Thin-lens approximation for radial gradient-index

lenses
Florian Bociort Abstract. Expressions for the Seidel aberrations of thin radial gradient-
Institute of Atomic Physics index (GRIN) lenses having a similar structure with the corresponding
IPTRD-Department of Lasers expressions for thin homogeneous lenses are obtained. By enabling a
P.O. Box MG-6 direct analysis of the relationship between aberrations and lens data, the
76900 Bucharest, Romania thin-lens approximation provides new insight into the possibilities and
E-mail: bociort@ifa.ro limitations of aberration correction for simple optical systems using radial
gradients. It is found for instance that, as in the homogeneous case,
within the frame of this approximation the astigmatism of single radial
GRIN lenses cannot be corrected if spherical aberration and coma are
corrected or if the aperture stop is located at the lens. © 1996 Society
of Photo-Optical Instrumentation Engineers.
Subject terms: gradient-index optics; aberrations; optical design.
Paper RMA-10 received Aug. 8, 1995; revised manuscript received Oct. 28,
1995; accepted for publication Nov. 17, 1995.
1 Introduction For a better insight into the additional possibilities of

aberration correction provided by the gradients, a formal-

A necessary condition for obtaining a successful optical ism having the same simplicity as the homogeneous thin-
design is the control of the primary aberrations of the sys- lens theory is desirable. While some thin-lens expressions
tem. Only optical systems where both Seidel and chromatic have been derived for various special cdses, general
aberrations can be reduced to acceptable values are capablgin-lens theory for gradient-index lenses, similar to that for
of producing an image of good quality. For homogeneous homogeneous lenses, is currently known in the literature.
lenses, it is known, however, that the control of these ab- For radial gradients, thin-lens expressions are frequently
errations is subject to certain basic limitations. For simple used only for lens power, Petzval curvature, and axial
optical systems, a useful tool for obtaining insight into the color. Thus, it has been shown that it is in principle pos-
possibilities and limitations of aberration correction is the sible to control simultaneously Petzval curvature and axial
thin-lens approximation. color of a single radial gradient-indéRGRIN) lens?® The

Since for homogeneous optical systems the lens thick- purpose of this paper is the generalization of the thin-lens
nesses are generally a less effective degree of freedom formpproximation for all Seidel aberration coefficients of
controlling aberrations than the surface curvatures and theRGRIN lenses.
air spaces between the lenses, the aberration coefficients of Since for RGRIN lenses the gradient medium can have a
a homogeneous lens having a finite but not too large thick- major contribution to power and primary aberrations, the
ness are of the same order of size and show approximatelylens thickness must be regarded as a design parameter as
the same variation with the other lens parameters, as in thesignificant as other parameters. Therefore, setting the lens
case of the corresponding lens considered to have zerathickness equal to zero is not adequate, because the contri-
thickness: On the other hand, setting the lens thickness butions stemming from transfer through the gradient me-
equal to zero in the exact paraxial and aberration formulas dium would be lost.
enables a considerable simplification of the corresponding In this paper, it is shown that the thin-lens approxima-
expressions for the entire lens. Even if the results of the tion can be extended for RGRIN lenses to include the gra-
thin-lens approximation differ to some extent in absolute dient medium contributions. The starting point is the ex-
magnitude from the exact results, the thin-lens approxima- pressions of the Seidel aberrations of RGRIN lenses having
tion yields a useful qualitative insight into the general prop- finite thickness derived in an earlier papand reviewed in
erties of the lens aberrations. Thus, in early design stagesSec. 2. After a brief discussion of the paraxial approxima-
the thin-lens theory enables the designer to investigatetion in Sec. 3, expressions for the Seidel aberrations for the
whether a proposed system layout is capable of yielding theentire thin lens that have the same structure as the homo-
required degree of aberration correction. geneous thin-lens formulas are obtained in Sec. 4. The ap-

The use of gradients in optical systems leads to new proximate expressions, which are considerably simpler than
possibilities for aberration correction. If the required values the exact Seidel formulas, are obtained as the sum of the
of the refractive index parameters are in the producible lowest order nonvanishing terms in a power series expan-
range, a considerable reduction of the number of elements,sion with respect to the lens thickness in the transfer con-
as compared to homogeneous designs of same perfortributions with the corresponding contributions of the two
mance, becomes possibte. end faces.
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Bociort: Thin-lens approximation . . .

