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Abstract
We review recently published advancements in thin-film organic devices,
ranging from the composition and properties of organic materials to be used
in devices, to the applications of devices, with special emphasis on thin-film
transistors, diodes, and chemical sensors. We present exemplary materials
used in each kind of device, outline the physical mechanisms behind the
functioning of the devices, and discuss the most advanced capabilities of
the devices and device assemblies. Advantages to the selection of organic
and polymeric materials, future prospects, and challenges for organic-based
electronics are also considered.
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INTRODUCTION

Many electronic devices commonly employed in CMOS circuitry have functional counterparts
made from organic materials. Passive elements including conductive leads, antennas, gate di-
electrics, interlayer dielectrics, and storage capacitors can all be fabricated from conductive and/or
dielectric polymers. Transistors, diodes, sensors, transducers, and memory elements can incorpo-
rate semiconductors consisting of organic molecular solids and/or semiconducting polymers. An-
ticipated applications of these devices are in circuits of moderate complexity, such as display drivers,
radio-frequency identification (RFID) tags, or pressure mapping elements (1–4). A few versions
of portable or flexible displays that include organic materials are already available or planned for
commercial release, including the Sony eBook®, Amazon Kindle®, and Polymer Vision Readius®.
Development of complex organic-based circuitry for RFID tags has resulted in demonstrations
of megahertz switching speeds (5, 6). New uses for organic semiconductors (OSCs), such as in
wireless power distribution (7), have been proposed.

Organic materials to be used in devices can be grouped as permanent conductors and insulators,
switchable conductors (semiconductors), and materials with added functionality beyond simple
switching, such as chemical recognition, piezoelectricity, and hysteresis. These materials have long
histories and thus have predictable behaviors when they are being considered for a given device
application. But there have been many notable advances in the design and use of these materials in
the past few years, and new capabilities and properties have been revealed. Such materials have been
incorporated and combined to produce complex functionality that cannot always be duplicated
in silicon. The processing options and mechanical flexibility of some of these materials open
new opportunities for their use over large areas or in unusual topologies. This review describes
some of these advances. Exemplary materials used in each device are presented, and the most
advanced capabilities of the devices and device assemblies are discussed. The reader is encouraged
to consider references cited in this review as leading references for further background on specific
materials. We attempt to evaluate the prospects for application of these devices in anticipated
future technologies.

Light-emitting diodes made with organic emissive materials have been extensively investi-
gated and are already commercialized. Electrons and holes are injected from low- and high-work-
function electrodes, respectively, and are made to recombine at a molecular subunit with high
emission probability from its excited state, often a triplet state. Because of their advanced tech-
nological status, large existing literature, and rarity in logic circuits, these organic light-emitting
diodes (OLEDs) are not covered in this review. Another emerging application of OSCs involves
alternative photovoltaics. Bilayers, networks, and composites containing hole and electron trans-
porters, some or all of which are organic or polymeric materials, are deposited as thin films
in stacks with electrodes of different work functions. They simultaneously produce voltages of
0.5–1 V and significant current in response to solar radiation. This is another application that is
developing its own extensive community and literature and that is not particularly connected to
functional electronics, except perhaps as an integrated power source. The photovoltaics are also
omitted from this review.

CONDUCTIVE POLYMERS

Conductive polymers are preferred materials for leads and contacts in organic devices because of
their suitability for printing. There are three main classes of conductive polymers used for printed
electronics: polythiophenes (and related polypyrroles), polyanilines, and insulating polymers filled
with conductive nanostructures (Figure 1). Although such materials have been known for decades,
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Figure 1
Structures of prototypical conducting polymers.

refinements continue to be made to optimize processability, conductivity, and transparency simul-
taneously. The term processability here refers to factors such as viscosity and surface energy that
govern the fidelity and resolution of transferring these materials as conductive lines to arbitrary
surfaces by conventional ink printing or by dry transfer of a line of solid material.

