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Abstract

A hybrid nanolaminates consisting of Al2O3/ZrO2/alucone (aluminum alkoxides with carbon-containing backbones)

grown by atomic layer deposition (ALD) were reported for an encapsulation of organic light-emitting diodes

(OLEDs). The electrical Ca test in this study was designed to measure the water vapor transmission rate (WVTR) of

nanolaminates. We found that moisture barrier performance was improved with the increasing of the number of

dyads (Al2O3/ZrO2/alucone) and the WVTR reached 8.5 × 10−5 g/m2/day at 25°C, relative humidity (RH) 85%. The half

lifetime of a green OLED with the initial luminance of 1,500 cd/m2 reached 350 h using three pairs of the Al2O3

(15 nm)/ZrO2 (15 nm)/alucone (80 nm) as encapsulation layers.

PACS: 68.35.bm; 68.35.Ct; 68.35.Fx; 73.61.Ph
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Background

Active matrix organic light-emitting diodes (AM OLED)
was focused as the next-generation display since its
great advantages, vivid full color ,high brightness, low
power consumption, fast response time, and suitable for
flexible display [1]. In terms of OLEDs technology, the
encapsulation process is a core technology influencing
both the lifetime and reliability of OLEDs. The devices
need encapsulation materials to protect it from water
and oxygen. Thin film encapsulation (TFE) is consid-
ered as one of the most potent methods to ensure for
protection from moisture and oxygen penetration in
electronic devices [2,3]. Metal oxide thin film has been
the choices for TFE materials such as aluminum oxide
(Al2O3) and zirconium oxide (ZrO2) and titanium oxide
(TiO2) grown by atomic layer deposition (ALD) since
their superior protection forms moisture [4-6]. Re-
cently, several researches have focused on the multi-
layered nanolaminate structure which comprised of

alternating layer of different materials that have individ-
ual layer of nanometer-scale thickness [7,8].
However, inorganic materials have critical weak-

nesses such as cracking and pinhole defects in the layer
surface [9,10]. To solve these problems, alternating in-
organic and organic layer pairs is suggested as an en-
capsulation solution for OLED devices. Generally, in
the multilayer structure, the role of the organic layer is
known to decouple defects in the oxide layers, thereby
preventing propagation of defects through the multi-
layer structure. ALD and molecular layer deposition
(MLD) processes can deposit smooth, conformal, and
pinhole-free films. Recently, an ALD/MLD combin-
ation structure has been proposed because ALD/MLD
multilayers have very good film integrity which causes
them to have advanced performance for thin film en-
capsulation [11-13].
In this study, we report on thin encapsulation layers

deposited by ALD at 85°C. For the thin encapsulation
layers, various nanolaminate structures consisting of
Al2O3/ZrO2/alucone (aluminum alkoxides with carbon-
containing backbones) were tested to determine the best
structure producing the long lifetime devices based on
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the fact that nanolaminate structures significantly en-
hanced the lifetime by suppressing the formation of both
microscopic voids and nanocrystals that could exist in
an Al2O3 or ZrO2 single layer.

Methods

The encapsulation structure of OLEDs is shown in
Figure 1, and OLED devices were fabricated by con-
ventional vacuum deposition system. Encapsulation
layers were deposited by ALD system. An indium tin
oxide (ITO, 10 ohm, 150 nm)-coated glass substrates
were used and cleaned with a detergent solution, de-
ionized water, and acetone. After treated for 10 min
by plasma, the substrate was transferred to vacuum
deposition system. The OLEDs were fabricated by se-
quentially depositing the following organic layer,
which were 4,4′,4″-tris-N-naphthyl-N-phenylamino-
triphenylamine (40 nm) as a hole injection layer, N,
N′-bis-(naphthyl)-N,N′-diphenyl-1,1′-biphenyl-4,4′-di-
amine (20 nm) as a hole transport layer, tris(8-hydroxy-
quinolinato)aluminum (Alq3) doped (20 nm) as a light-
emitting layer, and Alq3(30 nm) as an electron transport
layer using a shadow mask. In addition, lithium fluoride
(LiF, 0.5 nm) and aluminum (Al, 100 nm) as electron in-
jection layer and cathode, respectively, were evaporated
onto the organic layer using a metal shadow mask. The
typical deposition rates were 0.5 Å/s, 0.1 Å/s, and 5.0
Å/s for organic materials, LiF, and Al, respectively.
ALD Al2O3 films were fabricated using H2O and tri-

