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Abstract The tear film on the front of the eye is critical to proper eyesight; in many mathematical models of the
tear film, the tear film is assumed to be on a flat substrate. We re-examine this assumption by studying the effect of
a substrate which is representative of the human cornea. We study the flow of a thin fluid film on a prolate spheroid
which is a good approximation to the shape of the human cornea. Two lubrication models for the dynamics of the
film are studied in prolate spheroidal coordinates which are appropriate for this situation. One is a self-consistent
leading-order hyperbolic partial differential equation (PDE) valid for relatively large substrate curvature; the other
retains the next higher-order terms resulting in a fourth-order parabolic PDE for the film dynamics. The former is
studied for both Newtonian and Ellis (shear thinning) fluids; for typical tear film parameter values, the shear thin-
ning is too small to be significant in this model. For larger shear thinning, we find a significant effect on finite-time
singularities. The second model is studied for a Newtonian fluid and allows for a meniscus at one end of the domain.
We do not find a strong effect on the thinning rate at the center of the cornea. We conclude that the corneal shape
does not have a significant effect on the thinning rate of the tear film for typical conditions.
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1 Introduction

The tear film on the eye is critical to proper eye health and function. It helps in protecting the eye surface with
moisture, in transporting waste off the eye surface, and in providing a smooth optical surface when it is functioning
properly [1]. The tear film is a multilayer film [2,3] with an outermost layer of lipids [4–6] floating upon a primarily
aqueous layer [1] which in turn is on a mucin-rich region at the corneal surface (e.g., [7–9]). The precorneal tear
film is a few microns thick in the center of the cornea after a blink (e.g., [10–12]) and has a considerably larger
meniscus around the eye lid margins [13–15]. Tear fluid (a sample combining all components of tears) is mildly
shear thinning [16] but weakly elastic [17]; recent measurements of meibomian lipids alone show that they may have
significant elasticity [18], but its contribution to the overall rheology and properties of tears is yet to be understood.
Other interfacial properties, such as the apparent surface tension of the tear–air interface, are definitely affected by
polar lipids that are attracted to the lipid–aqueous interface [19,20], and those lipids can cause upward motion of
the tear fluid after a blink [21,22]. However, the apparent surface tension of tears appears to be affected by more
than the presence of polar lipids [23,24].

The tear film is commonly assumed to be Newtonian fluid in theoretical models though some shear thinning
fluids have been considered [25–28]. Mathematical models for the tear film have incorporated a variety of important
effects that occur in the tear film: surface tension [29–32]; polar lipid surface concentration gradients causing the
Marangoni effect [21,33–35]; evaporation [6,36,37]; wettability of the corneal surface [25,26,37,38]; motion of
the eye lids in one dimension [28,33,34,39–41]; and the shape of the eye opening [42,43]. While these effects may
all contribute in different regions of the eye and at different times in the blink cycle, in this article, we consider
a simplified model with surface tension, viscosity, and the shape of the substrate (corneal surface) only, to better
understand the importance of the corneal shape in tear film dynamics.

Many articles neglect any effect of the curvature of the cornea when studying tear film dynamics based on
the discussion in Berger and Corrsin [21], which in turn cites Berger’s thesis [44]; however, the justification is
based on the assumed spherical curvature of the substrate, and it is not explicitly given there. Gorla and Gorla
[27,38] considered a cylindrical geometry to represent the cornea; there was no noticeable effect of the substrate
curvature and the constant substrate curvature does not in itself provide any driving force for fluid motion. It is
generally assumed and accepted that the corneal shape is negligible in tear film dynamics. As a result, theoretical
articles typically consider a flat substrate and use Cartesian coordinates based on that flat substrate to develop
models for the tear film; we refer to this as the flat cornea approximation. Two points make the justification for
the flat cornea approximation in tear film dynamics worth reconsidering. First, the cornea is a prolate spheroid to
a good approximation ([45–47] and references therein), and this means that the curvature variation of the substrate
may induce a pressure gradient in a thin film which is a driving mechanism for fluid motion. Second, in a recent
assessment of the experimental measurements of tear film thinning in the central cornea by King-Smith et al.
[48], there appeared to be significantly more thinning than expected based on surface tension-driven lubrication
flows. In King-Smith et al. [48], interferometry was employed to measure the thickness of the tear film, and the
rate of thinning was on the order of microns per minute. Several possible contributions for this rate of thinning
were considered: flow along the cornea from surface tension due to film thickness variation, flow into the corneal
surface, evaporation, and flow driven by the shape of the corneal surface. The first effect was eliminated because
it cannot cause a net decrease in film thickness over a wide area during the time interval of interest, about 2–15
s after a blink. The second effect was eliminated because, if anything, we would expect flow to come into the
tear film from the cornea. For the last effect, we estimated an initial thinning rate due to the pressure gradient
induced by the prolate spheroidal corneal surface, and found that its contribution to the thinning caused by this
effect was more than an order of magnitude smaller than the measured values. Thus, evaporation was thought to
be the main contribution to the thinning by a process of elimination. We now return to the contribution due to the
curvature of the prolate spheroidal shape of the cornea in an effort to more completely evaluate its role in tear film
thinning.

For this study, we combine a number of tear film properties with the substrate shape. Tear fluid is weakly shear
thinning, well described by a Cross model [49] according to Tiffany [16]. We choose to incorporate this property
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into the study via the Ellis model [50], which is more shear-thinning than the Cross model but is easier to treat
mathematically. The Ellis model’s viscosity thins to zero as the shear stress increases, while the Cross model thins
to a finite viscosity (often called the high shear rate plateau, which is roughly that of water for the tear film). Our
model thus overestimates the effect of shear thinning and, in that respect, our results may be considered to place an
upper bound on the contribution of shear thinning by emphasizing this effect more than in real tear fluid (because
the viscosity is lower than in the Cross model at larger shear rates). We choose this bounding case to give shear
thinning every chance to contribute to the dynamics in this model, and because the model allows us to write simple
analytic forms for the equations governing the dynamics of a thin fluid film [50]. As an alternative, we also consider
a Newtonian model with the viscosity chosen as the large shear rate limiting value [16].