Poly(ethylenedioxythiophene) (PEDOT) is arguably the most widely employed conductive
polymer for organic electronic device contacts (8). It is available commercially as a convenient
aqueous dispersion from Bayer under the trade name Baytron®. The commercial formulation is
often suitable for prototyping because of its ease of deposition and performance on both con-
ductive substrates and nonconductive substrates (9–11). PEDOT has been employed as transistor
source and drain in printed all-polymer transistors (12). Improved versions are often desired
because of the need for higher conductivity, transparency, lower surface energy, higher viscos-
ity, and/or greater chemical homogeneity. Therefore, numerous research groups have produced
chemical variations of PEDOT by altering the main chain ring sequence, the nature of the dioxy
substituents, or the counterionic component (8). By polymerizing a novel monomer solution in
situ, researchers produced a film with conductivity of 170 S cm−1 (8). The process required a
thermal conversion; other related electrochemical processes also require conductive substrates. In
an especially intriguing variation, the sulfur in the PEDOT structure was replaced by selenium
(13). The resulting polymer exhibited a pressed pellet conductivity in its doped state of 30 S cm−1

and showed clean spectroelectrochemistry.
Polyaniline is a second, relatively stable polymeric conductor, with a history that extends back

for decades (14). Depending on the oxidation state, dopant type and level, and additives, the ma-
terial may act as a hole conductor, a proton conductor, or both. It may be blended with insulating
polymer matrices to yield composites with the desired mechanical and electrical properties simul-
taneously. The polymer partner can be introduced as a polyanion to counter the positive charge of
active polyaniline (15). The morphology of individual polyaniline domains may be tuned from fi-
brular to particulate, depending on the intended deposition method and the need for a supporting
matrix (16, 17).

Carbon nanotubes dispersed in polymer matrices confer a very wide range of conductivi-
ties, depending on nanotube surface treatments and dispersion methods (18). Some conductivity
values exceed 1 S cm−1. The required loading levels are just a few percent, considerably less
than the levels needed for carbon black–polymer conductive composites (19). Suitable matrices
include the transparent and widely available poly(methyl methacrylate) and polystyrene. Polyani-
line represents another possible matrix; in that case, percolation requires only a close approach
of nanotubes, rather than direct contact, and even lower loading levels are possible (20, 21). A
polyaniline-nanotube composite with loading levels on the order of 1% was patterned by use of
laser ablation–induced dry transfer to make conductive lines suitable for organic electronics (22).
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Numerous other conductive fillers, such as gold and platinum particles, semiconductor quantum
dots, carbon black, and transition-metal oxides, have been added to polyaniline (23–29).

A recent pair of papers argued that polyheterocycles are neither stable nor conductive enough
to be relied upon as leads for organic transistors (30, 31) and therefore proposed an inorganic
alternative comprising silver leads deposited as an electroless metal precursor ink. These leads were
used to make bottom contact transistors with a thiophene-based polymeric semiconductor and
showed low contact resistance and conductivity of thousands of Siemens per centimeter. Annealing
above 150◦C was required, which may have limited utility on plastic substrates. The need for
higher-conductivity silver instead of a conductive polymer will likely be strongly dependent on
the exact component dimensions. A 2-μm-resolution dry-transfer method was just demonstrated
for silver electrodes (32).

DIELECTRIC POLYMERS

Composition and Properties

The most prominent role for insulating polymers in organic devices involves the gate dielectric
for organic field-effect transistors (OFETs). Many common polymers can serve this function, in-
cluding poly(methyl methacrylate), poly(vinyl phenol) and other polystyrenes, polyvinyl alcohol,
polyimides, silicone network polymers, and parylene (Figure 2) (33, 34). Solution-based pattern-
ing of overlaying layers, including semiconductors and contacts, is eased by use of cross-linkable
polymer dielectrics (35). Polymers are sometimes used as one of two dielectric layers whereby one
is relied upon for dielectric strength or capacitance, whereas the other is designed to present a
preferred interface for growth of an OSC. The polarity, viscosity, hydrophobicity, and roughness
of polymer dielectrics all play roles in the quality of OSC films grown on them. A particular
challenge is to pattern polymer dielectrics using efficient processes while retaining the physi-
cal and electronic features that lead to high-performance transistors. The BASF group recently
led a collaboration that produced working transistor circuits using materials that were deposited
in a roll printing process sequence, including dielectric polymers as transistor gate dielectrics
(36). Higher-performance devices and circuits have been obtained with more precise lithographic
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Figure 2
Representative dielectric polymers.
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patterning techniques (37–39). Additional patterning complexity is needed for circuits based on
multiple metallization layers. Communication among layers occurs through vias opened through
dielectric layers. Thus, the dielectric layers need to be amenable to selective etching or dissolution
in the vertical direction.

