Thin Film Cracking Modulated by Underlayer Creep
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ABSTRACT—In devices that integrate dissimilar materials in
small dimensions, crack extension in one material often ac-
companies inelastic deformation in another. In this paper we
analyze a channel crack advancing in an elastic film, while an
underlayer creeps. The film is subject to a tensile stress. As
the underlayer creeps, the stress field in the film relaxes in
the crack wake, and intensifies around the crack tip. In a blan-
ket film, the crack can attain a steady velocity, set by two rate
processes: subcritical decohesion at the crack tip, and creep
in the underlayer. In a thin-film microbridge over a viscous
stripe, the crack cannot grow when the bridge is short, and
can grow at a steady velocity when the bridge is long. We use
a two-dimensional shear lag model to approximate the three-
dimensional fracture process, and an extended finite element
method to simulate the moving crack with an invariant, rela-
tively coarse mesh. On the basis of the theoretical findings,
we propose new experiments to measure fracture toughness
and creep laws in small structures. As a byproduct, an an-
alytical formula is found for the growth rate per temperature
cycle of a channel crack in a brittle film, induced by ratcheting
plastic deformation in a metal underlayer.
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Introduction

The film is under a residual tensile stress, which may drive
pre-existing flaws to grow into channel cracks in the film. The
film-on-substrate differs from a free-standing sheet in an ob-
vious way; the substrate constrains the ffiffor both elastic
and plastic substrates, the stress intensity factor at the channel
front depends on the film thickness, rather than the channel
length16719 A critical film thickness exists, below which no
pre-existing flaws can grow into channels, no matter how
large these flaws are.

Brittle films on inelastic substrates are ubiquitous in prac-
tice. For instance, silicon dioxide films on polymer foils serve
as oxygen-barrier packaging materials in the pharmaceuti-
cal and food industrie€? Aluminum oxide scales on alloys
form environmental barriers at elevated temperattif@s.
Silicon nitride films are used as passivation in microelec-
tronic devicesI 2 Semiconductor thin films have been
wafer bonded to viscous substrates to fabricate strain-relaxed,
crack-free island$-?? Because metals, and more recently or-
ganic material$2%are pervasive in electronic and photonic
devices, it is urgent to study time-dependent deformation in
small structures.

Figure lillustrates the structuresto be studied in this paper.
A blanket film, thicknes4, lies on an underlayer, thickness

Fracture in small structures has been studied intenselj?, which in turn lies on a substrate; see Fig. 1(a). The film is

in recent years, motivated by diverse applications such aglastic, the underlayer viscous, and the substrate rigid. They
interconnects in microprocessors, resonant structures iare well bonded. Initially, the film is in a uniform biaxial ten-
microelectromechanical systems (MEMS), thermal barriesSile stress state; the in-plane misfit straiagsWhen the un-
coatings in gas-turbine engines, and multilayers in medicaglerlayer creeps, the stress field in the fiefaxesin the crack
implantsi™9 The applications typically require that materi- Wake, butintensifiesaround the crack tip. We have studied
als with extremely different properties be integrated in smalthe stationary crack previoustj,and we study the moving
dimensions. The structural complexity, as well as the smalfrackinthis paper. Whenthe crack tip moves slowly, the crack
feature sizes, can lead to unusual phenomena. For exampleWgke has a long time to relax, and the stress intensity around
has been discovered that cracks can grow in brittle films unddhe crack tip increases. When the crack tip moves rapidly, the
cyclic temperatures, driven by ratcheting plastic deformatiortrack wake has a short time to relax, and the stress intensity
in a metal underlayert—15 We will revisit this phenomenon  around the crack tip decreases. Consequently, the crack can
towards the end of this paper. attain a steady velocity. Underlayer creep modulates thin-film

In the study of fracture in small dimensions, a proto- cracking.

type structure consists of a thin brittle film on a substrate. \We also consider an elastic microbridge, length @ver a
viscous stripe. Figures 1(b) and 1(c) illustrate two structures