During the writing of this article, a model of the creation and relaxation of a tear film using an Ellis fluid
has appeared [28]. In that article, Jossic et al. used parameters that were fit to tear fluid properties at the lower
end of the shear thinning range for the Ellis fluid. With respect to previous study on tear film formation and
drainage [30,33,34,39,40], this article extends the rheological behavior to be closer to real eye properties [16].
However, they used a stress-free surface which neglects shear or any effect of the surfactants in the lipid layer (e.g.,
[21,22,34,48]). They used their model to optimize eye drop properties to make the tear film as uniform as they
could.

We consider two cases in this article. One will have no meniscus, so that the eyelid margins are not mimicked,
and will consist of covering half of a prolate spheroid with a thin film. The other will be half of a prolate spheroid
or less, together with an axisymmetric meniscus that approximates the eyelid margins. The former will take into
account the corneal shape alone; the latter combines the effect of corneal shape with an exaggerated effect of the
eyelid margins.

Our lubrication models are based mainly on two previous studies. For the half prolate spheroid geometry, we
follow the approach of Howell [51]. In that article, the varying size of the curvature of the substrate relative to the
thin film surface is explored; the relevant case for us is the large curvature case where the dynamics of the thin film
are dominated by the substrate curvature. We apply that approach to a new geometry and with new fluid properties.
However, the large curvature limit results in a hyperbolic partial differential equation (PDE) for the film thickness
whose solution characteristics do not allow one to apply boundary conditions such as film thickness and flux at a
boundary (here, the eyelid); we find it useful to employ the approach of Roy et al. [52] in this latter case. They retain
additional terms in the normal stress boundary condition and obtain a higher-order parabolic PDE more typical
of lubrication approximations to the thin film dynamics. We apply this approach to a new substrate geometry to
evaluate the influence of the cornea’s shape together with that from the eyelids.

2 Formulation

We approximate the cornea as a prolate spheroidal surface (e.g., [45–47] and references therein); a sketch is shown
in Fig. 1. We use prolate spheroidal coordinates (µ, ν, φ); the coordinates are given by

x′ = c sinh µ sin ν cos φ, y′ = c sinh µ sin ν sin φ, and z′ = c cosh µ cos ν. (1)

Primes denote dimensional Cartesian variables; c is dimensional as well. Here ±c locates the foci of the elliptical
cross section of the constant µ surface at a distance c from the origin along the z′ axis; µ acts as a radius-like
coordinate by changing the ellipticity while keeping those foci fixed. The polar angle ν has the range 0 ≤ ν ≤ π ,
and the azimuthal angle φ has the range 0 ≤ φ < 2π ; however, we consider only the axisymmetric case, and so all
quantities will be independent of φ. In our model, we will treat the film over the range 0 ≤ ν ≤ π/2 (or smaller)
and µ0 ≤ µ ≤ µ0 + h′(ν, t ′)/L, where h′(ν, t ′) is the dimensional film thickness, and L is the length scale along
the film.

We assume axisymmetry about the major axis of the prolate spheroid (that is, ν = 0); the resulting eye shape
is greatly simplified, but we hope to capture the essential behavior near the center of the cornea and to emphasize
the role of substrate geometry. Corneal measurements [46] show that, in the (r ′, z′)-plane, the cross section of the
corneal surface is closely approximated by the sharp end of the ellipse given by
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Fig. 1 Sketch of film cross section on a prolate spheroid; a cross section of the upper half of the film is shown (shaded). The surface
µ = µ0 is the constant µ surface that represents the corneal surface. As a visual aid, the radial and axial coordinates from a cylindrical
coordinate system, r ′ and z′ respectively, are shown. Foci for the elliptical cross section at µ = µ0 are located at z′ = ±c. The “sharp”
end is a good approximation to the cornea’s shape [45–47]; the center of the cornea corresponds to the top of the prolate spheroid
(at ν = 0)

(
r ′

b

)2

+
(

z′

a

)2

= 1.

Using the parameters of Carney et al. [46], we write a = R/(1 + Q) and b = R/
√

1 + Q; let c = √
a2 − b2.

Fitting the sharp end of the ellipse to corneal measurements determines representative values of Q = −0.19 and
R = 0.0078 m [45]; alternatively, a = 0.0096 and b = 0.0087 m. The particular value of µ0 we use for the cornea
is given by z′ = a = c cosh µ0 for ν = 0; rearranging gives µ0 = arccosh(1/

√−Q) = 1.4722 and c = 0.0042 m.
The ellipticity of the corneal surface is given by e = 1/ cosh µ0 = √−Q ≈ 0.436. Nondimensionalizing with c

locates the foci z = ±1, and is relevant for eyes because it is quite close to the half width of a typical eye opening.
We shall assume two main geometries for the prolate spheroid. First, the upper half will be used; the equator

at ν = π/2 will be a symmetry boundary (a plane). Second, we shorten the domain in ν and apply a meniscus
to mimic the effect of the lid margins. In the latter case, the effects of the prolate spheroidal substrate and of the
meniscus at the lid margin are promoted beyond that in the human eye. Thus, this last choice is a bounding case for
the drainage on the cornea in the following sense: if it is not important in this case, then we believe that it will not
be important in the human eye.

The ratio of the representative film thickness d to the length scale along the film L is d/L � 1; this small value
allows us to use lubrication theory to derive a PDE for the film thickness on the corneal surface. Following Howell
[51], we choose scales based on Newtonian surface tension-driven flow and the zero shear rate viscosity η0. Lengths
along the film are chosen to be L = c = 4.2 mm based on Read et al. [45]; with this choice, the radius of curvature
of the substrate and the length scale along the film are the same. The representative film thickness is chosen to be
d = 5µm; thus, ε = d/L ≈ 1.2 × 10−3 in this article.

