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Abstract. Expressions for the Seidel aberrations of thin radial gradient-
index (GRIN) lenses having a similar structure with the corresponding
expressions for thin homogeneous lenses are obtained. By enabling a
direct analysis of the relationship between aberrations and lens data, the
thin-lens approximation provides new insight into the possibilities and
limitations of aberration correction for simple optical systems using radial
gradients. It is found for instance that, as in the homogeneous case,
within the frame of this approximation the astigmatism of single radial
GRIN lenses cannot be corrected if spherical aberration and coma are
corrected or if the aperture stop is located at the lens. © 1996 Society
of Photo-Optical Instrumentation Engineers.
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1 Introduction

A necessary condition for obtaining a successful optic
design is the control of the primary aberrations of the sy
tem. Only optical systems where both Seidel and chroma
aberrations can be reduced to acceptable values are cap
of producing an image of good quality. For homogeneou
lenses, it is known, however, that the control of these a
errations is subject to certain basic limitations. For simp
optical systems, a useful tool for obtaining insight into th
possibilities and limitations of aberration correction is th
thin-lens approximation.

Since for homogeneous optical systems the lens thic
nesses are generally a less effective degree of freedom
controlling aberrations than the surface curvatures and t
air spaces between the lenses, the aberration coefficients
a homogeneous lens having a finite but not too large thic
ness are of the same order of size and show approximat
the same variation with the other lens parameters, as in
case of the corresponding lens considered to have ze
thickness.1 On the other hand, setting the lens thicknes
equal to zero in the exact paraxial and aberration formul
enables a considerable simplification of the correspondi
expressions for the entire lens. Even if the results of th
thin-lens approximation differ to some extent in absolut
magnitude from the exact results, the thin-lens approxim
tion yields a useful qualitative insight into the general prop
erties of the lens aberrations. Thus, in early design stag
the thin-lens theory enables the designer to investiga
whether a proposed system layout is capable of yielding t
required degree of aberration correction.

The use of gradients in optical systems leads to ne
possibilities for aberration correction. If the required value
of the refractive index parameters are in the producib
range, a considerable reduction of the number of elemen
as compared to homogeneous designs of same perf
mance, becomes possible.2,3
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For a better insight into the additional possibilities of
aberration correction provided by the gradients, a formal-
ism having the same simplicity as the homogeneous thin-
lens theory is desirable. While some thin-lens expressions
have been derived for various special cases,4 no general
thin-lens theory for gradient-index lenses, similar to that for
homogeneous lenses, is currently known in the literature.
For radial gradients, thin-lens expressions are frequently
used only for lens power, Petzval curvature, and axial
color. Thus, it has been shown that it is in principle pos-
sible to control simultaneously Petzval curvature and axial
color of a single radial gradient-index~RGRIN! lens.2,3 The
purpose of this paper is the generalization of the thin-lens
approximation for all Seidel aberration coefficients of
RGRIN lenses.

Since for RGRIN lenses the gradient medium can have a
major contribution to power and primary aberrations, the
lens thickness must be regarded as a design parameter as
significant as other parameters. Therefore, setting the lens
thickness equal to zero is not adequate, because the contri-
butions stemming from transfer through the gradient me-
dium would be lost.

In this paper, it is shown that the thin-lens approxima-
tion can be extended for RGRIN lenses to include the gra-
dient medium contributions. The starting point is the ex-
pressions of the Seidel aberrations of RGRIN lenses having
finite thickness derived in an earlier paper5 and reviewed in
Sec. 2. After a brief discussion of the paraxial approxima-
tion in Sec. 3, expressions for the Seidel aberrations for the
entire thin lens that have the same structure as the homo-
geneous thin-lens formulas are obtained in Sec. 4. The ap-
proximate expressions, which are considerably simpler than
the exact Seidel formulas, are obtained as the sum of the
lowest order nonvanishing terms in a power series expan-
sion with respect to the lens thickness in the transfer con-
tributions with the corresponding contributions of the two
end faces.
.00 © 1996 Society of Photo-Optical Instrumentation Engineers



Bociort: Thin-lens approximation . . .
The thin-lens formulas indicate which parameters of th
RGRIN lens are effective for controlling a given primary
aberration. For instance, it is found that within the frame
work of the thin-lens approximation~i.e., unless the lens
becomes very thick or the gradient very strong!, an
aplanatic single RGRIN lens or system of such lenses i
contact cannot also be corrected for astigmatism. Thus, f
RGRIN lenses we have the same basic limitation as in th
homogeneous case.

