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Abstract. The asymptotic behavior of an elastic thin film penalized by a van der
Wals type interfacial energy is investigated when both its thickness and the magnitude
of the additional energy vanish in the limit. Keeping track of both mid-plane and out-
of-plane deformations (through the introduction of the Cosserat vector), the resulting
behavior strongly depends upon the ratio between thickness and interfacial energy.

1. Introduction. Thin films and coatings, which are increasingly used for their out-
standing mechanical properties, are also the topic of an increasing literature, especially
since it was recognized in [16] that elastic membranes could be derived as variational
limits of 3d elastic energies for domains with a vanishing thickness. That paper paved
the way for many studies that adopt the viewpoint of Γ-convergence in dealing with
dimensional reduction.

It is thought that very thin films, in part because of their polycrystalline nature, are
quite sensitive to possible interfacial effects, and this has motivated several studies that
investigate the impact of a van der Waals type interfacial energy on their behavior. The
first such study in the variational framework was conducted in [4]. There, the authors
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70 IRENE FONSECA, GILLES FRANCFORT, AND GIOVANNI LEONI

add a fixed interfacial energy of the form κ
∫
ω×(− ε

2 , ε
2 )
|Diju|2 dx to the potential energy∫

ω×(− ε
2 , ε

2 )
W (Du) dx of the thin elastic domain; they obtain in the limit a 2d energy

density which depends on the deformation u (or rather Diu, i = 1, 2) of the mid-surface,
together with the Cosserat vector b which describes both transverse shear and normal
compression in the thickness (think of the limit transformation as being of the form
u+ ε

∫ x3

0
b(x1, x2, s) ds). Because their emphasis is on martensitic materials, they obtain

that way a thin film which admits exact energy minimizing interfaces between austenitic
and martensitic phases, whereas the corresponding bulk material must generically finely
twin the phases.

Their analysis does not allow a correlation between the strength of the interfacial
energy and the thickness of the sample. That issue was subsequently addressed in [18]. In
that paper the interfacial energy is allowed to tend to 0, and a micro-structural parameter
is also added. The author then investigates the different regimes that correspond to the
relative strengths of the three vanishing parameters: the thickness, the strength of the
interfacial energy, and the size of the heterogeneities. The analysis is however restricted
to the mid-surface of the film, or, in other words, the Cosserat vector is a priori minimized
out of the computed energy.

In a different direction, the paper [5] investigates both mid-surface and cross-sectional
behavior in the absence of interfacial energy, but this analysis only accounts for the
bending moment – the average of the Cosserat vector through the cross section – and it
is conjectured that the behavior becomes nonlocal if the actual Cosserat vector is kept
in the formulation in lieu of its average.

In this work, we propose to introduce interfacial energy as in [4], [18], while tracking
down the cross-sectional behavior as in [5], but without averaging through the cross
section. We then exhibit a membrane whose constitutive behavior critically depends
upon the strength of the vanishing interfacial energy.

Specifically, the domain is of the form ω × (− ε
2 , ε

2 ), ω being its mid-section (a 2d set)
and ε its thickness. We add to the elastic energy∫

ω×(− ε
2 , ε

2 )

W (Du) dx

an interfacial energy of the form

εγ

∫
ω×(− ε

2 , ε
2 )

|D2u|2 dx,

where D2u is the Hessian matrix associated to the transformation vector u : ω ×
(− ε

2 , ε
2 ) → R

3 and γ > 0. It proves to be more convenient to re-scale the resulting
energy minimization problem onto a fixed domain of thickness 2 through a 1

ε -dilation
of the transverse variable. The problem, cast in the variational framework, consists in
studying the Γ-limit, in an appropriate topology, of∫

ω×(− 1
2 , 1

2 )

[
W

(
Dpu|

1
ε
D3u

)
+ εγ

(
|D2

pu|2 +
1
ε2

|Dp3u|2 +
1
ε4

|D33u|2
)]

dx, (1.1)
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where Dp stands for the gradient in the plane of the film; i.e., the differential operators
in (1.1) are defined as

Dp := (D1, D2) , D2
p := (D11, D22, D12) , Dp3 := (D13, D23) .

If uε is an approximate minimizer of that energy (for adequate boundary conditions and
external forces), then an appropriate topology will keep track of the limits of both {uε}
and

{
1
εD3uε

}
.

We now give a brief and nontechnical description of our main results. In all cases,
provided that the elastic density has polynomial growth – which of course excludes the
setting of hyperelasticity for which W blows up as detDu vanishes – the limit kinemat-
ics is identical as far as the limit of uε is concerned: the limit field u is independent
of the transverse variable x3; it represents the transformation of the mid-surface of the
membrane. In the case γ < 2, the interfacial energy is strong enough to rigidify the
cross section (the Cosserat vector is b independent of x3) and to decouple the mid-plane
deformation from the bending moment (the average of b over the thickness). Thus, the re-
sulting energy is merely the lower semi-continuous envelope of

∫
ω×(− 1

2 , 1
2 ) W (Dpu|b) dx.

If γ = 2, then the behavior drastically depends on the form of the Cosserat vector
b. If it is independent of x3, then the resulting energy once again treats Dpu and b as
independent fields and the result is that obtained for γ < 2. If b does depend on x3, then
the resulting energy is more involved and we strongly suspect that it is nonlocal.

When γ > 2, the interfacial energy is weak, yet the result is still that obtained for
γ < 2, with an x3-dependent Cosserat vector; this is a bit surprising, and we cannot
explain why it should be so!

The plan of the paper is as follows. Section 2 is devoted to general properties of the
limit energy. In Section 3 we study the Γ-convergence of the family of functionals (1.1)
for all γ > 0 and characterize the limit energy for γ �= 2. Section 4 addresses the critical
case γ = 2.

If the Cosserat vector is x3-independent, then we obtain an explicit local integral rep-
resentation for the Γ-limit. Otherwise, that is, when the Cosserat vector is x3-dependent,
the characterization of the Γ-limit leads us to the auxiliary functional

inf

{
lim inf
n→∞

∫
A×I

(
W (Dpun |bn ) + |D3bn|2

)
dx :

{un} ⊂ W 1,q(Ω; R3), {bn} ⊂ Lq
(
Ω; R3

)
with D3bn ∈ L2

(
Ω; R3

)
,

un ⇀ u in W 1,q(Ω; R3), bn ⇀ b in Lq(Ω; R3)

}
.

We have been unable to obtain a local integral representation for this functional.
Note that, stricto sensu, our results can only be compared to those of [18] in that,

upon minimizing the resulting energy over all admissible Cosserat vectors, we should
recover the results in [18], provided we drop the dependence of the energy considered in
that paper upon the micro-structural parameter. This is the object of Remark 4.6.
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2. Preliminaries. We start with some notation. In the remainder of the paper, ω is
an open, bounded, connected subset of R

2 with Lipschitz boundary, so that, in particular,
all Sobolev extension theorems apply. We define A (ω) as the class of all open subsets of
ω. Points in ω will be designated by xα or xβ unless there is some ambiguity. Also, Q′

will denote the unit square (−1
2 , 1

2 )2, while Q := Q′ × (−1
2 , 1

2 ); C will denote a generic
positive constant, so that e.g. C = 2C. For any x0

α ∈ R
2, δ > 0, we define Q′(x0

α, δ) to
be the square x0

α+(− δ
2 , δ

2 )2. We set I :=
(
−1

2 , 1
2

)
.

Finally, → will denote strong convergence, while ⇀ and ∗
⇀ will stand for weak and

weak* convergence, respectively.
For ε, γ > 0 and 1 < q < ∞ consider the functional

Eγ
ε : W 1,q

(
Ω; R3

)
×A (ω) → [0,∞]

defined by

Eγ
ε (u; A) :=

∫
A×I

W

(
Dpu|

1
ε
D3u

)
dx

+ εγ

∫
A×I

(
|D2

pu|2 +
1
ε2

|Dp3u|2 +
1
ε4

|D33u|2
)

dx

if u ∈ W 2,2(Ω; R3), and Eγ
ε (u; A) := ∞ otherwise. Here

Ω := ω × I,

and the elastic energy density W : R
3×3 → [0,∞) satisfies the following hypothesis:

(H1) W is continuous and there exists C > 0 such that

W (F ) ≥ 1
C

|F |q − C

for all F ∈ R
3×3.

Theorem 2.1 (Compactness). Assume that W satisfies condition (H1). Let εn → 0+

and let {un} ⊂ W 2,2(Ω; R3) be such that

sup
n

Eγ
εn

(un; Ω) < ∞.

Then there exist a subsequence {unk
} , u ∈ W 1,q

(
Ω; R3

)
, with D3u = 0 L3 a.e. in Ω,

and b ∈ Lq
(
Ω; R3

)
such that

unk
⇀ u in W 1,q(Ω; R3),

1
εnk

D3unk
⇀ b in Lq(Ω; R3). (2.1)

Moreover, if γ < 2, then D3b = 0 L3 a.e. in Ω, while if γ = 2, then D3b ∈ L2
(
Ω; R3

)
.