A more passive application of dielectric polymers, which is nevertheless vital for electrical en-
ergy management, involves their use as separators/isolators in storage capacitors (40–42). Hy-
drophobic polymers are sometimes selected because of their very high breakdown strength,
whereas more polar alternatives provide higher dielectric constants. Inorganic and nanostruc-
tured additives, such as ferroelectric oxides and carbon nanotubes, are often added to produce
composites with still higher dielectric constants. Part of the enhancement in such systems may
arise from the polarization of the interfaces between the polymers and additive phases (43–45).

Piezoelectric Properties

A more active use of dielectric polymers includes their applications as pressure sensors, which
convert mechanical displacement to an electrical signal, and actuators, which convert voltage
differentials to mechanical distortions. The former are referred to as piezoelectric sensors, and the
latter as artificial muscles. Polymers that have alignable dipolar monomer units, often displaying
ferroelectric transitions, can be used in such devices. Once aligned, a film of such a polymer has a net
voltage across it. Maintaining this voltage in the face of a change in thickness necessitates current
being driven across an external circuit because of the accompanying capacitance change. If current
cannot flow, then the voltage differential must change because the polarization is kept constant.
The polarization can be read directly as a voltage signal in response to the dimensional change,
or the polarization can be amplified if it alters the gate voltage of a powered transistor (4, 46, 47).
Any realignment of the dipole arrays in response to applied electric fields results in a large change
in electrical polarization of the polymer and is thus associated with a large dielectric constant.
The energy stored during this realignment process represents a third application embodiment
for this class of polymers. The best-known examples of these piezoelectric/ferroelectric polymers
are based on 1,1-difluoroethylene monomers, sometimes with added comonomers in the polymer
chains (Figure 3) (29, 48). Cross-linked polymers with conductive additives below the percolation
threshold can also be used in place of piezoelectrics for the pressure-sensing application (4, 47).
Both the switchable polarization and the high capacitance have been employed to confer tunable
and reduced turn-on voltages when ferroelectric polymers were used as organic transistor gate
dielectrics (49–51). Very recent work has also employed polymer gate dielectrics for organic

F F F F F F F F F F

F F F F F F F F F F

Figure 3
Structure of poly(vinylidene fluoride) illustrating additive dipoles.
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transistors in which static charge altered the polarization state (52). Thus, distinct transistors
made from identical materials and with identical layouts can serve different functions in circuits
because of their tuned turn-on voltages and charge carrier mobilities. At a given gate voltage, the
static charge can alter the output current by two orders of magnitude and can alter the voltage-
dependent mobility by one order of magnitude. The difference in states of these transistors can
be used in principle as a memory element or, more practically, as a tool for circuit tuning.

ORGANIC AND POLYMERIC SEMICONDUCTORS

Classes of p-Channel Organic Semiconductors

The number of research groups devoting significant effort to the synthesis of OSCs has grown
from just a few in the late 1990s to many dozens at the present time. There are now hundreds
of compounds that have been demonstrated as hole-transporting ( p-channel) semiconductors in
field-effect transistors (FETs). The preference for holes is determined by the highest occupied
molecular orbital (HOMO) energy levels relative to contact work functions and environmental
quenchers. It would be futile to list all the compounds individually because new ones are reported
each month. Many exhibit field-effect mobilities on the order of 0.1 to 2 cm2 Vs−1, at or exceeding
the value generally associated with amorphous silicon (which is an electron transporter used as a
relatively inexpensive semiconductor for display applications). The main classes of hole-carrying
molecular solid OSCs include fused rings (such as pentacene, thienothiophene, benzodithiophene,
dithienoanthracene, and tetracene), short oligomeric chains of rings (various combinations of thio-
phenes, phenylenes, thiazoles, and pyrroles), ethylene and ethynylene groups, and selenophenes.
A few such structures are shown in Figure 4. Side chains provide additional morphology, process-
ing, and reliability control (53–67). Outstanding mobility, >10 cm2 Vs−1, has been established for
a unique single crystal, rubrene (54, 68). Some very recent examples of organic p-channel semi-
conductor solids are cited here (69–80); these are intended as the most recent practical entrants
into the literature and only hint at the variety of organic structures now being considered. There
has also been great recent progress in the design of polymeric hole-transporting semiconductors
based on thiophene copolymerized with single- and fused-ring comonomers (81, 82). The struc-
tures of the comonomers, along with the judicious sizing and placement of side chains, promote
self-assembly of chains that facilitate charge transfer among them and thereby increase charge
carrier mobility across a bulk film (83–88).

