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ABSTRACT—In devices that integrate dissimilar materials in
small dimensions, crack extension in one material often ac-
companies inelastic deformation in another. In this paper we
analyze a channel crack advancing in an elastic film, while an
underlayer creeps. The film is subject to a tensile stress. As
the underlayer creeps, the stress field in the film relaxes in
the crack wake, and intensifies around the crack tip. In a blan-
ket film, the crack can attain a steady velocity, set by two rate
processes: subcritical decohesion at the crack tip, and creep
in the underlayer. In a thin-film microbridge over a viscous
stripe, the crack cannot grow when the bridge is short, and
can grow at a steady velocity when the bridge is long. We use
a two-dimensional shear lag model to approximate the three-
dimensional fracture process, and an extended finite element
method to simulate the moving crack with an invariant, rela-
tively coarse mesh. On the basis of the theoretical findings,
we propose new experiments to measure fracture toughness
and creep laws in small structures. As a byproduct, an an-
alytical formula is found for the growth rate per temperature
cycle of a channel crack in a brittle film, induced by ratcheting
plastic deformation in a metal underlayer.
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Introduction

Fracture in small structures has been studied intensely
in recent years, motivated by diverse applications such as
interconnects in microprocessors, resonant structures in
microelectromechanical systems (MEMS), thermal barrier
coatings in gas-turbine engines, and multilayers in medical
implants.1–10 The applications typically require that materi-
als with extremely different properties be integrated in small
dimensions. The structural complexity, as well as the small
feature sizes, can lead to unusual phenomena. For example, it
has been discovered that cracks can grow in brittle films under
cyclic temperatures, driven by ratcheting plastic deformation
in a metal underlayer.11–15 We will revisit this phenomenon
towards the end of this paper.

In the study of fracture in small dimensions, a proto-
type structure consists of a thin brittle film on a substrate.
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The film is under a residual tensile stress, which may drive
pre-existing flaws to grow into channel cracks in the film. The
film-on-substrate differs from a free-standing sheet in an ob-
vious way; the substrate constrains the film.4 For both elastic
and plastic substrates, the stress intensity factor at the channel
front depends on the film thickness, rather than the channel
length.16–19 A critical film thickness exists, below which no
pre-existing flaws can grow into channels, no matter how
large these flaws are.

Brittle films on inelastic substrates are ubiquitous in prac-
tice. For instance, silicon dioxide films on polymer foils serve
as oxygen-barrier packaging materials in the pharmaceuti-
cal and food industries.20 Aluminum oxide scales on alloys
form environmental barriers at elevated temperatures.9,10

Silicon nitride films are used as passivation in microelec-
tronic devices.11–13 Semiconductor thin films have been
wafer bonded to viscous substrates to fabricate strain-relaxed,
crack-free islands.21,22Because metals, and more recently or-
ganic materials,23–25are pervasive in electronic and photonic
devices, it is urgent to study time-dependent deformation in
small structures.

Figure 1 illustrates the structures to be studied in this paper.
A blanket film, thicknessh, lies on an underlayer, thickness
H , which in turn lies on a substrate; see Fig. 1(a). The film is
elastic, the underlayer viscous, and the substrate rigid. They
are well bonded. Initially, the film is in a uniform biaxial ten-
sile stress state; the in-plane misfit strain isε0. When the un-
derlayer creeps, the stress field in the filmrelaxesin the crack
wake, butintensifiesaround the crack tip. We have studied
the stationary crack previously,26 and we study the moving
crack in this paper. When the crack tip moves slowly, the crack
wake has a long time to relax, and the stress intensity around
the crack tip increases. When the crack tip moves rapidly, the
crack wake has a short time to relax, and the stress intensity
around the crack tip decreases. Consequently, the crack can
attain a steady velocity. Underlayer creep modulates thin-film
cracking.

We also consider an elastic microbridge, length 2L, over a
viscous stripe. Figures 1(b) and 1(c) illustrate two structures
commonly used in interconnects. We assume thatL� h and
L � H , and the two ends of each bridge are rigidly held by
the substrate. The crack breaks the bridge in the middle, and
is in the mode I condition. So long as the crack behavior is
concerned, the two structures in Figs. 1(b) and 1(c) are equiv-
alent. First, we assume that the crack tip is stationary. After
some time, the bridge reaches the equilibrium state, and the
underlayer carries no stress and stops creeping. In the equilib-
rium state, the stress intensity factor depends on the bridge
length 2L, rather than its thicknessh. For the crack tip to
be stationary, this equilibrium stress intensity factor must be
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Fig. 1—(a) A blanket elastic film lies on a viscous underlayer.
The film is under a biaxial residual stress, motivating a chan-
nel crack to grow in the film. (b), (c) An elastic microbridge is
over a viscous stripe, with the two ends constrained by the
substrate. The length of the bridge is much larger than the
thicknesses of the layers.

below the toughness. Consequently, a critical bridge length
exists, below which the crack tip will never move. Above
this critical length, the crack tip will move and attain a steady
velocity.

