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Abstract: This article describes the effect of thermal radiation on the thin film nanofluid flow of

a Williamson fluid over an unsteady stretching surface with variable fluid properties. The basic

governing equations of continuity, momentum, energy, and concentration are incorporated. The effect

of thermal radiation and viscous dissipation terms are included in the energy equation. The energy

and concentration fields are also coupled with the effect of Dufour and Soret. The transformations

are used to reduce the unsteady equations of velocity, temperature and concentration in the set of

nonlinear differential equations and these equations are tackled through the Homotopy Analysis

Method (HAM). For the sake of comparison, numerical (ND-Solve Method) solutions are also

obtained. Special attention has been given to the variable fluid properties’ effects on the flow of

a Williamson nanofluid. Finally, the effect of non-dimensional physical parameters like thermal

conductivity, Schmidt number, Williamson parameter, Brinkman number, radiation parameter, and

Prandtl number has been thoroughly demonstrated and discussed.

Keywords: Williamson fluid; unsteady flow; nanofluid film; HAM and numerical method

1. Introduction

The fluid flow on a nonlinear stretching surface has attracted the attention of several investigators

due to its numerous applications in the fields of engineering and industry, such as oil filtering processes,

paper making processes, polymer making, food manufacturing and preserving processes, etc. The flow

provides more effective results in the manufacturing of good quality products in the engineering field

when heat is transferred to it, for instance via metallurgical processes, wire and fiber coating, heat

exchange equipment, the polymers extrusion process, the chemical polymer process, good quality

glass manufacturing and crystal growing, and so on. In case of a slow cooling rate and stretching

rate of electrically conducted fluids, magneto hydrodynamic (MHD) flow provides the best quality

products [1]. Sakiadis [2] was the pioneer to study the flow on a linearly stretched surface when

the fluid was at rest. Crane [3] examined the flow on the stretching sheet and obtained a similar

solution to the problem. He also obtained a closed form exponential solution to the linear flow on the
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stretching sheet. The suction and blowing process together with heat and mass transmission rate over

the stretched sheet were formulated by Gupta and Gupta [4]. Elbashbeshy [5] inspected the flow on the

stretched surface with inconstant heat flux. Aziz [6] investigated the flow on an unsteady stretching

sheet and observed the heat radiation effect. Mukhopadyay [7] later considered thermal radiation’s

effect on a vertically stretched surface with a porous medium. Shateyi and Motsa [8] discussed

heat and mass transfer rates over a horizontal stretched surface numerically. Aziz [9] investigated

momentum and the heat effect on an electric current providing and incompressible fluid over a linear

stretching surface. Hady et al. [10] extended the abovementioned work and discussed heat transfer

and radiation effect on viscous flow of a nanofluid over a non-linearly stretched surface. Pavlov [11]

examined the MHD flow of a viscous fluid with constant density over a linear stretched surface.

Bianco et al. [12] investigated the second principle of thermodynamics applied to a water–Al2O3

nanofluid. They studied that how the generation of entropy within the tube varies if inlet conditions,

particle concentrations, and dimensions are changed. Nadeem et al. [13–16] investigated a variety

of fluid models on the stretching surface by taking linear as well as exponential sheets. Such flow

nowadays has many applications in the fields of physics, chemistry, and engineering; processes

such as the cooling of an electro-magnetic fluid on a stretching sheet can be used to make a good

quality thinning copper wire. Suction and blowing processes, and heat and mass transferring with

time-dependent surface, were analyzed by Elbashbeshy and Bazid [17].

The viscosity effect and thermal conductivity behavior of the fluid are taken as constant in all of

the studies discussed above. The physical properties of a fluid strongly depend on the temperature.

Experimentally, it has been proven that the magnitude of viscosity is directly related to the temperature

of gases and inversely proportional in the case of liquids. However, the thermal conductivity property

of the fluid is directly proportional to the temperature. Variable viscosity, thermal conductivity, or a

combination of these two are studied in several research articles; for instance, Grubka and Bobba [18]

measured the flow on a horizontally moving stretched sheet while the temperature of the surface was

considered variable. Chen and Char [19] obtained the particular solution for the variable heat flux on a

surface when force was applied. Pop et al. [20] and Pantokratoras [21] investigated varying viscosity’s

and heat transfer’s effect, respectively, on moving plates. It is also shown that the effect of temperature

is inversely proportional to fluid viscosity. Abel et al. [22] investigated the flow of visco-elastic fluids

on a porous stretching surface with variable fluid viscosity. The temperature function is inversely

related to fluid viscosity and a fourth-order RK method was used to solve the combined nonlinear

equations. Makinde and Mishra [23] investigated the combined effects of variable viscosity, Brownian

motion, and thermophoresis in the water base nanofluids past a stretching surface. They used a

shooting method for the solution of coupled differential equations and discussed the effect of flow

parameters. Mukhopadhyay et al. [24] examined the MHD effects of heated fluids of variable viscosity

on a stretched surface. It is also assumed that fluid viscosity is related linearly to temperature. The

equations related to flow pattern are simplified by using scaling group transformations and then a

numerical method was used to solve the resulting non-linear ordinary differential equations. Fourier’s