n-Channel Organic Semiconductors

There are considerably fewer molecular structures that have been identified as preferentially
electron-carrying (n-channel) transistor semiconductors, although the list has grown rapidly in the
past two years and now approaches 100 total compounds. n-OSCs are needed to take advantage of
the greater power efficiency of complementary transistor circuits, as well as to develop devices that
relay on p-n junctions, such as thermoelectric modules and solar cells. Pi frameworks that can be
the basis of n-OSCs must provide sufficient stability of injected electrons relative to environmental
quenchers such as oxygen and synthesis residues in and around OSCs. For thermodynamic stability
of the radical anion to oxygen and water, the reduction potential of an n-OSC would need to be
more positive than the standard calomel electrode (SCE) (89). A challenge of using such materials
would be to prevent their accidental doping by environmental agents that would render them
permanently conductive. The lowest unoccupied molecular orbital (LUMO) energy levels of
most conjugated organic compounds lie outside the preferred ranges for electron transport.
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Figure 4
Some p-channel semiconductors.

In 2000, Katz et al. (90, 91) showed that thermally evaporated thin films of various N,N′-
disubstituted naphthalenetetracarboxylic diimides (NTCDIs) (Figure 5) demonstrated high field-
effect electron mobilities both in vacuum and in air. These materials exhibited mobilities on the
order of 10−1 cm2 Vs−1, even in air. Fluoroalkyl chains remote from the core play a role in allowing
the compounds to be employed in air, although the exact mechanism remains unproven (92). Even
a single CF3 group on a small side chain such as benzyl greatly increased air stability (90, 93–95).
More recently, other researchers have demonstrated high mobilities from other large-cross-section
side chains such as cyclohexyl (96); substitution of the NTCDI core with electron-withdrawing
groups to increase thermodynamic stability of radical anions (97–99); and use of extended di-
imides such as perylenetetracarboxylic diimides (PTCDIs) (99–107), anthracenedicarboximides
(108, 109), and higher rylenes (110). A series of PTCDIs with small substituents such as core-
chloro, core-fluoro, N-heptafluorobutyl, and N-phenethyl showed mobilities of 0.1–0.7 cm2 Vs−1,
with some retaining most of the mobility in air (102, 104, 105). A noteworthy electron-transporting
polymer with a mobility of approximately 0.01 cm2 Vs−1 was made by copolymerizing a PTCDI
with dithienothiophene (111).

The most recently reported n-OSCs include trifluoromethyl-substituted fused rings (112),
fused heterocyclic diones (113), perfluoroalkyl-substituted acenes (114), and naphthalenetetracar-
boxylic diimides with elaborated fluoro-substituted side chains (115). These build on a library of
other n-OSCs that include oligothiophenes (116–119) substituted with perfluoroacyls, perfluo-
rophenyls, polycyanovinyls, difluoromethylenes, aza heterocycles (120–123), perfluoropentacene
(124) and aza-acenes (125), and terthienoquinoids (116, 126–129). With organosilane surface
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Some recently discovered n-channel semiconductors.

modifications and high-vacuum measurement, mobilities of 0.1–1.2 cm2 Vs−1 were observed
from oligomers with aza ring positions and CF3 termini, although other parts of the oligomer
structure were sulfur rich and seemingly electron donating (121, 122, 130). Carbonyl func-
tionalized quaterthiophenes and anthracenedicarboximides have yielded maximum mobilities of
0.34 cm2 Vs−1 in vacuum (109, 131). Fluoro-substitution remains a common theme among most
of these compounds. Carbonyl functional groups are also effective in lowering the energies of
injected electrons, whereas some other functional groups such as nitro and oxadiazole seem to be
less beneficial (132).