methylaluminum (TMA) as precursors at 85°C. ALD
ZrO2 films were fabricated using H2O and tetrakis
(dimethylamido) zirconium (TDMAZ) as precursors at
85°C. Nitrogen (N2, 99.999%) was used as a carrier gas
on the TMA/TDMAZ and as the purge gas. Alucone
films were grown using TMA and ethylene glycol (EG)
at 85°C. The process pressure of ALD and MLD was 500

mTorr. In addition, Al2O3 films were deposited using
100 ms of TMA pulse, 7 s of N2 purge time, 100 ms of
H2O pulse, and 7 s of purge, while ZrO2 films were de-
posited using 250 ms of TDMAZ pulse, 10 s of N2

purge, 200 ms H2O pulse, and 10 s of purge time, and
alucone films were deposited using 200 ms of TMA
pulse, 15 s of N2 purge, 300 ms of EG flow with carrier
gas, and 20 s of N2 purge.
The general reactions between the metal alkyl and the

diol of ALD Al2O3 film and MLD alucone film can be
written as follows (Figure 2). The thicknesses of the
ALD film were measured by spectroscopy ellipsometry
at wavelengths from 245.57 to 1,664.00 nm.

Results and discussion

Surface morphology

We have investigated the surface morphology of the
encapsulation film using atomic force microscopy
(AFM) measurement with a trapping mode on the sili-
con wafer substrate. Figure 3a,b,c shows the surface
topography of the single Al2O3, Al2O3/ZrO2, and
Al2O3/ZrO2/alucone, respectively. The root-mean-
square (RMS) surface roughness of the single Al2O3,
Al2O3/ZrO2, and Al2O3/ZrO2/alucone layers was 1.12,
1.31, and 0.83 nm separately. The lower roughness of
Al2O3/ZrO2/alucone film indicates that the introduc-
tion of alucone can make the surface smoother. More-
over, we have observed that the surface topography of
the Al2O3 film was similar to cloth-like while that of
the ZrO2 was grain-like, revealing that the Al2O3 layer
is more suitable to deposit directly onto the cathode
before the ZrO2 layer.

Optical transmission

The used Al2O3, ZrO2, and alucone films are highly
transparent. We have measured the light transmission

Figure 1 Structure of OLED encapsulation. (a) Single Al2O3 film devices. (b) Al2O3/ZrO2 devices. (c) Al2O3/ZrO2/alucone devices. (d) Three pairs

Al2O3/ZrO2/alucone devices.
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characteristics of the encapsulation film, as shown in
Figure 4. The light transmission of the Al2O3 and ZrO2

layer is above 95%. In addition, it is worth to note that
the light transmission of both Al2O3/ZrO2/alucone
(one pair) and Al2O3/ZrO2/alucone (three pairs) are
higher than those of the Al2O3 and ZrO2 layers at the

range of 400 to 700 nm. The addition of alucone can
effectively prevent the light scattering in visible wave-
length (450 to 650 nm) due to the its lower surface
RMS. Although the transmission below 450 nm is in-
deed lower than Al2O3 and Al2O3/ZrO2 films, the
transmission increases due to the decreasing light scat-
tering (Additional file 1: Figure S1). This demonstrates
that organic/inorganic film may be suitable for the vis-
ible electroluminescent emission of the top-emitting
OLEDs.

