 0 to 1.
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Fig. 4. Spectral reflectance of endmembers in scene 1.

In general, it can reduce scene-to-scene variability. Within the

data set, the shape of the solar spectrum was compensated to

enhance the spectral differences between the cloud spectrum

and other endmembers [50].

B. Cloud Thickness Extraction

Cloud thickness can be obtained by solving the unmixing

problems in our cloud removal model. Due to different at-

mospheric conditions, solar angles, and cloud cover in different

dates and locations, the cloud endmember was extracted from

each cloudy image separately based on (10).

Fig. 4 illustrates the spectral reflectance of the cloud end-

member (solid line) for scene 1. Following the selection of the

cloud endmember, the other three endmembers were retrieved

from land ground pixels using the VCA method [43]. VCA is

an EEA which assumes the presence of pure pixels, and it is

effective and applicable for our cases. In the VCA algorithm,

endmembers are presented as the vertices of a simplex and their

selection are achieved by iteratively projecting to orthogonal

directions in a subspace projection of an initially determined

endmember. The iterative process stops when a predefined

number of endmembers is extracted. Fig. 4 shows the spectra of

three distinct materials identified in scene 1. Accordingly, ten

endmembers were extracted for the Hyperion scene 4. Cloud

thickness Γ was obtained by solving (14) with the constraints

as discussed in the previous section.

Cloud detection and removal were also performed using the

HOT method [21]. Fig. 5 shows the original image, cloud

detection results using the proposed method ST-SMA and the

HOT method, and the corresponding cirrus band for the OLI

scenes. The value of a pixel in the cloud detected image

represents the thickness of cloud. We can see that HOT method

provides good performance for scene 1 as shown in Fig. 5(c),

but poorer performance for scenes 2 and 3 as shown in Fig. 5(g)

and (k) where some background features appear, especially

for large water bodies. Our method performs much better as

shown in Fig. 5(d), (h), and (l). For the purpose of quantitatively

validating the cloud detection results, scatterplots of the cloud

detection results versus the cirrus band were generated and

are shown in Fig. 7. The correlation coefficient between cloud

thickness derived by the ST-SMA and the cirrus band data

is 0.939, 0.801, and 0.939 for the three scenes, respectively,

whereas the correlation coefficient obtained by the HOT meth-

ods was 0.844, 0.781, and 0.721, respectively. This quantitative

assessment also shows that the proposed method performs

better than the HOT method for all the OLI scenes.

C. Cloud Correction Results

In this set of experiments we assess the quality of the cor-

rected images by comparing it with reference images. (19) was

applied to conduct the cloud removal for the four scenes using

the cloud thickness estimated in the earlier step. Figs. 6 and

8 show the original images, the reference images, and the

corrected images of OLI and Hyperion data, respectively. From

a qualitative point of view, we can see from Fig. 6 that the

proposed method works effectively for various backgrounds

with different land covers and cloud types. When the cloud

is relatively thick and the ground cover underneath the cloud

has high reflectance, the HOT method over-corrected the im-

ages while our method could clearly restore the land features.

Fig. 8 reveals a good visual result of the corrected Hyperion

image using ST-SMA method. The thin clouds over the whole

scene have been effectively removed. The execution time of the

proposed method on an EO-1 Hyperion subset is less than one

second for 1000 pixels with 122 bands on a PC with an Intel®

Core i7-3770 CPU at 3.4 GHz, 64-bit Operating System. The

total execution time for the full scene is about 5 min, which can

be reduced if a better CPU and code optimized for speed is used.

A comparison of spectral profile from cloudy, corrected, and

reference images is selected as another validation approach.

Fig. 9 depicts the spectral profiles of vegetation, water, and soil

areas before and after the correction using the ST-SMA and

HOT methods, respectively, as well as the reference data for

scene 1. These profiles show the mean values of 10 randomly

selected regions in the cloud cover areas. We can see that the

spectral profile of corrected image by ST-SMA has a more

similar shape with the profile from the reference image when

compared with the HOT method. Fig. 9 also illustrates that the

ST-SMA cloud removal method does not change the spectral

properties of original data.