commonly used in interconnects. We assumekhat # and
o . L > H, and the two ends of each bridge are rigidly held by
3 g s & Cruate Sutert and Z: S (oG ieas harard ect) = fhe subsrate. The crack breaks the bridge in the middle, and
Princeton Materials Institute, Princeton, NJ 08544. R. Huang is a Professor!S in the mode | condition. So long as the crack behavior is
and J.H. Prévost is a Professor, Department of Civil and Environmentalconcerned, the two structures in Figs. 1(b) and 1(c) are equiv-
Engﬂine?riAn& Princetgn University, F;rigcet_on, NJ 0&54‘:{ R. Htlljamg i? cur-alent. First, we assume that the crack tip is stationary. After
ren at Aerospace engineerin n ngineerin ni rimen H H HH™"
Univi’ersiw o Tgxas a“?usgrf’ ASS‘;n’TX%?fZ_l%S;C anics Departmentga me time, the bridge reaches the equilibrium state, and the
underlayer carries no stress and stops creeping. In the equilib-
rium state, the stress intensity factor depends on the bridge
length 2, rather than its thickness. For the crack tip to
be stationary, this equilibrium stress intensity factor must be
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Fig. 1—(a) A blanket elastic film lies on a viscous underlayer.
The film is under a biaxial residual stress, motivating a chan-
nel crack to grow in the film. (b), (c) An elastic microbridge is
over a viscous stripe, with the two ends constrained by the
substrate. The length of the bridge is much larger than the
thicknesses of the layers.

below the toughness. Consequently, a critical bridge length
exists, below which the crack tip will never move. Above
thiscritical length, the crack tip will move and attain asteady
velocity.

We show that both the steady crack velocity and the equi-
librium stressintensity factor are robust quantities, which can
be realized under awide range of conditions. On the basis of
these findings, we propose novel methods to measure frac-
ture toughness and creep laws. We also show how to extend
this study for substrate undergoing ratcheting deformation or
nonlinear creep.

The Model
The Two-Dimensional Shear Lag Model

Recently, a one-dimensional shear lag model has been
formulated to study strain relaxation in an elastic island on
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a viscous layer.27-28 The model has been extended to two
dimensions,26-2° and is summarized here. The surface of the
film coincideswith the coordinate plane (x1, x2). Wetakethe
film under the uniform biaxial stress as the reference state,
in which the displacement field vanishes. At time ¢, rela
tive to the reference state, the in-plane displacement field is
ug(x1, x2,t). The Greek subscript takes values 1 and 2. The
in-plane strain field in the film, Eqp (x1, x2, 1), isthe sum of
that due to the misfit strain, and that due to the displacement
gradient, namely

1/9 au
Eap = EOSQB + > <81;—g + ﬁ) ) 1)

where&aﬁ = 1whena =B, and BaB = 0whena # B.

The crack velocity istypically much smaller than the elas-
tic wave speed, so that the inertia effect is negligible. The
membrane stresses o,g act in the film, and the underlayer

exerts shear stresses ty on the bottom face of the film. The
force balance of a differential element of the film requires
that

acaﬁ _ To
8xB T &)

We adopt the convention that a repeated Greek subscript im-
plies summation over 1 and 2. Because the film is thin, the
shear stresses acting on the bottom face of the film are equiv-
alent to body forces, of magnitude —tq /A per unit volume,
distributed throughout the film. In effect, thefilmisin astate
of plane stress subject to the body forces. We can also ob-
tain eq (2) by integrating the three-dimensional force balance
equations through the film thickness, interpreting Ogp 8 the
average stress over the film thickness.

The film is elastic and isotropic. The membrane stresses
relate to the in-plane strains by Hooke's law

E
OOLB = m [(1 — \)) SOLB + \)SYYBOLB] ’ (3)

where E is Young's modulus, and v is Poisson’'sratio.

The underlayer is also thin, so that the shear stresses 1y
are taken to be uniform across the thickness of the under-
layer. For the time being, we assume that the underlayer is
linear viscous, with the viscosity n. The shear strain rates,
(dug/0t)/H, relate to the shear stresses tg, as

1 Bua To

—— = 4
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Equations (1)—(3) define a plane stress problem with body

forces. Equation (4) evolves the body forces. A combination

of egs (1)—(4) gives

dua L Pua L Py
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®)
where
D = hHE/n. (6)
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Equation (5), which evolves the displacement field
ug(x1, x2, 1), is analogous to the diffusion equation, with
D asthe effective diffusivity. As time passes, the relaxation
starts at the crack, and diffusesinto the interior of the film.

Singular Field at the Tip of a Moving Crack

For a stationary crack, the displacement field is bounded
at the crack tip and smooth in time, save for the sudden start
of the relaxation process. Consequently, according to eq (4),
the shear stresses 1, are bounded at the crack tip. When the
crack tip moves, however, the shear stresses tq, are singular
at the crack tip. Following an established method,3%31 we
next show that the singular field at the tip of a moving crack
isstill identical to that of a stationary crack under the plane
stress conditions.