ORGANIC DEVICES

Organic Field-Effect Transistors

An OFET is basically a capacitor, with a sandwich-like structure consisting of gate, dielectric,
and semiconductor layers. Two metal contacts, the source and drain electrodes, are connected
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Figure 6
Layouts of organic field-effect transistors (OFETs) and current-voltage curves for various gate voltages of a
typical organic transistor.

electrically to the semiconductor film, as shown schematically in Figure 6. This structure was
initially developed for amorphous silicon transistors (133). For testing purposes, a conductive
substrate is used as mechanical support and also acts as gate electrode. Insulating oxide or polymeric
insulators coated on the gate, with or without surface treatment, act as dielectric layers. OFETs
are usually operated in accumulation mode, with the source always grounded. Without applied
gate voltage Vg, the intrinsic conductivity of most OSCs is low; when a source-drain voltage Vd is
applied between two electrodes, very little current can flow through the semiconductor thin film,
and the device is in the OFF state. When a gate voltage Vg is applied on the gate, a potential gradient
is built in the capacitor structure, and charges then accumulate at the dielectric-semiconductor
interface. Those charges are mostly mobile and lead to the formation of conducting channels
between source and drain, charges move in response to the applied Vd, and the transistor is in the
ON state.

Most OSCs are not intentionally doped so that charges are actually injected and extracted
from source and drain electrodes. For most cases, there is mismatch between the Fermi level of
metal electrodes and HOMO (LUMO) of p-channel (n-channel) semiconductors, which induces
charge injection barriers. A nonzero Vg is required to shift the molecular orbital energy levels of
semiconductors up or down so that the molecular orbitals become resonant with the Fermi level
of metal electrodes and reduce the charge injection barriers. In addition, there are always trap
states in the semiconductor film that are induced from impurities and defects (including grain
boundaries), as well as molecules like H2O and O2 adsorbed from the environment. A nonzero
Vg must be applied to fill these trap states before charges can be transported in semiconductor
films. The threshold voltage Vt was defined to account for all those effects. In other words, Vt is
the minimum gate voltage needed to turn on the organic thin-film transistor device.

With the gradual-channel approximation, the source-drain current Id of the organic thin-film
transistor device is given by Equation 1 (134, 135):

Id = W
L

Cμ

[
(Vg − Vt ) − Vd

2

]
Vd, 1.

where μ is the carrier mobility, C is the capacitance of the dielectric insulator per unit area, and
W and L are channel width and length, respectively.

When Vd � (Vg − Vt), the Vd/2 term is negligible, and Id is linearly proportional to Vd; the
device is operating in the linear region. When Vd is increased to be comparable with Vg, there
is no potential difference between the gate and the semiconductor near the drain electrode, and
the mobile charges at that area are depleted. Further increases in Vd will induce a larger depleted
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region in the conduction channel, and the source-drain current Id is saturated and does not increase
with increased Vd. In that case, the device is operating in the saturation region. This relationship
is described by Equation 2, which was obtained from Equation 1 by assuming Vd = Vg − Vt. The
drain current in the saturation region is called saturation source-drain current, denoted as Id,sat:

Id,sat = W
2L

Cμ(Vg − Vt )2. 2.

Charge mobility μ defines the velocity per unit applied to the electric field of charge carriers.
Mobility μ is usually a function of gate voltage. Although the charge transport mechanism in
OSCs is still not fully understood, several models have been developed to interpret the gate
voltage dependence of mobility (135–138). In general, there are traps distributed in OSCs. When
gate voltage is increased, more traps are filled by the injected charges, leaving fewer traps retarding
the movement of charges. Hence, charges move faster at higher gate voltage, which is consistent
with the fact that mobility usually increases with increased gate voltage for most OFETs reported.
In cases in which mobility does not seem to increase with increased gate voltage, contact resistance
may have a relatively stronger effect on output currents at higher gate voltages, diminishing the
apparent mobility.