As a consequence of the previous theorem, for every γ > 0 the natural ambient space
for the limit energy is given by

Vγ :=
{
(u, b) ∈ W 1,q

(
Ω; R3

)
× Lq

(
Ω; R3

)
: D3u = 0 L3 a.e. in Ω, (2.2)

D3b = 0 L3 a.e. in Ω if γ < 2, D3b ∈ L2
(
Ω; R3

)
if γ = 2

}
.
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In what follows we identify functions u ∈ W 1,q
(
Ω; R3

)
such that D3u = 0 L3 a.e. in Ω

with functions in W 1,q(ω; R3), and, similarly, functions b ∈ Lq
(
Ω; R3

)
such that D3b = 0

L3 a.e. in Ω with functions in Lq
(
ω; R3

)
.

In view of (2.1) the appropriate notion of Γ-convergence in our setting is the following:
Let εn → 0+. We say that a functional

Eγ
− : Vγ ×A(ω) → [0,∞]

is the Γ- lim inf of the sequence of functionals {Eγ
εn
} with respect to the weak convergence

in W 1,q
(
Ω; R3

)
× Lq

(
Ω; R3

)
if for every (u, b) ∈ Vγ and A ∈ A(ω),

Eγ
−(u, b; A) = inf

{
lim inf
n→∞

Eγ
εn

(un; A) : un ∈ W 1,q
(
Ω; R3

)
, un ⇀ u in W 1,q

(
Ω; R3

)
,

1
εn

D3un ⇀ b in Lq
(
Ω; R3

)}
,

and we write
Eγ

− = Γ- lim inf
n→∞

Eγ
εn

.

Since Eγ
εn

(un; A) = ∞ if un /∈ W 2,2
(
Ω; R3

)
, it is clear that we may write

Eγ
−(u, b; A) = inf

{
lim inf
n→∞

Eγ
εn

(un; A) : un ∈ W 2,2
(
Ω; R3

)
, un ⇀ u in W 1,q

(
Ω; R3

)
,

1
εn

D3un ⇀ b in Lq
(
Ω; R3

)}
.

A standard diagonalization argument, together with the coercivity hypothesis (H1) ,

yields the following result, whose proof we omit. We remark that this argument holds
only for q > 1.

Proposition 2.2. Assume that W satisfies condition (H1). Then for any open subset
A ⊂ ω, the functional Eγ

−(·, ·; A) is sequentially lower semi-continuous with respect to
the weak convergence in W 1,q(Ω; R3) × Lq(Ω; R3).

Similarly, we say that a functional

Eγ
+ : Vγ ×A(ω) → [0,∞]

is the Γ- lim sup of the sequence of functionals {Eγ
εn
} with respect to the weak-weak

convergence in W 1,q
(
Ω; R3

)
× Lq

(
Ω; R3

)
if for every (u, b) ∈ Vγ and A ∈ A(ω),

Eγ
+(u, b; A) = inf

{
lim sup

n→∞
Eγ

εn
(un; A) : un ∈ W 2,2

(
Ω; R3

)
, un ⇀ u in W 1,q

(
Ω; R3

)
,

(2.3)

1
εn

D3un ⇀ b in Lq
(
Ω; R3

)}
,

and we write
Eγ

+ = Γ- lim sup
n→∞

Eγ
εn

.
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We say that the sequence {Eγ
εn
} Γ-converges to a functional Eγ if the Γ- lim inf and

Γ- lim sup coincide, and we write

Eγ = Γ- lim
n→∞

Eγ
εn

.

Definition 2.3. The functional Eγ is said to be the Γ-limit of the family of functionals
{Eγ

ε }ε>0 with respect to weak convergence in W 1,q
(
Ω; R3

)
× Lq

(
Ω; R3

)
if for every

sequence εn → 0+ we have that

Eγ = Γ- lim
n→∞

Eγ
εn

,

and we write

Eγ = Γ- lim
ε→0

Eγ
ε .

We conclude this section with two results which will be useful in the sequel. For a
proof we refer to [14], [15].

Lemma 2.4 (Decomposition). Let E ⊂ R
N be a bounded Lebesgue measurable set and

let {un} be a sequence of functions uniformly bounded in Lq
(
E; Rd

)
, 1 ≤ q < ∞. For

r > 0 consider the truncation τr : R
d → R

d defined by

τr(z) :=

⎧⎨⎩ z if |z| ≤ r,
z

|z|r if |z| > r.

Then there exists a subsequence of {un} (not relabeled) and an increasing sequence of
numbers rn → ∞ such that the truncated sequence {τrn

◦ un} is q-equi-integrable, and

|{x ∈ E : un (x) �= (τrn
◦ un) (x)}| → 0.

Theorem 2.5. Let Ω ⊂ R
N be an open bounded set, let 1 < q < ∞, and let {un} ⊂

W 1,q(Ω; Rd) be a sequence of functions converging weakly in W 1,q(Ω; Rd) to some func-
tion u0 ∈ W 1,q(Ω; Rd). Then there exist a subsequence {unk

} and a sequence {vk} ⊂
W 1,q(RN ; Rd) such that {vk} converges to u0 weakly in W 1,q(Ω; Rd), vk = u0 in a neigh-
borhood of ∂Ω,

|{x ∈ Ω : vk(x) �= unk
(x)}| → 0 as k → ∞ (2.4)

and {|∇vk|q} is equi-integrable.

3. Γ-convergence. In this section, under standard q-growth and coercivity condi-
tions on W, we prove that the family of functionals {Eγ

ε }ε>0 Γ-converges to the functional
Hγ defined as follows: for (u, b) ∈ Vγ and A ∈ A(ω),

Hγ (u, b, A) := inf

{
lim inf
n→∞

∫
A×I

W (Dpun |bn ) dx : {un} ⊂ W 1,q(Ω; R3),

{bn} ⊂ Lq
(
Ω; R3

)
, un ⇀ u in W 1,q(Ω; R3), bn ⇀ b in Lq(Ω; R3)

}
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if γ �= 2, and

H2 (u, b, A) := inf

{
lim inf
n→∞

∫
A×I

[
W (Dpun |bn ) + |D3bn|2

]
dx : {un} ⊂ W 1,q(Ω; R3),

{bn} ⊂ Lq
(
Ω; R3

)
with D3bn ∈ L2

(
Ω; R3

)
,

un ⇀ u in W 1,q(Ω; R3), bn ⇀ b in Lq(Ω; R3)

}
if γ = 2.

In the remainder of the paper we assume that condition (H1) is strengthened as follows:
(H1)′ W : R

3×3 → [0,∞) is continuous and there exists C > 0 such that

1
C

|F |q − C ≤ W (F ) ≤ C (1 + |F |q)

for all F ∈ R
3×3.

Theorem 3.1 (Γ-convergence). Assume that condition (H1)
′ is satisfied. Then the family

of functionals {Eγ
ε }ε>0 Γ-converges to the functional Hγ .

Proof. Fix a sequence εn → 0+ and let

Eγ
− := Γ- lim inf

n→∞
Eγ

εn
.

Lower bound. We claim that

Eγ
− (u, b; A) ≥ Hγ (u, b, A) (3.1)

for all (u, b) ∈ Vγ and A ∈ A(ω).
Fix (u, b) ∈ Vγ and A ∈ A(ω), and consider any sequence {un} ⊂ W 2,2

(
Ω; R3

)
such

that un ⇀ u in W 1,q(Ω; R3), 1
εn

D3un ⇀ b in Lq(Ω; R3). If γ �= 2, then

lim inf
n→∞

Eγ
εn

(un; A) ≥ lim inf
n→∞

∫
A×I

W

(
Dpun

∣∣∣∣ 1
εn

D3un

)
dx

≥ Hγ (u, b, A) ,

while if γ = 2,

lim inf
n→∞

E2
εn

(un; A) ≥ lim inf
n→∞

∫
A×I

[
W

(
Dpun

∣∣∣∣ 1
εn

D3un

)
+
∣∣∣∣ 1
εn

D33un

∣∣∣∣2
]

dx

≥ H2 (u, b, A) .

By taking the infimum over all such sequences {un} in both cases we obtain (3.1).
Upper bound. We claim that for every (u, b) ∈ Vγ and for all A ∈ A(ω),

Eγ
−(u, b; A) ≤

∫
A×I

W (Dpu |b ) dx (3.2)

if γ �= 2, while

E2
−(u, b; A) ≤

∫
A×I

(
W (Dpu |b ) + |D3b|2

)
dx. (3.3)
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Extend u as a W 1,q
(
R

3; R3
)

function with

‖u‖W 1,q(R3;R3) ≤ C‖u‖W 1,q(Ω;R3)

and D3u = 0 L3 a.e. in R
3. Extend also b as an Lq

(
R

3; R3
)

function with

‖b‖Lq(R3;R3) ≤ C‖b‖Lq(Ω;R3),

and D3b = 0 L3 a.e. in R
3 if γ < 2, and D3b ∈ L2

(
R

3; R3
)

with

‖D3b‖L2(R3;R3) ≤ C‖D3b‖L2(Ω;R3)

if γ = 2.
Consider a mollifier of the type

ϕj (x) :=
1
δ3
j

ϕ

(
x

δj

)
,

where δj > 0 and ϕ ∈ C∞
c

(
R

3
)

with
∫

R3 ϕ (x) dx = 1. Set

unj (x) := (u ∗ ϕj) (x) + εn

∫ x3

0

(b ∗ ϕj) (xα, s) ds for x ∈ R
3.