We show that both the steady crack velocity and the equi-
librium stress intensity factor are robust quantities, which can
be realized under a wide range of conditions. On the basis of
these findings, we propose novel methods to measure frac-
ture toughness and creep laws. We also show how to extend
this study for substrate undergoing ratcheting deformation or
nonlinear creep.

The Model

The Two-Dimensional Shear Lag Model

Recently, a one-dimensional shear lag model has been
formulated to study strain relaxation in an elastic island on

a viscous layer.27,28 The model has been extended to two
dimensions,26,29 and is summarized here. The surface of the
film coincides with the coordinate plane (x1, x2). We take the
film under the uniform biaxial stress as the reference state,
in which the displacement field vanishes. At time t , rela-
tive to the reference state, the in-plane displacement field is
uα(x1, x2, t). The Greek subscript takes values 1 and 2. The
in-plane strain field in the film, εαβ (x1, x2, t), is the sum of
that due to the misfit strain, and that due to the displacement
gradient, namely

εαβ = ε0δαβ + 1

2

(
∂uα

∂xβ
+ ∂uβ

∂xα

)
, (1)

where δαβ = 1 when α = β, and δαβ = 0 when α �= β.
The crack velocity is typically much smaller than the elas-

tic wave speed, so that the inertia effect is negligible. The
membrane stresses σαβ act in the film, and the underlayer
exerts shear stresses τα on the bottom face of the film. The
force balance of a differential element of the film requires
that

∂σαβ

∂xβ
= τα

h
. (2)

We adopt the convention that a repeated Greek subscript im-
plies summation over 1 and 2. Because the film is thin, the
shear stresses acting on the bottom face of the film are equiv-
alent to body forces, of magnitude −τα/h per unit volume,
distributed throughout the film. In effect, the film is in a state
of plane stress subject to the body forces. We can also ob-
tain eq (2) by integrating the three-dimensional force balance
equations through the film thickness, interpreting σαβ as the
average stress over the film thickness.

The film is elastic and isotropic. The membrane stresses
relate to the in-plane strains by Hooke’s law

σαβ = E

1 − ν2

[
(1 − ν) εαβ + νεγγδαβ

]
, (3)

where E is Young’s modulus, and ν is Poisson’s ratio.
The underlayer is also thin, so that the shear stresses τα

are taken to be uniform across the thickness of the under-
layer. For the time being, we assume that the underlayer is
linear viscous, with the viscosity η. The shear strain rates,
(∂uα/∂t)/H , relate to the shear stresses τα as

1

H

∂uα

∂t
= τα

η
. (4)

Equations (1)–(3) define a plane stress problem with body
forces. Equation (4) evolves the body forces. A combination
of eqs (1)–(4) gives

∂uα

∂t
= D

[
1

2 (1 + ν)

∂2uα

∂xβ∂xβ
+ 1

2 (1 − ν)

∂2uβ

∂xβ∂xα

]
,

(5)

where

D = hHE/η. (6)
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Equation (5), which evolves the displacement field
uα(x1, x2, t), is analogous to the diffusion equation, with
D as the effective diffusivity. As time passes, the relaxation
starts at the crack, and diffuses into the interior of the film.

Singular Field at the Tip of a Moving Crack

For a stationary crack, the displacement field is bounded
at the crack tip and smooth in time, save for the sudden start
of the relaxation process. Consequently, according to eq (4),
the shear stresses τα are bounded at the crack tip. When the
crack tip moves, however, the shear stresses τα are singular
at the crack tip. Following an established method,30,31 we
next show that the singular field at the tip of a moving crack
is still identical to that of a stationary crack under the plane
stress conditions.

In general, the crack is a curve in the plane (x1, x2). The
coordinates of the crack tip are functions of time, x1 = a1(t)
and x2 = a2(t). The crack velocity daα/dt can be time-
dependent. Let (x̄1, x̄2) be the moving frame whose origin
coincides with the crack tip. A material particle with coordi-
nates (x1, x2) in the stationary frame has the coordinates

x̄α = xα − aα (t) (7)

in the moving frame.
Writing eq (5) in the moving frame for the displacement

field uα(x̄1, x̄2, t), we obtain that

− ∂uα

∂x̄β

daβ

dt
+ ∂uα

∂t

= D
[

1

2 (1 + ν)

∂2uα

∂x̄β∂x̄β
+ 1

2 (1 − ν)

∂2uβ

∂x̄β∂x̄α

]
.

