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Thin monodromy in Sp(4)

Christopher Brav and Hugh Thomas

Abstract

We show that some hypergeometric monodromy groups in Sp(4,Z) split as free or
amalgamated products and hence by cohomological considerations give examples of
Zariski dense, non-arithmetic monodromy groups of real rank 2. In particular, we show
that the monodromy group of the natural quotient of the Dwork family of quintic
threefolds in P4 splits as Z ∗ Z/5Z. As a consequence, for a smooth quintic threefold
X we show that the group of autoequivalences Db(X) generated by the spherical twist
along OX and by tensoring with OX(1) is an Artin group of dihedral type.

1. Introduction

The question of the arithmeticity of Zariski dense monodromy groups of families of projective
varieties was raised by Griffiths and Schmid [GS75]. Non-arithmetic or ‘thin’ examples were given
by Deligne and Mostow [DM86] and Nori [Nor86] in products of some low-dimensional rank 1
groups, while examples in orthogonal groups of signature (n, 1) will be provided by Fuchs, Meiri,
and Sarnak [FMS13]. In all these examples, however, the Zariski closure of the monodromy group
has real rank 1 or is a product of groups of rank 1, so it is natural to ask if there are examples
of thin monodromy in higher rank. For more discussion of this problem, see Sarnak’s notes on
thin matrix groups [Sar12].

The simplest test cases are families over P1\{0, 1,∞} with monodromy having Zariski
closure Sp(4,R) (which has real rank 2). Examples of such monodromy are provided by certain
hypergeometric groups [BH89]. Very recently, some of these examples have been shown to be
arithmetic by Singh and Venkataramana [SV12], and for others their methods are inconclusive.

In the present paper, we focus on the examples of hypergeometric groups in Sp(4,Z) having
maximally unipotent monodromy at ∞, which have been extensively studied [CYY08, DM06,
ES06]. In order to describe them more precisely, let us introduce some notation.

A triple R, T, U ∈ GLn(C) with R = TU is called (irreducible) hypergeometric if rank(T −
I) = 1 and R−1, U have no common eigenvalues. This second condition ensures that the given
representation of the hypergeometric group 〈R, T, U〉 ⊂ GLn(C) is irreducible. Hypergeometric
groups are precisely the monodromy groups of generalised hypergeometric ordinary differential
equations [BH89]. Such a group is uniquely determined, up to conjugacy, by the Jordan normal
forms of R, T , and U , a property referred to as ‘rigidity’.

We shall be interested in the cases in which R, T, U ∈ Sp(4,Z) and U has maximally unipotent
monodromy (such arise as monodromy groups of families of Calabi–Yau threefolds with h2,1 = 1
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Table 1. The 14 hypergeometric groups in Sp(4,Z) for which U is maximally unipotent.

(a1, a2, a3, a4) d k Splitting Additional relation

(15 ,
2
5 ,

3
5 ,

4
5) 5 5 Z ∗ Z/5Z None

(18 ,
3
8 ,

5
8 ,

7
8) 2 4 (Z× Z/2Z) ∗Z/2Z Z/8Z None

( 1
12 ,

5
12 ,

7
12 ,

11
12) 1 4 (Z× Z/2Z) ∗Z/2Z Z/12Z None

(12 ,
1
2 ,

1
2 ,

1
2) 16 8 Z ∗ Z None

(13 ,
1
2 ,

1
2 ,

2
3) 12 7 Z ∗ Z None

(14 ,
1
2 ,

1
2 ,

3
4) 8 6 Z ∗ Z None

(16 ,
1
2 ,

1
2 ,

5
6) 4 5 Z ∗ Z None

(14 ,
1
3 ,

2
3 ,

3
4) 2 3 No (R6T )2(R6T−1)2

(16 ,
1
6 ,

5
6 ,

5
6) 1 2 No (RT )8

(16 ,
1
4 ,

3
4 ,

5
6) 6 5 No (R6T )2(R6T−1)2

(16 ,
1
3 ,

2
3 ,

5
6) 3 4 No (R3T )2(R3T−1)2

( 1
10 ,

3
10 ,

7
10 ,

9
10) 1 3 No (R2T )12

(14 ,
1
4 ,

3
4 ,

3
4) 4 4 ? ?