As will be discussed in detail elsewhere, comparison
with the results obtained with exact Seidel expression
shows that the approximate formulas derived in this pape
provide a very good description of the effects of the refrac
tive index parameters on the Seidel aberrations of the len
These formulas are useful, e.g., for determining the shap
of curves giving the change of various aberrations if powe
is transferred between surfaces and medium or for unde
standing specific features of simple systems optimized b
ray tracing.

2 Seidel Aberrations of RGRIN Lenses of Finite
Thickness

In this section, the formulas giving the Seidel aberrations o
an RGRIN lens of finite thickness and the paraxial relation
needed for their computation are summarized.

Consider an RGRIN lens having the refractive index dis
tribution

n2~r 2!5n0
2~12kr21N4k

2r 41••• !, ~1!

wheren0 is the refractive index on the optical axis. Only
terms of order<4 determining the Seidel aberrations are
written in Eq. ~1!. The special case where the quadratic
refractive index coefficientk vanishes~shallow gradients!
is discussed separately in Sec. 4.

As in the homogeneous case, the Seidel aberrations c
be calculated from the paraxial marginal and chief ray dat
at the lens surfaces. Using the same notation as in Ref.
the paraxial marginal and chief ray heights are denotedh
andm, the corresponding marginal and chief ray slopes ar
denotedu andw, and the incidence angles for the margina
and chief rays are denotedi and j . The sign convention
adopted foru andw is that their signs are the opposite of
those of the corresponding direction cosines.

The Seidel aberrations of the RGRIN lens are sums o
three types of contributions:~1! ordinary and~2! inhomo-
geneous contributions at the two end faces and~3! transfer
contributions from the RGRIN medium.6

First, for a surface of curvaturer, the ordinary contribu-
tions to spherical aberrationS1, comaS2, astigmatismS3,
Petzval curvaturePs , and distortionS4 are given by

S15~n0i !
2hD~u/n0!,

S25n0in0 jhD~u/n0!,

S35~n0 j !
2hD~u/n0!, ~2!

Ps52rH2D~1/n0!,

S45~n0 j !
2mD~u/n0!1n0 jHD~w/n0!,
e

-
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wheren0i andn0 j are the paraxial refraction invariants

n0i5n0hr2n0u, n0 j5n0mr2n0w, ~3!

andH is the paraxial system invariant

H5mn0u2hn0w. ~4!

By D ~#! we denote the difference between the values after
and prior to refraction or the transfer of the quantity in the
brackets. Note that Eqs.~2! can be obtained from the cor-
responding relations in the homogeneous case7 simply by
replacingn by n0.

Second, the inhomogeneous surface contributions, de-
noted by an asterisk, are

S1*522h4rD~n0k!,

S2*522h3mrD~n0k!,
~5!

S3*522h2m2rD~n0k!,

S4*522hm3rD~n0k!.

The inhomogeneous surface contribution to Petzval curva-
ture vanishes.

Third, the transfer contributions of an RGRIN medium
of thicknessd to the Seidel coefficients read5

T15n0de1
2~123N4/2!1n0~11N4!D~hu3!

25n0N4e1D~hu!/2,

T25n0de1e2~123N4/2!1n0~11N4!D~hu2w!

25n0N4e2D~hu!/22N4HD~u2!,

T35n0de2
2~123N4/2!1n0~11N4!D~huw2!

25n0N4e3D~hu!/222N4HD~uw!2N4PT/2, ~6!

T45n0de2e3~123N4/2!1n0~11N4!D~hw3!

25n0N4e3D~mu!/22N4HD~w2!/2,

PT5kdH2/n0 ,

where Ti , i51,2,3,4, denote spherical aberration, coma,
astigmatism, and distortion, andPT denotes Petzval curva-
ture. At transfer through the RGRIN medium, in addition to
the system invariant of Eq.~4!, the quantities

e15kh21u2,

e25khm1uw, ~7!

e35km21w2,

also remain unchanged.
Expressions for paraxial ray tracing through RGRIN me-

dia can be found from the solutions for the refractive index
distribution @Eq. ~1!# of the differential equations describ-
ing the ray propagation in inhomogeneous media.8 We
1293Optical Engineering, Vol. 35 No. 5, May 1996
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adopt the following notation: quantities after transfer are
denoted by a prime whereas quantities before transfer a
left unprimed.