Dimensionless surface quantities required will include the scale factors relating distance to coordinate increments
for the prolate spheroidal coordinates, with ds2 = a2

ν dν2 + a2
φ dφ2, namely

aν = N = [sinh2(µ0) + sin2(ν)]1/2 and aφ = sinh(µ0) sin(ν). (2)

The principal curvatures may be written as

kν = −N−3 cosh µ0 sinh µ0 and kφ = −N−1 coth µ0; (3)

combinations of those quantities needed are

k1 = kν + kφ, k2 = k2
ν + k2

φ and k3 = kνkφ. (4)
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Fig. 2 Surface curvature
quantities on the prolate
spheroid representing the
cornea. Here and throughout
this article, µ0 ≈ 1.4722;
this value matches the shape
found by Read et al. [45]
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These quantities are O(1) and, they vary by about 10% over the domain (see Fig. 2); this is sufficient to make the
curvature of the substrate much more important in determining the film dynamics than the curvature variation due
to changes in the film thickness [51].

The characteristic speed is U = σε2/η0, where σ is the (assumed constant) surface tension of the tear–air inter-
face, and η0 is the zero-shear rate viscosity of tear fluid. The time t ′ is made dimensionless via t ′ = (L/U)t . The film
thickness is made dimensionless with the typical thickness d via h′ = hd. The coordinate outward from the prolate
spheroidal surface is µ = µ0 + εµ̃; the coordinate µ̃ is the nondimensional distance out from the µ = µ0 surface,
with the tear film in the interval 0 ≤ µ̃ ≤ h(ν, t). The remaining dependent variables are nondimensionalized as
follows:

u′
µ = εUuµ, u′

ν = Uuν, p′ = σ

L
p. (5)

Here uµ and uν are velocity components, p is the pressure. After nondimensionalization, we have at leading order
for conservation of mass and momentum,

1

sin ν

∂

∂ν
(uν sin ν) + ∂uµ

∂µ̃
= 0, (6)

∂

∂µ̃

[
η
∂uν

∂µ̃

]
− 1

N

∂p

∂ν
= 0, (7)

∂p

∂µ̃
= 0. (8)

To obtain these equations, we require that the reduced Reynolds number be small, ε2ρUL/η0 � 1. The shear-rate-
dependent viscosity η = η(∂uν/∂µ̃) will be discussed below (see (12)).

On the corneal surface µ̃ = 0, we assume no slip and impermeability uµ = uν = 0.
On the free surface µ̃ = h(ν, t), we have the kinematic condition for the axisymmetric case

∂h

∂t
= uµ − uν

aν

∂h

∂ν
, (9)

and the stress conditions. We use the normal stress condition from Roy et al. [52],

p = −k̃ with k̃ = k1 + ε
(
k2h + ∇2

s h
)

. (10)

For the tangential stress condition on the free surface µ̃ = h, two limiting cases may replace the action of the polar
lipids and other surfactants present in tears. In the limit where a surfactant has a strong effect, the free surface is
rendered immobile to leading order [53]; this is the tangentially immobile limit. When the effect of surfactants on
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Fig. 3 Ellis fluid behavior
used in this article for fitting
tears. We choose α = 3 to
get −2/3 decay. To
graphically match tears, we
chose γ̇1/2 = 20 s−1 and
η0 = 5 × 10−3 Pa s; the
latter parameter is from
Tiffany [16]. The data
points are viscosity values
from Tiffany [16];
“Normal” indicates that the
measurements are for
healthy tears from normal
subjects (as opposed to
those with dry eye)
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the tear film is assumed to be weak, then the surface is very mobile and may be thought of as clean to leading order;
this is the stress-free limit. In this article, we use the stress-free condition

∂uν

∂µ̃
= 0 (11)

because it promotes faster drainage of the film, and is thus consistent with the approach of bounding the film behav-
ior with modeling choices that accelerate drainage (the tangentially immobile case was estimated in King-Smith
et al. [6]). Terms of O(ε), including those in (10), are retained in the approach of Roy et al. [52], while those terms
are neglected in Howell [51]; for a complete discussion, see the latter.

We bound the shear thinning by replacing the Cross model [49], which decreases to finite viscosity at large shear
rates with a −2/3 power for tears [16], with the Ellis constitutive relation (e.g., [50]), which decays to zero viscosity
at large shear rates. The nondimensional viscosity is given by

η = 1

1 + β |τ |α−1 , τ = η
∂uν

∂µ̃
, and β =

(
η0U/d

τ1/2

)α−1

, (12)

where τ1/2 is a material parameter (see Appendix A). We choose the parameter α = 3 so that the decay of the
viscosity is still a −2/3 power for large shear (derivation not shown), and we graphically fit the beginning of the
decay to tear film data as shown in Fig. 3. To do this, we use the simplification of lubrication theory to write
τ1/2 = (η0/2)(γ̇1/2); then with our choice of velocity scale, we have β = [(2σε2)/(dη0γ̇1/2)]α−1. Substitution of
our choice of γ̇1/2 and the other tear film parameters results in β ≈ 0.065. In what follows, we will use this estimate
to describe tear film quantities, but we will also vary β over a wide range to find interesting mathematical behavior.