(13 ,
1
3 ,

2
3 ,

2
3) 9 6 ? ?

over P1\{0, 1,∞} with maximal degeneration at ∞). As shown by Doran and Morgan [DM06],

there are precisely 14 such examples over R, which are labeled by a quadruple of rational

numbers (a1, a2, a3, a4) such that the eigenvalues of R are exp(2πiaj). In all of these cases,

the group is known to be Zariski dense in Sp(4,R) by a criterion of Beukers and Heckman

[BH89]. Chen et al. [CYY08] show that with respect to an appropriate basis the 14 examples are

contained in certain congruence subgroups of Sp(4,Z) and raise the question of whether they

are arithmetic or thin.

The 14 possibilities are listed in Table 1.

Theorem 1.1. In seven of the 14 cases, the group splits as a free or an amalgamated product

and contains a free subgroup of finite index. In particular, these examples give thin monodromy

groups of real rank 2.

More precisely, in the next section we show by a ping-pong argument that in seven of the

cases, either there is a splitting 〈T,R〉 = 〈T 〉 ∗ 〈R〉 or Rk = −I for some k > 0 and there is a

splitting 〈T,R〉 = 〈Rk, T 〉 ∗〈Rk〉 〈R〉. The precise form of the splitting is displayed in Table 1,

from which it is immediate that either the group is free or the group generated by conjugates of

T by powers of R is a free subgroup of finite index.

For thinness in these seven cases, note that the group Sp(4,Z) has cohomological dimension 2

over Q [LW85, Corollary 5.2.3]. But since a group of finite cohomological dimension has the same

cohomological dimension as its finite-index subgroups [Swa69, Theorem 9.1], Sp(4,Z) cannot have

free subgroups of finite index.
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Our ping-pong argument is uniform, works for seven of the 14 cases, and is inconclusive

for the other seven. For five of these seven, we exhibit additional relations showing that the

group does not split in the expected way. Note of course that among these seven other cases are

three examples ((16 ,
1
6 ,

5
6 ,

5
6), (16 ,

1
4 ,

3
4 ,

5
6), and ( 1

10 ,
3
10 ,

7
10 ,

9
10)) of arithmetic groups from Singh and

Venkataramana [SV12].

The monodromy groups appearing in the table have been well studied in the context of mirror

symmetry and are expected to be mirror dual to certain groups of autoequivalences acting on

the bounded derived category of coherent sheaves Db(X) on a Calabi–Yau threefold X. For a

discussion of this, see van Enckevort and van Straten [ES06].

The case with parameter (15 ,
2
5 ,

3
5 ,

4
5) corresponds to the original and most famous example

of mirror symmetry, the Dwork family of quintic threefolds and its mirror family, with the

autoequivalences acting on Db(X), X a smooth quintic threefold. Let α = TOX
be the spherical

twist functor along the structure sheaf OX and β = OX(1)⊗? the functor of tensoring with

OX(1). We are interested in describing the subgroup of autoequivalences 〈α, β〉 ⊂ Aut(Db(X)).

Theorem 1.2. The subgroup 〈α, β〉 ⊂ Aut(Db(X)) is a two-generator Artin group with relation

(αβ)5 = (βα)5.

To see this, first consider the action of 〈α, β〉 on the even-degree cohomology Hev(X,Q), for

which it is easy to write down explicit matrices, which we denote by A and B [ES06]. Using

this, one can check that A is a transvection, B is maximally unipotent, and C = AB has the

non-trivial fifth roots of unity for eigenvalues. A,B,C therefore give a hypergeometric triple and,

by rigidity of hypergeometric triples, we can choose bases in which A = T , B = U .

Next, note that from the splitting 〈A,B〉 = 〈A,AB〉 = Z∗Z/5Z we see that 〈A,B〉 is subject

to the single relation

(AB)5 = I.

The relation between α, β in Aut(Db(X)) turns out to be slightly more subtle. We have

(αβ)5 ' [2], where [2] ∈ Aut(Db(X)) is the cohomological shift by two degrees [CK08, Kuz04].

In particular, (αβ)5 is central. Since centrality gives (αβ)5 ' β(αβ)5β−1, we have the relation

(αβ)5 ' (βα)5.

Conversely, the relation (αβ)5 ' (βα)5 implies centrality in a similar way.

