
Introduction Thin Locks Evaluation Questions

Thin Locks: Featherweight Synchronization for
Java

D. Bacon1 R. Konuru1 C. Murthy1 M. Serrano1

Presented by: Calvin Hubble2

1IBM T.J. Watson Research Center

2Department of Computer Science
University of CA, San Diego

16th November 2005

David F. Bacon, Ravi Konuru, Chet Murthy, Mauricio Serrano University of CA, San Diego

Thin Locks: Featherweight Synchronization for Java

Introduction Thin Locks Evaluation Questions

Outline

Introduction
Problem Formulation

Thin Locks
Implementation
Locking Algorithms

Evaluation
Benchmarks
Conclusions

Questions

David F. Bacon, Ravi Konuru, Chet Murthy, Mauricio Serrano University of CA, San Diego

Thin Locks: Featherweight Synchronization for Java

Introduction Thin Locks Evaluation Questions

Outline

Introduction
Problem Formulation

Thin Locks
Implementation
Locking Algorithms

Evaluation
Benchmarks
Conclusions

Questions

David F. Bacon, Ravi Konuru, Chet Murthy, Mauricio Serrano University of CA, San Diego

Thin Locks: Featherweight Synchronization for Java

Introduction Thin Locks Evaluation Questions

Problem Formulation

Introduction

I Java synchronization is a double-edged word
I Java has threads and synchronized methods
I Synchronization is “dog slow”

I Stuck with a tradeoff
I Bad Performance, Safe Code
I Good performance, bug-prone code

I Can we modify Java to be faster yet still thread-safe to the
everyday programmer?

David F. Bacon, Ravi Konuru, Chet Murthy, Mauricio Serrano University of CA, San Diego

Thin Locks: Featherweight Synchronization for Java

Introduction Thin Locks Evaluation Questions

Problem Formulation

Problem

I Because Java is an explicitly multi-threaded language,
general-purposes libraries are thread-safe

I Non-trivial public methods of standard utility classes like
Vector or Hashtable are synchronized

I Example: Library call to set a bit in a bit vector:
I 50 instructions to lock and unlock the object
I 10 instructions method call overhead
I 5 instructions to actually set the bit

I Locking overhead frequently 25− 50%
I Even in single-threaded applications!!

David F. Bacon, Ravi Konuru, Chet Murthy, Mauricio Serrano University of CA, San Diego

Thin Locks: Featherweight Synchronization for Java

Introduction Thin Locks Evaluation Questions

Problem Formulation

Locking Scenarios by Frequency

1. Locking an unlocked object

2. Locking an object already locked by current thread a small
number of times (shallow nested locking)

3. Locking an object already locked by the current thread many
times (deeply nested locking)

4. Being the first to queue on a locked object

5. Trying to lock an object with a queue

Measurements: median of 80% of all lock operations are on
unlocked objects, and nesting is very shallow.

David F. Bacon, Ravi Konuru, Chet Murthy, Mauricio Serrano University of CA, San Diego

Thin Locks: Featherweight Synchronization for Java

Introduction Thin Locks Evaluation Questions

Problem Formulation

Locking Frequency

David F. Bacon, Ravi Konuru, Chet Murthy, Mauricio Serrano University of CA, San Diego

Thin Locks: Featherweight Synchronization for Java

Introduction Thin Locks Evaluation Questions

Problem Formulation

Goal

Goal: a locking algorithm with very low overhead for
single-threaded programs, but with excellent performance in the
presence of multithreading and contention.

David F. Bacon, Ravi Konuru, Chet Murthy, Mauricio Serrano University of CA, San Diego

Thin Locks: Featherweight Synchronization for Java

Introduction Thin Locks Evaluation Questions

Outline

Introduction
Problem Formulation

Thin Locks
Implementation
Locking Algorithms

Evaluation
Benchmarks
Conclusions

Questions

David F. Bacon, Ravi Konuru, Chet Murthy, Mauricio Serrano University of CA, San Diego

Thin Locks: Featherweight Synchronization for Java

Introduction Thin Locks Evaluation Questions

Implementation

Thin Locks

I Assume pre-existing heavy-weight locking system
I “Fat Locks”

I Thin Locks - a lightweight system for 2 most common cases

1. Object is unlocked
2. Shallow nested locking

I Locks are defaulted to thin and inflated if needed

I Once a lock is inflated, it can never be defaulted

David F. Bacon, Ravi Konuru, Chet Murthy, Mauricio Serrano University of CA, San Diego

Thin Locks: Featherweight Synchronization for Java

Introduction Thin Locks Evaluation Questions

Implementation

New Lock Structure

I Reserve 24 bits in the header of
each object for a thin lock

I “Obtained 24 free bits using
various encoding techniques
for the other values typically
stored in the header”

I First bit: Monitor shape lock
I 0 - denotes lock is “thin”
I 1 - denotes lock is “fat”

David F. Bacon, Ravi Konuru, Chet Murthy, Mauricio Serrano University of CA, San Diego

Thin Locks: Featherweight Synchronization for Java

Introduction Thin Locks Evaluation Questions

Implementation

When Lock is Thin

I Lock Structure
I Monitor Shape bit - 0
I Next 15 bits - Thread Identifier
I Last 8 bits - Nested lock count (+1)

I Maximum of 255 nested locks

David F. Bacon, Ravi Konuru, Chet Murthy, Mauricio Serrano University of CA, San Diego

Thin Locks: Featherweight Synchronization for Java

Introduction Thin Locks Evaluation Questions

Implementation

When Lock is Fat

I Lock Structure
I Monitor Shape bit - 1
I Next 23 bits - index of fat lock

David F. Bacon, Ravi Konuru, Chet Murthy, Mauricio Serrano University of CA, San Diego

Thin Locks: Featherweight Synchronization for Java

Introduction Thin Locks Evaluation Questions

Locking Algorithms

Assumptions

I Hardware support
I Used compare-and-swap

I CMP&SWP(addr, old, new) - If contents of addr == old
value, store new value and return true, otherwise return false

I key invariant: The lock field is never modified by any thread
except the current “owner”.