Since D3 (u ∗ ϕj) = D3u ∗ ϕj = 0 (recall that D3u = 0 L3 a.e. in R
3) it follows that

D3un,j = εnb ∗ ϕj , and so for every fixed j,

1
εn

D3un,j = b ∗ ϕj .

Moreover, for i = 1, 2,

Diun,j = Di (u ∗ ϕj) + εn

∫ x3

0

(b ∗ Diϕj) (xα, s) ds,

and so

|Diun,j − Di (u ∗ ϕj)| ≤
Cεn

δj
‖b‖Lq(R3;R3), (3.4)

where we have used the fact that, by the Hölder inequality, for all x ∈ Ω we have

|(b ∗ Diϕj) (x)| =
∣∣∣∣∫

R3
b (y) Diϕj (x − y) dy

∣∣∣∣ (3.5)

≤ ‖b‖Lq(R3;R3)‖Diϕj‖Lq′ (R3;R2) ≤
C

δj
‖b‖Lq(Ω;R3).
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Hence for every fixed j the sequence {un,j} is admissible for Eγ
−(u ∗ ϕj , b ∗ ϕj ; A), and

we have

Eγ
−(u ∗ ϕj , b ∗ ϕj ; A) ≤ lim inf

n→∞
Eγ

εn
(unj ; A)

≤ lim
n→∞

∫
A×I

W

(
Dpu ∗ ϕj +

Cεn

δj
O (1) |b ∗ ϕj

)
dx

+ lim inf
n→∞

∫
A×I

εγ
n

(∣∣D2
pun,j

∣∣2 +
1
ε2
n

|Dp3un,j |2 +
1
ε4
n

|D33un,j |2
)

dx

=
∫

A×I

W (Dpu ∗ ϕj |b ∗ ϕj ) dx (3.6)

+ lim inf
n→∞

∫
A×I

εγ
n

(∣∣D2
pun,j

∣∣2 +
1
ε2
n

|Dp3un,j |2 +
1
ε4
n

|D33un,j |2
)

dx,

where in the last equality we have used the Lebesgue Dominated Convergence Theorem
together with the continuity of W . We claim that

lim
n→∞

∫
A×I

εγ
n

(∣∣D2
pun,j

∣∣2 +
1
ε2
n

|Dp3un,j |2 +
1
ε4
n

|D33un,j |2
)

dx = 0 (3.7)

if γ �= 2, while

lim
n→∞

∫
A×I

ε2
n

(∣∣D2
pun,j

∣∣2 +
1
ε2
n

|Dp3un,j |2 +
1
ε4
n

|D33un,j |2
)

dx (3.8)

=
∫

A×I

|D3b ∗ ϕj |2 dx

if γ = 2.

For i, k = 1, 2,

Dikun,j (x) = (Diu ∗ Dkϕj) (x) + εn

∫ x3

0

(b ∗ Dikϕj) (xα, s) ds,

Dk3un,j (x) = εn (b ∗ Dkϕj) (x) ,

and so, reasoning as in (3.5),∥∥D2
pun,j

∥∥
∞ ≤ C

δj
‖Dpu‖Lq(Ω;R3×2) +

Cεn

δ2
j

‖b‖Lq(Ω;R3),

‖Dp3un,j‖∞ ≤ Cεn

δj
‖b‖Lq(Ω;R3),

which clearly imply that

lim
n→∞

∫
A×I

εγ
n

(∣∣D2
pun,j

∣∣2 +
1
ε2
n

|Dp3un,j |2
)

dx = 0.

To estimate the last term in (3.7) note that if γ < 2, then

D33un,j = εnD3b ∗ ϕj ≡ 0

since D3b = 0 L3 a.e. in R
3, while if γ > 2, then

D33un,j (x) = εn (b ∗ D3ϕj) (x) ,
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and so

‖D33un,j‖∞ ≤ Cεn

δj
‖b‖Lq(Ω;R3).

In turn

εγ−4
n ‖D33un,j‖2

∞ ≤ Cεγ−2
n

δ2
j

‖b‖2
Lq(Ω;R3),

which yields

lim
n→∞

∫
A×I

εγ−4
n |D33un,j |2 dx = 0.

Finally, if γ = 2, then
D33un,j = εnD3b ∗ ϕj

and thus

lim
n→∞

∫
A×I

1
ε2
n

|D33un,j |2 dx =
∫

A×I

|D3b ∗ ϕj |2 dx.

Hence (3.7) and (3.8) hold, and by (3.6) we deduce that

Eγ
−(u ∗ ϕj , b ∗ ϕj ; A)

≤
{ ∫

A×I
W (Dpu ∗ ϕj |b ∗ ϕj ) dx if γ �= 2,∫

A×I

[
W (Dpu ∗ ϕj |b ∗ ϕj ) + |D3b ∗ ϕj |2

]
dx if γ = 2.

Since u ∗ ϕj → u in W 1,q
(
Ω; R3

)
, b ∗ ϕj → b in Lq

(
Ω; R3

)
, and when γ = 2 also

D3b ∗ ϕj → D3b in Lq
(
Ω; R3

)
, letting j → ∞ in the previous inequality and using

Proposition 2.2 and (H1)
′ we obtain (3.2) and (3.3).

Fix (u, b) ∈ Vγ and A ∈ A(ω) and let {uj} ⊂ W 1,q(Ω; R3) converge weakly to u in
W 1,q(Ω; R3), and {bj} ⊂ Lq(Ω; R3) converge weakly to b in Lq(Ω; R3). Using Proposition
2.2, (3.2) and (3.3) we have that

Eγ
−(u, b; A) ≤ lim inf

j→∞
Eγ

−(uj , bj ; A) ≤ lim inf
j→∞

∫
A×I

W (Dpuj |bj ) dx

if γ �= 2, and

Eγ
−(u, b; A) ≤ lim inf

j→∞
Eγ

−(uj , bj ; A)

≤ lim inf
j→∞

∫
A×I

[
W (Dpuj |bj ) + |D3bj |2

]
dx.

Taking the infimum over all such sequences {uj} and {bj} yields

Eγ
− (u, b; A) ≤ Hγ (u, b, A)

for all (u, b) ∈ Vγ and A ∈ A(ω). Together with (3.1) this yields

Γ- lim
n→∞

Eγ
εn

= Hγ .

In turn, given the arbitrariness of the sequence εn → 0+, by Definition 2.3 we obtain
that

Γ- lim
ε→0+

Eγ
ε = Hγ ,

and this completes the proof. �
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Thus it remains to identify the functional Hγ . We consider separately the two ranges
γ �= 2 and γ = 2.

Theorem 3.2 (γ �= 2). Assume that γ �= 2 and that condition (H1)
′ is satisfied. Then

for all (u, b) ∈ Vγ and A ∈ A (ω),

Hγ (u, b, A) =
∫

A×I

(Q3 × C3) [W ] (Dpu (xα) |b (x) ) dx,

where (Q3 × C3) [W ] is the cross quasiconvexification-convexification of W,

(Q3 × C3) [W ]
(
F |z

)
:= inf

{∫
Q

W
(
F + Dpϕ (x) |z + φ (x)

)
dx ,

ϕ ∈ W 1,q
0

(
Q; R3

)
, φ ∈ Lq

(
Q; R3

)
,

∫
Q

φ (x) dx = 0
}

for F ∈ R
2×3, z ∈ R

3.

Proof. The proof of this result is standard, and so we omit it (see e.g. [13]). �
Remark 3.3. Note that if γ �= 2, then

Hγ (u, b, A) =
∫

A×I

(Q2 × C2) [W ] (Dpu (xα) |b (x) ) dx, (3.9)

where (Q2 × C2) [W ] is defined as

(Q2 × C2) [W ]
(
F |z

)
:= inf

{∫
Q′

W
(
F + Dpϕ (xα) |z + φ (xα)

)
dxα ,

ϕ ∈ W 1,q
0

(
Q′; R3

)
, φ ∈ Lq

(
Q′; R3

)
,

∫
Q′

φ (xα) dxα = 0
}

for F ∈ R
2×3, z ∈ R

3.

To see this we begin by observing that in the definition of (Q3 × C3) [W ] (resp. of
(Q2 × C2) [W ]) Q-periodic functions in W 1,q

(
Q; R3

)
(resp. Q′-periodic functions in

W 1,q(Q′; R3)) can also be used in lieu of W 1,q
0 (Q; R3)-functions (resp. W 1,q

0 (Q′; R3)-
functions) (see [3], Conjecture 3.7 and Theorem 3.1). Hence

(Q3 × C3) [W ](F |z) ≤ (Q2 × C2) [W ](F |z).