Law illustrates the association between energy fluctuation and the gradient of temperature, while

Fick’s Law shows the association between the mass fluctuation and concentration gradient. However,

in 1873, Dufour showed that the energy fluctuation is also affected by configuration gradient, so it was

named the Dufour effect or the diffusion-thermo effect. Soret observed that mass fluctuation is created

by temperature gradient, so it is called the thermal diffusion effect. This effect is very important in the

flow when there is a density difference. Hayat et al. [25] examined the Soret and Dufour effects over an

exponential stretching surface with a spongy medium. Alam et al. [26] examined the 2D free convection

flow over the semi-infinite perpendicular porous surface containing the effects of Soret and Dufour

numbers. Kafoussias and Williams [27] studied the mixed convection flow and considered the heat and

mass transmission, keeping the temperature flux variable and observing the Soret and Dufour effects,

respectively. Chamkha and Ben-Nakhi [28] considered the mixed convection pattern flow over the

perpendicular permeable porous surface in view of the effects of magnetic and thermal radioactivity
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and discussed the Soret effect and Dufour effect. The effects of Soret number and Dufour number

on free convective flow over a stretched surface were investigated by Afify [29] with heat and mass

transmission. Beg et al. [30] considered the effect of Soret and Dufour numbers over a free-convective

saturated spongy surface in the presence of MHD heat and mass transmission. El-Kabeir et al. [31]

investigated the effects of Dufour and Soret numbers over a non-Darcy spherically porous natural

convection MHD heat and mass transmission. The special effects of Soret number and Dufour number

of non-Darcy instable mixed convective MHD flow over the stretched medium, considering heat and

mass transmission, were investigated by Pal and Mondal [32]. Yasir et al. [33] analyzed the effects

of variable viscosity and thermal conductivity on a thin film flow over a shrinking/stretching sheet.

Aziz et al. [34] investigated thin film flow and heat transfer on an unsteady stretching sheet with

internal heating. Qasim et al. [35] discussed heat and mass transfer in a nanofluid over an unsteady

stretching sheet using Buongiorno’s model. Prashant et al. [36] analyzed thin film flow and heat

transfer on an unsteady stretching sheet with thermal radiation and internal heating in presence of

external magnetic field. The published work is incomplete, though for both of these physical parameter

there exist numerous industrial and mechanical applications. The few other investigations in this

direction were made by Ellahi et al. [37], Akbar et al. [38,39], Shehzad et al. [40], and Zeeshan et al. [41].

The current work is the study of thin film flow of a Williamson nanofluid with the combined

effect of varying thermal conductivity and viscosity on a time-dependent stretching sheet. The effect

of Dufour and Soret numbers is discussed in detail. Also, the effects of Schmidt number and Brinkman

number, thermal contamination, and viscous dissipation are considered. Applying these suppositions

and similarity transformation on the governing partial differential equations (PDEs) of the flow is

converted to non-linear ordinary differential equations (ODEs) and then solved through HAM [42–48].

The related work to the given flow is also discussed in [49–51].

The literature survey shows that there have been several investigations on nanofluids. However,

so far, no study has been reported about the analysis of thin film flows of a Williamson nanofluid flow

in two dimensions. The present study aims to analyze the variable thermal conductivity and viscosity

of a two-dimensional thin film Williamson nanofluid past a stretching sheet.

2. Materials and Methods

Consider a two-dimensional flow of Williamson fluid that has constant density, variable viscosity,

and a temperature gradient over an unsteady stretched surface, in which heat and mass are transmitted

instantaneously. The flow coordinates are selected in such a manner that the x-axis is parallel to

the plate and the y-axis is vertical to it. The stretching velocity of the sheet is in the direction of

the x-axis with magnitude U (x, t) = bx
1−at , in which b > 0 is the stretching velocity constraint and

defined in [37–39]. If b < 0 then it will become a shrinking velocity constraint. The temperature

field is defined as Ts(x, t) = T0 − Tre f

[

bx2

2υ

]

(1 − at)−
3
2 , and the magnitude is inversely proportional

to the distance from the surface. Similarly, the concentration field for the given flow is defined as

Cs(x, t) = C0 − Cre f

[

bx2

2υ

]

(1 − at)−
3
2 , where T0 represents the temperature at the surface, Tref indicates

the reference temperature, and Cref indicates the reference concentration, respectively, as shown

in [27–30], such that 0 ≤ Tre f ≤ T0 and 0 ≤ Cre f ≤ C0. The local Reynolds is defined as bx2

υ(1−at)
.

Firstly, the sheet is fixed to the origin; after that some outer force is applied to stretch the surface in the

direction of the x-coordinate axis at a velocity U (x, t) = b
1−at in time 0 ≤ a < 1.