(8)

At the crack tip, the stress field is singular in x̄1 and x̄2,
but smooth in t . The terms ∂uα(x̄1, x̄2, t)/∂t are bounded,
but the terms ∂uα(x̄1, x̄2, t)/∂x̄β are singular, so that the
shear stresses τα are indeed singular. However, the terms
∂uα(x̄1, x̄2, t)/∂x̄β are one order less singular than the terms
on right-hand side of eq (8), so that the singular field is deter-
mined by dropping the left-hand side in eq (8), and setting
the quantity in the bracket to zero. The latter is identical to
the governing equation for the elastic plane stress field with
no body forces. Consequently, the singular crack tip field for
the moving crack is identical to that for the stationary crack.
This conclusion differs from that for a crack moving at a high
velocity when the inertia effect is important. In that case, the
acceleration of material particles (i.e., the second time deriva-
tive of the displacement) enters, and the singular stress field
depends on the crack velocity.30,31

In this paper, we study the crack moving along the x1-axis,
under the mode I condition. The stress, a distance x̄1 ahead
of the crack, takes the conventional form

σ22 (x1, t) = K (t)√
2πx̄1

, (9)

whereK is the stress intensity factor, which depends on time,
as indicated.

Let Kc be the toughness of the film. For the time being,
we neglect subcritical decohesion, and assume that the crack
tip is stationary when K < Kc, and moves when K = Kc.

This crack growth criterion, together with the field equation
(5) and the boundary conditions, sets up a moving boundary-
value problem, which simultaneously evolves the displace-
ment field uα (x1, x2, t) and the crack tip location a1(t).

Force Balance, Equilibrium State, and Steady State

The force balance, eq (2), which is maintained at all time,
does not guarantee thermodynamic equilibrium. In a thermo-
dynamic equilibrium state, the underlayer stops creeping, the
shear stresses τα vanish, and the crack tip stops moving. The
governing equation (5) becomes

1

2 (1 + ν)

∂2uα

∂xβ∂xβ
+ 1

2 (1 − ν)

∂2uβ

∂xβ∂xα
= 0. (10)

In equilibrium, the film is under the plane stress conditions,
with no body forces. For example, consider a square film is-
land, subject to a biaxial stress initially, and free to relax from
the edges. When the island reaches the equilibrium state, the
stress in the island vanishes. As a second example, consider
an island with the edges rigidly held by the substrate. The
island under the initial stress is in an equilibrium state. A
third example concerns the microbridge in Figs. 1(b) or 1(c).
When the underlayer stops creeping, the bridge is no longer
affected by the underlayer, but is still held at the two ends by
the substrate. The plane stress field in the film is non-uniform,
which will be studied in a later section.

As discussed in the introduction, we also encounter the
steady state, in which the crack tip moves at a constant ve-
locity, and the field in the film is time-independent to an
observer moving at the same velocity as the crack tip. In the
steady state, the material particles in the film still move, and
the shear stresses in the underlayer do not vanish. Consider a
crack moving in the x1-direction at a steady velocity Vss . The
moving frame relates to the stationary frame as x̄1 = x1−Vsst
and x̄2 = x2. In the moving frame, the displacement field
is time-independent, uα(x̄1, x̄2). The governing equation (5)
becomes

−Vss ∂uα
∂x̄1

= D
[

1

2 (1 + ν)

∂2uα

∂x̄β∂x̄β
+ 1

2 (1 − ν)

∂2uβ

∂x̄β∂x̄α

]
.

(11)

This equation, together with the boundary conditions and the
crack growth criterion K = Kc, determines the steady-state
displacement field and the steady crack velocity Vss . In this
paper, we do not use eq (11) to determine the steady state.
Rather, we use a finite element method to evolve the field
from the initial state to the steady state.

Scales of Stress, Length and Time

Before creep starts, the film is in a uniform biaxial stress
state. The magnitude of the stress σ0 relates to the misfit strain
ε0 as

σ0 = Eε0

1 − v . (12)

The stress σ0 is the load in this problem, and scales the stress
field at all time. In experiments, the residual stress can be
measured by the wafer curvature method, and the misfit strain
by X-ray diffraction.32,33
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The thicknesses of the film and the underlayer, h and H ,
enter the boundary-value problem through the effective dif-
fusivityD. Consequently, h andH do not set the length scale
of the problem. The problem, however, does have an intrinsic
length:

Λ = (Kc/σ0)
2 . (13)

For a moving crack, the length Λ scales the zone over which
the stress field varies rapidly. Far away from the crack, the film
is in the state of biaxial stress σ0. The shear lag model applies
when the two thicknesses, h andH , are small compared to Λ.
Using the representative values, Kc = 1MPa

√
m and σ0 =

500 MPa, we obtain the intrinsic length Λ = 4 µm.
The diffusion-like eq (5) also has an intrinsic time

t0 = Λ2

D
= K4

c η

σ4
0HhE

. (14)

This time allows events over the length scale Λ to take place.
The intrinsic time t0 is proportional to η/E, which has the
unit of time, and to the length ratio Λ2/(Hh). Using the
representative values, Λ = 4 µm, E = 1011N m−2, η =
1010sN m−2, h = 0.1 µm, and H = 1 µm, we obtain the
intrinsic time t0 = 16 s.