Applying Howell’s approach [51] to our geometry and incorporating the Ellis fluid, the substrate curvature
dominates the flow of the thin fluid film. For the tear film thickness, we obtain

∂h

∂t
+ 1

sin(ν)N

∂

∂ν

[
sin ν

N

h3

3

∂k1

∂ν
+ β

sin ν

Nα

hα+2

α + 2

∣∣∣∣∂k1

∂ν

∣∣∣∣
α−1

∂k1

∂ν

]
= 0; (13)

details may be found in Appendix B. Note that ∂k1/∂ν ≥ 0 for the prolate spheroids that we study, so that we may
ignore the absolute value in the above equation and use

∂h

∂t
+ 1

sin(ν)N

∂

∂ν

[
sin ν

N

h3

3

∂k1

∂ν
+ β

sin ν

Nα

hα+2

α + 2

(
∂k1

∂ν

)α]
= 0. (14)

Since ∂k1/∂ν ≥ 0, the curvature gradient is a driving force for removal of fluid from the region near ν = 0. The
term proportional to β represents shear thinning effects; when β = 0, we recover the Newtonian result.

We write Eq. 14 as

aνaφ

∂h

∂t
+ ∂

∂ν

[
aφ

aν

h3

3

∂k1

∂ν
+ β

aφ

aα
ν

hα+2

α + 2

(
∂k1

∂ν

)α]
= 0. (15)
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We refer to this equation as the large curvature limit. This PDE is first order in space and is thus hyperbolic. The
characteristics of the solution are such that no boundary conditions may be specified, except for symmetry that is
compatible with the substrate’s prolate spheroidal shape; symmetry requires that odd spatial derivatives of h are set
to zero at ν = 0 and ν = π/2. We do this in subsequent numerical solutions for this equation, and inspection of the
characteristics will confirm this assertion (e.g., in Fig. 8).

Retaining O(ε) terms in the film’s momentum equation and in the stress conditions at the free surface yields a
fourth-order PDE for the free surface h(ν, t); this case is discussed in Sect. 3.2 for a Newtonian fluid.

3 Results

3.1 Large curvature limit

In this section, we study the equations in the large curvature limit.

3.1.1 Central cornea thinning

We first estimate the initial thinning rate of the precorneal tear film at the center of the cornea located at ν = 0. We
consider only half of a prolate spheroid about the plane of symmetry ν = π/2. Consider Newtonian flow with a
stress-free surface; the PDE for the film thickness dynamics is

∂h

∂t
= − 1

N sin ν

∂

∂ν

(
h3

3

sin ν

N

∂k1

∂ν

)
. (16)

Letting h(ν, 0) = h0(ν) = 1, and evaluating the substrate curvature derivatives at ν = 0, yields, in dimensional
terms,

∂h′

∂t ′
(ν = 0, t = 0) = 8σ

3η0

Q[h′(0, 0)]3

R3 . (17)

where the apical radius R and the asphericity Q are the parameters that define the prolate spheroidal shape of the
cornea; as mentioned above, Read et al. [45] used corneal geometry measurements to find R = 0.0078 m and
Q = −0.19. The properties of tear are chosen to be σ = 0.045N/m and η∞ = 10−3 Pa s after [17] and [16]. These
values give ∂h′/∂t ′(0, 0) = −0.072 µm/ min; experimental values from King-Smith et al. [48] are, on the average
about −4 µm/ min. Thus, the contribution from Newtonian flow at the center of the cornea is rather small compared
to measured values. If we use η0 → η∞ ≈ 10−3 Pa s, which is the high shear rate value for tears (roughly equal
to the viscosity of water, as is commonly used in Newtonian studies [30,31,33,36,41]), we find a thinning rate of
0.36 µm/ min at the center of the cornea, which is only 10% of the measured value. We note that this rate is four
times that found in King-Smith et al. [6] where the tangentially immobile free surface was used.

If we consider the Ellis fluid, then there are additional terms present in the evolution of the thin film dynamics
governed by (14). However, when evaluating an estimate of the initial thinning rate, symmetry eliminates any terms
involving (∂k1/∂ν)α , and thus the shear thinning is eliminated at ν = 0. The Ellis fluid thins at the same rate as a
Newtonian fluid at ν = 0.

This symmetry allows for a particulary simple solution for the thickness at ν = 0; let h(0, t) ≡ hmid(t). Using
the symmetry of this point, one finds that hmid satisfies an ordinary differential equation, namely,

dhmid

dt
= − hmid

N2(0)

d2k1(0)

dν2 , hmid(0) = 1. (18)

Solving the ODE, using the initial condition and evaluating the known expressions gives

hmid(t) =
[

1 + 2t

N2(0)

d2k1(0)

dν2

]−1/2

, (19)

or
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hmid(t) =
[

1 + 8 cosh µ0

sinh6 µ0
t

]−1/2

=
[

1 + 8(−Q)5/2

(1 + Q)3 t

]−1/2

. (20)

Thus, the thickness never ruptures in finite time at ν = 0; we shall see below that singularities will occur elsewhere
in finite time.

We conclude that the initial tear film thinning rate caused by the shape of the cornea at its center is negligible
under normal circumstances.

3.1.2 Numerical solutions

Our numerical computations use an implementation of the method of lines. We used a Chebyshev spectral discreti-
zation in space with Chebyshev points mapped to the interval (−π/2 ≤ ν ≤ π/2); only half of the standard domain
is needed, (0 ≤ ν ≤ π/2). We avoid the singularity at the origin by choosing an even number of grid points; we
also enforce symmetry about ν = 0 in the differentiation matrices. The grid points for which solutions are shown
are given by

νj = −π

2
cos

(
jπ

N − 1

)
, j = N

2
+ 1,

N

2
+ 2, . . . , N − 1. (21)

For time stepping, we used ode15s in Matlab. Numerical experiments showed that 96–128 modes in 0 ≤ ν ≤ π/2
yielded solutions that were converged under grid refinement; we typically used 112 modes.

3.1.3 Newtonian viscosity

Results for a Newtonian fluid and large substrate curvature are shown in Fig. 4. In these results, we observed t−1/2

thinning at ν = 0 and what appears to be a finite time singularity at ν = π/2. The computation was terminated
at t = 24; h(π/2, t) increases rapidly after this time. Both kinds of behavior were predicted by Howell [51] for
Newtonian fluids in different geometries. The computed blow-up time from the method of characteristics (details
below) is t = 24.75 which is shortly after the end of the computation. The spectral method we used is not well
suited to shock capture, and so we rely on the analysis of the characteristics below for accurate values of the shock
or singularity formation time.