The thin-lens formulas indicate which parameters of the wherengi andn,j are the paraxial refraction invariants
RGRIN lens are effective for controlling a given primary
aberration. For instance, it is found that within the frame- ngi=nghp—ngu, nNgj=ngmp—nyw, 3
work of the thin-lens approximatiofi.e., unless the lens
becomes very thick or the gradient very strn@n andH is the paraxial system invariant
aplanatic single RGRIN lens or system of such lenses in

contact cannot also be corrected for astigmatism. Thus, forH=mnyu—hnyw. (4)
RGRIN lenses we have the same basic limitation as in the _
homogeneous case. By A (#) we denote the difference between the values after

As will be discussed in detail elsewhere, comparison and prior to refraction or the transfer of the quantity in the
with the results obtained with exact Seidel expressions brackets. Note that Eq$2) can be obtained from the cor-
shows that the approximate formulas derived in this paper responding relations in the homogeneous tasmply by
provide a very good description of the effects of the refrac- replacingn by ny.
tive index parameters on the Seidel aberrations of the lens. Second, the inhomogeneous surface contributions, de-
These formulas are useful, e.g., for determining the shapenoted by an asterisk, are
of curves giving the change of various aberrations if power
is transferred between surfaces and medium or for under-S} = —2h*pA(ngk),
standing specific features of simple systems optimized by
ray tracing. Sk =—2h3mpA(ngk),

)

* __ 22
2 Seidel Aberrations of RGRIN Lenses of Finite S5 = = 2h"mpA(nok),

Thickness St = — 2hmepA(ngk).
In this section, the formulas giving the Seidel aberrations of
an RGRIN lens of finite thickness and the paraxial relations The inhomogeneous surface contribution to Petzval curva-
needed for their computation are summarized. ture vanishes.

Consider an RGRIN lens having the refractive index dis-  Third, the transfer contributions of an RGRIN medium
tribution of thicknessd to the Seidel coefficients read

n2(r2)=n3(1—kr2+Nyk?r®+--), (D) Ty=nede3(1—3N4/2)+ny(1+NyA(hud)

wheren, is the refractive index on the optical axis. Only —5ngNe;A(hu)/2,

terms of order<4 determining the Seidel aberrations are

written in Eq. (1). The special case where the quadratic To=node;e,(1—3N4/2)+no(1+ Ny A(huw)

refractive index coefficienk vanishes(shallow gradients _ _ 2

is discussed separately in Sec. 4. 5noN4eA (hu)/2=NgHA(u”),
As in the homogeneous case, the Seidel aberrations can 5 W

be calculated from the paraxial marginal and chief ray data 3= Nod€(1—3N4/2)+ng(1+NgA(huw)

at the lens surfaces. Using the same notation as in Ref. 5, —51-N.e-A(hu)/2— 2N, HA —N,P-/2

the paraxial marginal and chief ray heights are dendted SNoNaesA (hu)/ sHAUW) =NgP+/2, - (6)

andm, the corresponding marginal and chief ray slopes are

denotedu andw, and the incidence angles for the marginal Ta=nNodese5(1—3Ny/2) +No(1+ Ng) A(hw)

and chief rays are denotddand j. The sign convention —5ngN4esA(mu)/2— NHA(W?)/2,
adopted foru andw is that their signs are the opposite of
those of the corresponding direction cosines. Pr=kdH?/n,,

The Seidel aberrations of the RGRIN lens are sums of
three types of contributions1) ordinary and(2) inhomo-  where T;, i=1,2,3,4, denote spherical aberration, coma,
geneous contributions at the two end faces eB)dransfer  astigmatism, and distortion, ar®}; denotes Petzval curva-
contributions from the RGRIN mediufh. ture. At transfer through the RGRIN medium, in addition to

First, for a surface of curvatuie the ordinary contribu-  the system invariant of Eq4), the quantities
tions to spherical aberratio®;, comas,, astigmatisnmsS;,

Petzval curvaturd, and distortionS, are given by e,=kh?+u?,
Slz(noi)zhA(U/no), ezzkhm"r‘UW, (7)
SzznoinojhA(U/no), e3=km2+W2,
S3=(Noj)*hA(u/ny), 2 also remain unchanged.