Notes on Numerical Implementation

The extended finite element method,34–37 developed by
Belytschko and co-workers recently, is adapted for the present
problem. The method simulates a moving crack with an in-
variant, relatively coarse mesh. We implement the method
within DYNAFLOW, a general purpose finite element pro-
gram developed by Prévost over the last two decades.38 In a
previous paper,26we have described a procedure to calculate
the time-dependent stress intensity factor and displacement
field. We now use the procedure to move the crack tip (Fig. 2).
At a given time, we hold the crack tip location fixed, and cal-
culate K at the crack tip. If K < Kc, we hold the crack tip
location fixed. If K ≥ Kc, we instantaneously relocate the
crack tip by a prescribeddistance, δa. Because the crack tip
now is in an unrelaxed film, K drops below Kc. We hold the
crack tip at the new location, evolve the displacement field,
and record the time interval δt forK to climb back toKc. We
repeat the procedure to advance the crack over a long time.
The crack velocity, V , is calculated from V ≈ δa/δt .

In the simulation, the crack extension δa is arbitrarily pre-
scribed, but the time interval δt is computed. In principle,
smaller δa yields higher accuracy; in practice, however, δa
has to be at least one element size. For simplicity, we use a
uniform mesh in all calculations. Although the extended fi-
nite element method does not require a fine mesh to resolve
the crack tip singularity, we do need to resolve the field over
the dimension scaled by the intrinsic length Λ. The time step
in updating the displacement should be small compared to δt .
After trials, we find that the element size 0.02Λ and the time
step 0.0025t0 are adequate. In all calculations we assume that
Poisson’s ratio is ν = 0.3.

Results

Crack in a Blanket Film

Let S be a representative length of the lateral features,
e.g., the bridge length or the initial crack length. The film

Time
   

   
   

 S
tr

es
s 

in
te

ns
it

y 
fa

ct
or

Time

   
   

   
 C

ra
ck

 e
xt

en
si

on

δa

δt

Kc

Fig. 2—Schematic diagram of the numerical procedure to
move the crack tip. (a) The crack extension as a function of
time. (b) The stress intensity factor as a function of time.

may be regarded as infinite, and the crack semi-infinite, when
S � Λ and the time duration of interest is much shorter than
S2/D. In the simulation, we used a square film island, and
prescribed on the four edges zero normal displacement and
zero shear traction. After trials, we found that the square of
side 10Λ adequately represented an infinite film for a crack
of initial length 5Λ to extend about 2Λ. Figures 3–5 show
the simulation results of this case.

Figure 3 gives the time sequence of the stress intensity
factorK , the crack extension a, and the crack velocity V . We
can partition the time sequence into three periods: station-
ary crack, transient moving crack, and steady moving crack.
We have modeled the underlayer as a viscous material and
neglected elasticity. Before creep begins, the underlayer is
rigid, and the film has the uniform stress σ0. Consequently,
K = 0 at t = 0. After the underlayer starts to creep, the stress
field in the film relaxes in the crack wake, and K increases
with time. Before K attains Kc, the crack tip is stationary,
and the length Λ does not enter the problem. The problem
lacks any fixed length scale, but has the diffusion length

√
Dt .

The stress intensifies around the crack tip in a zone on the
scale

√
Dt , and is σ0 far away from the crack. Dimensional

considerations dictate that K should take the form

K = κσ0 (Dt)
1/4 , (15)

where κ is a dimensionless number depending only on Pois-
son’s ratio and has been tabulated.26 We find κ = 1.07 when
ν = 0.3. The difference in κ between the value reported here
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Fig. 3—Numerical results for a square film of side 10Λ and initial crack length 5Λ. The normal displacements on all sides are
held fixed. (a) The stress intensity factor as a function of time. (b) The crack extension as a function of time. (c) The crack
velocity as a function of time.

and in Huang et al.26 is due to the different normalization
used for K , a different definition of D, and a finer mesh and
smaller time step used in the calculations in this paper. The
numerical results in Fig. 3(a) reproduce the scaling law (15).