For k.0 ~positive gradients! by writing g5k1/2 the mar-
ginal ray parameters are given by

u85u cosgd1hg sin gd,
~8!

h852
u

g
sin gd1h cosgd,

and those of the chief ray by

w85w cosgd1mg sin gd,
~9!

m852
w

g
sin gd1m cosgd.

Similarly, for k,0 ~negative gradients! we have

u85u coshgd2hĝ sinhgd,

h852
u

ĝ
sinh ĝd1h coshĝd,

~10!
w85w coshĝd2mĝ sinh ĝd,

m852
w

ĝ
sinh ĝd1m coshĝd,

whereĝ5(2k)1/2. The difference between the transfer for-
mulas in the two casesk.0 and k,0 disappears if the
trigonometric and hyperbolic functions in Eqs.~8! to ~10!
are expanded into power series. Setting

E1~kd
2!5cosgd, E2~kd

2!5
sin gd

gd
, ~11!

we have, e.g., for the marginal ray

u85uE1~kd
2!1hkdE2~kd

2!,
~12!

h852udE2~kd
2!1hE1~kd

2!.

From the series expansions of Eqs.~11! it can be observed
thatE1 andE2 depend indeed only ong25k:

E1~kd
2!512

1

2!
kd21

1

4!
~kd2!22••• ,

~13!

E2~kd
2!512

1

3!
kd21

1

5!
~kd2!22••• .

Thus, fork50 ~shallow gradients! we haveE15E251 and
Eqs.~8! and~9! become the well-known transfer equations
for a homogeneous medium. For instance, for the margin
ray we obtain

u85u, h85h2ud. ~14!
1294 Optical Engineering, Vol. 35 No. 5, May 1996
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3 Paraxial Approximation for Thin RGRIN
Lenses

To derive the thin-lens expressions for the Seidel aberra-
tions, a systematic procedure for generalizing the thin-lens
approximation for radial gradients is developed in this sec-
tion. This procedure is first applied for regaining well-
known paraxial results. In the next section, the same pro-
cedure leads to the simplified expressions of the Seidel
coefficients of a thin RGRIN lens.

For a homogeneous lens having curvaturesr1 and r2,
the thin-lens approximation is valid if the lens thicknessd
is small in comparison with the radii of the two end sur-
faces

ur1ud!1, ur2ud!1. ~15!

In this case, the change inside the lens of the ray height
given by the second of Eqs.~14! is also small and can be
neglected. Thus, at transfer we have

Dh50. ~16!

Consider a thin RGRIN lens situated in air and having
curvaturesr1 andr2. To include the gradient medium con-
tributions into the thin-lens theory note that the thin
RGRIN lens can be regarded as being composed from three
thin lenses in contact: two homogeneous thin lenses of re-
fractive indexn0 having each a plane face and the other end
face of curvaturesr1 andr2, respectively, and a thin Wood
lens. ~A Wood lens is an RGRIN lens with plane end
faces.! If the lens thicknessd is much smaller than the focal
length of each of the three ‘‘components,’’ then the power
of the thin RGRIN lens is the sum

w5wh1wg ~17!

of the powers of its ‘‘homogeneous’’ and ‘‘gradient’’ parts.
Equation ~17! can be easily generalized for an arbitrary
system of thin lenses in contact, situated in air

w5( w i , ~18!

where the indexi denotes the various homogeneous and
gradient contributions of the components to the power of
the lens system. In Eq.~17!, the power of the ‘‘homoge-
neous’’ part is given by

wh5w11w2 , ~19!

where we have

w15~n021!r1 , w252~n021!r2 . ~20!

To determine the expression ofwg consider a thin Wood
lens having a thickness much smaller than its focal length

d!u fWu. ~21!

As shown later, the preceding approximation is equivalent
to the condition
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ukud2!1. ~22!

With the condition of Eq. ~22!, Eqs. ~13! become
E15E251 and the transfer Eqs.~12! for the marginal ray
read

u85u1kdh, ~23!

and

h85h2ud. ~24!