Taking the above suppositions into consideration, the governing equations of continuity, velocity,

temperature, and concentration can be expressed as:

∂u

∂x
+

∂v

∂y
= 0, (1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
=

1

ρ

∂

∂y

(

µ(T)
∂u

∂y

)

+

√
2Γ

ρ

∂

∂y

[

µ(T)
∂u

∂y

]

∂u

∂y
, (2)
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ρcp

[

∂T
∂t + u ∂T

∂x + v ∂T
∂y

]

= ∂
∂y

[

k(T) ∂T
∂y

]

− ∂qr

∂y + µ(T)

[

(

∂u
∂y

)2
+
√

2Γ
(

∂u
∂y

)3
]

+ρDmkT
cs

∂2C
∂y2

, (3)

[

∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y

]

= Dm
∂2C

∂y2
+

DmkT

Tm

∂2T

∂y2
. (4)

The boundary conditions are:

u = U, v = 0, T = Ts, C = Cs, (5)

∂u

∂y
=

∂T

∂y
=

∂C

∂y
= 0 v =

dh

dt
= 0, (6)

where µ(T) = µ0

(1−γ) T−T0

Tre f (
bx2
2ν )

indicates the variable viscosity in which µ0 is the fluid viscosity at

reference temperature T0 and the coefficient γ expresses the strength of the dependency between µ

and T. K(T) = K1

(

1 − ε
(

T−T0

Tre f (
bx2
2ν )

))

represents the temperature-dependent thermal conductivity,

in which ε is the variable thermal conductivity parameter. The kinematics viscosity is represented as

υ = µ0
ρ

, Γ > 0 is the time constant, u and v are the velocities along the x-axis and y-axis, respectively,

T and C represent the temperature and concentration fields, respectively, ρ indicates the density of the

fluid, Cp designates the specific heat, Cs represents the absorption susceptibility, liquid film thickness

is denoted by h (t), qr = − 16σT3
s

3k
∂T
∂y indicates the radiative heat fluctuation, the Stefan–Boltzmann

constant is specified by σ, the species concentration molecular diffusivity is represented by Dm, Tm

represents the mean temperature, the thermal diffusion ratio is denoted by kT, and k designates the

thermal conductivity of the liquid film.

We introduced the following transformations for the velocity, temperature, and concentration fields:

ψ(x, y, t) = x
√

υb
1−at f (η) , u = ∂ψ

∂y = bx
(1−at)

f ′ (η) = β2xν
h2 f ′ (η) ,

v = − ∂ψ
∂x = −

√

υb
1−at f (ξ) = −νβh f (η) ,η =

√

b
υ(1−at)

y = β
h y,

T(x, y, t) = T0 − Tre f

[

bx2

2υ

]

(1 − at)−
3
2 θ (η) , C(x, y, t) = C0 − Cre f

[

bx2

2υ

]

(1 − at)−
3
2 ϕ (η) ,

(7)

where a prime number specifies the derivative with respect to η and ψ (x, y, t) is the stream function;

β = h(t)
√

b
υ(1−αt)

is the non-dimensional thickness of the nano liquid film and h(t) is the uniform

thickness of the fluid film, which gives dh
dt = −βa

2

[

υ
b

]
1
2 (1 − αt)−

1
2 .

Plugging the similarity variables from Equation (7) into Equations (1)–(6) satisfies the continuity

equation, and the leftover equations are converted to couple nonlinear differential equations:

f ′′′ + λ f ′′ f ′′′ + (1 + Λθ)
[

f f ′′ −
(

f ′
)2 − S

(

f ′ +
η

2
f ′′
)]

= 0 (8)

(1 + εθ+ Nr) (1 + Λθ) θ′′ − Pr (1 + Λθ)
(

S
2

(

3θ+ ηθ′
)

− fθ′ + 2 f ′θ
)

+

Br

(

( f ′′ )2 + λ ( f ′′ )3
)

+ Pr (1 + Λθ) Duϕ′′ = 0,
(9)

ϕ′′ + ScSrθ
′′ − Sc

(

S

2

(

3ϕ+ ηϕ′)+ 2 f ′ϕ− fϕ′
)

= 0. (10)

The boundary conditions are transformed to:

f (0) = 0, f ′(0) = 1, f (β) = Sβ
2 , f ′′ (β) = 0,

θ(0) = ϕ(0) = 1, θ′(β) = ϕ′(β) = 0.
(11)
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Here Λ = γ(Ts − T0) represents the variable viscosity parameter, Pr =
ρυcp

k is the Prandtl number,

S = a
b is the non-dimensional measure of unsteadiness, Du = DmkT

υcpcs

(Cs−C0)
(Ts−T0)

is the Dufour number,

Sc =
υ

Dm
is used for the Schmidt number, Sr =

DmkT
υTm

(Ts−T0)
(Cs−C0)

represents the Soret number, Br =
µ0U2

0
k(Ts−T0)

is the Brinkman number Nr =
16T3

∞σ1
3kk∗ indicates the thermal radiation parameter, and λ = Γx

√

2b3

υ(1−at)3

is the Williamson fluid constant.

Solution by HAM

In order to solve Equations (8)–(10) under the boundary conditions (11), we use the Homotopy

Analysis Method (HAM) with the following procedure. The solutions having the auxiliary parameters

ℏ regulate and control the convergence of the solutions.