Conversely, for ε > 0 find ϕ, φ admissible in the definition of (Q3 × C3) [W ]
(
F , z
)

and
such that

(Q3 × C3) [W ]
(
F , z
)
≥
∫

Q

W
(
F + Dpϕ (x) |z + φ (x)

)
dx − ε.
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Then

(Q3 × C3) [W ]
(
F, z
)

≥
∫ 1

2

− 1
2

∫
Q′

W

(
F + Dpϕ(x)|z(x3) + φ(x) −

∫
Q′

φ(yα, x3) dyα

)
dxα dx3 − ε

≥
∫ 1

2

− 1
2

(Q2 × C2) [W ](F |z(x3)) dx3 − ε

≥ (Q2 × C2) [W ]

(
F |
∫ 1

2

− 1
2

z(x3) dx3

)
− ε

= (Q2 × C2) [W ]
(
F |z
)
− ε,

where

z(x3) := z +
∫

Q′
φ(yα, x3) dyα,

and where the last inequality holds by Jensen’s inequality, because (Q2 × C2)[W ](F |·) is
convex and φ has zero average over Q. Given the arbitrariness of ε we conclude that

(Q3 × C3) [W ](F |z) = (Q2 × C2) [W ](F |z), (3.10)

which, together with the previous theorem, yields (3.9) . In particular, if W is independent
of z, then we recover the well-known identity

Q3W (F ) = Q2W (F ). (3.11)

4. The critical case γ = 2. In this section we study the critical case γ = 2. We
recall that

H2 (u, b, A) := inf

{
lim inf
n→∞

∫
A×I

(
W
(
Dpun |bn) + |D3bn|2

)
dx :

{un} ⊂ W 1,q(Ω; R3), {bn} ⊂ Lq
(
Ω; R3

)
with D3bn ∈ L2

(
Ω; R3

)
,

un ⇀ u in W 1,q(Ω; R3), bn ⇀ b in Lq(Ω; R3)

}
for all (u, b) ∈ V2 and A ∈ A (ω), where

V2 :=
{
(u, b) ∈ W 1,q

(
Ω; R3

)
× Lq

(
Ω; R3

)
: D3u = 0 L3 a.e. in Ω,

D3b ∈ L2
(
Ω; R3

)}
.

We begin by characterizing H2 (u, b, A) for functions b which do not depend on x3. Note
that in this case (u, b) ∈ V2 may be identified with a function in W 1,q(ω; R3)×Lq

(
ω; R3

)
.

Theorem 4.1. Assume that condition (H1)
′ is satisfied. Then for all (u, b) ∈ V2 with

D3b = 0 L3 a.e. in Ω, and for all A ∈ A (ω),

H2 (u, b, A) =
∫

A

(Q2 × C2) [W ] (Dpu (xα) |b (xα) ) dxα.
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Proof. It is clear that

H2 (u, b, A) ≤ inf
{

lim inf
n→∞

∫
A

W (Dpun (xα) |bn (xα) ) dxα : {un} ⊂ W 1,q(ω; R3),

{bn} ⊂ Lq
(
ω; R3

)
, un ⇀ u in W 1,q(ω; R3), bn ⇀ b in Lq(ω; R3)

}
since the infimum on the right-hand side is taken over a smaller class of sequences (i.e.,
those independent of x3). By standard results (see e.g [13]) the right-hand side coincides
with ∫

A

(Q2 × C2) [W ] (Dpu (xα) |b (xα) ) dxα,

and so we have

H2 (u, b, A) ≤
∫

A

(Q2 × C2) [W ] (Dpu (xα) |b (xα) ) dxα.

On the other hand, since W ≥ (Q3 × C3) [W ] , by classical lower semi-continuity results
we deduce that

H2(u, b; A) ≥
∫

A

(Q3 × C3) [W ] (Dpu (xα) |b (xα) ) dxα,

and now it suffices to recall (3.10). �
When the function b depends on the x3 variable the situation is significantly more

involved, and the representation obtained in Theorem 4.4 below is considerably less
explicit.

For u ∈ W 1,q(Ω; R3), b ∈ Lq
(
Ω; R3

)
with D3b ∈ L2

(
Ω; R3

)
and A ∈ A (ω) define

F (u, b; A) :=
∫

A×I

[
W (Dpu |b ) + |D3b|2

]
dx.

Similar arguments to those used in the proof of Theorem 4.2 below may be found in
[10], Th. 1, page 24 (see also Chapter 11 in [6] for an alternative proof based on the De
Giorgi Slicing Lemma).

Theorem 4.2. Assume that condition (H1)
′ is satisfied. Then for every (u, b) ∈ V2

the set function H2(u, b; ·) is the trace of a Radon measure absolutely continuous with
respect to L2

⌊
ω.

Proof. Step 1: Fix (u, b) ∈ V2. We claim that

H2(u, b; A1) ≤ H2(u, b; A2) + H2(u, b; A1 \ A3) (4.1)

for all A1, A2, A3 ∈ A(ω), with A3 ⊂⊂ A2 ⊂ A1.
Without loss of generality we may assume that the right-hand side of the previous

inequality is finite.
Fix η > 0 and find {un}, {vn} ⊂ W 1,q(Ω; R3) converging weakly to u in W 1,q(Ω; R3)

and {bn}, {zn} ⊂ Lq
(
Ω; R3

)
converging weakly to b in Lq(Ω; R3) such that D3bn, D3zn ∈
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L2
(
Ω; R3

)
for all n ∈ N, and

lim
n→∞

F
(
un, bn;

(
A1 \ A3

))
≤ H2(u, b; A1 \ A3) + η, (4.2)

lim
n→∞

F (vn, zn; A2) ≤ H2(u, b; A2) + η, (4.3)

sup
n

(
F
(
un, bn;

(
A1 \ A3

))
+ F (vn, zn; A2)

)
< ∞. (4.4)

For every v ∈ W 1,q(Ω; R3) and z ∈ Lq
(
Ω; R3

)
with Dz ∈ L2

(
Ω; R3

)
and for every Borel

set E ⊂ ω define

G(v, z; E) :=
∫

E×I

(
1 + |Dαv|q + |z|q + |D3z|2

)
dx.

Due to the coercivity hypothesis (H1)
′ and (4.4) we may extract a bounded subsequence

from the sequence of measures νj := G(unj
, bnj

; ·) + G(vnj
, bnj

; ·) restricted to A2 \ A3

converging -weakly to some Radon measure ν defined on A2 \ A3.
Find t > 0 so small such that the set

St := {xα ∈ A2 : dist(xα, A3) = t}

is nonempty and ν (St) = 0. For δ > 0 define

Lδ := {xα ∈ A2 : dist(xα, St) < δ}.

Choose δ so small that Lδ ⊂ A2 \ A3. Consider a smooth cut-off function ϕδ ∈
C∞

0 (A2; [0, 1]) such that ϕδ = 1 in

{xα ∈ A2 : dist(xα, ∂A3) < t − δ}

and ϕδ = 0 in

{xα ∈ A2 : dist(xα, ∂A3) > t + δ},
with

‖Dpϕδ‖L∞(ω) ≤ C/δ.

Define

ũj(x) := (1 − ϕδ(xα))unj
(x) + ϕδ(xα)vnj

(x),

b̃j(x) := (1 − ϕδ(xα))bnj
(x) + ϕδ(xα)znj

(x).

Clearly ũj ⇀ u in W 1,q(Ω; R3), b̃j ⇀ b in Lq(Ω; R3) as j → ∞. By the growth condition
(H1)

′, we have the estimate

F
(
ũj , b̃j ; A1

)
≤ F (unj

, bnj
; A1 \ A3) + F (vnj

, znj
; A2)

+ C

(
G(unj

, bnj
; Lδ) + G(vnj

, znj
; Lδ) +

1
δq

∫
Lδ×I

|unj
− vnj

|q dx

)
.

Passing to the limit as j → ∞ in the previous inequality and using (4.2) and (4.3), we
have

H2(u, b; A1) ≤ H2(u, b; A1 \ A3) + H2(u, b; A2) + 2η + Cν(Lδ),
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and letting δ go to zero we obtain

H2(u, b; A1) ≤ H2(u, b; A2) + H2(u, b; A1 \ A3) + 2η + Cν(St)

= H2(u, b; A2) + H2(u, b; A1 \ A3) + 2η.

It suffices to let η → 0+.
Step 2: In view of (4.1) and (H1)

′ it follows from standard arguments that the set
function H2(u, b; ·) is the trace of a Borel measure (see [2] and Theorem 2.6 in [7]).
Moreover we have

H2(u, b; A) ≤ C

∫
A×I

[
1 + |Dpu|q + |b|q + |D3b|2

]
dx,

and thus H2(u, b; ·) is absolutely continuous with respect to L2. �
As an immediate consequence of the previous theorem we have

H2(u, b; A) =
∫

A

dH2(u, b; ·)
dL2

(xα) dxα,

where dH2(u,b;·)
dL2 is the Radon-Nikodym derivative of H2(u, b; ·) with respect to the

Lebesgue measure on R
2. In order to identify dH2(u,b;·)

dL2 we introduce the functional

W : R
2×3 × W 1,2(I; R3) → [0,∞)

defined for F ∈ R
2×3, b ∈ W 1,2(I; R3), as follows:

W(F |b) :=
∫ 1

2

− 1
2

|D3b(x3)|2 dx3

+ inf
ϕ, ψ

{∫
Q

(
W
(
F + Dpϕ(x)|b(x3) + ψ (x)

)
+ |D3ψ(x)|2

)
dx :

ϕ ∈ W 1,q(Q; R3), ϕ(·, x3) Q′-periodic for L1 a.e. x3, (4.5)

ψ ∈ Lq(Q; R3), D3ψ ∈ L2(Q; R3),
∫

Q′
ψ(xα, x3) dxα = 0 for L1 a.e. x3

}
.