Expressions for paraxial ray tracing through RGRIN me-
Ps=—pH?A(1/ng), dia can be found from the solutions for the refractive index

distribution[Eqg. (1)] of the differential equations describ-

Ss=(Npj)2mA (u/ng) + ngjHA(W/ny), ing the ray propagation in inhomogeneous médiae

Optical Engineering, Vol. 35 No. 5, May 1996 1293
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adopt the following notation: quantities after transfer are 3 Paraxial Approximation for Thin RGRIN

denoted by a prime whereas quantities before transfer are

left unprimed.
For k>0 (positive gradientsby writing g=
ginal ray parameters are given by

kY2 the mar-

u’=u cosgd+hg singd,

®
u
h'=-— a singd+h cosgd,
and those of the chief ray by
w’=w cosgd+mgsingd,
9
w
m’'=— a singd+m cosgd.
Similarly, for k<0 (negative gradienjsve have
u’=u coshgd—hg sinhgd,
u R N
h'=-— 6 sinhgd+h coshgd,
(10)

w’=w coshgd—mg sinh gd,

!

w R N
m’'=— E sinh gd+m coshgd,

whereg = (—k)*2 The difference between the transfer for-
mulas in the two casek>0 and k<O disappears if the
trigonometric and hyperbolic functions in Eq8) to (10)
are expanded into power series. Setting

singd
E,(kd?>)=cosgd, E,(kd?)= ad (11)
we have, e.g., for the marginal ray
u’ =uE;(kd?) +hkdEy(kd?),
(12

h'=—udEy(kd?)+hE;(kd?).
From the series expansions of E{El) it can be observed

thatE, andE, depend indeed only og?=k:

1 1
El(kdz)zl— E kd2+ 47 (kdz)z— e,
13

1 1
Ea(kd’) =1 27 kd+ 7 (kd?)?—+ -

Thus, fork=0 (shallow gradientswe haveE;=E,=1 and

Eqgs.(8) and(9) become the well-known transfer equations
for a homogeneous medium. For instance, for the marginal d<|f,|.

ray we obtain

u'=u, h'=h-ud. (14
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To derive the thin-lens expressions for the Seidel aberra-
tions, a systematic procedure for generalizing the thin-lens
approximation for radial gradients is developed in this sec-
tion. This procedure is first applied for regaining well-
known paraxial results. In the next section, the same pro-
cedure leads to the simplified expressions of the Seidel
coefficients of a thin RGRIN lens.
For a homogeneous lens having curvatusesand p,,
the thin-lens approximation is valid if the lens thickness
is small in comparison with the radii of the two end sur-
faces
lpald<1, |po|d<1. (15
In this case, the change inside the lens of the ray height
given by the second of Eg$l4) is also small and can be
neglected. Thus, at transfer we have
Ah=0. (16)
Consider a thin RGRIN lens situated in air and having
curvaturesp; andp,. To include the gradient medium con-
tributions into the thin-lens theory note that the thin
RGRIN lens can be regarded as being composed from three
thin lenses in contact: two homogeneous thin lenses of re-
fractive indexng having each a plane face and the other end
face of curvaturep,; andp,, respectively, and a thin Wood
lens. (A Wood lens is an RGRIN lens with plane end
faces) If the lens thicknessd is much smaller than the focal
length of each of the three “components,” then the power
of the thin RGRIN lens is the sum

17

of the powers of its “homogeneous” and “gradient” parts.
Equation (17) can be easily generalized for an arbitrary
system of thin lenses in contact, situated in air

¢=¢nt @q

@ZE Pi»

(18

where the index denotes the various homogeneous and
gradient contributions of the components to the power of
the lens system. In Eq17), the power of the “homoge-
neous” part is given by

Ph=@1t @z, (19
where we have
e1=(Ng—1)p1, @2=—(Ng—1)p5. (20)

To determine the expression @f consider a thin Wood
lens having a thickness much smaller than its focal length

(21

As shown later, the preceding approximation is equivalent
to the condition
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|k|d2<1. (22
With the condition of Eq.(22), Egs. (13) become
E,=E,=1 and the transfer Eq$12) for the marginal ray
read

u’=u+kdh, (23
and
h’=h—ud. (24)

Consider an axial object point situated at infinity. et
andu; be the marginal ray slopes at the first surface before
and after refraction and let, andu; be the same quantities
at the second surface. From the second of Ef4) we
obtain
h—usf,,=0. (25
Since the end surfaces are plane, we haj«eu,=0, and
consequently

h

fr (26)

=u5=ngu,=ngkdh.