The initial guesses are selected as follows:

f0(η) = η, θ0(η) = 1 and ϕ0(η) = 1. (12)

The linear operators are taken as L f , Lθ and Lϕ:

L f ( f ) = f ′′′, Lθ (θ) = θ′′ and Lϕ(ϕ) = ϕ′′, (13)

which have the following properties:

L f (c1 + c2η+ c3η
2) = 0, Lθ(c4 + c5η) = 0 and Lϕ(c6 + c7η) = 0, (14)

where ci(i = 1 − 7) are the constants in general solution:

The resultant non-linear operatives N f , Nθ and Nϕ are given as:

N f [ f (η; p)] =
∂3 f (η;p)

∂η3 + λ ∂2 f (η;p)
∂η2

∂3 f (η;p)
∂η3

+ (1 + Λθ(η; p))

[

f (η; p) ∂2 f (η;p)
∂η2 −

(

∂ f (η;p)
∂η

)2
− S

(

∂ f (η;p)
∂η + η

2
∂2 f (η;p)

∂η2

)

]

,
(15)

Nθ [ f (η; p), θ(η; p),ϕ(η; p)] = (1 + εθ(η; p) + Nr)(1 + Λθ(η; p)) ∂2θ(η;p)
∂η2 −

Pr(1 + Λθ(η; p))
[

S
2

(

3θ(η; p) + η ∂θ(η;p)
∂η

)

+ 2θ(η; p) ∂ f (η;p)
∂η − f (η; p) ∂θ(η;p)

∂η

]

+Br

[

(

∂2 f (η;p)
∂η2

)2
+ λ

(

∂2θ(η;p)
∂η2

)3
]

+ PrDu(1 + Λθ(η; p)) ∂2ϕ(η;p)
∂η2 ,

(16)

Nϕ [ f (η; p), θ(η; p),ϕ(η; p)] =
∂2ϕ(η;p)

∂η2 + ScSr
∂2θ(η;p)

∂η2 −
Sc

[

S
2

(

3ϕ(η; p) + η ∂ϕ(η;p)
∂η

)

+ 2ϕ(η; p) ∂ f (η;p)
∂η − f (η; p) ∂ϕ(η;p)

∂η

]

.
(17)

The basic idea of HAM is described in [32–35]; the zero-order problems from Equations (8)–(10) are:

(1 − p)L f [ f (η; p)− f0(η)] = pℏ f N f [ f (η; p)] (18)

(1 − p)Lθ [θ(η; p)− θ0(η)] = pℏθNθ [ f (η; p), θ(η; p),ϕ(η; p)] (19)

(1 − p)Lϕ [ϕ(η; p)−ϕ0(η)] = pℏϕNϕ [ f (η; p), θ(η; p),ϕ(η; p)]. (20)

The equivalent boundary conditions are:

f (η; p)|η=0 = 0,
∂ f (η;p)

∂η

∣

∣

∣

η=0
= 1,

∂2 f (η;p)
∂η2

∣

∣

∣

η=β
= 0,

θ(η; p)|η=0 = 1,
∂θ(η;p)

∂η

∣

∣

∣

η=β
= 0, ϕ(η; p)|η=0 = 1,

∂ϕ(η;p)
∂η

∣

∣

∣

η=β
= 0

, (21)
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where p ∈ [0, 1] is the imbedding parameter, and ℏ f , ℏθ and ℏϕ are used to control the convergence of

the solution. When p = 0 and p = 1 we have:

f (η; 1) = f (η), θ(η; 1) = θ(η) and ϕ(η; 1) = ϕ(η). (22)

Expanding f (η; p), θ(η; p) and ϕ(η; p) in Taylor’s series about p = 0, we get

f (η; p) = f0(η) +
∞

∑
m=1

fm(η)pm,

θ(η; p) = θ0(η) +
∞

∑
m=1

θm(η)pm,

ϕ(η; p) = ϕ0(η) +
∞

∑
m=1

ϕm(η)pm.

, (23)

where

fm(η) =
1

m!

∂ f (η; p)

∂η

∣

∣

∣

∣

p=0

, θm(η) =
1

m!

∂θ(η; p)

∂η

∣

∣

∣

∣

p=0

and ϕm(η) =
1

m!

∂ϕ(η; p)

∂η

∣

∣

∣

∣

p=0

. (24)

The secondary constraints ℏ f , ℏθ and ℏϕ are chosen in such a way that the series in Equation (23)

converges at p = 1, we obtain:

f (η) = f0(η) +
∞

∑
m=1

fm(η),

θ(η) = θ0(η) +
∞

∑
m=1

θm(η),

ϕ(η) = ϕ0(η) +
∞

∑
m=1

ϕm(η).

(25)

The m th-order problem satisfies the following:

L f [ fm(η)− χm fm−1(η)] = ℏ f R
f
m(η),

Lθ [θm(η)− χmθm−1(η)] = ℏθRθm(η),

Lϕ [ϕm(η)− χmϕm−1(η)] = ℏϕRϕm (η).