Consider an axial object point situated at infinity. Letu1
andu18 be the marginal ray slopes at the first surface befor
and after refraction and letu2 andu28 be the same quantities
at the second surface. From the second of Eqs.~14! we
obtain

h2u28 f w50. ~25!

Since the end surfaces are plane, we haveu185u150, and
consequently

h

fW
5u285n0u25n0kdh. ~26!

The second equality in Eq.~26! comes from refraction at
the second end face and the third one follows from Eq
~23!. Thus, we arrive at the well-known relation for the
focal length of the Wood lens8,9

fW5~n0kd!21. ~27!

The powerwg5 fW
21 is then given by

wg5n0kd. ~28!

The relationships between positions and sizes of obje
and image of the thin RGRIN lens or system of thin lense
in contact are the same as in the homogeneous case. Fo
given value of the transverse magnificationb, the positions
s ands8 of object and image are given by

2s5
1

w
~12b21!, s85

1

w
~12b!, ~29!

wheres ands8 are positive if the object~image! is situated
to the right of the lens and negative otherwise. Eliminatin
b in Eqs.~29! yields the well-known relationship between
position of object and image of a thin lens

1

s8
5w1

1

s
. ~30!

The condition of Eq.~22!, which follows immediately
from the condition of Eq.~21! and Eq.~27!, is the addi-
tional condition that, together with the conditions of Eqs
~15!, defines the thin-lens approximation for radial gradi
ents. In this approximation, the gradient contribution to
power @Eq. ~28!# has been obtained by keeping in the
e

.

ct
s
r a

g

.
-

paraxial transfer equations only the lowest order nonvan-
ishing terms in the lens thickness, which are the linear
terms.

The same procedure will be applied for deriving the
thin-lens expressions for the Seidel aberrations, where only
lowest order terms will be kept in both the surface and the
transfer contributions. Thus, in the transfer contributions of
Eqs. ~6! the linear terms ind will be kept. On the other
hand, the surface contributions of Eqs.~2! and ~5! can be
handled as in the homogeneous case by assuming that the
paraxial ray heights within the lens do not change@Eq.
~16!#.

4 Seidel Aberrations of Thin RGRIN Lenses

Equations~2!, ~5!, and ~6!, giving the contributions of re-
fraction and transfer to the Seidel aberrations, can provide
numerical values for the various aberration coefficients, but
offer only a limited insight into the correction possibilities
for the entire lens or for the entire optical system. To obtain
additional insight, in this section simplified expressions for
the Seidel aberrations of the entire RGRIN lens are derived
based on the developed thin-lens approximation. To sum up
the surface and transfer contributions, appropriate thin-lens
variables are introduced. With the resulting formulas, the
correction possibilities of the Seidel aberrations as well as
their limitations are briefly discussed.

Consider first the transfer contributions of positive or
negative radial gradients~i.e., nonzerok! to the Seidel ab-
errations. A closer inspection of Eqs.~6! to ~9! shows that
the transfer contributions vanish ford50. By substituting
the invariants@Eqs.~7!# and the paraxial transfer Eqs.~23!
and ~24! into Eqs.~6!, we obtain for the transfer contribu-
tions polynomials of fourth order in the lens thicknessd.
As in the paraxial case, we keep only the lowest order
terms ind, which are the linear terms. These calculations
were performed by means of computer algebra. Using Eq.
~28!, the results are

T15wg@h
4k~124N4!15h2u2#,

T25wgFh3mk~124N4!15h2uw12hu
H

n0
G ,

~31!

T35wgFh2m2k~124N4!15h2w214hw
H

n0
G ,

T45wgFhm3k~124N4!15hmw21mw
H

n0
G .

The Petzval curvature for transfer can be immediately re-
written as

PT5wg

H2

n0
2 . ~32!

Note that all expressions in Eqs.~31! and ~32! are propor-
tional to the gradient powerwg , i.e., to the productkd.

To derive the expressions for the aberrations of the en-
tire thin lens, it is convenient to consider first the case
where the aperture stop is situated at the lens and then to
allow for arbitrary stop positions by means of stop-shift
1295Optical Engineering, Vol. 35 No. 5, May 1996
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formulas. Expressions of stop-shift formulas, which ar
valid for arbitrary rotationally symmetric optical systems
can be found, e.g., in Ref. 7.