We also applied the spectral angle mapper (SAM) [51] to

quantitatively evaluate the similarity between the cloudy (or

corrected) spectra and the reference spectra. If a spectrum

s(n), n = 1, 2, . . . , N is treated as a vector s in which N is

the number of bands. The SAM measures the spectral angle be-

tween si and sj by calculating the arccosine of the normalized

dot product of the spectra using

α = cos−1

(

si · sj
‖si‖‖sj‖

)

= cos−1

⎛

⎜

⎜

⎜

⎜

⎝

N
∑

n=1

si(n)sj(n)

(

N
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n=1

s2i (n)

)

1

2
(
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n=1

s2j (n)

)

1
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.

(20)

Smaller angles indicate higher similarity, although the mag-

nitude of the vectors can be different. The SAM results

of Fig. 9(a) were 0.254 (cloudy versus reference), 0.136

(HOT versus reference), and 0.086 (ST-SMA versus reference),
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Fig. 5. Comparison of cloud detection results for the OLI data. (a) Original image-scene 1. (b) Cirrus band-scene 1. (c) HOT results-scene 1. (d) ST-SMA
results-scene 1. (e) Original image-scene 2. (f) Cirrus band-scene 2. (g) HOT results-scene 2. (h) ST-SMA results-scene 2. (i) Original image-scene 3. (j) Cirrus
band-scene 3. (k) HOT results-scene 3. (l) ST-SMA results-scene 3.

Fig. 6. Cloud removal results and reference images of OLI data (R = band 5, G = band 4, B = band 3). (a) Cloudy image-scene 1. (b) HOT-scene 1.
(c) ST-SMA-scene 1. (d) Reference image-scene 1. (e) Cloudy image-scene 2. (f) HOT-scene 2. (g) ST-SMA-scene 2. (h) Reference image-scene 2. (i) Cloudy
image-scene 3. (j) HOT-scene 3. (k) ST-SMA-scene 3. (l) Reference image-scene 3.
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Fig. 7. Scatterplots of HOT results and ST-SMA results versus cirrus band
values for the multispectral scenes. (a) Scene 1. (b) Scene 1. (c) Scene 2.
(d) Scene 2. (e) Scene 3. (f) Scene 3.

Fig. 8. Cloud removal results and reference images of Hyperion data
(R = band 49, G = band 29, B = band 20). (a) Cloudy image-scene 4.
(b) ST-SMA-scene 4. (c) Reference image-scene 4.

Fig. 9. Spectral profile of mean value from ten polygon samples in the
cloud cover areas for cloudy, corrected and reference images for scene 1.
(a) Vegetation. (b) Water. (c) Soil.

respectively. Accordingly, results of Fig. 9(b) and (c) are 0.242,

0.211, 0.156 and 0.136, 0.103, 0.05, respectively. The lowest

SAM values, 0.086, 0.156, and 0.05, indicate that the shape

of the corrected spectra using ST-SMA is the closest to the

reference spectra.

Table II provides detailed R2 results of the cloudy and

corrected images versus reference images, band by band, for

the three OLI scenes. We can see that the R2 value of corrected

versus reference images is much higher than cloudy versus ref-

erence images in coastal aerosol and visible bands. This is due

to the strong effects of cloud cover in these bands. In near in-

frared and shortwave infrared bands, the R2 value of corrected

versus reference images improved slightly since the cloudy

and reference images already have relatively high agreement.

Between the two methods implemented on OLI images, the
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TABLE II
LINEAR REGRESSION MODEL OF CLOUDY AND CORRECTED

IMAGES BY THE ST-SMA AND HOT METHODS VERSUS

REFERENCE IMAGES OVER ALL CLOUDY PIXELS

ST-SMA method outperforms the HOT method consistently.

The normalized difference vegetation indices (NDVI) of the

cloudy and corrected Hyperion images were also compared.