Note that

W(F |b) := inf
ϕ, ψ

{∫
Q

(
W (F + Dαϕ(x)|b(x3) + ψ(x)) + |D3b(x3) + D3ψ(x)|2

)
dx :

ϕ ∈ W 1,q(Q; R3), ϕ(·, x3) Q′-periodic for L1 a.e. x3,

ψ ∈ Lq(Q; R3), D3ψ ∈ L2(Q; R3),
∫

Q′
ψ(xα, x3) dxα = 0 for L1 a.e. x3

}
.

Indeed the equality holds because the admissible test functions ψ satisfy∫
Q′

D3ψ(xα, x3) dxα = 0 for L1 a.e. x3.
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Remark 4.3. W(·, ·) is upper semi-continuous on R
2×3 × W 1,2(I; R3) equipped with

its strong topology. Indeed, assume that F j → F and bj → b in W 1,2(I; R3) and consider,
for a fixed η > 0, ϕ, ψ such that

W(F, b) + η ≥
∫

Q

(
W (F + Dpϕ|b + ψ) + |D3b + D3ψ|2

)
dx.

Then ϕ, ψ are admissible test functions in the definition of W(Fj |bj), so that, in view of
the continuous character of W,

lim sup
j→∞

W(Fj |bj) ≤ lim sup
j→∞

∫
Q

(
W (F j + Dpϕ|bj + ψ) + |D3bj + D3ψ|2

)
dx

=
∫

Q

(
W (F + Dpϕ|b + ψ) + |D3b + D3ψ|2

)
dx

≤ W(F, b) + η.

The result is obtained by letting η tend to 0.

Theorem 4.4. Assume that condition (H1)
′ is satisfied. Then for all (u, b) ∈ V2 and

A ∈ A (ω),

H2(u, b; A) =
∫

A

W(Dpu(xα)|b(xα, ·)) dxα, (4.6)

where W is defined in (4.5).

Proof of the lower bound. Step 1: Let {un} ⊂ W 1,q(Ω; R3) and {bn} ⊂ Lq
(
Ω; R3

)
with D3bn ∈ L2

(
Ω; R3

)
be such that un ⇀ u in W 1,q(Ω; R3), bn ⇀ b in Lq(Ω; R3), and

lim
n→∞

∫
A×I

(W (Dpun|bn) + |D3bn|2) dx < ∞. (4.7)

Apply Lemma 2.4 and Theorem 2.5 to obtain subsequences {unk
}, {bnk

}, a sequence
{vk} ⊂ W 1,q(R3; R3) and a sequence mk ↗ ∞ such that {vk} converges to u weakly in
W 1,q(Ω; R3),

|{x ∈ Ω : vk(x) �= unk
(x) or τmk

(bnk
) (x) �= bnk

(x)}| → 0 as k → ∞, (4.8)

and {|Dvk|q} and {|τmk
(bnk

)|q} are equi-integrable. Here

τmk
(z) :=

{
z if |z| ≤ mk,
z
|z|mk if |z| > mk.

Define zk := τmk
(bnk

) and note that∫
A×I

|D3zk|2 dx ≤
∫

A×I

|D3bnk
|2 dx. (4.9)

Indeed, for L3 a.e. x ∈ A × I such that |bnk
(x)| > mk we have

D3zk (x) =
mk

|bnk
(x)|

(
I − bnk

(x)
|bnk

(x)| ⊗
bnk

(x)
|bnk

(x)|

)
D3bnk

(x)

=
mk

|bnk
(x)|

(
D3bnk

(x) −
(

D3bnk
(x) · bnk

(x)
|bnk

(x)|

)
bnk

(x)
|bnk

(x)|

)
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and so

|D3zk (x)|2 ≤ |D3bnk
(x)|2 −

(
D3bnk

(x) · bnk
(x)

|bnk
(x)|

)2

.

Moreover zk ⇀ b in Lq(Ω; R3). To see this let φ ∈ L∞ (Ω; R). Then∣∣∣∣∫
Ω

zkφ dx −
∫

Ω

bnk
φ dx

∣∣∣∣ =
∣∣∣∣∣
∫
{zk �=bnk}

(zk − bnk
)φ dx

∣∣∣∣∣
≤ ‖φ‖∞

∫
{zk �=bnk}

(|zk| + |bnk
|) dx

≤ 2 ‖φ‖∞
∫
{|bnk |>mk}

|bnk
| dx

≤ 2 ‖φ‖∞ L3 ({|bnk
| > mk})

1
q′ ‖bnk

‖Lq

≤ 2 ‖φ‖∞
(

1
mk

) q
q′

‖bnk
‖q

Lq → 0

as k → ∞ because mk → ∞ and {bn} is bounded in Lq
(
Ω; R3

)
with q > 1.

From (4.7) and (4.9),

∞ > lim
n→∞

∫
A×I

(W (Dpun|bn) + |D3bn|2) dx

= lim
k→∞

∫
A×I

(W (Dpunk
|bnk

) + |D3bnk
|2) dx

≥ lim sup
k→∞

(∫
{vk=unk

, zk=bnk
}
W (Dpvk|zk) dx +

∫
A×I

|D3zk|2 dx

)
(4.10)

= lim sup
k→∞

∫
A×I

(
W (Dpvk|zk) + |D3zk|2

)
dy,

where in the last equality we have used (4.8), the growth condition (H1)
′ and the equi-

integrability of {|∇vk|q} and {|zk|q}.
We now invoke the de la Vallé-Poussin criterion to find a (nonnegative) function Φ

such that

lim
t→∞

Φ(t)
t

= ∞ (4.11)

and

{Φ(|Dvk|q + |zk|q)} is bounded in L1.

By (4.7), (4.9), and extracting a subsequence, if necessary, we may assume that

D3zk ⇀ D3b in L2(Ω; R3) (4.12)

and that, since

µk := (W (Dvk|zk) + |D3zk|2)L3�(A × I) ,

λk := Φ(|Dvk|q + |zk|q)L3�(A × I)
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are bounded sequences of nonnegative finite Radon measures, there exist nonnegative
finite Radon measures µ, λ on A× I such that the subsequences of {µk} and {λk} – still
indexed by k with no loss of generality – satisfy

µk
∗
⇀ µ, λk

∗
⇀ λ in M (A × I) .

Denote by µ̂ and λ̂ the finite Radon measures on A defined as

µ̂(B) := µ (B × I) , λ̂(B) := µ (B × I)

for all Borel sets B ⊂ A. We will show below that the Radon-Nikodym derivative of µ̂

with respect to the Lebesgue measure on R
2 satisfies

dµ̂

dL2
(xα) ≥ W(Dpu(xα)|b(xα, ·)) (4.13)

for L2 a.e. every point xα ∈ A.
Note that if (4.13) holds, then from (4.10),

lim
n→∞

∫
A×I

(W (Dpun|bn) + |D3bn|2) dx

≥ lim sup
k→∞

∫
A×I

(
W (Dpvk|zk) + |D3zk|2

)
dy

= lim sup
k→∞

µk (A × I)

≥ µ̂(A) ≥
∫

A

dµ̂

dL2
(xα) dxα ≥

∫
A

W(Dpu(xα)|b(xα, ·)) dxα.

Taking the infimum over all admissible sequences {un} and {bn} we obtain

H2(u, b; A) ≥
∫

A

W(Dpu(xα)|b(xα, ·)) dxα,

which proves the lower bound in (4.6).
Step 2: It can be shown that, up to the extraction of a subsequence,

zk(·, x3) ⇀ b(·, x3) in Lq(A; R3) for all x3 ∈ I

and for any Borel subset B ⊂ A and for all x3 ∈ I,

sup
k

∣∣∣∣∫
B

zk (xα, x3) dxα

∣∣∣∣ < ∞.

The proof is standard and for the convenience of the reader the argument is provided in
Lemma 5.1 in the Appendix.

We now address the proof of (4.13).
Since D3u = 0 L3 a.e. in Ω, identifying u with a function in W 1,q(ω; R3) for L2 a.e.

x0
α∈ A we have

lim
δ→0+

1
δ2+q

∫
Q′(xα,δ)

|u(xα) − u(x0
α) − Dpu(x0

α)(xα − x0
α)|q dxα = 0. (4.14)

Moreover, viewing b as a Bochner integrable function, that is, an element of

Lq
(
A; Lq

(
I; R3

))
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(see [17]), for L2 a.e. x0
α∈ A we have

lim
δ→0+

∫ 1
2

− 1
2

∣∣∣∣∣ 1
δ2

∫
Q′(x0

α,δ)

b(xα, x3) dxα − b(x0
α, x3)

∣∣∣∣∣
q

dx3 = 0. (4.15)

Fix a point x0
α∈ A which satisfies (4.14), (4.15), and such that

b(x0
α, ·) ∈ W 1,2

(
I; R3

)
(4.16)

and

dµ̂

dL2
(x0

α) and
dλ̂

dL2
(x0

α) exist and are finite.

We claim that (4.13) holds at x0
α.

Consider a sequence {δj}, with δj → 0+ such that

µ
(
∂
(
Q′(x0

α, δj)×I
))

= λ
(
∂
(
Q′ (x0

α,δj

)
×I
))

= 0.