At t = t0/κ
4 = 0.763t0, K = Kc, and the crack tip starts

to move. The crack velocity increases with time, and attains
a steady value after the tip moves a distance about Λ. Di-
mensional considerations require that the steady velocity for
a crack in a blanket film, V∞

ss , obey the scaling law

V∞
ss = χ

Λ

t0
= χ

HhEσ2
0

ηK2
c

, (16)

where χ is a dimensionless number depending on Poisson’s
ratio. The numerical results in Fig. 3(c) give χ = 0.534 for ν =
0.3. Using the representative values of Λ and t0 given before,
the steady velocity is of the order of 0.1 µm s−1. Indeed, the
crack velocity is much below the elastic wave speed, which
exceeds 1 km s−1 for typical materials.

Figure 4 plots contours of the stress field σ22 at several
times, giving the stress in units of σ0, and the coordinates x1
and x2 in units of Λ. At t = 0.5t0, the stress field relaxes in
the crack wake, and intensifies around the crack tip; the crack
tip is stationary. At t = t0, the crack tip moves at a velocity
below the steady value. After t = 2t0, according to Fig. 3(c),
the crack tip moves at the steady velocity. Figure 4 shows
that, between t = 2t0 and t = 4t0, the field is invariant only
in a small zone around the crack tip.

Figure 5 plots the crack opening displacementu2 (x1,±0, t)
at several times. At some distance behind the crack tip, the

crack opening displacement is independent of the position x1,
and follows the one-dimensional diffusion-like behavior.27,28

The crack tip is stationary in the beginning, and moves at the
steady velocity after t = 2t0. Once again, the steady state is
local; only the displacement profile in a small zone around
the crack tip is invariant with time.

The simulation clearly shows that the crack tip attains the
steady velocity long before the entire film attains the steady
field. This behavior originates from the diffusive character of
the problem. For the crack tip to attain the steady velocity,
only the stress field in a zone of size about Λ needs to evolve
from the initial to the steady state; the time needed scales as
Λ2/D. For the film to attain the steady field, the stress field
in the entire film must evolve from the initial to the steady
state; the time needed scales as S2/D. Of course, to maintain
a steady velocity, the relaxation front from boundaries other
than the crack, if present, should be far from the crack tip. For
example, for a film island with free edges, when the relaxation
front from the edges reaches the crack tip, the stress intensity
factor drops, and the crack arrests inside the island.

Now consider a crack of initial length 2a0 in a blanket film.
It is well known that, for a free-standing elastic sheet under
stress σ0 remote from the crack, the stress intensity factor
at the crack tip is σ0

√
πa0. For a blanket film on a viscous

underlayer, if σ0
√

πa0 < Kc, as the underlayer creeps, K
at the crack tip builds up from zero to σ0

√
πa0, so that the

crack tip never moves.26 If σ0
√

πa0 > Kc,K at the crack tip
builds up to Kc and, soon afterwards, the crack tip moves at
the steady velocity. Consequently, the steady velocity V∞

ss is
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  t/t0 = 0.5   t/t0 = 1.0

  t/t0 = 2.0   t/t0 = 4.0

Fig. 4—The contours plots of the stress field σ22 (x1, x2, t) in the film at several times. The coordinates x1 and x2 are given in
the units of Λ, and the stress in the units of σ0.

a robust quantity, attained by a finite crack in a finite film, so
long as the lateral feature sizes (including the crack length)
are large compared to the intrinsic length Λ.

Equilibrium Crack in a Microbridge

The length of the bridge introduces another dimensionless
group, L/Λ = L (σ0/Kc)

2. The width of the bridge is much
larger than Λ, and so is the initial crack length. Everything
else being equal, a shorter bridge stores less elastic energy,
so that the crack moves slower. When the crack velocity ap-
proaches zero, the entire bridge approaches equilibrium, and
the viscous stripe stops creeping and carries no stresses. In the

equilibrium state, the space occupied by the stripe is equiv-
alent to a cavity, and the bridge is in a state of plane stress
with no body forces.

The stress intensity factor in this equilibrium state, Keq,
can be calculated by an established energy method.39 When a
crack extends by a unit width in the bridge, the elastic energy
in the sheet reduces by hK2

eq/E.40 This energy reduction can
be calculated by another method. Far behind the crack tip, the
bridge is relaxed in the x2-direction, but constrained in the
x1-direction, so that the stress state is uniaxial, σ11 = Eε0,
and the elastic energy stored in a unit width of the cracked
bridge is Eε2

0Lh. Far ahead of the crack tip, the bridge is
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Fig. 5—The crack opening profiles at several times

in the biaxial stress state, σ11 = σ22 = σ0, and the elas-
tic energy stored in a unit width of the unrelaxed bridge is
2Eε2

0Lh/ (1 − ν). The extension of the crack by a unit width
is equivalent to removing a unit width of the unrelaxed bridge
far ahead of the crack tip, and then appending a unit width of
the cracked bridge far behind of the crack tip. Equating the
energy reduction calculated by the two methods, we obtain
the stress intensity factor at the equilibrium state:

Keq = σ0

√(
1 − v2

)
L. (17)

The above argument is rigorous for a semi-infinite crack in
a bridge of infinite width. Our numerical calculations show
that the stress intensity factor is close to eq (17) for any crack
longer than about L.