In general, the crack isacurvein the plane (x1, x2). The
coordinates of the crack tip are functions of time, x1 = a1(¢)
and x2 = ax(t). The crack velocity dag/dr can be time-
dependent. Let (x1, x2) be the moving frame whose origin
coincides with the crack tip. A materia particle with coordi-
nates (x1, x2) in the stationary frame has the coordinates

Xa = xq — ag (2) (7)

in the moving frame.
Writing eq (5) in the moving frame for the displacement
field ug (x1, X2, t), we obtain that

ougy daB dug
R
) ®)
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At the crack tip, the stress field is singular in x1 and X2,
but smooth in ¢. The terms dug (X1, X2, 1)/0t are bounded,
but the terms duqy (x1, X2, r)/axB are singular, so that the
shear stresses 1ty are indeed singular. However, the terms
dug (X1, X2, t)/a)zB areoneorder lesssingular than the terms
onright-hand side of eq (8), so that the singular field isdeter-
mined by dropping the left-hand side in eq (8), and setting
the quantity in the bracket to zero. The latter is identical to
the governing equation for the elastic plane stress field with
no body forces. Consequently, the singular crack tip field for
the moving crack isidentical to that for the stationary crack.
Thisconclusion differsfrom that for acrack moving at ahigh
velocity when the inertia effect isimportant. In that case, the
acceleration of material particles(i.e., the second timederiva-
tive of the displacement) enters, and the singular stress field
depends on the crack velocity. 3031

Inthis paper, we study the crack moving along the x1-axis,
under the mode | condition. The stress, a distance x; ahead
of the crack, takes the conventional form

K (1)
V2751
where K isthe stressintensity factor, which dependsontime,
asindicated.

Let K. be the toughness of the film. For the time being,

we neglect subcritical decohesion, and assume that the crack
tip is stationary when K < K., and moveswhen K = K.

(©)

o (x1,1) =
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This crack growth criterion, together with the field equation
(5) and the boundary conditions, sets up a moving boundary-
value problem, which simultaneously evolves the displace-
ment field uq (x1, x2, t) and the crack tip location a (¢).

Force Balance, Equilibrium State, and Steady State

The force balance, eq (2), whichismaintained at all time,
does not guarantee thermodynamic equilibrium. In athermo-
dynamic equilibrium statethe underlayer stops creeping, the
shear stresses tg vanish, and the crack tip stops moving. The
governing equation (5) becomes

2 9%u
2(1+v) BxBGxB 2(1—v) Bxﬁaxo(

In equilibrium, the film is under the plane stress conditions,
with no body forces. For example, consider asquarefilmis-
land, subject to abiaxia stressinitially, and freeto relax from
the edges. When the island reaches the equilibrium state, the
stressin the island vanishes. As a second example, consider
an idland with the edges rigidly held by the substrate. The
island under the initial stress is in an equilibrium state. A
third example concernsthe microbridgein Figs. 1(b) or 1(c).
When the underlayer stops creeping, the bridge is no longer
affected by the underlayer, but is still held at the two ends by
thesubstrate. The plane stressfield in thefilmisnon-uniform,
which will be studied in alater section.

As discussed in the introduction, we also encounter the
steady statein which the crack tip moves at a constant ve-
locity, and the field in the film is time-independent to an
observer moving at the same velocity as the crack tip. In the
steady state, the material particlesin the film still move, and
the shear stressesin the underlayer do not vanish. Consider a
crack moving inthe x1-direction at asteady velocity V. The
moving framerelatestothestationary frameasx; = x1— Vit
and x2 = x2. In the moving frame, the displacement field
istime-independent, uy (x1, x2). The governing equation (5)
becomes

v aua -D 1
Yoxm 2(1+v) 9xgdxp

azua 1 821"[_’)
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(11)

This equation, together with the boundary conditions and the
crack growth criterion K = K., determines the steady-state
displacement field and the steady crack velocity V. In this
paper, we do not use eq (11) to determine the steady state.
Rather, we use a finite element method to evolve the field
from theinitia stateto the steady state.

Scales of Stress, Length and Time

Before creep starts, the film isin a uniform biaxial stress
state. The magnitude of the stressog relatesto themisfit strain
€p asS

E¢o
1—v

og = (12
Thestressog istheload in this problem, and scales the stress
field at al time. In experiments, the residual stress can be
measured by thewafer curvature method, and the misfit strain
by X-ray diffraction.3233

Experimental Mechanics e 271



The thicknesses of the film and the underlayer, » and H,
enter the boundary-value problem through the effective dif-
fusivity D. Consequently, » and H do not set the length scale
of the problem. The problem, however, doeshaveanintrinsic
length:

A = (Kc/00)?. (13)

For amoving crack, the length A scales the zone over which
thestressfield variesrapidly. Far away fromthecrack, thefilm
isinthe state of biaxial stressog. The shear lag model applies
when thetwo thicknesses, # and H, are small comparedto A.
Using the representative values, K. = 1IMPa,/m and o9 =
500 MPa, we obtain theintrinsic length A =4 pm.