From the definition of µ̂ and λ̂ together with that of the Radon-Nikodym derivative (see
e.g. [11], Section 1.6), we obtain

dµ̂

dL2
(x0

α) = lim
j→∞

µ̂(Q′(x0
α, δj))

(δj) 2
= lim

j→∞

µ
(
Q′(x0

α, δj) × I
)

(δj) 2

= lim
j→∞

lim
k→∞

1
(δj) 2

∫
Q′(x0

α,δ)×I

(W (Dpvk (x) |zk (x)) + |D3zk (x) |2) dx

= lim
j→∞

lim
k→∞

∫
Q

(W (Dpvk,j (y) |zk,j (y)) + |D3zk,j (y) |2) dy,

where for y ∈ Q,

vk,j(y) :=
vk(x0

α + δjyα, y3) − u(x0
α)

δj
, zk,j(y) := zk(x0

α + δjyα, y3),

and also, for later use,

u0 (y) := Dpu(x0
α) · yα, b0 (y3) := b(x0

α, y3).

Similarly,

dλ̂

dL2
(x0

α) = lim
j→∞

λ̂(Q′(x0
α, δj))

(δj) 2
= lim

j→∞

λ
(
Q′(x0

α, δj) ×
(
−1

2 , 1
2

))
(δj) 2

= lim
j→∞

lim
k→∞

1
(δj) 2

∫
Q′(x0

α,δ)×I

Φ(|Dvk (x) |q + |zk (x)|q) dx

= lim
j→∞

lim
k→∞

∫
Q

Φ(|Dvk,j |q + |zk,j |q) dy.
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Note that, since vk → u in Lq(Ω; R3) and by (4.14), we have

lim
j→∞

lim
k→∞

∫
Q

|vk,j(y) − u0 (y)|q dy

= lim
j→∞

lim
k→∞

1
(δj)

2+q

∫
Q′(x0

α,δj)×I

|vk(x) − u(x0
α) − Dpu(x0

α) · (xα − x0
α)|q dx

= lim
j→∞

1
(δj)

2+q

∫
Q′(x0

α,δj)

|u(xα) − u(x0
α) − Dpu(x0

α) · (xα − x0
α)|q dxα = 0.

On the other hand, in view of (5.9), for all y3 ∈ I,

lim
k→∞

∫
Q′

zk,j(yα, y3) dyα = lim
k→∞

1
(δj)

2

∫
Q′(x0

α,δj)

zk(xα, y3) dxα

=
1

(δj)
2

∫
Q′(x0

α,δj)

b(xα, y3) dxα,

and so by (5.7) it follows from Lebesgue’s Dominated Convergence Theorem that

lim
k→∞

∫ 1
2

− 1
2

∣∣∣∣∫
Q′

zk,j(yα, y3) dyα − b0(y3)
∣∣∣∣q dy3

=
∫ 1

2

− 1
2

∣∣∣∣∣ 1
(δj)

2

∫
Q′(x0

α,δj)

b(xα, x3) dxα − b(x0
α, x3)

∣∣∣∣∣
q

dx3.

By (4.15) we have

lim
j→∞

lim
k→∞

∫ 1
2

− 1
2

∣∣∣∣∫
Q′

zk,j(yα, y3) dyα − b0(y3)
∣∣∣∣q dy3 = 0.

By a standard diagonalization argument, we may extract subsequences vj := vkj ,j and
zj := zkj ,j such that

∞ >
dµ̂

dL2
(x0

α) = lim
j→∞

∫
Q

(W (Dpvj |zj) + |D3zj |2) dy, (4.17)

lim
j→∞

∫
Q

|vj − u0|q dy = 0, (4.18)

lim
j→∞

∫ 1
2

− 1
2

∣∣∣∣∫
Q′

zj(yα, y3) dyα − b0(y3)
∣∣∣∣q dy3 = 0, (4.19)

and
∞ > sup

j

∫
Q

Φ(|Dvj |q + |zj |q) dy. (4.20)

Note that {|Dvj |q} and {|zj |q} are still equi-integrable in view of (4.11) and (4.20).
Moreover, by applying Theorem 2.5 and reasoning as in (4.10) once more, we can assume,
without loss of generality, that vj = u0 in a neighborhood of ∂Q.

For y ∈ Q,

zj (y) = b0(y3) +
(

zj (y) −
∫

Q′
zj(wα, y3) dwα

)
+
(∫

Q′
zj(wα, y3) dwα − b0(y3)

)
=: b0(y3) + ψj (y) + z̄j (y3) ,
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and note that ∫
Q′

ψj(yα, y3) dyα = 0 for all y3 ∈ I. (4.21)

It follows that∫
Q′

D3ψj(yα, y3) dyα = D3

(∫
Q′

ψj(yα, y3) dyα

)
= 0 for all y3 ∈ I.

In turn∫
Q

|D3zj |2 dy ≥
∫

Q

|D3 (b0 + ψj) |2 dy + 2
∫

Q

D3 (b0 + ψj) · D3z̄j (y3) dy (4.22)

=
∫

Q

|D3 (b0 + ψj) |2 dy + 2
∫

Q

D3b0 · D3z̄j (y3) dy.

We claim that
z̄j ⇀ 0 in W 1,2

(
I; R3

)
. (4.23)

If the claim holds, then letting j → ∞ in the previous inequality yields

lim sup
j→∞

∫
Q

|D3zj |2 dy ≥ lim sup
j→∞

∫
Q

|D3 (b0 + ψj) |2 dy. (4.24)

To prove (4.23) note that, up to a subsequence, from (4.17) and (4.19) we may assume
that z̄j (y3) → 0 for L1 a.e. y3 ∈ I and that

sup
j

∫
Q

|D3zj |2 dy < ∞.

Hence by the Hölder Inequality,∫ 1
2

− 1
2

|D3z̄j (y3) |2 dy3 ≤ 2
∫ 1

2

− 1
2

[∣∣∣∣D3

∫
Q′

zj(wα, y3) dwα

∣∣∣∣2 + |D3b0(y3)|2
]

dy3

= 2
∫ 1

2

− 1
2

[∣∣∣∣∫
Q′

D3zj(wα, y3) dwα

∣∣∣∣2 + |D3b0(y3)|2
]

dy3

≤ 2
∫ 1

2

− 1
2

[∫
Q′

|D3zj(wα, y3)|2 dwα + |D3b0(y3)|2
]

dy3

and so also by (4.16),

sup
j

∫ 1
2

− 1
2

|D3z̄j (y3) |2 dy3 < ∞.

By extracting a further subsequnce, if necessary, we have shown (4.23).
Fix ε > 0. Since {|Dvj |q} and {|ψj |q} are equi-integrable, there exists L > 1 such

that
sup

j

∫
{|Dvj |+|b0+ψj |>L}

W (Dpvj |b0 + ψj) dy ≤ ε, (4.25)

where we have used (H1)
′
. In view of the uniform continuity of W on B3×3 (0, L + 1)

there exists δ = δ (ε) ∈ (0, 1) such that

|W (F ) − W (G)| ≤ ε (4.26)

for all F, G ∈ R
3×3 with |F − G| ≤ δ and |F | , |G| ≤ L + 1.
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By (4.23) and the Ascoli-Arzelá Theorem, z̄j → 0 uniformly. Hence for all j sufficiently
large, ‖z̄j‖L∞ ≤ δ, and so by (4.26) we have∫

Q

W (Dpvj |zj) dy =
∫

Q

W (Dpvj |b0 + ψj + z̄j) dy

≥
∫

Q∩{|Dvj |+|b0+ψj |≤L}
W (Dpvj |b0 + ψj + z̄j) dy

≥
∫

Q∩{|Dvj |+|b0+ψj |≤L}
W (Dpvj |b0 + ψj) dy − ε

≥
∫

Q

W (Dpvj |b0 + ψj) dy − 2ε,

where in the last inequality we have used (4.25).
In turn, using also (4.17), (4.24) we have that

dµ̂

dL2
(x0

α) ≥ lim sup
j→∞

∫
Q

W (Dpvj |b0 + ψj) dy +
∫

Q

|D3 (b0 + ψj) |2 dy − 2ε.

Since by construction ϕj := vj − u0 and ψj are admissible functions in the definition of
W(Dpu(x0

α)|b(x0
α, ·)) (see (4.21)), it follows that

dµ̂

dL2
(x0

α) ≥ W(Dpu(x0
α)|b(x0

α, ·)) − 2ε,

and letting ε → 0+ the proof of (4.13) is complete. �
We now prove the upper bound.
Proof of the upper bound. Fix (u, b) ∈ V2. As usual, we identify u with a function in

W 1,q
(
ω; R3

)
.

Step 1: We first prove the upper bound

H2(u, b; A) ≤
∫

A

W(Dpu(xα)|b(xα, ·)) dxα

when u = Fxα + c for some F ∈ R
3×2, c ∈ R

3, and b ∈ W 1,2
(
I; R3

)
. For η > 0 fixed,

choose ϕ ∈ W 1,q(Q; R3), ψ ∈ Lq(Q; R3), D3ψ ∈ L2(Q; R3), with ϕ(·, x3) Q′-periodic and∫
Q′ ψ(xα, x3) dxα = 0 for all x3, such that∫ 1

2

− 1
2

|D3b(x3)|2 dx3 +
∫

Q

(
W (F + Dpϕ|b + ψ) + |D3ψ|2

)
dx ≤ W(F |b) + η. (4.27)

Extend ϕ(·, x3) and ψ(·, x3) periodically with period Q′, and for x ∈ Ω define

un(xα, x3) := Fxα + c +
1
n

ϕ(nxα, x3), bn(xα, x3) := b(x3) + ψ(nxα, x3).