If Keq < Kc, the underlayer creep allows the film to ap-
proach equilibrium, and the crack tip will never move. Ev-
erything else being equal, a critical bridge length exists

Lc = 1

1 − ν2

(
Kc

σ0

)2

= Λ

1 − ν2
, (18)

below which the crack will never grow. For Poisson’s ratio
ν = 0.3, the critical bridge length is Lc = 1.1Λ.

Figure 6 shows the stress intensity factor for a station-
ary crack in the microbridge, K , calculated using the finite
element method. For comparison, the stress intensity factor
for a stationary crack in a blanket film, eq (15), is plotted
as a dashed curve. Dimensional considerations dictate that
K/Keq be a function of tD/L2. When creep just starts, the
relaxation zone in the crack wake is small compared to the
bridge length 2L, and K(t) follows the same curve as that
for the blanket film. After some time (t ≈ L2/D), the film
approaches the equilibrium state, and K/Keq → 1.

Moving Crack in a Microbridge

Now consider the case Keq > Kc. As the underlayer
creeps, K builds up from zero to Kc. Afterwards, the crack
tip moves, approaching a steady velocity. Figure 7 plots the
contours of the stress σ22 at time t = 3t0 in bridges of sev-
eral lengths. In each case, the crack starts at x1 = 0, and has
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Fig. 6—The stress intensity factor of a stationary crack in
a microbridge, K, increases with time, and approaches the
equilibrium value. The stress intensity factor of a stationary
crack in a blanket film is also plotted for comparison.

   

  

 

Fig. 7—The contour plots of the stress field σ22 (x1, x2) at time
t = 3t0 in microbridges of different lengths. The coordinates
x1 and x2 are given in the units of Λ.
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attained its steady velocity by the time t = 3t0. For a short
bridge, the crack wake is relaxed across the bridge at a short
distance behind the crack tip. For a long bridge, the crack
wake is not fully relaxed even very far behind the crack tip.

Dimensional considerations require that the steady crack
velocity in a microbridge, Vss , take the functional form:

Vss

V∞
ss

= f
(
Kc

Keq
, ν

)
. (19)

The steady crack velocity in the blanket film, V∞
ss , is given

by eq (16). The equilibrium stress intensity factor, Keq, is
given by eq (17). Figure 8 shows the steady crack velocity
calculated from the finite element method. WhenKc/Keq →
0, the bridge approaches a blanket film. WhenKc > Keq, the
crack tip will never move.

Experimental Implications

We are unaware of any systematic experimental study
on concomitant thin-film cracking and underlayer creep. On
the basis of the above theoretical findings, we outline ex-
perimental implications of this phenomenon. Mechanical
tests using miniaturized free-standing samples have been
challenging,41,42 and become impossible if the films cannot
be made or handled in the free-standing form. It is urgent to
develop mechanical tests that can be readily implemented in
a microfabrication setting.43,44

Experimental Determination of the Toughness of Brittle
Films

Ma and co-workers, of Intel Corporation, have demon-
strated a technique to measure the toughness of brittle films.45

On a silicon substrate, a metal layer was deposited, on top of
which a brittle film was deposited. The structure looked like
that in Fig. 1(a), with the viscous layer replaced by the metal
layer. In the time duration of the experiment, the metal layer
did not creep, but was plastically deformable. The film was
under residual tensile stress. Large crack-like flaws were in-
troduced by scratching the film. The residual stress by itself,
however, was insufficient to drive the scratch flaws to grow
into channel cracks. The whole structure was then subject to
a bending moment, until the scratch flaws grew into channel
cracks, running in the direction normal to the bending stress.
The net stress in the film is the sum of the residual stress
and the bending stress. The critical stress was recorded, and
related to the toughness of the film.

This technique uses the established microfabrication pro-
cesses and mechanical testing procedures. It determines the
critical stress accurately by controlling the bending moment
and observing the crack growth in an optical microscope in
situ. The technique exploits a specific result of the thin film
fracture mechanics. After the crack grows a small distance
away from the scratched zone, the stress intensity factor at
the crack tip is independent of the scratch geometry, and is
simply proportional to the net stress in the film and the square
root of the film thickness.16–19 Consequently, no particular
care is needed in introducing the flaws.