The diffusion-like eq (5) also has an intrinsic time

A% Kin
D ofHhE’

o = (14)
Thistime allows events over the length scale A to take place.
The intrinsic time 7 is proportional to n/E, which has the
unit of time, and to the length ratio A2/(Hh). Using the
representative values, A = 4 um, E = 10N m=2, y =
101°%Nm=2, 4 = 0.1 um, and H = 1 pm, we obtain the
intrinsictime sy = 16s.

Notes on Numerical Implementation

The extended finite element method,3*37 developed by
Belytschko and co-workersrecently, isadapted for the present
problem. The method simulates a moving crack with an in-
variant, relatively coarse mesh. We implement the method
within DY NAFLOW, a general purpose finite element pro-
gram developed by Prévost over the last two decades.®® In a
previous paper,2®we have described a procedure to calculate
the time-dependent stress intensity factor and displacement
field. Wenow usethe procedureto movethecrack tip (Fig. 2).
At agiven time, we hold the crack tip location fixed, and cal-
culate K at the crack tip. If K < K., we hold the crack tip
location fixed. If K > K., we instantaneously relocate the
crack tip by a prescribeddistance, 3a. Because the crack tip
now isin an unrelaxed film, K dropsbelow K.. We hold the
crack tip at the new location, evolve the displacement field,
and record thetimeinterval 8¢ for K to climb back to K.. We
repeat the procedure to advance the crack over a long time.
The crack velocity, V, iscalculated from V =~ 3a/d¢.

Inthe simulation, the crack extension da isarbitrarily pre-
scribed, but the time interval 3¢ is computed. In principle,
smaller 3a yields higher accuracy; in practice, however, 8a
has to be at least one element size. For simplicity, we use a
uniform mesh in al calculations. Although the extended fi-
nite element method does not require a fine mesh to resolve
the crack tip singularity, we do need to resolve the field over
the dimension scaled by theintrinsic length A. Thetime step
in updating the di splacement should be small compared to 8z.
After trials, wefind that the element size 0.02A and thetime
step 0.0025¢q are adequate. |n all cal cul ationswe assumethat
Poisson’sratioisv =0.3.

Results
Crack in a Blanket Film

Let S be a representative length of the lateral features,
e.g., the bridge length or the initial crack length. The film
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Fig. 2—Schematic diagram of the numerical procedure to
move the crack tip. (a) The crack extension as a function of
time. (b) The stress intensity factor as a function of time.

may beregarded asinfinite, and the crack semi-infinite, when
S > A andthetimeduration of interest is much shorter than
$2/D. In the simulation, we used a square film island, and
prescribed on the four edges zero normal displacement and
zero shear traction. After trials, we found that the square of
side 10A adequately represented an infinite film for a crack
of initial length 5A to extend about 2A. Figures 3-5 show
the simulation results of this case.

Figure 3 gives the time sequence of the stress intensity
factor K, the crack extension a, and the crack velocity V. We
can partition the time sequence into three periods: station-
ary crack, transient moving crack, and steady moving crack.
We have modeled the underlayer as a viscous material and
neglected elagticity. Before creep begins, the underlayer is
rigid, and the film has the uniform stress og. Consequently,
K = 0atr = 0. After theunderlayer startsto creep, the stress
field in the film relaxes in the crack wake, and K increases
with time. Before K attains K., the crack tip is stationary,
and the length A does not enter the problem. The problem
lacksany fixed length scale, but hasthediffusionlength v/ Dr.
The stress intensifies around the crack tip in a zone on the
scale v/Dt, and is o far away from the crack. Dimensional
considerations dictate that K should take the form

K = koo (D)4, (15)
where k is adimensionless number depending only on Pois-

son’sratio and has been tabulated.?8 We find k = 1.07 when
v = 0.3. The difference in k between the value reported here
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Fig. 3—Numerical results for a square film of side 10A and initial crack length 5A. The normal displacements on all sides are
held fixed. (a) The stress intensity factor as a function of time. (b) The crack extension as a function of time. (c) The crack

velocity as a function of time.

and in Huang et al.% is due to the different normalization
used for K, adifferent definition of D, and afiner mesh and
smaller time step used in the calculations in this paper. The
numerical resultsin Fig. 3(a) reproduce the scaling law (15).