Then, by Fubini’s Theorem, un ⇀ u in W 1,q(Ω; R3), bn ⇀ b in Lq(Ω; R3). Recalling the
definition of H2(u, b; A), we have

H2(u, b; A) ≤ lim inf
n→∞

∫
A×I

(W (Dpun|bn) + |D3bn|2) dx. (4.28)
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We now estimate the right-hand side of (4.28). Since, for L1 a.e. x3 ∈ I the function(
W (Dpun|bn) + |D3bn|2

)
(·, x3) is Q′-periodic, then it converges weakly in L1(A) to its

mean, that is, to∫
Q′

(
W (F + Dpϕ(xα, x3)|b(x3) + ψ(xα, x3)) + |D3b(x3) + D3ψ(xα, x3)|2

)
dxα.

Lebesgue’s Dominated Convergence Theorem implies that

lim
n→∞

∫
A×I

(W (Dpun|bn) + |D3bn|2) dx

= L2(A)
∫

Q

(
W (F + Dpϕ|b + ψ) + |D3b + D3ψ|2

)
dx,

which, in view of (4.27), (4.28), finally yields

H2(u, b; A) ≤ L2(A)[W(F |b) + η].

Letting η tend to 0, we conclude

H2(u, b; A) ≤ L2(A)W(F |b). (4.29)

Step 2: Assume now that there exists a partition A1, ..., AN of A such that

u(xα) =
N∑

i=1

(
F ixα + ci

)
χAi

(xα) , b(x) =
N∑

i=1

bi(x3)χAi
(xα) , (4.30)

for some N ∈ N, F i ∈ R
3×2, ci ∈ R

3 and bi ∈ W 1,2
(
I; R3

)
, i = 1, ..., N . By (4.29), for

all i = 1, ..., N ,
H2(F ixα + ci, bi; Ai) ≤ L2(Ai)W(F i|bi).

In view of Theorem 4.2, H2(u, b; ·) is a measure; thus

H2(u, b; A) =
N∑

i=1

H2(F ixα + ci, bi; Ai) ≤
N∑

i=1

L2(Ai)W(F i|bi) =
∫

A

W(Dαu|b) dxα.

Step 3: Finally, if (u, b) ∈ V2 is of general form, then we observe that there exists
a sequence {bj} as in (4.30) such that bj → b in Lq(Ω; R3), D3bj →D3b in L2(Ω; R3)
(for the convenience of the reader a detailed proof may be found in Lemma 5.2 in the
Appendix).

By further refining, if necessary, the partition of ω, it is possible to approximate u

strongly in W 1,q(ω; R3) by piecewise affine functions uj so that {(uj , bj)} satisfies (4.30).
But H2(·, ·; A) is lower semi-continuous, so by the previous inequality,

H2(u, b; A) ≤ lim inf
j→∞

H2(uj , bj ; A) ≤ lim inf
j→∞

∫
A

W(Dαuj |bj) dxα.

Since W is upper semi-continuous (see Remark 4.3), by Fatou’s lemma and (H1)
′ we

obtain

H2(u, b; A) ≤
∫

A

W(Dαu|b) dxα.

�
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Remark 4.5. (i) By the very definition of (Q3 × C3) [W ] for any F ∈ R
2×3 and

b ∈ W 1,2(I; R3),

W(F |b) ≥
∫ 1

2

− 1
2

(Q3 × C3) [W ](F |b(x3)) dx3 +
∫ 1

2

− 1
2

|D3b(x3)|2 dx3.

On the other hand, taking ϕ = ψ ≡ 0 in the definition of W(F |b), we get

W(F |b) ≤
∫ 1

2

− 1
2

W (F |b(x3)) dx3 +
∫ 1

2

− 1
2

|D3b(x3)|2 dx3.

It follows that if W is cross quasiconvex-convex, i.e. if W = (Q3 × C3) [W ], then

W(F |b) =
∫ 1

2

− 1
2

W (F |b(x3)) dx3 +
∫ 1

2

− 1
2

|D3b(x3)|2 dx3.

(ii) In view of (i) we conclude that for all (u, b) ∈ V2 and A ∈ A (ω),

H2(u, b; A) ≥
∫

A×I

[
(Q3 × C3) [W ] (Dαu|b) + |D3b|2

]
dx,

with equality if W is cross quasiconvex-convex.
(iii) Note that if we define for F ∈ R

2×3, b ∈ W 1,2(I; R3),

W̃(F |b) := inf
ϕ, ψ

{∫
Q

(
W
(
F + Dαϕ(x)|b(x3) + ψ (x)

)
+ |D3ψ(x)|2

)
dx :

ϕ ∈ W 1,q(Q; R3), ϕ(·, x3) Q′-periodic for L1 a.e. x3,

ψ ∈ Lq(Q; R3), D3ψ ∈ L2(Q; R3),
∫

Q′
ψ(xα, x3) dxα = 0 for L1 a.e. x3

}
,

then from the previous theorem we have

H2(u, b; A) =
∫

A

W̃(Dαu(xα)|b(xα, ·)) dxα +
∫

A×I

|D3b|2 dx,

for all (u, b) ∈ V2 and A ∈ A (ω).
As mentioned in the Introduction, we compare our results with those in [18].
Remark 4.6. Shu’s results extend beyond the identification of the Γ-limit with respect

to the weak convergence in W 1,q
(
Ω; R3

)
of energies of the type

Iε (u) :=
∫

ω×I

[
W

(
Dpu|

1
ε
D3u

)
+kε

(
|D2

pu|2 +
1
ε2

|Dp3u|2 +
1
ε4

|D33u|2
)]

dx,

for different regimes of kε and considering even x-dependent bulk energies W in the
context of homogenization. In particular, he showed that

inf

{
lim inf
n→∞

Iεn
(un) : {un} ⊂ W 1,q(Ω; R3), εn → 0+,

un ⇀ u in W 1,q(Ω; R3)

}
=
∫

ω

Q2W (Dpu (xα)) dxα,
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where for F ∈ R
2×3,

W (F ) := inf
z∈R3

W (F |z),

i.e., W is the membrane energy density obtained in [16].
In the present work, kε := εγ and admissible sequences are additionally constrained,

in that for a fixed Cosserat vector b we impose that

1
εn

D3un ⇀ b in Lq(Ω; R3).

To reconcile Shu’s results with Theorem 3.1, we must prove that

inf
b

Hγ(u, b; ω) =
∫

ω

Q2W (Dpu (xα)) dxα.

This is confirmed in the proposition below.
Define

Bγ :=
{
b ∈ Lq

(
Ω; R3

)
: D3b = 0 L3 a.e. in Ω if γ < 2, D3b ∈ L2

(
Ω; R3

)
if γ = 2

}
.

Proposition 4.7. Assume that condition (H1)
′ is satisfied. Then for every u ∈

W 1,q
(
ω; R3

)
and γ > 0,

inf
b∈Bγ

Hγ(u, b; ω) =
∫

ω

Q2W (Dpu (xα)) dxα.

Proof. By the definition of Hγ and standard lower semi-continuity results,

Hγ (u, b, ω)

≥ inf
{

lim inf
n→∞

∫
Ω

Q3W (Dpun) dx : {un} ⊂ W 1,q(Ω; R3), un ⇀ u in W 1,q(Ω; R3)
}

≥
∫

Ω

Q3W (Dpu (xα)) dx =
∫

ω

Q2W (Dpu (xα)) dxα,

where in the last equality we used formula (3.11) in Remark 3.3.
To prove the converse inequality, and in view of Theorems 3.2 and 4.1, we observe

that

inf
b∈Bγ

Hγ(u, b; ω) ≤ inf {Hγ(u, b; ω) : b ∈Bγ , D3b = 0}

= inf
b∈Lq(ω;R3)

∫
ω

(Q2 × C2) [W ] (Dpu (xα) |b (xα) ) dxα,

and thus it suffices to show that for every ε > 0,∫
ω

Q2W (Dpu (xα)) dxα ≥
∫

ω

(Q2 × C2) [W ] (Dpu (xα) |b (xα) ) dxα − ε (4.31)

for some b ∈ Lq
(
ω; R3

)
.
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Step 1: Assume first that u is affine with Dpu = F ∈ R
2×3, and let ϕ ∈ C∞

c

(
ω; R3

)
be such that

Q2W
(
F
)
≥ 1

L2 (ω)

∫
ω

W
(
F + Dpϕ (xα)

)
dxα − ε

2L2 (ω)

≥ 1
L2 (ω)

∫
ω

W
(
F + Dpϕ (xα) |b (xα)

)
dxα − ε

L2 (ω)

for some b ∈ Lq
(
ω; R3

)
, where in the last inequality we used the definition of W,

Aumann’s Measurable Selection Theorem, and the coercivity condition in (H1)
′.

Writing

b =
1

L2 (ω)

∫
ω

b (yα) dyα +
(

b − 1
L2 (ω)

∫
ω

b (yα) dyα

)
,

it now follows that

Q2W
(
F
)
≥ (Q2 × C2) [W ]

(
F

∣∣∣∣ 1
L2 (ω)

∫
ω

b (yα) dyα

)
− ε

L2 (ω)
,

where we invoke the invariance of domain property for the definition of (Q2 × C2) [W ],
and we prove (4.31) for affine functions u.