(26)

The corresponding boundary conditions are:

fm(0) = f ′m(0) = θm(0) = ϕm(0) = 0,

f
′′
m(β) = θ′m(β) = ϕ′

m(β) = 0.
(27)

Here

R
f
m(η) = f

′′′
m−1 + λ

m−1

∑
k=0

f
′′
m−1−k f

′′′
k +

[

f
′′
m−1 −

m−1

∑
k=0

f ′m−1−k f ′k − S
(

f ′m−1 +
η
2 f

′′
m−1

)

]

+

Λ

[

m−1

∑
k=0

θm−1−k f
′′
k −

m−1

∑
k=0

θm−1−k

k

∑
l=0

f ′k−l f ′l − S

(

m−1

∑
k=0

θm−1−k f ′k +
η
2

m−1

∑
k=0

θm−1−k f
′′
k

)]

,

(28)

Rθm(η) = (1 + Nr) θ
′′
m−1 + (ε+ Λ (1 + Nr))

m−1

∑
k=0

θm−1−kθ
′
k + εΛ

m−1

∑
k=0

θm−1−k

k

∑
l=0
θk−lθ

′′
l −

Pr

[

S
2

(

3θm−1 + ηθ
′
m−1

)

+ 2
m−1

∑
k=0

θm−1−k f ′k −
m−1

∑
k=0

fm−1−kθ
′
k

]

−

ΛPr

[

S
2

(

3
m−1

∑
k=0

θm−1−kθk + η
m−1

∑
k=0

θm−1−kθ
′
k

)

+ 2
m−1

∑
k=0

θm−1−k

k

∑
l=0
θk−l f ′l −

m−1

∑
k=0

θm−1−k

k

∑
l=0

fk−lθ
′
l

]

+

Br

[

m−1

∑
k=0

f
′′
m−1−k f

′′
k + λ

m−1

∑
k=0

f
′′
m−1−k

k

∑
l=0

f
′′
k−l f

′′
l

]

+ PrDu (1 + Λ)

[

ϕ
′′
ω−1 +

m−1

∑
k=0

θm−1−kϕ
′′
k

]

,

(29)

Rϕm (η) = ϕ
′′
m−1 + SrScθ

′′
m−1 − Sc

[

S
2

(

3ϕm−1 + ηϕ
′
m−1

)

+
m−1

∑
k=0

f ′m−1−kϕk −
m−1

∑
k=0

fm−1−kϕ
′
j

]

, (30)
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where

χm =

{

0, if p ≤ 1

1, if p > 1

3. Results

The Figure 1 represent geometry of the problem. The convergence of the series given in

Equation (25), f (η), θ(η), and ϕ(η) entirely depend upon the auxiliary parameters ℏ f , ℏθ and ℏϕ,

the so-called ℏ-curve. This is selected in such a way that it controls and converges the series solution.

The probable section of ℏ can be found by plotting ℏ-curves of f ”(0), θ’(0) and ϕ’(0) for 20th order

HAM approximated solution. The valid regions of ℏ are −1.7 < ℏ f < 0.1, −2.1 < ℏθ < 0.1 and

−1.5 < ℏϕ < 0.1, and it is plotted in Figures 2 and 3. The comparison of HAM and numerical

methods has been shown graphically in Figures 4–6 and numerically in Tables 1–3. The behavior of the

thermophysical parameters involved in non-dimensional velocities, temperature, and concentration

field is discussed in Figures 7–21.               

 

           

 

             ‐    θ                                ε   
       λ     Λ     β           

 

Figure 1. Geometry of the problem

               

 

           

 

             ‐    θ                                ε   
       λ     Λ     β           

 

Figure 2. The combined graph of ℏ-curves f ”(0) θ’(0), Pr = 10, Br = 0.8, Nr = 0.8, Du = 0.8, Sc = 0.4,

ε = 0.8, Sr = 0.4, λ = 0.8, Λ = 1, β = 1, S = 0.3.



Appl. Sci. 2016, 6, 334 8 of 23

               

 

           

 

             ‐    θ                                ε   
       λ     Λ     β           

 
Figure 3. The graph of ℏ-curve ϕ′ (0), Pr = 10, Br = 0.8, Nr = 0.8, Du = 0.8, Sc = 0.4, ε = 0.8, Sr = 0.4,

λ = 0.8, Λ = 1, β = 1, S = 0.3.

               

           ‐                                   ε           λ   

 Λ     β           

 

                            

    −                                ε           λ     Λ     β             

 
                             

    −                                ε           λ     Λ     β           

Figure 4. The comparison between HAM and numerical solutions for velocity profile f (η), when

ℏ = −0.28, Pr = 10, Br = 0.1, Nr = 0.1, Du = 0.1, Sc = 0.1, ε = 0.1, Sr = 0.1, λ = 0.1, Λ = 0.1, β = 1, S = 0.1.
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           ‐                                   ε           λ   

 Λ     β           

 

                            

    −                                ε           λ     Λ     β             

 
                             

    −                                ε           λ     Λ     β           
Figure 5. The comparison between HAM and numerical solutions for temperature fields θ(η), when

ℏ = −0.45, Pr = 10, Br = 0.7, Nr = 0.3, Du = 0.3, Sc = 0.9, ε = 0.9, Sr = 0.1, λ = 0.1, Λ = 0.1, β = 1, S = 0.2.               