3.1.4 Non-Newtonian viscosity

We next consider the Ellis fluid with boundary conditions ∂h/∂ν(π/2, t) = 0. For the properties of the tear fluid,
we estimate that the shear thinning parameter is β = 0.065. This case appears to develop a finite-time singular-
ity at ν = π/2, and is difficult to distinguish from the Newtonian case. We conclude that there is no significant
contribution to tear film thinning for parameters appropriate for that case.

Deviating from the tear film parameters, we increase β over orders of magnitude to explore the behavior of the
equations. Choosing β = 102 gives the results shown in Fig. 5. The singularity in the solution occurs at finite time
similar to the case of a Newtonian or weakly shear thinning fluid; however, the singularity is now a shock that occurs
at νc < π/2. The time tc and location νc of the shock formation depend on β. Solutions for the film thickness at
different times tend prior to singularity formation for various values of β are shown in Fig. 6. The behavior appears
to converge to shock formation at a particular time and place as β → ∞. In this case, the limiting behavior of the
fluid for β → ∞ is a power law, and we analyze that case in Sect. 3.1.5.

We note that the shear rate at the wall, ∂uν/∂µ(µ0, ν, t) varies with ν and t during the computations. The
maximum value is typically ranges from 500 s−1 at ν ≈ 0.6 to about 300 s−1 at ν ≈ 0.9 as time increases. This is
true for 0.065 ≤ β ≤ 1000, and it occurs because the substrate curvature dominates the evolution for 0 ≤ ν ≤ 1,
approximately. The shear rate appears to develop a jump in slope when a singularity forms. We note that these shear
rates cause a small viscosity that occurs near the middle of the computational domain, and this viscosity is below
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the η∞ that is essentially that of water for the Cross model [16]. Thus, this model does emphasize tear thinning
more than real tear fluid.

For increasing β, shear thinning becomes more marked. But in our central corneal thinning rate estimate in
Sect. 3.1.1, we found that the initial thinning rate at ν = 0 is independent of the shear thinning term. We adjusted
β over a wide range of values and found the thinning rate at the nearest grid point to the origin, νN/2+1. Curves for
various time intervals 0 ≤ t ≤ tend prior to the singularity formation are shown in Fig. 7, and it is clear that the
computed results are independent of β as well.

3.1.5 Shock formation

Define q(ν) = a2(ν)(∂k1/∂ν)/a1(ν); then we can write Eq. 15 as

aνaφ

∂h

∂t
+ ∂

∂ν

[
h3

3
q + β

1

aα−1
φ

hα+2

α + 2
qα

]
= 0 (22)
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Fig. 8 Top Newtonian
results (α = 1) for
characteristic curves with
h(ν, 0) = 1; the singularity
forms at about tc ≈ 24.75 at
ν = π/2 as predicted by our
application of Howell’s
theory [51] to this new
geometry. Bottom The
power law limit with α = 3
and β → ∞; the singularity
forms from sc = 0.9847,
and the shock first forms at
νc = 1.2284 and tc = 1984.
The shock forms away from
the symmetry plane for the
shear thinning fluid
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Now along a characteristic, we have

dt

dν
= aν(ν)aφ(ν)

h2(ν)q(ν) + βa1−α
φ (ν)hα+1(ν)qα(ν)

, (23)

and Eq. 22 can then be integrated along a characteristic to yield B(h, ν) = B(h0, s), where

B(h, ν) = h3

3
q(ν) + βa1−α

φ (ν)
hα+2

α + 2
qα(ν), (24)

s is the initial value of ν along the characteristic, and h0(s) the corresponding initial value of h. Specifically, we
have

h3(ν)

3
q(ν) + βa1−α

φ (ν)
hα+2(ν)

α + 2
qα(ν) = h3

0(s)

3
q(s) + βa1−α

φ (s)
hα+2

0 (s)

α + 2
qα(s). (25)

Combining (23) and (25) is not easily accomplished, particularly for general values of α; the ability to combine
these easily and get analytical expressions for t was crucial for the success of the Newtonian case studied by Howell.
If we consider the case for large β, we get a similar simplification.

For β � 1 and time rescaled with β, then to leading order we obtain

dt

dν
= aν(ν)aφ(ν)

a1−α
φ (ν)hα+1(ν)qα(ν)

, (26)

and

a1−α
φ (ν)hα+2(ν)qα(ν) = a1−α

φ (s)hα+2
0 (s)qα(s). (27)
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Table 1 Shock characteristic initial value sc, shock formation time tc and shock formation location νc for different values of α on this
prolate spheroidal substrate with µ0 = 1.4722

α 1 1.5 2 3 4

sc 1.5708 1.1941 1.0889 0.9847 0.92945
tc 24.75 83.481 238.47 1984 17413
νc 1.5708 1.4963 1.3949 1.2284 1.1076

Note that the equations in this limit are the same as for a power law fluid. Using (27) to eliminate h(ν) from (26)
leads to the desired simplification, namely,

dt

dν
= aν(ν)aφ(ν)[

aω
φ (ν)q1−δ−ω(ν)

] [
aω
φ (s)hα+1(s)qαδ(s)

] , (28)

where

γ = α2 − 1

α + 2
, δ = α + 1

α + 2
, ω = 1 − α

α + 2
. (29)

Integration yields

thα+1
0 (s)a

−γ
φ (s)qαδ(s) =

ν∫
s

aν(ξ)a
α−γ
φ (ξ)qα(δ−1)(ξ)dξ. (30)