Step 2: Suppose now that u is piecewise affine with

Dpu =
k∑

i=1

F iχωi
L2 a.e. in ω,

for some k ∈ N, F i ∈ R
2×3, and some open, mutually disjoint Lipschitz sets ωi, with

i = 1, . . . , k.
By Step 1 find constant vectors bi ∈ R

3 such that

Q2W
(
F i

)
≥ (Q2 × C2) [W ]

(
F i |bi

)
− ε

L2 (ωi)

for all i = 1, . . . , k. Setting

b =
k∑

i=1

biχωi
∈ L∞ (ω; R3

)
,

we deduce (4.31).
Step 3: For a general u ∈ W 1,q

(
ω; R3

)
we consider a sequence {un} of piecewise

affine functions as in Step 2 such that un → u in W 1,q
(
ω; R3

)
. For every n let {bn} ⊂

L∞ (ω; R3
)

satisfy∫
ω

Q2W (Dpun (xα)) dxα ≥
∫

ω

(Q2 × C2) [W ] (Dpun (xα) |bn (xα) ) dxα − ε. (4.32)

Using (H1)
′ it is easy to prove that

1
C

∣∣F ∣∣q − C ≤ Q2W
(
F
)
≤ C

(
1 +
∣∣F ∣∣q)

for all F ∈ R
2×3 and

1
C

(∣∣F ∣∣q + |z|q
)
− C ≤ (Q2 × C2) [W ]

(
F |z

)
≤ C

(
1 +
∣∣F ∣∣q + |z|q

)
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for all F ∈ R
2×3 and z ∈ R

3. Hence by (4.32) the sequence {bn} is bounded in Lq
(
ω; R3

)
and so, up to the extraction of a subsequence, not relabelled, {bn} converges weakly in
Lq
(
ω; R3

)
to some function b. Standard lower semi-continuity results, together with the

continuity of Q2W
(
F
)
, yield (4.31). �

5. Appendix.

Lemma 5.1. Let {zk} ⊂ Lq
(
Ω; R3

)
and {D3zk} ⊂ L2

(
Ω; R3

)
be such that

zk ⇀ b in Lq(Ω; R3), (5.1)

D3zk ⇀ D3b in L2(Ω; R3). (5.2)

Then, up to the possible extraction of a subsequence,

zk(·, x3) ⇀ b(·, x3) in Lq(ω; R3) for all x3 ∈ I,

and for any Borel subset B ⊂ ω and for all x3 ∈ I,

sup
k

∣∣∣∣∫
B

zk (xα, x3) dxα

∣∣∣∣ < ∞.

Proof. Since zk ⇀ b in Lq(Ω; R3), by Fubini’s Theorem and Fatou’s Lemma,

∞ > lim inf
k→∞

∫ 1
2

− 1
2

∫
A

|zk (xα, x3) |q dxαdx3 ≥
∫ 1

2

− 1
2

lim inf
k→∞

∫
A

|zk (xα, x3) |q dxαdx3

and so

lim inf
k→∞

∫
A

|zk (xα, x3) |q dxα < ∞

for L1 a.e. x3 ∈ I. Therefore we may find x3 and a subsequence (not relabelled) such
that

sup
k

∫
A

|zk (xα, x3) |q dxα < ∞,

∫
A

|b (xα, x3) |q dxα < ∞,

where in the latter inequality we used again Fubini’s Theorem, and

zk(·, x3) ⇀ b(·) in Lq(A; R3). (5.3)

Standard slicing arguments, together with the Sobolev Embedding Theorem, yield

zk (xα, ·) , b (xα, ·) ∈ W 1,2
(
I; R3

)
(5.4)

for all k ∈ N and for L2 a.e. xα ∈ A; therefore for all k ∈ N, for L2 a.e. xα ∈ A, and for
all x3 ∈ I, it follows that

zk (xα, x3) = zk (xα, x3) +
∫ x3

x3

D3zk (xα, s) ds, (5.5)

b (xα, x3) = b (xα, x3) +
∫ x3

x3

D3b (xα, s) ds. (5.6)
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By (5.5) and the choice of x3, for any Borel subset B ⊂ A and for all x3 ∈ I we have∣∣∣∣∫
B

zk (xα, x3) dxα

∣∣∣∣ = ∣∣∣∣∫
B

zk (xα, x3) dxα +
∫ x3

x3

∫
B

D3zk (xα, s) dxαds

∣∣∣∣ (5.7)

≤ sup
i

(∫
A

|zi (xα, x3) | dxα +
∫

A×I

|D3zi (x) | dx

)
< ∞.

Next we claim that b(·) = b(·, x3). To see this, we first observe that by (5.5), (5.3),
and (5.2), for every φ ∈ L∞ (A; R) and for all x3 ∈ I,

lim
k→∞

∫
A

zk (xα, x3)φ (xα) dxα (5.8)

= lim
k→∞

[∫
A

zk (xα, x3)φ (xα) dxα +
∫ x3

x3

∫
A

D3zk (xα, s)φ (xα) dxαds

]
=
∫

A

b (xα)φ (xα) dxα +
∫ x3

x3

∫
A

D3b (xα, s)φ (xα) dxαds.

In turn, for φ ∈ L∞ (A; R) and ϕ ∈ L∞ (I; R), (5.8) implies∫ 1
2

− 1
2

∫
A

b (xα, x3) φ (xα) ϕ (x3) dxαdx3

= lim
k→∞

∫ 1
2

− 1
2

∫
A

zk (xα, x3)φ (xα)ϕ (x3) dxαdx3

= lim
k→∞

∫ 1
2

− 1
2

ϕ (x3)
[∫

A

zk (xα, x3)φ (xα) dxα +
∫ x3

x3

∫
A

D3zk (xα, s)φ (xα) dxαds

]
dx3

=
∫ 1

2

− 1
2

ϕ (x3)
[∫

A

b (xα)φ (xα) dxα +
∫ x3

x3

∫
A

D3b (xα, s)φ (xα) dxαds

]
dx3,

where we have used the Lebesgue Dominated Convergence Theorem, which can be applied
since ∣∣∣∣ϕ (x3)

[∫
A

zk (xα, x3) φ (xα) dxα +
∫ x3

x3

∫
A

D3zk (xα, s)φ (xα) dxαds

]∣∣∣∣
≤ C ‖ϕ‖∞ ‖φ‖∞ sup

i

(∫
A

|zi (xα, x3) | dxα +
∫

A×I

|D3zi (x) | dx

)
< ∞

for L1 a.e. x3 ∈ I. By the arbitrariness of φ ∈ L∞ (A; R) we conclude that for L2 a.e.
xα ∈ A,∫ 1

2

− 1
2

b (xα, x3)ϕ (x3) dx3 =
∫ 1

2

− 1
2

ϕ (x3)
[
b (xα) +

∫ x3

x3

D3b (xα, s) ds

]
dx3,

which, using now the arbitrariness of ϕ ∈ L∞ (I; R) and (5.4), yields

b (xα, x3) = b (xα) +
∫ x3

x3

D3b (xα, s) ds

for all x3 ∈ I. It now follows from (5.6) that b(xα) = b(xα, x3) for L2 a.e. xα ∈ A.
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Hence by (5.6) and (5.8),

zk(·, x3) ⇀ b(·, x3) in Lq(A; R3) for all x3 ∈ I. (5.9)

�

Lemma 5.2. If b ∈ Lq
(
Ω; R3

)
and D3b ∈ L2

(
Ω; R3

)
, then there exists a sequence {bj}

of the form

bj(x) =
Nj∑
i=1

b
(j)
i (x3)χA

(j)
i

(xα) , (5.10)

where Nj ∈ N and b
(j)
i ∈ W 1,2

(
I; R3

)
, i = 1, ..., Nj , such that bj → b in Lq

(
Ω; R3

)
and

D3bj → D3b in L2
(
Ω; R3

)
.

Proof. Extend b to R
3 as follows:

b (x) :=

⎧⎪⎪⎨⎪⎪⎩
b (x) if x ∈ Ω,

b
(
xα, 1

2

)
if xα ∈ ω and x3 ≥ 1

2 ,

b
(
xα,−1

2

)
if xα ∈ ω and x3 ≤ −1

2 ,

0 otherwise,

and let ρε be a family of standard mollifiers in R
3. Clearly ρε ∗ b → b in Lq

(
Ω; R3

)
and

D3

(
ρε ∗ b

)
→ D3b in L2

(
Ω; R3

)
, and so it suffices to obtain the desired approximation

result in the case where, in addition, the target b belongs to C∞ (
R

3
)
.

For j ∈ N consider a partition of R
2 into squares

{
Q′

j,n

}
n∈N

of area 1
j2 and define

bj (x) := j2

∫
Q′

j,n

b (yα, x3) dyα for x ∈ Q′
j,n × I.

Obviously bj is of the form (5.10), and using the uniform continuity of b and of D3b

on compact sets of R
3 it is easy to see that bj → b in Lq

(
Ω; R3

)
and D3bj → D3b in

L2
(
Ω; R3

)
. �
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