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Problem Formulation

Introduction

I Java synchronization is a double-edged word
I Java has threads and synchronized methods
I Synchronization is “dog slow”

I Stuck with a tradeoff
I Bad Performance, Safe Code
I Good performance, bug-prone code

I Can we modify Java to be faster yet still thread-safe to the
everyday programmer?
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Problem Formulation

Problem

I Because Java is an explicitly multi-threaded language,
general-purposes libraries are thread-safe

I Non-trivial public methods of standard utility classes like
Vector or Hashtable are synchronized

I Example: Library call to set a bit in a bit vector:
I 50 instructions to lock and unlock the object
I 10 instructions method call overhead
I 5 instructions to actually set the bit

I Locking overhead frequently 25− 50%
I Even in single-threaded applications!!
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Problem Formulation

Locking Scenarios by Frequency

1. Locking an unlocked object

2. Locking an object already locked by current thread a small
number of times (shallow nested locking)

3. Locking an object already locked by the current thread many
times (deeply nested locking)

4. Being the first to queue on a locked object

5. Trying to lock an object with a queue

Measurements: median of 80% of all lock operations are on
unlocked objects, and nesting is very shallow.
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Problem Formulation

Locking Frequency
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Problem Formulation

Goal

Goal: a locking algorithm with very low overhead for
single-threaded programs, but with excellent performance in the
presence of multithreading and contention.
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Implementation

Thin Locks

I Assume pre-existing heavy-weight locking system
I “Fat Locks”

I Thin Locks - a lightweight system for 2 most common cases

1. Object is unlocked
2. Shallow nested locking

I Locks are defaulted to thin and inflated if needed

I Once a lock is inflated, it can never be defaulted
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Implementation

New Lock Structure

I Reserve 24 bits in the header of
each object for a thin lock

I “Obtained 24 free bits using
various encoding techniques
for the other values typically
stored in the header”

I First bit: Monitor shape lock
I 0 - denotes lock is “thin”
I 1 - denotes lock is “fat”
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Implementation

When Lock is Thin

I Lock Structure
I Monitor Shape bit - 0
I Next 15 bits - Thread Identifier
I Last 8 bits - Nested lock count (+1)

I Maximum of 255 nested locks
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Implementation

When Lock is Fat

I Lock Structure
I Monitor Shape bit - 1
I Next 23 bits - index of fat lock
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Locking Algorithms

Assumptions

I Hardware support
I Used compare-and-swap

I CMP&SWP(addr, old, new) - If contents of addr == old
value, store new value and return true, otherwise return false

I key invariant: The lock field is never modified by any thread
except the current “owner”.
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Locking Algorithms

Locking without Contention

I Initially - lock field is 0, thread A wishes to lock.
I Algorithm:

I compare-and-swap lock word
I “Old” value: High 24-bits masked to 0
I “New” value: monitor shape 0, thread index A, count 0

I If succeeds, object was not locked by another thread and we
now own lock
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Locking Algorithms

Unlocking without Contention (no nesting)

I Algorithm
I Construct “old” value: monitor shape 0, thread index A, count

0
I Read lock word and check if compares to old value, if so

replace with all 0s

I Does not need compare-and-swap since no other thread can
modify lock if we own it
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Locking Algorithms

Nested Locking and Unlocking

I Locking
I Compare-and-swap (from before) will fail
I If (monitor shape == 0) and (thread index == A) and (count

< 255)
I Increment count field - If count overflows then inflate lock

I Unlocking
I Similar to above only decrement lock-count
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Locking Algorithms

Locking with Contention

B tries to aquire a lock held by A

I B’s compare-and-swap will fail

I B’s check that B owns the lock (nested lock) will fail
I B needs to force a transition from thin to fat

I B enters a spin-locking loop
I Once A unlocks, B will obtain
I B creates a fat lock, assigns monitor index to new monitor
I B changes monitor shape bit to 1
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Benchmarks

Setup

I JDK111
I Straightfowrard port of Sun’s JDF 1.1.1 to AIX

I IBM112
I IBM’s 1.1.2 version of the JDK for AIX

I Assumes that most apps have a small number of heavily used
locks

I Pre-allocates 32 “hot locks”
I Suffers when a large number of locks are used

I ThinLock
I Implementation of thin locks in JDK 1.1.2 for IBM’s AIX OS
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Benchmarks

Micro Benchmarks
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Benchmarks

Macro Benchmarks
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Conclusions

Conclusions

I Efficient
I 5-10 instructions to lock/unlock object
I no increase in object size

I Good speedups
I Portable

I All architectures offer some locking primitive
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Questions

anyone? ..... anyone? ..... Bueller?
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