 
                             

    −                                ε           λ     Λ     β           

 
                               −                

   λ     Λ     β     

Figure 6. The comparison between HAM and numerical solutions for concentration fields ϕ(η), when

ℏ = −0.25, Pr = 10, Br = 0.1, Nr = 0.1, Du = 0.1, Sc = 0.1, ε = 0.1, Sr = 0.1, λ = 0.1, Λ = 0.1, β = 1, S = 0.1.
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Table 1. Comparison between HAM and numerical solutions for velocity field f (η) when ℏ = −0.28,

Pr = 10, Br = 0.1, Nr = 0.1, Du = 0.1, Sc = 0.1, ε = 0.1, Sr = 0.1, λ = 0.1, Λ = 0.1, β = 1, S = 0.1.

η HAM solution Approximation f(η) Numerical Solution NN Absolute Error

0 0.000000 0.000000 0.0
0.1 0.0953944 0.0946811 7.1 × 10−4

0.2 0.182398 0.180273 2.1 × 10−3

0.3 0.262182 0.258722 3.4 × 10−3

0.4 0.335840 0.331586 4.3 × 10−3

0.5 0.404397 0.400129 4.2 × 10−3

0.6 0.468820 0.465392 3.4 × 10−3

0.7 0.530019 0.528247 1.8 × 10−3

0.8 0.588856 0.589430 5.7 × 10−4

0.9 0.646152 0.649575 3.4 × 10−3

1 0.702691 0.709230 6.5 × 10−3

Table 2. Comparison between HAM and numerical solutions are shown for temperature field θ(η)

when ℏ = −0.45, Pr = 10, Br = 0.1, Nr = 0.1, Du = 0.1, Sc = 0.1, ε = 0.1, Sr = 0.1, λ = 0.1, Λ = 0.1, β = 1,

S = 0.1.

η HAM Solution of θ(η) Numerical Solution NN Absolute Error

0 1.0000 1.00000 0.00000
0.1 1.004 1.00417 1.7 × 10−4

0.2 1.00688 1.00706 1.9 × 10−4

0.3 1.00886 1.009 1.8 × 10−3

0.4 1.01015 1.01023 1.6 × 10−3

0.5 1.01095 1.01096 7.1 × 10−4

0.6 1.01139 1.01135 4.2 × 10−4

0.7 1.0116 1.01153 2.5 × 10−4

0.8 1.01168 1.01159 1.6 × 10−4

0.9 1.0117 1.01159 1.1 × 10−4

1 1.01171 1.01159 1.1 × 10−4

Table 3. Comparison between HAM and numerical solutions are shown for concentration field ϕ(η)

when ℏ = −0.25, Pr = 10, Br = 0.1, Nr = 0.1, Du = 0.1, Sc = 0.1, ε = 0.1, Sr = 0.1, λ = 0.1, Λ = 0.1, β = 1,

S = 0.1.

η HAM Solution ϕ(η) Numerical Solution NN Absolute Error

0 1.00000 1.000000 0.000000
0.1 0.986139 0.985513 6.3 × 10−4

0.2 0.973868 0.973001 8.7 × 10−4

0.3 0.963145 0.962308 8.4 × 10−4

0.4 0.953932 0.953301 6.3 × 10−4

0.5 0.946195 0.945867 3.3 × 10−4

0.6 0.939906 0.939913 7.5 × 10−6

0.7 0.935041 0.935364 3.2 × 10−4

0.8 0.931582 0.93216 5.8 × 10−4

0.9 0.929513 0.930258 7.4 × 10−4

1 0.928825 0.929628 8.0 × 10−4
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    −                                ε           λ     Λ     β           
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   λ     Λ     β     

Figure 7. Variants in velocity field f (η) for various values of S, when ℏ = −0.25, Pr = 10, Du = 0.7,

Sc = 0.7, λ = 0.7, Λ = 0.7, β = 1.               

 

                                    

−                                ε           λ     Λ     β     

 
                                  −  

                             ε           λ     Λ     β     

Figure 8. The variation of temperature scale gradient θ(η) for different quantities of S, when ℏ = −0.25,

Pr = 10, Br = 0.7, Nr = 0.7, Du = 0.7, Sc = 0.7, ε = 0.7, Sr = 0.7, λ = 0.7, Λ = 0.7, β = 1.
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−                                ε           λ     Λ     β     
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Figure 9. Variations in concentration field ϕ(η) occur for different numbers of S, when ℏ = −0.25,

Pr = 10, Br = 0.7, Nr = 0.7, Du = 0.7, Sc = 0.7, ε = 0.7, Sr = 0.7, λ = 0.7, Λ = 0.7, β = 1.
               