Att = 1o/k* = 0.76310, K = K., and the crack tip starts
to move. The crack velocity increases with time, and attains
a steady value after the tip moves a distance about A. Di-
mensional considerations require that the steady velocity for
acrack in ablanket film, V3°, obey the scaling law

ss 7

A HhEg?
VY =X = kg
fo ‘r]KC

where y is a dimensionless number depending on Poisson’s
ratio. The numerical resultsin Fig. 3(c) give x =0.534forv=
0.3. Using the representative values of A and rg given before,
the steady velocity is of the order of 0.1 um s~1. Indeed, the
crack velocity is much below the elastic wave speed, which
exceeds 1 km s~ for typical materials.

Figure 4 plots contours of the stress field o2, at several
times, giving the stressin units of o, and the coordinates x;
and x2 inunitsof A. Atr = 0.5¢g, the stressfield relaxes in
the crack wake, and intensifies around the crack tip; the crack
tip is stationary. At ¢ = fg, the crack tip moves at a velocity
below the steady value. After r = 21, according to Fig. 3(c),
the crack tip moves at the steady velocity. Figure 4 shows
that, between r = 219 and ¢ = 41, thefield isinvariant only
in asmall zone around the crack tip.

Figure5 plotsthecrack opening displacementus (x1, £0, 1)
at several times. At some distance behind the crack tip, the

: (16)
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crack opening displacement isindependent of the position x1,
andfollowsthe one-dimensional diffusion-likebehavior.?-28
The crack tip is stationary in the beginning, and moves at the
steady velocity after 1 = 2r9. Once again, the steady stateis
local; only the displacement profile in a small zone around
the crack tip isinvariant with time.

The simulation clearly shows that the crack tip attains the
steady velocity long before the entire film attains the steady
field. Thisbehavior originatesfrom the diffusive character of
the problem. For the crack tip to attain the steady velocity,
only the stressfield in azone of size about A needsto evolve
from the initial to the steady state; the time needed scales as
A?/D. For the film to attain the steady field, the stress field
in the entire film must evolve from the initia to the steady
state; the time needed scales as 2/ D. Of course, to maintain
a steady velocity, the relaxation front from boundaries other
than the crack, if present, should befar from the crack tip. For
example, for afilmisland with freeedges, whentherelaxation
front from the edges reachesthe crack tip, the stressintensity
factor drops, and the crack arrestsinside the island.

Now consider acrack of initial length 2ag inablanket film.
It iswell known that, for a free-standing elastic sheet under
stress og remote from the crack, the stress intensity factor
at the crack tip is og./mTag. For a blanket film on a viscous
underlayer, if og/mag < K., as the underlayer creeps, K
at the crack tip builds up from zero to og,/mag, so that the
crack tip never moves.?® If oo, /Tag > K., K a the crack tip
builds up to K. and, soon afterwards, the crack tip moves at
the steady velocity. Consequently, the steady velocity VY is

Experimental Mechanics e 273



| 1
1] 0.2 0.4

0.4 1

Fig. 4—The contours plots of the stress field o2 (x1, x2, t) in the film at several times. The coordinates x; and xo are given in

the units of A, and the stress in the units of og.

arobust quantity, attained by afinite crack in afinite film, so
long as the lateral feature sizes (including the crack length)
are large compared to the intrinsic length A.

Equilibrium Crack in a Microbridge

Thelength of the bridgeintroduces another dimensionless
group, L/ A = L (00/K.)?. Thewidth of the bridge is much
larger than A, and so is the initial crack length. Everything
else being equal, a shorter bridge stores less elastic energy,
so that the crack moves slower. When the crack velocity ap-
proaches zero, the entire bridge approaches equilibrium, and
theviscousstripe stops creeping and carriesno stresses. Inthe
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equilibrium state, the space occupied by the stripe is equiv-
alent to a cavity, and the bridge is in a state of plane stress
with no body forces.

The stress intensity factor in this equilibrium state, Keg,
can be cal culated by an established energy method.3® When a
crack extends by aunit width in the bridge, the elastic energy
inthe sheet reduces by /1 K,/ E.*° This energy reduction can
be calcul ated by another method. Far behind the crack tip, the
bridge is relaxed in the x»-direction, but constrained in the
x1-direction, so that the stress state is uniaxial, 611 = Eeo,
and the elastic energy stored in a unit width of the cracked
bridge is Esth. Far ahead of the crack tip, the bridge is

© 2003 Society for Experimental Mechanics
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Fig. 5—The crack opening profiles at several times

in the biaxial stress state, 011 = o2 = o, and the elas-
tic energy stored in a unit width of the unrelaxed bridge is
2Ee%Lh / (1 —v). The extension of the crack by a unit width
isequivalent to removing aunit width of the unrelaxed bridge
far ahead of the crack tip, and then appending aunit width of
the cracked bridge far behind of the crack tip. Equating the
energy reduction calculated by the two methods, we aobtain
the stress intensity factor at the equilibrium state:

Keq =00 (l - v2) L. a7)

The above argument is rigorous for a semi-infinite crack in
a bridge of infinite width. Our numerical calculations show
that the stressintensity factor iscloseto eq (17) for any crack
longer than about L.