Two prerequisites limit the applications of this technique:
the film must be sufficiently stiff and have appreciable tensile
residual stress. For a compliant film on a stiff substrate, the
bending moment generates a smaller stress in the film than
in the substrate, and may break the substrate. Similarly, if the

residual stress in the film is small, a large bending moment
is needed, which may also break the substrate.

To avoid these problems, we suggest that a microbridge is
used; see Figs. 1(b) or 1(c). Under the bridge lies a viscous
stripe, or just a cavity if the stripe is removed in fabrication.
We can view the bridge as a tensile specimen, with the gage
length 2L and the two ends gripped by the substrate. Follow-
ing Ma et al.,45 we can introduce flaws by scratching the film.
We then determines the critical stress that drives the flaws to
grow into channel cracks by controlling the bending moment
and observing the crack growth in a microscope. The equilib-
rium stress intensity factor is given by eq (17), which is now
proportional to the square root of the bridge length, rather
than its thickness. Even a small stress will drive a channel
crack in a long bridge. If a viscous stripe lies under the bridge,
we should control the bending moment to drive the crack at
a sufficiently low velocity; the time needed for the bridge to
attain the equilibrium state scales as L2/D.27–29 This time
requirement is removed if the bridge is over a cavity.

Experimental Determination of Creep Laws

If the properties of the elastic film are known, the measured
crack velocity can be used to determine the creep properties of
the underlayer. For example, when the underlayer in Fig. 1(a)
is linear viscous, once the velocity for a crack channeling
in a blanket film is measured experimentally, the viscosity
η is determined by eq (16). The total distance traversed by
the crack is the sample size, and can be readily observed
in a microscope. By contrast, the total displacement scales
with the sample size times the average strain, and is small
for a small specimen. In principle, the proposed method can
measure viscosity of arbitrarily thin layers.

If the underlayer has a more complex creep behavior, ad-
ditional calculations are needed to interpret the experiment.
We will pursue this matter in detail in a separate study. Here
we give the scaling law of the channel crack velocity, assum-
ing that the underlayer creeps according to the power law.
That is, the shear strain-rate γ̇ relates to the shear stress τ
according to

γ̇ = Bτn, (20)

where B and n are parameters to fit experimental data. This
creep law now replaces the linear viscous law (4). Following
the same line of reasoning that leads to eq (16), we obtain the
scaling law for the crack velocity channeling in the elastic
film:

V∞
ss = χEBHσn−1

0 hn (σ0/Kc)
2n . (21)

The dimensionless factor χ now is a function of Poisson’s
ratio and creep exponent, χ(v, n), to be calculated by using
the finite element method in the subsequent work. We can
vary the stress in the elastic film by the bending moment, and
measure the crack velocity as a function of the stress. Such
experimental data would be sufficient to determine the creep
properties B and n.

Subcritical Decohesion

In the above discussion, we have assumed that the crack
grows when the stress intensity factor at the crack tip equals
the toughness, K = Kc. In reality, many brittle materials
suffer subcritical decohesion, in which the crack tip moves
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at a small velocity even whenK < Kc.46 Molecules, such as
H2O, in the environment diffuse to the crack tip and assist in
breaking the atomic bonds. Figure 9 sketches the trend of the
representative experimental data. The crack tip is stationary
when K is below a threshold value, Kth, and moves when
K > Kth. The crack velocity V increases with the stress
intensity factor K . When the crack tip moves so fast that the
environmental molecules cannot assist in breaking atomic
bonds at the crack tip, K = Kc.

Now consider a crack in a film of such a material on a
creeping underlayer. Before creep starts, the stress in the film
is uniform, so that K = 0. When the underlayer creeps, K
increases with time, and the crack tip remains stationary until
K = Kth. When the crack tip starts to move, the stress in-
tensity factor at the crack tip, as well as the crack velocity, is
determined by the two rate processes: the subcritical decohe-
sion in the film, and the creep in the underlayer. After some
transient motion, the crack tip may attain a steady velocity
Vss and a steady stress intensity factor Kss . All previous re-
sults on the steady crack velocity are applicable, providedKc
is replaced by Kss . For example, we can rewrite eq (19) as

Vss = χ
HhEσ2

0

ηK2
ss

f


 Kss

σ0

√(
1 − ν2

)
L

, ν


 . (22)

Here we have used eq (16) for V∞
ss , and eq (17) forKeq. Also

sketched in Fig. 9 is the Vss−Kss relation (22), which can be
varied by varying the stress σ0 in the film and the length 2L
of the microbridge, among other quantities. The intersection
of the two curves selects both the steady state stress intensity
factor Kss and the crack velocity Vss .