The second equality in Eq26) comes from refraction at
the second end face and the third one follows from Eg.
(23). Thus, we arrive at the well-known relation for the
focal length of the Wood lefi§

fw=(nokd) . (27)
The powercpng\,‘\,1 is then given by
(,Dg: nokd. (28)

The relationships between positions and sizes of object
and image of the thin RGRIN lens or system of thin lenses
in contact are the same as in the homogeneous case. For
given value of the transverse magmﬁcat;@,nthe positions
s ands’ of object and image are given by

(1Y, $==(1-p) (29
- S: - - ) S = - 1
¢ ¢
wheres ands’ are positive if the objedtimage is situated
to the right of the lens and negative otherwise. Eliminating
B in Egs. (29 yields the well-known relationship between

position of object and image of a thin lens

1 B 1 30
PO (30
The condition of Eq.22), which follows immediately

from the condition of Eq(21) and Eq.(27), is the addi-

tional condition that, together with the conditions of Egs.
(15), defines the thin-lens approximation for radial gradi-
ents. In this approximation, the gradient contribution to
power [Eq. (28)] has been obtained by keeping in the

paraxial transfer equations only the lowest order nonvan-
ishing terms in the lens thickness, which are the linear
terms.

The same procedure will be applied for deriving the
thin-lens expressions for the Seidel aberrations, where only
lowest order terms will be kept in both the surface and the
transfer contributions. Thus, in the transfer contributions of
Egs. (6) the linear terms ind will be kept. On the other
hand, the surface contributions of Eq8) and (5) can be
handled as in the homogeneous case by assuming that the
paraxial ray heights within the lens do not char{ds.

(16)].

4 Seidel Aberrations of Thin RGRIN Lenses

Equations(2), (5), and(6), giving the contributions of re-
fraction and transfer to the Seidel aberrations, can provide
numerical values for the various aberration coefficients, but
offer only a limited insight into the correction possibilities
for the entire lens or for the entire optical system. To obtain
additional insight, in this section simplified expressions for
the Seidel aberrations of the entire RGRIN lens are derived
based on the developed thin-lens approximation. To sum up
the surface and transfer contributions, appropriate thin-lens
variables are introduced. With the resulting formulas, the
correction possibilities of the Seidel aberrations as well as
their limitations are briefly discussed.

Consider first the transfer contributions of positive or
negative radial gradients.e., nonzerdk) to the Seidel ab-
errations. A closer inspection of Eq®) to (9) shows that
the transfer contributions vanish fdr=0. By substituting
the invariant{ Egs.(7)] and the paraxial transfer EqR3)
and(24) into Egs.(6), we obtain for the transfer contribu-
tions polynomials of fourth order in the lens thickneks
As in the paraxial case, we keep only the lowest order
terms ind, which are the linear terms. These calculations
were performed by means of computer algebra. Using Eq.
(298), the results are

T1= ¢4 h*k(1—-4N,) +5h%u?],

T,= 4

H
h3mk(1—4N4) +5h2uw+ 2hu =
0

(31

2 22 H
TSISDg h“m k(1_4N4)+5h W -|-4hWn—0 y

o y
T4=g@g hm k(1—4N4)—|—5hmV\/2+mWn—0 .

The Petzval curvature for transfer can be immediately re-
written as

H2

Pr=gq (32

2 -
0

Note that all expressions in Eq&1) and (32) are propor-
tional to the gradient powepy, i.e., to the produckd.

To derive the expressions for the aberrations of the en-
tire thin lens, it is convenient to consider first the case
where the aperture stop is situated at the lens and then to
allow for arbitrary stop positions by means of stop-shift
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Bociort: Thin-lens approximation . . .

formulas. Expressions of stop-shift formulas, which are sible, e.g., the Coddington variabfeSFor radial gradients,
valid for arbitrary rotationally symmetric optical systems, however, the Coddington variables are less appropriate, be-

can be found, e.g., in Ref. 7. cause one of them becomes indefinite in the special case
If the stop is at the lens, we have in all formulas=0. where both end faces are plafWood leng. The Argentieri
The invariants of Eq93) and(4) become variables are
Ngj =NgMp—NgW= —NgyW, 1+8
(33 lﬁ:m @h, w=p1tpo— ¢ (38)