If Keqg < K, the underlayer creep allows the film to ap-
proach equilibrium, and the crack tip will never move. Ev-
erything else being equal, a critical bridge length exists

1 (KN\*> A
= (Be) = 2 18
1—\)2<0'0) 1—v2 (18)

below which the crack will never grow. For Poisson’s ratio
v = 0.3, the critical bridgelengthis L. = 1.1A.

Figure 6 shows the stress intensity factor for a station-
ary crack in the microbridge, K, calculated using the finite
element method. For comparison, the stress intensity factor
for a stationary crack in a blanket film, eq (15), is plotted
as a dashed curve. Dimensional considerations dictate that
K /Keq be afunction of ¢ D/L2. When creep just starts, the
relaxation zone in the crack wake is small compared to the
bridge length 2L, and K (¢) follows the same curve as that
for the blanket film. After sometime (¢t ~ L?/D), the film
approaches the equilibrium state, and K / Keq — 1.

L=

Moving Crack in a Microbridge

Now consider the case Keq > K.. As the underlayer
creeps, K builds up from zero to K. Afterwards, the crack
tip moves, approaching a steady velocity. Figure 7 plots the
contours of the stress o2 at time ¢t = 31 in bridges of sev-
era lengths. In each case, the crack startsat x; = 0, and has
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Fig. 6—The stress intensity factor of a stationary crack in
a microbridge, K, increases with time, and approaches the
equilibrium value. The stress intensity factor of a stationary
crack in a blanket film is also plotted for comparison.
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Fig. 7—The contour plots of the stress field 025 (X1, X2) attime
t = 3tp in microbridges of different lengths. The coordinates
X1 and X are given in the units of A.
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attained its steady velocity by the time ¢ = 3tg. For a short
bridge, the crack wake is relaxed across the bridge at a short
distance behind the crack tip. For a long bridge, the crack
wake is not fully relaxed even very far behind the crack tip.
Dimensiona considerations require that the steady crack
velocity in amicrobridge, Vi, take the functional form:

Vs K
2 = f(—c,\)>. (19)
Vs%o Keq

The steady crack velocity in the blanket film, V37, is given
by eqg (16). The equilibrium stress intensity factor, Keq, is
given by eq (17). Figure 8 shows the steady crack velocity
calculated from thefinite element method. When K./ Keq —
0, the bridge approaches ablanket film. When K. > Keq, the
crack tip will never move.

Experimental Implications

We are unaware of any systematic experimental study
on concomitant thin-film cracking and underlayer creep. On
the basis of the above theoretical findings, we outline ex-
perimental implications of this phenomenon. Mechanical
tests using miniaturized free-standing samples have been
challenging,*-42 and become impossible if the films cannot
be made or handled in the free-standing form. It is urgent to
develop mechanical tests that can be readily implemented in
amicrofabrication setting.*344

Experimental Determination of the Toughness of Brittle
Films

Ma and co-workers, of Intel Corporation, have demon-
strated atechniqueto measurethetoughness of brittlefilms.*
On asilicon substrate, a metal layer was deposited, on top of
which abrittle film was deposited. The structure looked like
that in Fig. 1(a), with the viscous layer replaced by the metal
layer. In the time duration of the experiment, the metal layer
did not creep, but was plastically deformable. The film was
under residual tensile stress. Large crack-like flaws were in-
troduced by scratching the film. The residua stress by itself,
however, was insufficient to drive the scratch flaws to grow
into channel cracks. The whole structure was then subject to
abending moment, until the scratch flaws grew into channel
cracks, running in the direction normal to the bending stress.
The net stress in the film is the sum of the residual stress
and the bending stress. The critical stress was recorded, and
related to the toughness of the film.

This technique uses the established microfabrication pro-
cesses and mechanical testing procedures. It determines the
critical stress accurately by controlling the bending moment
and observing the crack growth in an optical microscope in
situ. The technique exploits a specific result of the thin film
fracture mechanics. After the crack grows a small distance
away from the scratched zone, the stress intensity factor at
the crack tip is independent of the scratch geometry, and is
simply proportional to the net stressin thefilm and the square
root of the film thickness.16~1° Consequently, no particular
careis needed in introducing the flaws.