A shock forms where the characteristics first cross, that is, where dt/ds = 0. Solving (30) and its derivative with
respect to s simultaneously yields

tc = −(α + 2)aνa
α
φ

α(α + 1)qα−1q̇
(

1 − α−1
α

q
q̇

ȧφ

aφ

) . (31)

where the dot indicates differentiation with respect to s. The location where (dt/dν)|ν=s = 0 gives the initial value
for the characteristic on which the shock first appears, sc. If we choose α = 1, then we recover the Newtonian case
given by Howell [51] as his Eq. 36. For α = 3, we find

tc = −5aνa
3
φ

12q2q̇
(

1 − 2
3

q
q̇

ȧφ

aφ

) . (32)

The characteristics in the (ν, t) for α = 1 and 3 are shown in Fig. 8.
Solving differential equation (28) subject to the initial condition ν(0) = sc for 0 ≤ t ≤ tc gives the location

where the shock first forms, νc. When α = 3, the shock first forms at νc = 1.2284 and tc = 1984, approximately, as
indicated by the circle in the bottom plot of Fig. 8. Results for different α are summarized in Table 1. These results
agree well with the computed film profiles in Fig. 6; the location of the steepening computed from the hyperbolic
PDE for the film surface is consistent with the theoretical predictions from the equations for the characteristics.

3.2 Keeping higher-order terms

In this section, we consider the approximation of Roy et al. [52]. In this approximation, we return to the Newtonian
fluid, and O(ε) terms are kept from the normal stress boundary conditions and in momentum conservation in the ν

direction. With the estimated size of β ≈ 0.065 for tears, and the contribution from shear thinning only becoming
significant when about three orders of magnitude larger in the other model, we choose to neglect shear thinning in
this model and to use η∞ as a characteristic viscosity in order to bound the motion with a low value. Thus, for this
model, we shall only consider a Newtonian tear film on a prolate spheroidal substrate.
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Applying the results of Roy et al. [52], the normal stress boundary condition is then

p = −k1 − ε

{
hk2 + 1

N sin ν

∂

∂ν

[
sin ν

N

∂h

∂ν

]}
, (33)

and one must compute the O(ε) term in the ν-momentum equation and the stress-free boundary condition on h.
We find that combining the first two orders and evaluating their result for our prolate spheroidal coordinate system
gives

∂ζ

∂t
+ 1

sin(ν)N

∂

∂ν

(
h2ζ

3

sin ν

N

∂k̃

∂ν

)
= 0, ζ = h − ε

k1

2
h2 + ε2 k3

3
h3, (34)

where k̃ is given by (10). In this case, we compute solutions on 0 < ν < νe, with νe ≤ π/2. The same Chebyshev
spectral method is applied to this problem as in the large curvature equation. Because the equation is now fourth
order in space, we must specify more boundary conditions. We gain the ability to specify a meniscus, however; this
is important in attempting to model the tear film.

We consider two different choices for the boundary and initial condition. First, we consider an initially uniform
film (h(ν, 0) = 1) with symmetry conditions (∂h/∂ν = ∂3h/∂ν3 = 0) at each end of the interval. Results are shown
in Fig. 9. In this case, the higher-order terms prevent finite-time blow-up that occurs in the hyperbolic equation for
the prolate spheroidal case in this study and from Howell [51] for different geometries, which is not unexpected.
The thinning rate at ν = 0 is quite similar to that of the large curvature limit.

We now turn to the second combination of initial and boundary conditions. We still enforce symmetry at ν = 0,
but we impose h = h0 = 13 [54] and no flux at the other end of the domain (either ν = π/2 or π/4). The
initial condition in this case is h(ν, 0) = 1 + (h0 − 1)(ν/νe)

m; we typically chose m = 16. The film thickness
at the boundary h0 = 13 corresponds to 65 µm, and the thickness of the meniscus decreases to the nominal film
thicknesses between 5 µm and about 1 mm in our computations; the ratio of length scales is still small.

Results for both interval sizes are shown in Figs. 10 and 11. The earlier times are plotted with solid curves; at
those times, a very small amount of fluid has moved to the meniscus region, but a thin region is developing as
the low-pressure meniscus (with a region of positive curvature enforced from the boundary) collects fluid. At later
times, the film distributions with the dashed curves show that the meniscus is larger after collecting fluid from the
rest of the film. When νe = π/2, the meniscus there does not have a strong influence on the thickness evolution at
ν = 0. There is some oscillation in the film thickness in the region connecting the meniscus with the rest of the film;
this is not uncommon in coating or draining flows (e.g., [36]). When νe = π/4, there is some visible influence on
h(0, t), though it is not large. The time scale is about 100 s, and so the time to decrease from 5 µm to about 1.25 µm
as in Fig. 11 is about 24 nondimensional time units, or more than 2hrs dimensionally. This is clearly much too
slow compared to the 4 µm/ min observed experimentally [48]. For p = 16 and νe = π/6, h(νN/2+1, 24) = 0.854,
though there is not monotonic decay in time to this value. Thus, simply shortening the domain does not necessarily
continue to accelerate the thinning rate at ν = 0. We conclude that the thinning due to the substrate curvature
together with the meniscus is insufficient to make a significant contribution to central corneal thinning rates for
physiological times.