The channel crack cannot grow in the bridge ifKeq < Kth.
That is, the crack can equilibrate if the bridge length is below
a threshold, given by

Steady Stress Intensity Factor, Kss
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Fig. 9—The crack velocity as a function of the stress intensity
factor. One curve is the V − −K relation determined by
underlayer creep, and the other is the V − −K relation
determined by subcritical decohesion. The intersection of the
two curves selects the steady-state crack velocity and stress
intensity factor.

Lth = 1

1 − ν2

(
Kth

σ0

)2

. (23)

This threshold replaces eq (18). We can fabricate an array of
microbridges of different lengths on the same wafer, scratch
them all, and bend the wafer with a constant moment. After
some time, channel cracks form in long bridges, but not in
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short ones. Experiments of this kind may be used to determine
Kth, or even the entire subcritical decohesion K − V curve.

Ratcheting-induced Crack Growth

As mentioned in the introduction, an unexpected finding
made recently in thin-film mechanics is that cracks can grow
in brittle films under cyclic temperatures, driven by ratch-
eting plastic deformation in a metal underlayer.11–15 This
phenomenon may be contrasted with fatigue cracks com-
monly observed in ductile materials subject to cyclic loads.47

A previous study calculated the ratcheting displacement in the
crack wake, but did not obtain the growth rate of the crack.13

We now derive a scaling law for the crack growth per tem-
perature cycle.

We replace the viscous layer in Fig. 1(a) by a metal layer,
and cycle the structure between temperatures TL and TH .
Within the temperature and time of the experiment, the metal
does not creep, but can have time-independent plastic defor-
mation. For simplicity, we assume that the tensile stress in
the uncracked blanket film, σ0, is constant as the temperature
changes. This occurs in practice when the elastic film and the
substrate have a similar coefficient of thermal expansion, and
σ0 is due to the deposition process or the bending moment.

First, we consider a blanket metal film on a substrate, sub-
ject to a constant shear stress τ on the film surface and the
cyclic temperatures. The temperature range TH −TL is large
enough so that the difference in the thermal expansion coef-
ficients between the metal and the substrate causes the metal
to yield. Each cycle, the metal film deforms plastically in the
direction of the shear stress τ. When the temperature range
is large and the shear stress is small, the plastic shear strain
per cycle, dγp/dN , is linear in the shear stress, namely12

dγp

dN
= τ

ηR
, (24)

where

ηR = Em

12(1 − vm)
[
Em(αm − αs)(TH − TL)

(1 − vm)Y − 2

]−1

.

(25)

Here Em is Young’s modulus, νm is Poisson’s ratio, and Y
is the uniaxial yield strength of the metal. αm and αs are the
coefficients of thermal expansion of the metal and substrate.
Equation (24) is analogous to the linear viscous law (4) in
that the number of cycles N is analogous to the time t , and
the parameter ηR is analogous to the viscosity η.

Now we put an elastic film on top of the metal layer. As
temperature cycles, the metal layer undergoes ratcheting plas-
tic deformation. The stress field in the film relaxes in the
crack wake, and intensifies around the crack tip. The behav-
ior should be the same as shown in Figs. 3–5, if we replace the
time by the number of cycles. By the ratcheting-creep anal-
ogy, we rewrite the scaling law for the crack velocity (16) as
the scaling law for crack growth per cycle:

da

dN
= χ

HhEσ2
0

ηRK2
c

. (26)

The pre-factor χ takes the same value as before; for example,
χ = 0.534 when Poisson’s ratio is 0.3 for the film. We can

similarly obtain the growth rate for a crack in an elastic bridge
over a metal stripe. Experimental observations of ratcheting-
induced crack growth have been reported for interconnect
structures,11,12 and for oxide scales on alloys.9,10 Quantita-
tive measurement of the crack growth rate is unavailable.

Concluding Remarks

In this paper we study crack extension in a brittle film
concomitant with creep in an underlayer. We use a two-
dimensional shear lag model to approximate the three-
dimensional fracture process, and the extended finite element
method to simulate the moving crack with an invariant, rel-
atively coarse mesh. The crack tip may remain stationary,
and the film approaches an equilibrium state. Alternatively,
the crack tip may move and quickly approaches a steady ve-
locity. Both the equilibrium state and the steady motion can
be realized under a wide range of conditions. We suggest
novel methods to measure toughness and inelastic proper-
ties in thin-film structures. Using the ratcheting-creep anal-
ogy, we obtain the growth per temperature cycle of a channel
crack in an elastic film over a metallic layer. It is hoped that
experiments will soon succeed in exploiting these ideas.

After reading the preprint of this paper, Professor James
R. Rice, of Harvard University, kindly told us the history of
the shear lag model in geophysics, where the lithosphere was
modeled as an elastic layer, and the asthenosphere as a viscous
underlayer. In particular, his group studied the steady crack
growth under a shear stress in an elastic layer on a viscoelastic
underlayer.48
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