David F. Bacon, Ravi Konuru, Chet Murthy, Mauricio Serrano University of CA, San Diego

Thin Locks: Featherweight Synchronization for Java

Introduction Thin Locks Evaluation Questions

Locking Algorithms

Locking without Contention

I Initially - lock field is 0, thread A wishes to lock.
I Algorithm:

I compare-and-swap lock word
I “Old” value: High 24-bits masked to 0
I “New” value: monitor shape 0, thread index A, count 0

I If succeeds, object was not locked by another thread and we
now own lock

David F. Bacon, Ravi Konuru, Chet Murthy, Mauricio Serrano University of CA, San Diego

Thin Locks: Featherweight Synchronization for Java

Introduction Thin Locks Evaluation Questions

Locking Algorithms

Unlocking without Contention (no nesting)

I Algorithm
I Construct “old” value: monitor shape 0, thread index A, count

0
I Read lock word and check if compares to old value, if so

replace with all 0s

I Does not need compare-and-swap since no other thread can
modify lock if we own it

David F. Bacon, Ravi Konuru, Chet Murthy, Mauricio Serrano University of CA, San Diego

Thin Locks: Featherweight Synchronization for Java

Introduction Thin Locks Evaluation Questions

Locking Algorithms

Nested Locking and Unlocking

I Locking
I Compare-and-swap (from before) will fail
I If (monitor shape == 0) and (thread index == A) and (count

< 255)
I Increment count field - If count overflows then inflate lock

I Unlocking
I Similar to above only decrement lock-count

David F. Bacon, Ravi Konuru, Chet Murthy, Mauricio Serrano University of CA, San Diego

Thin Locks: Featherweight Synchronization for Java

Introduction Thin Locks Evaluation Questions

Locking Algorithms

Locking with Contention

B tries to aquire a lock held by A

I B’s compare-and-swap will fail

I B’s check that B owns the lock (nested lock) will fail
I B needs to force a transition from thin to fat

I B enters a spin-locking loop
I Once A unlocks, B will obtain
I B creates a fat lock, assigns monitor index to new monitor
I B changes monitor shape bit to 1

David F. Bacon, Ravi Konuru, Chet Murthy, Mauricio Serrano University of CA, San Diego

Thin Locks: Featherweight Synchronization for Java

Introduction Thin Locks Evaluation Questions

Outline

Introduction
Problem Formulation

Thin Locks
Implementation
Locking Algorithms

Evaluation
Benchmarks
Conclusions

Questions

David F. Bacon, Ravi Konuru, Chet Murthy, Mauricio Serrano University of CA, San Diego

Thin Locks: Featherweight Synchronization for Java

Introduction Thin Locks Evaluation Questions

Benchmarks

Setup

I JDK111
I Straightfowrard port of Sun’s JDF 1.1.1 to AIX

I IBM112
I IBM’s 1.1.2 version of the JDK for AIX

I Assumes that most apps have a small number of heavily used
locks

I Pre-allocates 32 “hot locks”
I Suffers when a large number of locks are used

I ThinLock
I Implementation of thin locks in JDK 1.1.2 for IBM’s AIX OS

David F. Bacon, Ravi Konuru, Chet Murthy, Mauricio Serrano University of CA, San Diego

Thin Locks: Featherweight Synchronization for Java

Introduction Thin Locks Evaluation Questions

Benchmarks

Micro Benchmarks

David F. Bacon, Ravi Konuru, Chet Murthy, Mauricio Serrano University of CA, San Diego

Thin Locks: Featherweight Synchronization for Java

Introduction Thin Locks Evaluation Questions

Benchmarks

Macro Benchmarks

David F. Bacon, Ravi Konuru, Chet Murthy, Mauricio Serrano University of CA, San Diego

Thin Locks: Featherweight Synchronization for Java

Introduction Thin Locks Evaluation Questions

Conclusions

Conclusions

I Efficient
I 5-10 instructions to lock/unlock object
I no increase in object size

I Good speedups
I Portable

I All architectures offer some locking primitive

David F. Bacon, Ravi Konuru, Chet Murthy, Mauricio Serrano University of CA, San Diego

Thin Locks: Featherweight Synchronization for Java

Introduction Thin Locks Evaluation Questions

Outline

Introduction
Problem Formulation

Thin Locks
Implementation
Locking Algorithms

Evaluation
Benchmarks
Conclusions

Questions

David F. Bacon, Ravi Konuru, Chet Murthy, Mauricio Serrano University of CA, San Diego

Thin Locks: Featherweight Synchronization for Java

Introduction Thin Locks Evaluation Questions

Questions

anyone? anyone? Bueller?

David F. Bacon, Ravi Konuru, Chet Murthy, Mauricio Serrano University of CA, San Diego

Thin Locks: Featherweight Synchronization for Java

	Introduction
	Problem Formulation

	Thin Locks
	Implementation
	Locking Algorithms

	Evaluation
	Benchmarks
	Conclusions

	Questions