4 Discussion and conclusion

Based on an estimate for the thinning rate at the center of the cornea, for both Newtonian or Ellis fluids, the effect
of the cornea’s prolate spheroidal shape is not important when compared with typical tear film thinning rates that
are measured in vivo. The Ellis fluid made no difference at the center of the cornea in the large curvature limit
because the shear thinning terms vanished by symmetry at the ν = 0 stagnation point. These results appear to fit
well with the conclusions of King-Smith et al. [48]. They measured the decrease in thickness as a function of time
following a blink in a central region of the cornea, and they considered the time interval from roughly 2–15 s after
a blink. Thinning rates on the order of 4 µm/ min were found in that study. They hypothesized that the thinning of
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Fig. 11 Same as Fig. 10
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the tear film could be caused by one of three things: (1) inward flow into the cornea; (2) tangential flow along the
corneal surface due to either Marangoni effect or capillary forces; or (3) mass loss due to evaporation. Most authors
believe that flow into the cornea is in fact outward due to an increase in osmolarity in the tear film. Regarding
tangential flow, there is certainly an upward motion of the tear film for 1–2 s following a blink [6,21,22,34], but
this motion dies out to low levels rapidly thereafter, and does not appear to be responsible for the thinning of the
tear film observed in experiment. Regarding flows driven by capillarity and the variation of the tear film thickness,
they appear to be too slow to be significant in this time interval [48] away from localized regions of thinning driven
by the meniscus near the lid margins (the so-called black lines in the literature) [29–32,36]. For the experiments of
King-Smith et al. [48], it thus appears that evaporation is an important contribution to the thinning rate of the tear
film on the cornea. In any case, the contribution to film thinning due to the prolate spheroid shape appears to be at
most 2–10% of the measured values of the thinning rate from King-Smith et al. [48]. In King-Smith et al. [6], the
initial thinning rate at the center of the cornea for the tangentially immobile case was estimated as in Sect. 3.1.1,
and an initial rate of −0.09 µm/ min was found. In this article, our stress-free boundary condition resulted in faster
initial thinning rate estimates. We note that the magnitude of the thinning rate measured experimentally depends
on the method used [55,56], but we believe that our conclusion is robust.

123



R. J. Braun et al.

Taking license with the shear thinning parameters, we found that the type and location of the singularity that
occurs in the large curvature limit differs from that of the Newtonian case considered by Howell [51]. In the New-
tonian case, finite time blow-up occurs on the equator (ν = π/2) which is the location of maximum curvature of
the substrate (that is, where k1 is least negative; see Fig. 2). When an Ellis fluid is used, the singularity is modified
to a shock that forms at a value of ν < π/2 when β (i.e., the shear thinning) is large enough. We used the method
of characteristics to locate the first formation of the shock; our direct numerical method to solve the PDE for the
tear film thickness is not well suited to shock capture. As the shear thinning increases, the shock formation is faster,
and the location is farther from the equator.

We then studied a Newtonian fluid model proposed by Roy et al. [52] with menisci incorporated into the compu-
tation to mimic (and exaggerate) the effect of the eyelid margins. We moved the edge of the computational domain
closer to the center of the eye to increase the effect of the meniscus, so that it could cooperate with the pressure gra-
dient due to the corneal shape. We still found that the thinning rate was not significant enough to warrant including
the effect of the cornea shape when compared to measured thinning rates. The distribution of tear fluid is modified
somewhat from the flat cornea approximation; the tear film does not develop a parabolic cap in the middle because
the substrate curvature variation generates a pressure gradient to drain the fluid from the middle regions far from
the meniscus.

It may be possible in some combination of conditions and/or for some subjects that the corneal shape may affect
the tear film thinning rate on the cornea. For example, if evaporation were essentially halted by humidity and an
unusually effective lipid layer, then the thinning rate of the tear film could have some significant contribution from
the corneal shape. However, in the typical case, the corneal shape may be neglected as a cause for tear film thinning
in comparison to other contributions.

Future study of mathematical interest could include studying different ellipsoidal geometries (not just prolate
spheroids) and the stability of the flow on such ellipsoids, which would require relaxing the axisymmetry assumption.
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and 1022706. R.J.B. thanks H. Abelman for helpful discussion and the Institute for Mathematics and Its Application, University of
Minnesota, for its hospitality and support during this project. R.U. thanks the Department of Mathematical Sciences, University of
Delaware for its support and hospitality while on sabbatical leave there.

Appendix A: Conservation equations and prolate spheroidal coordinates

Mass is conserved for the incompressible fluids of this study by making the flows divergence free:

∇′ · u′ = 0. (35)

Momentum is conserved via

ρ

(
∂u′

∂t ′
+ u′ · ∇′u′

)
= ∇′ · T′ − ∇′p′ (36)

where τ ′ is the dynamic stress tensor. For the Newtonian fluid, we have

τ ′ = η2E′ and 2E′ =
[
∇′u′ + (∇′u′)T

]
; (37)

in this case, the viscosity η is constant and, in the stress, it multiplies the usual rate of strain tensor. For the Ellis
fluid in simple shear flow, the viscosity is a function of the second invariant of the dynamic stress tensor IIτ , namely
[57,58],

η′ = η0

1 + (√|IIτ |/τ1/2
)α−1 . (38)

The zero shear rate viscosity η0, the characteristic shear stress magnitude τ1/2 to reach η = η0/2 and the exponent
α are material parameters. The invariant in the Ellis viscosity expression is given by [57,58]

IIτ = [tr(τ )]2 − tr(τ 2). (39)
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Note that we have made a particular choice for the constant and exponents appearing in the form given by Macosko
[58, p. 86], after Myers [50], for example. The stress components have been related to the rate-of-strain components
for power law fluids in Perazzo and Gratton [59].

Equations (35)–(39) are non-dimensionalized using

t = t ′σ
η0d

, uν = ε3u′
ν

U
, uφ = ε3u′

φ

U
, uµ = ε4u′

µ

U
, p = p′ε2L

σ
, τ = ε3L

σ
τ ′ (40)

where U = ε2σ

η0
and Re = σρd

η2
0

is the Reynolds number. The equations become

∂

∂ν

(
aφuν

) + ∂

∂φ

(
aνuφ

) + ∂

∂µ

(
aφaνuµ

) = 0, (41)

and

Re

(
∂u
∂t

+ u · ∇u
)

= ∇ · (η2E) − ∇p. (42)

Here

∇p = ε

aν

∂p

∂ν
êν + ε

aφ

∂p

∂φ
êφ + ∂p

∂µ
êµ (43)

and the convective terms are

u · ∇u = eµ

[
(u · ∇)uµ − u2

φ√
sinh2 µ + sin2 ν

cosh µ

sinh µ
+ uµ uν cos ν sin ν

[sinh2 µ + sin2 ν]3/2
− u2

ν cosh µ sinh µ(
sinh2 µ + sin2 ν

)3/2

]