Two prerequisites limit the applications of thistechnique:
thefilm must be sufficiently stiff and have appreciabletensile
residua stress. For a compliant film on a stiff substrate, the
bending moment generates a smaller stress in the film than
inthe substrate, and may break the substrate. Similarly, if the
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residual stressin the film is small, a large bending moment
is needed, which may also break the substrate.

To avoid these problems, we suggest that amicrobridgeis
used; see Figs. 1(b) or 1(c). Under the bridge lies a viscous
stripe, or just a cavity if the stripe is removed in fabrication.
We can view the bridge as a tensile specimen, with the gage
length 2L and the two ends gripped by the substrate. Follow-
ingMaet al.,*> we canintroduce flaws by scratching thefilm.
We then determinesthe critical stressthat drivesthe flawsto
grow into channel cracks by controlling the bending moment
and observing the crack growth inamicroscope. The equilib-
rium stressintensity factor is given by eq (17), which is now
proportional to the square root of the bridge length, rather
than its thickness. Even a small stress will drive a channel
crackinalongbridge. If aviscousstripeliesunder the bridge,
we should control the bending moment to drive the crack at
asufficiently low velocity; the time needed for the bridge to
attain the equilibrium state scales as L2/ D.2~2° This time
requirement is removed if the bridge is over a cavity.

Experimental Determination of Creep Laws

If thepropertiesof theel astic film areknown, themeasured
crack vel ocity can beused to determinethe creep propertiesof
the underlayer. For example, when theunderlayer in Fig. 1(a)
is linear viscous, once the velocity for a crack channeling
in a blanket film is measured experimentally, the viscosity
1 is determined by eq (16). The total distance traversed by
the crack is the sample size, and can be readily observed
in a microscope. By contrast, the total displacement scales
with the sample size times the average strain, and is small
for asmall specimen. In principle, the proposed method can
measure viscosity of arbitrarily thin layers.

If the underlayer has a more complex creep behavior, ad-
ditional calculations are needed to interpret the experiment.
We will pursue this matter in detail in a separate study. Here
we give the scaling law of the channel crack velocity, assum-
ing that the underlayer creeps according to the power law.
That is, the shear strain-rate y relates to the shear stress t
according to

V= Bt", (20)

where B and n are parameters to fit experimental data. This
creep law now replacesthe linear viscous law (4). Following
the same line of reasoning that leadsto eq (16), we obtain the
scaling law for the crack velocity channeling in the elastic
film:

VE = xEBHol 1h" (00/Ko)?" . (21)

The dimensionless factor x now is a function of Poisson’s
ratio and creep exponent, ¥ (v, n), to be calculated by using
the finite element method in the subsequent work. We can
vary the stressin the elastic film by the bending moment, and
measure the crack velocity as a function of the stress. Such
experimental datawould be sufficient to determine the creep
properties B and n.

Subcritical Decohesion

In the above discussion, we have assumed that the crack
grows when the stress intensity factor at the crack tip equals
the toughness, K = K. In redlity, many brittle materials
suffer subcritical decohesion, in which the crack tip moves
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at asmall velocity evenwhen K < K..*® Molecules, such as
H>0, in the environment diffuse to the crack tip and assist in
breaking the atomic bonds. Figure 9 sketches the trend of the
representative experimental data. The crack tip is stationary
when K is below a threshold value, K;;,, and moves when
K > K. The crack velocity V increases with the stress
intensity factor K. When the crack tip moves so fast that the
environmental molecules cannot assist in breaking atomic
bonds at the crack tip, K = K.

Now consider a crack in a film of such a material on a
creeping underlayer. Before creep starts, the stressin thefilm
is uniform, so that K = 0. When the underlayer creeps, K
increaseswith time, and the crack tip remains stationary until
K = K;;,. When the crack tip starts to move, the stress in-
tensity factor at the crack tip, aswell asthe crack velocity, is
determined by the two rate processes. the subcritical decohe-
sion in the film, and the creep in the underlayer. After some
transient motion, the crack tip may attain a steady velocity
Vs and a steady stressintensity factor K. All previous re-
sultson the steady crack velocity are applicable, provided K.
isreplaced by K. For example, we can rewrite eq (19) as

HhEo3
kg

KSS
oo (1 — \)2) L

Vis = X ) (22

Herewe have used eq (16) for V3, and eq (17) for Keq. Also
sketchedin Fig. 9isthe Vi, — K relation (22), which can be
varied by varying the stress o in the film and the length 2L
of the microbridge, among other quantities. The intersection
of thetwo curves selects both the steady state stressintensity
factor K, and the crack velocity V.

Thechannel crack cannot grow inthebridgeif Keq < K.
That is, the crack can equilibrateif the bridge length is below
athreshold, given by
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Fig. 9—The crack velocity as a function of the stress intensity
factor. One curve is the V — —K relation determined by
underlayer creep, and the other is the V — —K relation
determined by subcritical decohesion. The intersection of the
two curves selects the steady-state crack velocity and stress
intensity factor.