p-n Semiconductor Junction Diodes

Although diodes are seemingly less glamorous than FETs and have received much less attention
from the organic electronics community, they also have a role to play in organic-based circuitry.
Solution-deposited diodes could be useful elements of printable RFID and signal generation
circuits. Such diodes are considered important enough for the RFID application that an IEEE
standards working group has been formed to develop evaluation methods for them (announced at
http://grouper.ieee.org/groups/1620/2/). In 2000, the Philips Corporation obtained a patent
on an organic transponder, for which rectification was achieved by use of diodes of undefined
composition (139). The 3M group demonstrated a prototype organic RFID circuit based entirely
on OFETs, in which radio-frequency input is coupled directly to the logic circuitry without a rec-
tification stage (140). The IMEC research center fabricated a 50-MHz RFID rectifying Schottky
diode with pentacene as the sole semiconductor by utilizing the work function difference between
gold and aluminum (6). Besides the RFID application, which may be problematic because of the
circuit complexity and fierce competition from silicon-based components, organic diodes may
exhibit useful sensitivities that would be independent of FET responses, such as for temperature
(4, 141) and chemical sensors (142). Figure 7 shows a current-voltage plot for a hybrid diode.

The physics of inorganic semiconductor diodes has been thoroughly treated in textbooks (143,
144). Doping profiles affect carrier concentrations, the nature of the depletion layer at the p-n
interface, the junction breakdown voltages, and device speeds. Carrier mobilities control both the
saturation current density of the p-n junction and the series resistance of the bulk semiconductors
on either side of the junction. Carrier density and trapping (145) play a key role in controlling diode
function; for example, such effects in the depletion layer are a significant source of deviation of
diodes from ideal behavior. A large number of alternative inorganic p-n junction diodes have been
reported, whereas organic/inorganic and all-OSC junctions have received relatively less attention
(146).

There is some understanding of the electronic properties of the organic p-n junction, al-
though this knowledge is limited compared with our understanding of inorganic p-n junc-
tions and should be developed further considering the impact of organic p-n junctions on
OLEDs and solar cells (147, 148). An early diode was fabricated through solution deposition of
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Figure 7
Current-voltage plots (linear and log scales) for a pentacene-ZnO p-n junction diode.

poly[2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylenevinylene] (MEHPPV) and vapor deposition
of poly(3,4-dicyanothiophene) with gold electrodes on both sides (149). There, rectifying charac-
ter was assigned to the p-n junction. Both dark rectification and photoconductivity were observed.
An internal electric field was seen, but its origin was not completely defined. Ink-jet printing of a
similar diode, with a cyano-substituted MEHPPV as electron carrier, was demonstrated elsewhere
(150). An interfacial carrier density was observed in tris(8-hydroxyquinoline)aluminum (ALQ3)
adjacent to the hole carrier N,N′-diphenyl-N,N′-bis(1-napthyl)-1,1′-biphenyl-4,4′-diamine by use
of bias-dependent capacitance measurements (151). Diodes using naphthalene tetracarboxylic di-
anhydride (NTCDA) and polymeric hole carriers operated as expected (152), with electron injec-
tion into the NTCDA defining the forward bias direction.

A molecular solid homojunction (Figure 8) was made from two layers of zinc phthalocyanine,
one layer with an n-dopant and another layer with a p-dopant (153). The importance of this
experiment was that the device had a degree of epitaxy between the layers, as in the case of
inorganic diodes composed of two layers of the same semiconductor, differing only in the nature
of the doping in each layer. In the case of the phthalocyanine diode, an insulating layer was inserted
between the doped layers to prevent tunneling through the heterojunction. A built-in potential
of 0.8 V was determined through use of capacitance-voltage measurements, although this was not
strictly a junction potential because of the insulating layer. In a related device, the junction voltage
at the interface of copper phthalocyanine and its perfluorinated analog increased charge carrier
density and led to ambipolar transport when the two semiconductors were stacked in a bilayer
(154).