+ eν

[
(u · ∇)uν − u2

φ√
sinh2 µ + sin2 ν

cos ν

sin ν
− u2

µ cos ν sin ν(
sinh2 µ + sin2 ν

)3/2 + uµ uν cosh µ sinh µ(
sinh2 µ + sin2 ν

)3/2

]

+ eφ

[
(u · ∇)uφ + uφ√

sinh2 µ + sin2 ν

(
cosh µ

sinh µ
uµ + cos ν

sin ν
uν

)]
, (44)

where, for a scalar function f = f (µ, ν, φ),

(u · ∇)f = uµ√
sinh2 µ + sin2 ν

∂f

∂µ
+ uν√

sinh2 µ + sin2 ν

∂f

∂ν
+ uφ

sinh µ sin ν

∂f

∂φ
. (45)

The rate of strain tensor is the symmetric part of ∇u and has components

Eµµ = 1√
sinh2 µ + sin2 ν

∂uµ

∂µ
+ cos ν sin ν[

sinh2 µ + sin2 ν
]3/2 uν, (46)

Eνν = 1√
sinh2 µ + sin2 ν

∂uν

∂ν
+ cosh µ sinh µ[

sinh2 µ + sin2 ν
]3/2 uµ, (47)

Eφφ = 1

sinh µ sin ν

∂uφ

∂φ
+ 1√

sinh2 µ + sin2 ν

(
cosh µ

sinh µ
uµ + cos ν

sin ν
uν

)
, (48)

Eµν = 1/2√
sinh2 µ + sin2 ν

(
∂uν

∂µ
+ ∂uµ

∂ν

)

− 1/2

[sinh2 µ + sin2 ν]3/2
(cos ν sin ν uµ + cosh µ sinh µ uν) , (49)

Eµφ = 1/2

sinh µ sin ν

∂uµ

∂φ
+ 1/2√

sinh2 µ + sin2 ν

∂uφ

∂µ
− 1/2√

sinh2 µ + sin2 ν

cosh µ

sinh µ
uφ, (50)

Eνφ = 1/2

sinh µ sin ν

∂uν

∂φ
+ 1/2√

sinh2 µ + sin2 ν

∂uφ

∂ν
− 1/2√

sinh2 µ + sin2 ν

cos ν

sin ν
uφ, (51)
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For a Newtonian fluid, the viscous terms are given by

∇ · (2E) = 1

aνaφ

[
ε2 ∂

∂ν

(
aφ

aν

∂

∂ν

)
+ ε2 ∂

∂φ

(
aν

aφ

∂

∂φ

)
+ ∂

∂µ

(
aνaφ

∂

∂µ

)] [
εuν êν + εuφ êφ + ε2uµêµ

]
(52)

For the Ellis fluid, we require the viscous terms to be ∇ · (2ηE), with η a function of the shear stress as indicated
above.

The boundary conditions are, on µ = µ0,

uν = uφ = uµ = 0, (53)

and on µ = µ0 + εh(ν, φ, t),

∂uν

∂µ
+ εkνuν = 0, (54)

∂h

∂t
= uµ − uν

aν

∂h

∂ν
− uφ

aφ

∂h

∂φ
, (55)

and

p = −k1 − εk2η − ε∇2h + O(ε2), (56)

where k1 = kν + kφ and k2 = k2
ν + k2

φ .

Appendix B: Ellis fluid

Here, we give details for the Ellis fluid at leading order for large substrate curvature assuming axisymmetric behavior.
Inside the film 0 < µ̃ < h(ν, t) where µ = µ0 + εµ̃, the leading order equations are

1

sin ν

∂

∂ν
(uν sin ν) + ∂uµ

∂µ̃
= 0, (57)

∂

∂µ̃

(
η
∂uν

∂µ̃

)
= 1

N

∂p

∂ν
, (58)

∂p

∂µ̃
= 0. (59)

On the substrate µ̃ = 0, we still have uν = uµ = 0. On the free surface, µ̃ = h(ν, t), we have at leading order

∂h

∂t
= uµ − uν

aν

∂h

∂ν
, (60)

p = −k1, (61)
∂uν

∂µ̃
= 0. (62)

The Ellis constitutive relation to leading order is

η = 1

1 + β |∂uν/∂µ̃|α−1 . (63)

Integrating (58) once and applying (62) gives

η
∂uν

∂µ̃
= − 1

N

∂p

∂ν
(h − µ̃). (64)

Manipulating the constitutive relations gives

∂uν

∂µ̃
= η

∂uν

∂µ̃
+ β

∣∣∣∣η∂uν

∂µ̃

∣∣∣∣
α−1

η
∂uν

∂µ̃
. (65)
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Combining these last equations, integrating dµ̃, and using the no-slip boundary condition gives

uν = 1

2N

∂p

∂ν

[
(h − µ̃)2 − h2

]
+ βλα−1

(−1

N

∂p

∂ν

)α
hα+1 − (h − µ̃)α+1

α + 1
. (66)

Integrating across the film thickness yields the flux:

q = −1

N

∂p

∂ν

h3

3
− β

∣∣∣∣−1

N

∂p

∂ν

∣∣∣∣
α−1 1

N

∂p

∂ν

hα+2

α + 2
. (67)

Using the leading-order normal stress boundary condition introduces twice the mean substrate curvature; since the
substrate curvature is non-decreasing, we can eliminate the absolute value and we obtain

q = 1

N

∂k1

∂ν

h3

3
+ β

(
1

N

∂k1

∂ν

)α
hα+2

α + 2
. (68)

Using the flux together with conservation of mass inside the film and the kinematic condition for the free surface
yields the evolution Eq. 14 for h in the large curvature limit.
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