From the scatterplots in Fig. 10, the corrected image using

ST-SMA method has higher R2 vaule (0.718) than the cloudy

image (0.456). The corrected images are expected to be valu-

able for classification and target detection.

While snow can be confused with clouds in the visible bands,

they have different spectral profiles in other bands [52]. In our

proposed cloud removal method, snow is treated as a unique

endmember like other ground cover types. Fig. 11 shows the

cloud removal results of an image with both snow and cloud

cover. Fig. 11(a) and (b) are the original image and the corrected

image, respectively. We can see that the cloud effect is removed,

while snow is still present.

V. DISCUSSIONS AND CONCLUSIONS

In this paper, we have developed a new method, called

ST-SMA, for cloud thickness detection and cloud removal

in optical remote sensing imagery. ST-SMA makes joint use

of atmospheric scattering theory and linear spectral mixture

analysis to describe the effects of cloud on the reflectance

from underlying land. The approach is based on the assumption

that there is a linear relationship between cloud thickness

and spectral reflectance. Energy absorption is also considered

in the solar radiation propagation model. Cloud saturation

is not considered in this study given that we focus on thin

cloud removal. A concept of pure cloud is introduced in

this paper, and we propose to extract a cloud spectrum by

searching for the pixels with the maximum total energy in all

the spectral bands in each cloud-affected image. A modified

version of fully constrained linear spectral unmixing was ap-

plied to estimate cloud thickness, which is equivalent to cloud

abundance. Cloud thickness is presented for each pixel instead

of binary masking only. This represents a novel contribution for

cloud detection and removal by combining physical modeling

and mixture analysis. The proposed method has no require-

ment for meteorological data and does not rely on reference

images.

The screening results of multispectral data were visually and

quantitatively compared with the cirrus band of the Landsat

OLI sensor. Validation of the cloud removal algorithm was

conducted for OLI and Hyperion data by comparing corrected

images with reference images through scatter plots and R2

values and spectral similarity evaluation with SAM. The HOT

method was also implemented in the experiments. The testing

results demonstrate that our method ST-SMA provides better

Fig. 10. Scatterplots of NDVI values for scene 4 (NIR = band 49, RED =

band 29). (a) The cloudy image versus the reference image and (b) the corrected
image versus the reference image.

Fig. 11. Cloud removal results of cloudy image with both snow and cloud
cover. (a) Cloudy image with snow. (b) Corrected image.

performance than the HOT method and can provide cloud free

images with high quality.

The cloud removal performance is sensitive to some para-

meters in the proposed method. First and foremost, the cloud

endmember should be selected in regions containing the thick-

est cloud. This is not a difficult issue in practice since it is

very easy to find these areas in optical images. Second, the

number of endmembers needs to be smaller than the number

of spectral bands to make the least squares solution reliable.

For correction of Landsat 8 images, the proposed method is

mainly suitable for simple landscapes, containing three or four

endmember classes only. For complicated scenes, such as urban

areas, the ST-SMA method can be applied to hyperspectral

images where the number of bands can be over two hundred.

Alternatively, the pixel-adapted subset of endmembers can be

used in unmixing. The conventional approach is to find all the

endmembers present in the whole image and unmix each pixel

into the complete set of endmembers. More efficient methods

have been developed to estimate a subset of endmembers for

which individual pixels are associated with first, and the unmix-

ing is then conducted adaptively for each pixel [53], [54]. In this

way, the number of potential endmembers for each particular

pixel is often reduced to 3 or 4, and this allows, to some extent,

the use of spectral unmixing techniques with multispectral data.

Extra computational load is introduced by the nonlinear least

squares problem involved in ST-SMA; however, it is not a

serious issue as cloud removal is an off-board post-processing

task. Cloud shadow is difficult to model and it is not addressed

in this paper since it is not as relevant when we focus on thin

cloud contaminated image restoration.
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In our future work, the cirrus band will be considered to assist

with the cloud detection. Wider testing will be conducted, for

example, on the case of cloud contamination over snow, which

presents relevant challenges. The corrected images will also be

further processed for various applications.
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