If the stop is at the lens, we have in all formulasm50.
The invariants of Eqs.~3! and ~4! become

n0 j5n0mr2n0w52n0w,
~33!

H5mn0u2hn0w52hn0w.

Thus, the anglesj andw can be written as

n0 j5
H

h
52n0w, ~34!

and all quantities related to the chief ray can be remove
from the aberration expressions.

The surface contributions@Eqs.~2! and~5!# then become

S15~n0i !
2hD~u/n0!,

S25n0iHD~u/n0!,

S35
H2

h
D~u/n0!, ~35!

PS52rH2D~1/n0!,

S45n0 jHn0wD~1/n0
2!52

H3

h2
D~1/n0

2!,

and

S1*522h4rD~n0k!, S2*5S3*5S4*50. ~36!

The transfer contributions@Eqs.~31!# read

T15wg@h
4k~124N4!15h2u2#,

T25wgF5h2uw12hu
H

n0
G523wghu

H

n0
,

~37!

T35wgF5h2w214hw
H

n0
G5wgS Hn0D

2

,

T450.

As in the homogeneous thin-lens theory,1 in the summa-
tion of the various contributions to the total aberration co
efficients it is assumed that the heighth of the marginal ray
does not change within the lens. Before performing th
summation, however, two new thin lens variables are intr
duced: a variable conveniently expressing the marginal r
inclinationu and a bending variable giving the two surface
curvaturesr1 andr2 for a given value of the homogeneous
powerwh . The new variables are defined such that in th
limiting case of a homogeneous medium, the present th
lens formulas reduce to the thin lens formulas first derive
by Argentieri~see Refs. 10 and 11!. For homogeneous me-
dia, other definitions of the thin lens variables are also po
1296 Optical Engineering, Vol. 35 No. 5, May 1996
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sible, e.g., the Coddington variables.1,7 For radial gradients,
however, the Coddington variables are less appropriate, be-
cause one of them becomes indefinite in the special case
where both end faces are plane~Wood lens!. The Argentieri
variables are

c5
11b

12b
wh , Ã5r11r22c. ~38!

In the subsequent calculations, the indices 1 and 2 denote
quantities related to the first and second end surfaces.

First, the marginal ray inclination is expressed in all ab-
erration formulas through the variablec. Observing that

su15h5s8u28 , ~39!

it follows from Eq.~30! that the total change ofu produced
by the thin lens is given by

u282u15hw5h~wh1wg!. ~40!

Since we have

u15bu28 , ~41!

we can also write

c5
11b

12b
wh5

u281u1
u282u1

wh5
u281u1

h~wg1wh!
wh , ~42!

obtaining an alternative expression for the first Argentieri
variable@Eq. ~38!#:

c5S 1s8 1
1

sD wh

wg1wh
. ~43!

From Eq.~42!, we obtain

u281u15hcS 11
wg

wh
D . ~44!

Equations~40! and ~44! form a linear system of equations
with unknownsu1 andu28 . The solution reads

u285
1

2
hFcS 11

wg

wh
D1wh1wgG ,

~45!

u15
1

2
hFcS 11

wg

wh
D2wh2wgG .

Equations~45! give the marginal ray inclinations at the two
end surfaces, outside the thin lens. The values at the end
surfaces, inside the lens~i.e., after refraction at the first
surface and prior to refraction at the second surface! are
then

u185
1

n0
@u11~n021!hr1#, u25

1

n0
@u281~n021!hr2#.

~46!
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We must now decide what value should be assigned t
the quantityu in the first two of Eqs.~37!. In the derivation
of these equations,u was assumed to be the marginal ray
inclination in the gradient medium prior to transferu
5u18 . We do not have, however, any reason to prefer the
value prior to the transfer to the value after transferu2.
Thus, in Eqs.~37!, we set

u5
u181u2
2

. ~47!

As can be seen from Eq.~23!, u2 differs fromu18 by a linear
term in d. Thus, the replacement@Eq. ~47!# is consistent
with the approximation used for deriving Eqs.~37!—that
only lowest order nonvanishing terms are kept—becaus
these equations are already linear ind.