The Katz group (155) recently prepared n-ZnO/p-pentacene and n-ZnO/poly[5,5′-bis(3-
dodecyl-2-thienyl)-2,2′-bithiophene] ( p-PQT-12) vertical p-n junction diodes on indium tin oxide
(ITO)-coated glass. The current densities were 160 A cm−2 and 350 A cm−2, respectively, which
were comparable to those of other recent organic vertical diodes. The DC rectification ratio at
±5.5 V was approximately 3 × 103 for the ZnO/pentacene diode, and the turn-on voltage was
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Figure 8
Capacitance-voltage plot showing the built-in potential of vertical phthalocyanine multilayers. From
Reference 153.

approximately 1 V. The current density for the n-ZnO/p-PQT-12 diode reached 350 A cm−2.
With respect to open-atmosphere measurements, the response speeds of these devices are much
higher than the previously reported organic vertical Schottky diode. Strong rectification is de-
tected with frequencies on the order of 10 MHz, measured as wave outputs from oscillating inputs
via an oscilloscope rather than as an integrated output over macroscopic time. This performance
enhancement is attributed partly to the commensurate sizes of the ZnO grains (tens of nanome-
ters) and domains of the OSCs deposited on top, as well as the overall high mobilities of the
semiconductors (155).

Organic Thin-Film Transistor Sensors

Organic thin-film transistors offer great potential for applications in chemical and biological
sensing for homeland security, environmental monitoring, industry manufacturing, and medi-
cal/biological detection. Besides the advantages of being easily processable, low cost, and com-
patible with plastic substrates, another essential advantage of sensors based on organic thin-film
transistors is that the OSC compound can be chemically functionalized via covalently bonded side
groups, which can make the adsorption of analytes of interest more favorable, thereby improving
the selectivity of the sensor. Compared with inorganic devices, the binding chemistry of adding
functional groups is better defined for OSCs, and synthetic chemistry provides great freedom to
introduce various side groups to make the sensor more sensitive to analytes of interest, ranging
from toxic or explosive vapors to biologically/medically important molecules. Two types of organic
thin-film transistors have been studied extensively: sensors based on OFETs and sensors based on
organic electrochemical transistors (OECTs).

For OFET sensors, analyte molecules diffuse into grain boundaries of the semiconductor film
and interact with semiconductors in the conduction channel. Those analyte molecules can have
various effects on organic OFETs, such as doping or quenching-induced charge-carrier-density
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variation and dipole-induced trapping and retarding of charges. Those interactions alter the
threshold voltages and the mobilities of devices and hence change the current flow through thin
OSC films between source and drain electrodes.

Various approaches have been demonstrated to improve the sensitivity, selectivity, stability,
and response speed of OFET sensors. Ultrathin OFET sensors with semiconductor layers only
several molecular monolayers thick have exhibited enhanced sensitivity and response speed that
are orders of magnitude higher than for conventional thick OFETs (156, 157). The first few
molecular monolayers of OSCs define the conduction channels of OFETs. For OFET sensors with
only a few molecular monolayers of semiconductors, the conduction channels are exposed to the
environment. Analyte molecules can interact directly with the conduction channel without having
to diffuse through a thick semiconductor film and hence enhance the sensitivity and response speed
of OFET sensors by orders of magnitude. In addition to the improved sensitivity and selectivity of
the OFET sensors, the application of ultrathin semiconductor films was also reported to improve
the baseline stability of sensors (158).

A major challenge of OFET sensors is to achieve selective and specific detection. Organic
transistors with functionalized receptor layers play an essential role in the improvement of the
selectivity of OFET sensors. For example, alkyl- and alkoxy-substituted polythiophene exhibited
a selective response to analyte vapors in terms of analyte alkyl chain length and analyte dipole mo-
ment, respectively (159). In addition, bilayer blend OFET sensors with a hydroxyl-functionalized
semiconductor incorporated into a receptor layer above the OSC film exhibited an improved re-
sponse to phosphonate vapors compared with a single-component device without functionalized
receptor layers (160).

Although increasing progress has been made in improving the selectivity of OFET sensors,
further enhanced specific detection of analytes with similar chemical structure or physical prop-
erties remains an open issue, for example, to discriminate analytes with potential interference
analytes and, even more precisely, to discriminate among exposures to different optical isomers of
the same chemical skeleton. Recently, Torsi et al. (161) demonstrated that bilayer OFET sensors
endowed with chiral side groups exhibit different responses upon exposure to optical isomers in the
tens-of-parts-per-million concentration range (Figure 9). Here the receptor layer with built-in
enantioselective properties played a key role in achieving chiral differential detection (161).