 
                               −              

λ     Λ     β           

 
                                    

−                                ε           λ     Λ     β     

Figure 10. Variation in velocity field f (η) for various values of Pr, when ℏ = −0.25, Du = 0.7, Sc = 0.7,

λ = 0.7, Λ = 0.7, β = 1, S = 0.7.
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Figure 11. The variation of temperature scale gradient θ(η) for different values of Pr, when ℏ = −0.25,

S = 0.7, Br = 0.7, Nr = 0.7, Du = 0.7, Sc = 0.7, ε = 0.7, Sr = 0.7, λ = 0.7, Λ = 0.7, β = 1.               

 
                                  −  

                             ε           λ     Λ     β     

 

                               −            

 λ     Λ     β           

Figure 12. Variations in concentration field ϕ(η) occur for different values of Pr, when ℏ = −0.25,

S = 0.7, Br = 0.7, Nr = 0.7, Du = 0.7, Sc = 0.7, ε = 0.7, Sr = 0.7, λ = 0.7, Λ = 0.7, β = 1.
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 λ     Λ     β           

Figure 13. Variations in velocity field f (η) for various values of Du, when ℏ = −0.25, Pr = 10, Sc = 0.7,

λ = 0.7, Λ = 0.7, β = 1, S = 0.7.
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                                  −  

                             ε           λ     Λ     β     

Figure 14. The variation of temperature scale gradient θ(η) for different values of Du, when ℏ = −0.25,

S = 0.7, Br = 0.7, Nr = 0.7, Pr = 10, Sc = 0.7, ε = 0.7, Sr = 0.7, λ = 0.7, Λ = 0.7, β = 1.
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Figure 15. Variations in concentration field ϕ(η) occur for different values of Du, when ℏ = −0.25,

S = 0.7, Br = 0.7, Nr = 0.7, Pr = 10, Sc = 0.7, ε = 0.7, Sr = 0.7, λ = 0.7, Λ = 0.7, β = 1.               

 
                                  −  
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Figure 16. Variations in concentration field ϕ(η) occur for different values of Sr, when ℏ = −0.25,

S = 0.7, Br = 0.7, Nr = 0.7, Pr = 10, Sc = 0.7, ε = 0.7, Du = 0.7, λ = 0.7, Λ = 0.7, β = 1.
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Figure 17. The variation of temperature scale gradient θ(η) for different values of Sc, when ℏ = −0.25,

S = 0.7, Br = 0.7, Nr = 0.7, Pr = 10, Du = 0.7, ε = 0.7, Sr = 0.7, λ = 0.7, Λ = 0.7, β = 1.               
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                                 −            

 λ           β           

Figure 18. Variations in concentration field ϕ(η) occur for different values of Sc, when ℏ = −0.25,

S = 0.7, Br = 0.7, Nr = 0.7, Pr = 10, Sr = 0.7, ε = 0.7, Du = 0.7, λ = 0.7, Λ = 0.7, β = 1.
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Figure 19. Variations in velocity field f ′(η) for various values of Λ, when ℏ = −0.25, Pr = 10, Sc = 0.7,

λ = 0.7, Du = 0.7, β = 1, S = 0.7.
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Figure 20. The variation of temperature scale gradient θ(η) for different values of Λ, when ℏ = −0.25,

S = 0.7, Br = 0.7, Nr = 0.7, Pr = 10, Du = 0.7, ε = 0.7, Sr = 0.7, λ = 0.7, Sc = 0.7, β = 1.
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Figure 21. Variations in velocity field f ′(η) for various values of λ, when ℏ = −0.25, Pr = 10, Sc = 0.7,

Λ = 0.7, Du = 0.7, β = 1, S = 0.7.

4. Discussion

In this work, numerical values are assigned to the physical parameters involved in the velocity,

temperature, and concentration profiles. The numerical outcomes for velocity, temperature, and

concentration profiles are presented in this section. An efficient numerical method called the ND-solve

method has been used to solve the transformed Equations (8)–(10) subject to the boundary conditions in

Equation (11). The paper examined the effects of governing parameters on the transient velocity profile,

temperature profile, and concentration profile. For this purpose the SRM approach has been applied for

various values of flow controlling parameters S = 0.7, Pr = 10, Du = 0.7, Sr = 0.7, Sc = 0.7, Λ = 0.7, λ = 0.7

to obtain a clear insight into the physics of the problem. Therefore, all the graphs and tables correspond

to the values above and the rest will be mentioned. The behavior of the non-dimensional unsteady

parameter S for velocities, temperature, and concentration field during fluid motion is studied in

Figures 7–9. The unsteady parameter S is inversely related to the stretching constant of the velocity

field, whereas it is directly related to the stretching constants of the temperature and concentration

fields. Therefore, by increasing the values of S the value of the velocity field is decreased while the

values of the temperature and concentration fields increase. An increase in Pr leads to an increase in

kinematic viscosity and a decrease in velocity. The reason is that the rise in viscosity tends to increase

the resistance force and as a result the velocity profile descends (Figure 10). Figure 11 shows the effect

of Prandtl number Pr in temperature fields; the same effect is observed for velocity fields. The thermal

diffusion falls with the rise in Prandtl number Pr and as a result the thermal boundary layer becomes

thinner and the temperature decreases. This variation in thermal diffusivity is due to the difference of

temperature fields; the fluid is highly conductive. Therefore, a fluid with greater Pr and larger heat

capacity increases the heat transfer, the same as in [21]. This variation in thermal diffusivity is due to

the difference of temperature fields. The same effect for concentration field is exposed in Figure 12.