Second, the surface curvatures are expressed through t
Argentieri variables. From Eqs.~19!, ~20!, and ~38!, we
obtain a linear system of equations forr1 andr2

r12r25
wh

n021
, r11r25Ã1c, ~48!

having the solutions

r15
1

2 S Ã1c1
wh

n021D ,
~49!

r25
1

2 S Ã1c2
wh

n021D .
After substituting Eqs.~45!, ~46!, and~49!, Eq. ~47! and

the quantitiesn0i and D(u/n0) appearing in the surface
contributions@Eqs.~35!# at the two end surfaces,

~n0i !15hr12u1 , ~n0i !25hr22u28 , ~50!

D~u/n0!15u18/n02u1 , D~u/n0!25u282u2 /n0 , ~51!

come to be expressed through the Argentieri variables@Eqs.
~38!#.

Finally, we sum up for each aberration coefficient the
surface and transfer contributions, obtaining for the entire
RGRIN lens the expressions for spherical aberrationG1,
comaG2, astigmatismG3, Petzval curvatureP, and distor-
tion G4. Note first that the quantities

D~n0k!,D~1/n0!,D~1/n0
2!

have equal magnitudes but opposite signs at the two en
surfaces. Thus, for distortion, the sum vanishes because t
two surface contributions cancel each other out:

G450. ~52!

The well-known expression of Petzval curvature2 follows
immediately as

P5H2S wh

n0
1

wg

n0
2 D . ~53!
o

e

he

d
he

It can be observed that the Petzval curvature of the RGRIN
lens can be corrected by choosing

wg52n0wh . ~54!

In the case of astigmatism,G35S3,11S3,21T3 , it fol-
lows from Eqs.~35!, ~51!, ~40!, ~23!, and~28! that

S3,11S3,25
H2

h Fu282u12
1

n0
~u22u18!G

5H2S wh1wg2
wg

n0
2 D ,

and from Eqs.~37! that

G35H2~wh1wg!5H2w. ~55!

Thus, we arrive at the same remarkable result as in the
homogeneous case: If the stop is at the lens, the astigma-
tism of a thin RGRIN lens of nonzero power has a fixed
value and cannot be corrected by any of the lens param-
eters.

For spherical aberrationG15S1,11S1,21S1,1* 1S1,2* 1T1
and comaG25S2,11S2,21T2 , the summation of the surface
and transfer contributions expressed through the Argentieri
variables is straightforward, but lengthy, and has therefore
been performed by means of computer algebra. In the re-
sulting sums, only the linear terms inwg ~i.e., the linear
terms ind! are kept. For the total coma

G25B5Bh1Bg , ~56!

in addition to the ordinary contribution given by the expres-
sion of Argentieri,10,11

Bh5
whHh

2

2 S n011

n0
Ã2c D , ~57!

we have an additional gradient contribution

Bg5
wgHh

2

2 F S n021

n0
D 2Ã23

n011

n0
cG . ~58!

Thus, for a given value of the total power, the coma of the
thin RGRIN lens can be corrected by transferring power
either between surfaces~ordinary bending! or between a
surface and the RGRIN medium~gradient bending!.

The total spherical aberration,

G15A5Ah1Ag1A0*1A1* , ~59!

can be written as a sum of four terms: the ordinary Argen-
tieri term

Ah5
whh

4

4 Fn012

n0
Ã222Ãc1S n0

n021D
2

wh
2G ~60!
1297Optical Engineering, Vol. 35 No. 5, May 1996
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and three terms due to the gradient. The first term

Ag5wgh
4FÃ2~n021!~3n021!

2n0
2 1

Ãc~n023!

n0
1
7c2

4

1
~3n011!wh

2

4~n021! G ~61!

has the same nature as the gradient contribution to co
@Eq. ~58!#. The second term

A0*522whh
4

n0k

n021
~62!

does not depend on the lens thickness and is due to
asphericlike effect of the RGRIN medium on the surfac
contributions to spherical aberration. The last of the
terms

A1*5wgh
4k~124N4! ~63!

is the only term in the aberration expressions@Eqs.~52! to
~63!# that depends on the fourth-order refractive-index c
efficientN4. Thus, by changingN4 it is possible to correct
spherical aberration without affecting the power or the co
rection state of other Seidel or chromatic paraxial aber
tions.

For small values of the quadratic coefficientk, the re-
fractive index distribution@Eq. ~1!# must be replaced with

n2~r 2!5n0
2~12kr21er 41••• !, ~64!

where the fourth-order coefficient is now denoted by

e5N4k
2. ~65!