Arrays of sensors with different sensitivities/responses to individual analytes have also been
used to improve the selectivity of sensors. Metal-free phthalocyanines and phthalocyanines with
Co, Ni, and Cu metalation were used as active materials of chemical sensors and show contrasting
oxidation/reduction behaviors to the H2O2 owing to the catalytic redox contrast in the sensor
array (162).

Humidity is a potential interfering factor for OFET sensors. Most OFETs exhibit degraded
performance in a humid environment (163–165). Furthermore, developing OFET sensors that are
suitable for aqueous systems remains a big challenge. Recently, Bao et al. (166) reported a way to
circumvent this aqueous-incompatible problem by the application of ultrathin gate dielectric layers
and OSCs containing long aliphatic side groups. Ultrathin, cross-linked gate dielectric polymers
enable low-voltage transistor operation in aqueous media, and OSCs containing long aliphatic
side groups are considered to be less sensitive to H2O owing to the close-packed hydropho-
bic surfaces. OFET sensors made from 5,5′-bis-(7-dodecyl-9H-fluoren-2-yl)-2,2′-bithiophene
(DDFTTF) exhibited stable operation in aqueous media and achieved detection at the hundreds
of part-per-billion concentration level.

Although most OFET sensors use crystalline OSC films, OFETs functioning with amor-
phous semiconducting polymers can also detect NO2. The threshold voltage, rather than the
charge mobility, shows the strongest sensing response, which is attributed to the absence of grain
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Bilayer organic field-effect transistor sensors endowed with chiral side groups (orange circles). Redrawn from Reference 161 with
permission.

boundaries (167). Cao and coworkers (168) reported in situ fabrication of organic polymer sensors
with polymer semiconductor and gold electrodes fabricated simultaneously by soft lithography
techniques, which combined nanotransfer printing and solventless polymerization inside stamp
channels.

Device sizes of OFET sensors also play an important role in chemical vapor detection.
Dodabalapur and colleagues (169) reported scaling behavior of the sensing response. When the
dimension of OFET sensors was reduced to the nanoscale, the sensor behaved differently from
large-scale devices (169). Pentacene OFET sensors with a long channel length showed a decrease
in source-drain current upon exposure to 1-pentanol vapor, whereas an increase in the current
was observed for a device with a channel length of less than 150 nm.

Besides OFETs, sensors based on OECTs have been widely studied as biological sensors.
For OECT sensors, an electrolyte layer, instead of the insulator layer typically in OFETs, was
inserted between the OSC layer and the gate electrode. Source-drain current is modulated by
electrochemical doping/dedoping of the semiconductor by ions from the electrolyte layer. A small
change in the ion concentration can induce a large change in the source-drain current (170).
Malliaras and colleagues (171, 172) have demonstrated the use of OECT sensors in the detection
of glucose at concentrations down to 1 μM and observed reversible responses.

FUTURE PROSPECTS

The devices described in this review, and the materials used to make them, have been rigorously
demonstrated to function in individual devices. The next great challenge in organic electronics is to

84 Katz · Huang

A
nn

u.
 R

ev
. M

at
er

. R
es

. 2
00

9.
39

:7
1-

92
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 U

ni
ve

rs
id

ad
 d

e 
L

os
 A

nd
es

 o
n 

08
/0

4/
11

. F
or

 p
er

so
na

l u
se

 o
nl

y.



ANRV380-MR39-04 ARI 27 May 2009 14:20

scale up their function in terms of numbers and degree of interconnection. For example, although
circuits with multiple different types of transistors have been arduously produced, they now need
to be made more elegantly and to perform more elaborate information processing. Arrays of
sensors need to be diverse enough to discriminate among related analytes in a “fingerprint” sense.
The energy losses of organic circuits, such as energy losses from contact resistance and hysteresis,
need to be better controlled, and conversely, opportunities to use organic electronics in energy
harvesting need to be sought. Finally, to realize applications such as artificial skin and plastic-based
robotics, it will be necessary to combine the elementary functions of individual organic devices
into coordinated, higher-order operations on single substrates.
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