H=mnyu—hngw= —hngw.
In the subsequent calculations, the indices 1 and 2 denote

Thus, the angles andw can be written as quantities related to the first and second end surfaces.
H First, the marginal ray inclination is expressed in all ab-
Noj = s NoW, (34) erration formulas through the variab§e Observing that
suy=h=s'u;, (39
and all quantities related to the chief ray can be removed
from the aberration expressions. it follows from Eq.(30) that the total change af produced
The surface contributior{€gs.(2) and(5)] then become by the thin lens is given by

S;=(nei)*hA(u/ny), uy—Uy;=he=h(gn+ ¢g). (40)
S;=ngiHA(u/ny), Since we have

H? u, = Bu, 41
Si= A(u/ng), @ TP “

we can also write

Ps=—pH2A(1/ny),
S 0 1+8 us+uy uy+u,

= Ph= Ph= Ph s
=B u—u " hiegten N

H3 ¥ (42
Sy=ngjHNWA(1/n3)=— e A(1/nd),

obtaining an alternative expression for the first Argentieri

and variable[Eq. (38)]:
Sf=—-2h%A(nek), S;=Sti=S}=0. (36) . 1 1 ¢en 3
s" s egten’
The transfer contributiongEgs. (31)] read g
From Eq.(42), we obtain
T1= gl h*k(1—4N,) +5h%u?],
, H H u,+u,=hy 1+% . (44)
= —|=— — h
T,= ¢y 5h°uw+2hu no 3pghu o’
(37) Equations(40) and(44) form a linear system of equations
- H H\2 with unknownsu, andu, . The solution reads
T3= ¢y 5h*W*+4hw —|=¢4| —| ,
No No
u’=1 h| ¢ 1+ 59) 1 oot
T4:O. 2 2 ®n PhT Pyl
. . : (45)
As in the homogeneous thin-lens thedriy the summa- ®
tion of the various contributions to the total aberration co- U=5 hl g 1+ 2| — op— ®g]-
efficients it is assumed that the heidghbf the marginal ray ®h

does not change within the lens. Before performing the
summation, however, two new thin lens variables are intro-
duced: a variable conveniently expressing the marginal ray = . : .
inclinationu and a bending variable giving the two surface sur;aces, 'gs'd? the Ierf(s.e.z after rrt]afractlon dat th]? first
curvaturesp; andp, for a given value of the homogeneous Surface and prior to refraction at the second suifave
power ¢, . The new variables are defined such that in the (€N
limiting case of a homogeneous medium, the present thin 1
lens formulas reduce to the thin lens formulas first derived |, ,

I u;=—1[u;+(ng—1)hp;], uU,=—[us+(ng—21)hp,].
by Argentieri(see Refs. 10 and 11For homogeneous me- ' n, [ust(o=D)hpal, Uz No [uz+(no=1)hp]
dia, other definitions of the thin lens variables are also pos- (46)

Equationg45) give the marginal ray inclinations at the two
end surfaces, outside the thin lens. The values at the end
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We must now decide what value should be assigned to It can be observed that the Petzval curvature of the RGRIN
the quantityu in the first two of Eqs(37). In the derivation lens can be corrected by choosing
of these equations) was assumed to be the marginal ray

inclination in the gradient medium prior to transfer ®g=—NoPh - (54)
=u;. We do not have, however, any reason to prefer the
value prior to the transfer to the value after trangigr In the case of astigmatisni}s=S; ;+ S ,+ T, it fol-
Thus, in Eqs(37), we set lows from Egs.(35), (51), (40), (23), and(28) that
u;+u, 2
= . 4 H ’ !
u 2 @7 Ssat S3p= 7 Uz_Ul_n—O (uz—uy)

As can be seen from E@3), u, differs fromu; by a linear )
term in d. Thus, the replacemefiEqg. (47)] is consistent =H
with the approximation used for deriving Eq87)—that

only lowest order nonvanishing terms are kept—because

g
ent $Pg— F) )
0

these equations are already lineardin and from Eqs(37) that
Second, the surface curvatures are expressed through the
Argentieri variables. From Egg19), (20), and (38), we I3=H2(pp+ (pg)ZHch. (55

obtain a linear system of equations f@rand p,

Thus, we arrive at the same remarkable result as in the
Ph homogeneous case: If the stop is at the lens, the astigma-