WVTR result

The Ca test in this study was designed to the water
vapor transmission rate (WVTR) of nanolaminates. The
amount of Ca oxidation was used to calculate the
amount of water vapor using the resistivity of Ca films.
We utilized the 200-nm-thick Ca layer, which is close to
the normal thickness of an aluminum cathode in OLED.
To prevent the Ca film from contacting with water and
oxygen, the ALD system and the equipment for Ca fabri-
cation were connected with a glove box filled with nitro-
gen gas. WVTR of barriers was calculated as the following
equation [14-17]:

p ¼ n
M reagentð Þ

M Cað Þ
δρ

ρ

b

dð1 R= Þ

dt

where n is the molar equivalent of the degradation re-
action, M (reagent) and M (Ca) are the molar masses of the
permeating reagent and Ca, ρis the Ca resistivity, and δ

is the density of Ca. Figure 5 shows the barrier perform-
ance of different thin films. The WVTR values of ALD-
grown moisture barrier films with three pairs of Al2O3/
ZrO2/alucone are as low as 8.5 × 10−5 g/m2/day at 25°C,
85% relative humidity (RH).

Lifetime of OLED

We have measured the lifetime of OLEDs encapsulated
by various ALD thin film structure. For devices A and B,
the passivation film were Al2O3 (30 nm) and Al2O3 (15
nm)/ZrO2 (15 nm), while devices C and D used Al2O3

(15 nm)/ZrO2 (15 nm)/alucone (80 nm) and three pairs
of Al2O3 (15 nm)/ZrO2 (15 nm)/alucone (80 nm). We
compared the evolution of the luminance devices A, B,
C, and D as shown in Figure 6. It was shown that the
lifetime of device A with single Al2O3 layer decreased
obviously than device B with Al2O3 (15 nm)/ZrO2 (15
nm). The Al2O3 layer acted as a better moisture barrier
than ZrO2 at the same thickness. The Al2O3 layer func-
tioned as a better moisture barrier than ZrO2 at the
same thickness. The WVTR of Al2O3 and ZrO2 were

(a) The reaction of ALD processes for Al2O3 film

(b) The reaction of ALD processes for ZrO2 film

(c) The reaction of MLD processes for alucone film

Figure 2 The reaction of encapsulation film. (a) ALD Al2O3

film reaction. (b) ALD ZrO2 film reaction. (c) MLD alucone

film reaction.
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2.38 × 10−3 g/m2/day and 4.5 × 10−3 g/m2/day when fix-
ing the film thickness by 30 nm. A denser ZrAlxOy-
aluminate phase with higher packing density could be
formed at the interfaces between Al2O3 and ZrO2, lead-
ing to a densification at the Al2O3/ZrO2 interfaces
[18,19]. Because the permeation rate for gasses such as
water vapor depends on the density of the material, even
a small amount of water can enter into the device
through the thin film.
Device D with three pairs of inorganic/organic hybrid

layers can drastically improve the lifetime of OLED be-
cause the organic layer (alucone) may increase the water
vapor diffusion path in the film and decrease the diffu-
sion speed (or diffusivity) by trapping water vapor chem-
ically. Generally, it is called a ‘tortuous path’, which is
possibly governed by the strong dependence of the
WVTR on the organic layer thickness [10,20,21]. The

half lifetime of a green OLED with the initial luminance
of 1,500 cd/m2 reached 380 h using three pairs of the
Al2O3 (15 nm)/ZrO2 (15 nm)/alucone (80 nm) as encap-
sulation layers.

Conclusions

Hybrid Al2O3/ZrO2/alucone thin film encapsulation
structure can obviously improve barrier performance.
The WVTR is as low as 8.5 × 10−5 g/m2/day at 25°C,
85% RH. A half lifetime of 380 h at initial luminance
of 1,500 cd/m2 for a green organic light-emitting
diode with developed TFE technology has been
achieved.

a b c

Figure 3 AFM picture of thin film. (a) Single Al2O3 film. (b) Al2O3/ZrO2 film. (c) Al2O3/ZrO2/alucone film.
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Figure 4 Light transmission characteristics of the

encapsulation film.
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Figure 5 Permeation rate measurement of

ALD encapsulation.
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Additional file

Additional file 1: Figure S1. The light scattering in visible wavelength

(450-650 nm) for different type of encapsulated film.
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Figure 6 Lifetime measurement of OLED with thin

film encapsulation.
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