Thus, in the special case of the shallow gradients~k50!,
Eq. ~63! becomes

A1*524dn0eh
4, ~66!

while all other gradient contributions to spherical aberr
tion, coma, and Petzval curvature vanish:

Ag5A0*5Bg50. ~67!

Thus, because of Eq.~66!, the Seidel aberrations of a thin
lens with a shallow radial gradient are equivalent to tho
of a homogeneous aspheric lens.

As can be seen from the preceding equations, if the
fractive index parametersk andN4 are regarded as vari-
ables and the required values are in the producible ran
the use of radial gradients creates design possibilities t
are not available for homogeneous lenses. Because of
gradient contributions to the Seidel aberrations, which d
pend@excepting Eq.~62!# on the gradient power and there
fore ond, the thickness is also more effective for contro
ling aberrations than in the homogeneous case.

Finally, when the stop is situated at a certain distan
from the lens, the expressions for the Seidel aberrations
be immediately derived from the above expressions
means of stop-shift formulas:7
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G453qH2w1qP13q2B1q3A,

where the stop-shift parameterq is given by the ratio of the
chief and marginal ray heights at the lens:

q5
m

h
. ~69!

For systems of thin lenses separated by air spaces, the
Seidel aberrations can then be determined following the
same procedures as in the homogeneous case.

Equations~68! show that, within the domain of validity
of the thin lens approximation@conditions of Eqs.~15! and
~22!#, for a given value of the total power, the five Seidel
coefficients are expressed only through four independent
quantities:A, B, P, andq. Therefore, it is not possible to
correct simultaneously all five Seidel aberrations. For in-
stance, for a thin RGRIN lens with nonzero power, if
spherical aberration and coma are corrected (A5B50) or
if the stop is at the lens~q50!, then astigmatism is propor-
tional to the lens power and is therefore uncorrected. The
same limitation also occurs for a group of thin lenses in
contact. This limitation, which is well known from the ho-
mogeneous case, cannot be removed by the use of gradi-
ents.

Numerical comparisons of the Seidel aberrations com-
puted with exact and thin-lens formulas have shown that
the qualitative conclusions drawn by thin-lens analysis ap-
ply fairly well for RGRIN lenses having typical values of
the lens parameters, as long as the thickness and quadratic
coefficientk are not too large. Results quite different from
those predicted by thin-lens analysis have been obtained
only for lenses, where the conditions of Eqs.~15! and~22!
are severely violated.

A first example of a single radial GRIN lens where
third-order spherical aberration, coma, and astigmatism are
simultaneously corrected has been given by Moore.12 With
the present notation, the corresponding lens parameters are:
R150.333,R2520.190,d50.175,n051.522,k5212.920,
N452.788,b50, andf51. Astigmatism could be corrected
because the absolute value of the radiusR2 of the second
surface is nearly as small asd and because the absolute
value ofk is very large~kd2520.395 is therefore not neg-
ligibly small!.

Simultaneous correction of spherical aberration, coma,
and astigmatism is known also for patented objectives con-
sisting of a single RGRIN lens. The parameters of such an
objective, which has been optimized for a numerical aper-
ture of 0.5, are given in Table 52 of Ref. 13:R151.697,
R2521.356, d51.560, n051.50, k50.340, N450.208,
b50, and f51. Correction of astigmatism is possible be-
cause of the large value of the lens thickness. Note thatd is
larger than the effective focal lengthf and thatkd250.827
has the order of magnitude of unity.



Bociort: Thin-lens approximation . . .
5 Conclusions

For thin RGRIN lenses@i.e., for lenses satisfying the con-
ditions Eqs.~15! and ~22!# expressions of the Seidel aber-
rations of the entire lens were obtained@Eqs. ~52!, ~53!,
~55! to ~63!, ~68!, and ~69!# in which the lens parameters
appear either directly or through simple intermediate var
ables@Eqs.~28!, ~38!, and~43!#. With these expressions, a
reasonably accurate qualitative description of the behavi
of Seidel aberrations was obtained also for RGRIN lense
of finite thickness, provided that the thickness and the qu
dratic refractive index coefficient are not too large. The
analysis of the possibilities and limitations of aberration
correction with RGRIN lenses is thus considerably simpli
fied as compared with exact Seidel formalism or direct op
timization with ray tracing.
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