P1p2=p T PitP2m Y 48 tism of a thin RGRIN lens of nonzero power has a fixed
value and cannot be corrected by any of the lens param-
having the solutions eters.
For spherical aberratioh; =S, 1+ S; ,+ Sf 1+ S ,+ T4
1 Ph and comd’,=S, 1+ S, ,+ T,, the summation of the surface
p1=5 | No— 1>' and transfer contributions expressed through the Argentieri
(49) variables is straightforward, but lengthy, and has therefore
1 @n bee_n performed by means of computer algebra. In the re-
p2=5 | @t v— no_1>. sulting sums, only the linear terms in, (i.e., the linear

terms ind) are kept. For the total coma

After substituting Eqs(45), (46), and(49), Eq.(47) and
the quantitiesnyi and A(u/ny) appearing in the surface I';=B=Bp+Bg, (56)
contributions[Egs. (35)] at the two end surfaces,
in addition to the ordinary contribution given by the expres-

(Noi)1=hp1—Us, (Noi)a=hpo—u}, (50) sion of Argentieri®!?
A(u/ng);=ullng—uy, A(u/ng)>=ub—u,/ng, 51 Hh? [ny+1
(u/ng)1=uz/ng—uy (u/ng),=uz—Uz/ng (51 Bh:(PhZ ono —_— (57)
come to be expressed through the Argentieri varialites.
(39)]. " . I
Finally, we sum up for each aberration coefficient the we have an additional gradient contribution
surface and transfer contributions, obtaining for the entire ) 5
RGRIN lens the expressions for spherical aberrafign _pgHh® [ ng—1 _3”0+1 59)
comal’,, astigmatisml’;, Petzval curvaturé, and distor- s 2 no | ° Ny i

tion I',. Note first that the quantities

Thus, for a given value of the total power, the coma of the
thin RGRIN lens can be corrected by transferring power

. L either between surfacg@rdinary bending or between a
have equal magnltudes b_ut opposite signs at the two endgrface and the RGRIN mediufgradient bending
surfaces. Thus, for distortion, the sum vanishes because the The total spherical aberration

two surface contributions cancel each other out:

A(ngk),A(1/ng),A(1/n3)

r,=0. (52) [=A=A,+A+AF+AT, (59
The well-known expression of Petzval curvafufellows can be written as a sum of four terms: the ordinary Argen-
immediately as tieri term

®h | Pg enh? [ng+2 no \2
P=H?3 —+ ]| (53 _rh |0 2_ 0 2

No  ng "4 Ty @ 2wy no—1) (60
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and three terms due to the gradient. The first term [=A, T,=B+9A, T3=H%p+29B+9?A,
@%(No—1)(8no—1)  w(no=3) 7y
Ag= pgh* + +—
9™ % 2n3 no Z p=nz[ £y o) (68)
(304 1) No ng
N+
0 Ph 61)
4(np—1) I',=39H?%p+ 9P+39°B+ 9°A,

has the same nature as the gradient contribution to coma ) o )
[Eq. (58)]. The second term where the stop-shift parametétris given by the ratio of the

chief and marginal ray heights at the lens:

A =—2¢ph* (62)

ng—1 m

o= —. (69

does not depend on the lens thickness and is due to the

asphericlike effect of the RGRIN medium on the surface

contributions to spherical aberration. The last of these For systems of thin lenses separated by air spaces, the

terms Seidel aberrations can then be determined following the
same procedures as in the homogeneous case.

Al = (,ogh4k(1—4N4) (63 Equations(68) show that, within the domain of validity
of the thin lens approximatiofconditions of Eqs(15) and

is the only term in the aberration expressi¢gs|s.(52) to (22)], for a given value of the total power, the five Seidel

(63)] that depends on the fourth-order refractive-index co- coefficients are expressed only through four independent
efficientN,. Thus, by changing\, it is possible to correct  quantities:A, B, P, and . Therefore, it is not possible to
spherical aberration without affecting the power or the cor- correct simultaneously all five Seidel aberrations. For in-
rection state of other Seidel or chromatic paraxial aberra- stance, for a thin RGRIN lens with nonzero power, if
tions. spherical aberration and coma are correctée-B=0) or

For small values of the quadratic coefficidatthe re- if the stop is at the leng&9=0), then astigmatism is propor-
fractive index distributiorfEqg. (1)] must be replaced with  tional to the lens power and is therefore uncorrected. The

same limitation also occurs for a group of thin lenses in

n?(r2)=n3(1—kr2+ert+---), (64) contact. This limitation, which is well known from the ho-

mogeneous case, cannot be removed by the use of gradi-
where the fourth-order coefficient is now denoted by ents.