The behavior of Dufour number Du is discussed in Figures 13–15. The Dufour number is actually the

ratio of temperature and concentration difference. The Soret effect is a mass flux due to a temperature

gradient and the Dufour effect is enthalpy flux due to a concentration gradient and appears in the

energy equation. It was also observed that the effect of Du and Sr on the temperature and concentration
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fields is opposite. In Figure 13 it is shown that increasing the value of Dufour number Du decreases

the velocity profile. Since the Dufour number Du has an inverse relationship with thermal diffusion,

we conclude that the falls in fluid velocity are due to the smaller thermal diffusion. However, it is clear

in Figure 14 that the temperature field increases for greater values of Du. Physically, the Dufour effect

has a direct relationship with the concentration gradient of energy flux and, as a result, temperature

increases for larger values of Du. The concentration field decreases with increasing values of the

Dufour number Du, as shown in Figure 15. The Soret number is the reciprocal ratio of the Dufour

number; due to this property the reverse physical behavior of the Soret Sr and Dufour numbers Du

has been noticed in the concentration field and is shown in Figure 16. The effects of Schmidt number

Sc on the temperature field and concentration field are discussed in Figures 17 and 18, respectively.

Figure 17 exhibits the effect of Schmidt number on temperature fields: an increase in the value of Sc

increases the temperature field. The influence of the Schmidt number Sc on the concentration field

is shown in Figure 18. Increasing the Schmidt number Sc reduces the concentration boundary layer,

because the increase in Schmidt number Sc means lower molecular diffusivity, which decreases the

concentration boundary layer. It is observed that an increase in Sc leads to a decrease in the heat

transfer rate at the surface. The variable viscosity parameter Λ plays a significant role in the flow, as

shown in Figures 19 and 20. The viscosity of the fluid is directly related to the cohesive and adhesive

forces. So by increasing the cohesive and adhesive forces, the fluid resistance is increased, which results

in a decrease in the fluid velocity f ’(η), as shown in Figure 19. On the other hand, it is inversely related

to the temperature field, as shown in Figure 20, i.e., increasing the temperature of the fluid decreases

the viscosity. This is because increasing the values of temperature causes the cohesive and adhesive

forces of the fluid to become weaker. Due to this, the thickness of the fluid decreases. The effect of the

Williamson parameter λ on the velocity profile is exhibited in Figure 21. The velocity reduces when

λ is augmented because a rise in relaxation time causes higher resistance in the fluid flow and as a

result reduces the velocity field. The comparison of HAM and numerical solutions for the velocity,

temperature, and concentration fields are shown in Tables 1–3 and a closed agreement between these

two methods has been observed.

5. Conclusions

The governing equations are modeled and solved for the thin film flow of nanofluid.

A non-Newtonian Williamson fluid is used as a base fluid in the presence of thermal radiation.

The nonlinear coupled equations have been solved using HAM and are compared with the

numerical solutions.

The key points of this work are:

• The variable effects of the fluid properties on the flow of a Williamson nanofluid are plotted

through graphs and tables.

• The Dufour and Soret effects during thin film nanofluid motion are considered in the presence of

thermal radiation.

• Experimental values of the Prandtl number have been used to produce the most accurate results

for the Williamson nanofluid.

• The accuracy of the HAM results has been verified via numerical solutions.
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Nomenclature

x, y Cartesian coordinates

U0 Stretching velocity

b Stretching velocity constraint

Ts Temperature field

Cs Concentration filed

T0 Surface temperature

Tre f Reference temperature

Cre f Reference concentration

µ(T) Variable viscosity

µ0 Fluid viscosity at reference temperature

γ Dependency strength

K(T) Temperature-dependent thermal conductivity

ε Variable thermal conductivity parameter

υ Kinematics viscosity

Γ Time parameter

u, v Velocity components

T Temperature field

C Concentration field

ρ Fluid density

Cp Specific heat

h (t) Liquid film thickness

qr Radiative heat fluctuation

σ Stefan–Boltzmann constant

Dm Concentration molecular diffusivity

Tm Mean temperature

kT Thermal diffusion ratio

k Thermal conductivity of the liquid film

ψ Stream function

β
Non-dimensional thickness of the nano liquid

film

Λ Variable viscosity parameter

Pr Prandtl number

S Non-dimensional measure of unsteadiness

Du Dufour number

Sc Schmidt number

Sr Soret number

R Radiation constant

Br Brinkman number

Nr Thermal radiation parameter

λ Williamson fluid constant

Cs Concentration vulnerability
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