(23)

Thisthreshold replaces eq (18). We can fabricate an array of
microbridges of different lengths on the same wafer, scratch
them all, and bend the wafer with a constant moment. After
some time, channel cracks form in long bridges, but not in
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short ones. Experimentsof thiskind may be used to determine
K5, or even the entire subcritical decohesion K — V curve.

Ratcheting-induced Crack Growth

As mentioned in the introduction, an unexpected finding
made recently in thin-film mechanicsisthat cracks can grow
in brittle films under cyclic temperatures, driven by ratch-
eting plastic deformation in a metal underlayer.'¥~1> This
phenomenon may be contrasted with fatigue cracks com-
monly observed in ductile material s subject to cyclic loads.*’
A previousstudy cal culated theratcheting displacementinthe
crack wake, but did not obtain the growth rate of the crack.13
We now derive a scaling law for the crack growth per tem-
perature cycle.

We replace the viscous layer in Fig. 1(a) by ametal layer,
and cycle the structure between temperatures 7;, and Ty .
Within the temperature and time of the experiment, the metal
does not creep, but can have time-independent plastic defor-
mation. For simplicity, we assume that the tensile stress in
the uncracked blanket film, op, is constant as the temperature
changes. Thisoccursin practice when the elastic film and the
substrate have asimilar coefficient of thermal expansion, and
oo isdue to the deposition process or the bending moment.

First, we consider ablanket metal film on asubstrate, sub-
ject to a constant shear stress t on the film surface and the
cyclic temperatures. Thetemperaturerange Ty — Ty, islarge
enough so that the difference in the thermal expansion coef-
ficients between the metal and the substrate causes the metal
toyield. Each cycle, the metal film deforms plastically in the
direction of the shear stress t. When the temperature range
is large and the shear stressis small, the plastic shear strain
per cycle, dy? /dN, islinear in the shear stress, namely!?

dy? T
- 24
== (2
where
E, Ep(oy —og)(Tyg —T1) -1
MR = -2 .
12(1 — vy) 1—-vn)Y

(25)

Here E,, is Young's modulus, v,, is Poisson’s ratio, and Y
isthe uniaxial yield strength of the metal. o, and o, are the
coefficients of thermal expansion of the metal and substrate.
Equation (24) is analogous to the linear viscous law (4) in
that the number of cycles N is analogous to the time ¢, and
the parameter n » is analogous to the viscosity .

Now we put an elastic film on top of the metal layer. As
temperaturecycles, themetal layer undergoesratcheting plas-
tic deformation. The stress field in the film relaxes in the
crack wake, and intensifies around the crack tip. The behav-
ior should bethesameasshowninFigs. 3-5, if wereplacethe
time by the number of cycles. By the ratcheting-creep anal-
ogy, we rewrite the scaling law for the crack velocity (16) as
the scaling law for crack growth per cycle:

da HhEoS
R . 26
av = X k2 (26)

Thepre-factor y takesthe samevaue asbefore; for example,
x = 0.534 when Poisson’s ratio is 0.3 for the film. We can
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similarly obtainthegrowth ratefor acrack inan elastic bridge
over ametal stripe. Experimental observations of ratcheting-
induced crack growth have been reported for interconnect
structures, 112 and for oxide scales on alloys.%19 Quantita-
tive measurement of the crack growth rate is unavailable.

Concluding Remarks

In this paper we study crack extension in a brittle film
concomitant with creep in an underlayer. We use a two-
dimensional shear lag model to approximate the three-
dimensional fracture process, and the extended finite el ement
method to simulate the moving crack with an invariant, rel-
atively coarse mesh. The crack tip may remain stationary,
and the film approaches an equilibrium state. Alternatively,
the crack tip may move and quickly approaches a steady ve-
locity. Both the equilibrium state and the steady motion can
be redlized under a wide range of conditions. We suggest
novel methods to measure toughness and inelastic proper-
ties in thin-film structures. Using the ratcheting-creep anal-
ogy, we obtain the growth per temperature cycle of achannel
crack in an elastic film over ametallic layer. It is hoped that
experiments will soon succeed in exploiting these ideas.

After reading the preprint of this paper, Professor James
R. Rice, of Harvard University, kindly told us the history of
the shear lag model in geophysics, where the lithosphere was
model ed asan el asticlayer, and theasthenosphereasaviscous
underlayer. In particular, his group studied the steady crack
growth under ashear stressinan elasticlayer onaviscoel astic
underlayer.*®
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