Numerical comparisons of the Seidel aberrations com-

=N,k (65 puted with exact and thin-lens formulas have shown that

the qualitative conclusions drawn by thin-lens analysis ap-
Thus, in the special case of the shallow gradigits0), ply fairly well for RGRIN lenses having typical values of
Eq. (63) becomes the lens parameters, as long as the thickness and quadratic

coefficientk are not too large. Results quite different from
A} = —4dngeh?, (66) those predicted by thin-lens analysis have been obtained

only for lenses, where the conditions of E¢E5) and(22)
while all other gradient contributions to spherical aberra- are severely violated.

tion, coma, and Petzval curvature vanish: A first example of a single radial GRIN lens where
third-order spherical aberration, coma, and astigmatism are
Ay=A5=B4=0. (67) simultaneously corrected has been given by MdéMith

the present notation, the corresponding lens parameters are:

Thus, because of E¢66), the Seidel aberrations of a thin R;=0.333,R,=-0.190,d=0.175,ny=1.522,k=-12.920,
lens with a shallow radial gradient are equivalent to those N,=2.788,8=0, andf =1. Astigmatism could be corrected
of a homogeneous aspheric lens. because the absolute value of the radiysof the second

As can be seen from the preceding equations, if the re- surface is nearly as small as and because the absolute
fractive index parameters and N, are regarded as vari-  value ofk is very large(kd?=—0.395 is therefore not neg-
ables and the required values are in the producible rangeligibly small).
the use of radial gradients creates design possibilities that Simultaneous correction of spherical aberration, coma,
are not available for homogeneous lenses. Because of theand astigmatism is known also for patented objectives con-
gradient contributions to the Seidel aberrations, which de- sisting of a single RGRIN lens. The parameters of such an
pend[excepting Eq(62)] on the gradient power and there- objective, which has been optimized for a numerical aper-
fore ond, the thickness is also more effective for control- ture of 0.5, are given in Table 52 of Ref. 1B;=1.697,
ling aberrations than in the homogeneous case. R,=-1.356, d=1.560, ny,=1.50, k=0.340, N,=0.208,

Finally, when the stop is situated at a certain distance =0, andf=1. Correction of astigmatism is possible be-
from the lens, the expressions for the Seidel aberrations cancause of the large value of the lens thickness. Notedhsit
be immediately derived from the above expressions by larger than the effective focal lengfhand thatkd?=0.827
means of stop-shift formulds: has the order of magnitude of unity.
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5 Conclusions

For thin RGRIN lensesi.e., for lenses satisfying the con-
ditions Eqgs.(15) and(22)] expressions of the Seidel aber-

rations of the entire lens were obtaingégs. (52), (53),

(55) to (63), (68), and (69)] in which the lens parameters

appear either directly or through simple intermediate vari-
ables[Egs.(28), (38), and(43)]. With these expressions, a

reasonably accurate qualitative description of the behavior
of Seidel aberrations was obtained also for RGRIN lenses
of finite thickness, provided that the thickness and the qua- o.
dratic refractive index coefficient are not too large. The 10.
analysis of the possibilities and limitations of aberration
correction with RGRIN lenses is thus considerably simpli- 12.

3.
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weak gradient-index lensesAppl. Opt.29, 4016—-40251990.

F. Bociort and J. Kross, “Seidel aberration coefficients for radial
gradient-index lenses,J. Opt. Soc. Am. A1, 2647-26561994).

P. J. Sands, “Third-order aberrations of inhomogeneous lenskes,”
Opt. Soc. Am60, 1436—-14431970.

. W. T. Welford,Aberrations of Optical System&dam Hilger, Bristol

(1986.

8. E. W. MarchandGradient Index OpticsAcademic Press, New York

fied as compared with exact Seidel formalism or direct op- 13

timization with ray tracing.
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