It is then not hard to see that (αβ)5 ' (βα)5 is the only relation between α, β. Indeed, consider

the Artin group generated by x, y subject to the relation (xy)5 = (yx)5. Then we have a sequence

of surjections 〈x, y〉� 〈α, β〉� 〈A,B〉, where x 7→ α, y 7→ β and α 7→ A, β 7→ B. Since the only

relation among the A,B is (AB)5 = I, the kernel of the surjection 〈x, y〉� 〈A,B〉 is generated

as a normal subgroup by (xy)5, but since (xy)5 is central, the kernel is in fact cyclic. Similarly,

the kernel of the surjection 〈α, β〉 � 〈A,B〉 is cyclic and generated by (αβ)5. The surjection

〈x, y〉� 〈α, β〉 therefore induces an isomorphism between the kernels of 〈x, y〉� 〈A,B〉 and of

〈α, β〉� 〈A,B〉 and hence is itself an isomorphism.

Table 1 gives the data for the 14 hypergeometric groups in Sp(4,Z) for which U is

maximally unipotent. In the first column of the table are the parameters (a1, a2, a3, a4) giving

the eigenvalues exp(2πiaj) for R. With respect to a suitable basis [CYY08], there are integers d
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and k so that we have

U =


1 1 0 0

0 1 0 0

d d 1 0

0 −k −1 1

 , T =


1 0 0 0

0 1 0 1

0 0 1 0

0 0 0 1

 ∈ Sp(4,Z).

The integers d, k appear in the second and third columns of the table. In the fourth column we
describe a splitting of the group as a free or an amalgamated product in those cases in which
our method is effective. In the final column we indicate cases in which there is a relation that
prevents the group from splitting in the obvious way. We do not claim in these cases to give a
complete set of relations, and indeed we omit relations of the form Rm = I.

2. Ping-pong

We begin with a quick proof via the ping-pong lemma of the fact that the SL(2) hypergeometric
group having R with parameters (1/3, 2/3) and U unipotent splits as Z ∗ Z/3Z. We include
details for this example because we take a very similar approach in the Sp(4) case.

By rigidity, we can choose any convenient basis in which to write R, T, U . Let

U =

(
3 4

−1 −1

)
, T =

(
1 3

0 1

)
, R = TU =

(
0 1

−1 −1

)
.

Now we recall the ping-pong lemma in a version convenient for us [LS77, Proposition III.12.4].

Theorem 2.1. Let a group G be generated by two subgroups G1, G2, whose intersection is H.
Suppose that G acts on a set W , and suppose that there are disjoint non-empty subsets X,Y
such that

(G1 −H)Y ⊆ X and (G2 −H)X ⊆ Y,
HY ⊆ Y and HX ⊆ X.

Then G = G1 ∗H G2.

We wish to apply the lemma with G1 the subgroup generated by T , and G2 the subgroup
generated by R. We consider the given action of G on R2.

Divide R2 into 12 equally spaced cones (with respect to the angle measure obtained when
we put the axes at 60◦). See Figure 1.

We define X to be the union of the interiors of the four cones which touch the horizontal
axis, which are labeled in the diagram as C+, C−,−C+,−C−. We define Y to be the union of
the interiors of the other eight cones.

We then must check that:

(i) X and Y are disjoint;

(ii) R and R2 take X into Y ;

(iii) T i takes Y into X for i 6= 0.

Statements (i) and (ii) are completely trivial. We can break statement (iii) down into four
even more trivial statements, as follows:

(iv) T−1C+ ⊆ C+;

(v) TC− ⊆ C−;

(vi) T−1Y ⊆ ±C+;

(vii) TY ⊆ ±C−.
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Figure 1. R2 divided into cones.

These four statements are easy to verify. For example, (iv) is equivalent to the statement
that if we apply T−1 to an extreme ray of C+ and re-express it in the basis of the extreme rays
of C+, the coefficients are non-negative. Statements (v)–(vii) can be rephrased similarly.

We now explain why (iv)–(vii) imply (iii). In order to show that T i takes Y into X for i
negative, (vi) tells us that T−1 takes Y into ±C+, and then (iv) tells us that applying further
powers of T−1 will not take us outside ±C+. For i positive, the same approach is applied using
(vii) and (v).

Examples in Sp(4)

We present our hypergeometric groups using the matrices

U =


1 1 0 0

0 1 0 0

d d 1 0

0 −k −1 1

 , T =


1 0 0 0

0 1 0 1

0 0 1 0

0 0 0 1


and

R = TU =


1 1 0 0

0 1− k −1 1

d d 1 0

0 −k −1 1

 ,

which preserve the standard symplectic form given by the matrix

J =


0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

 .
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Consider the matrix

B =


−1 0 0 0

0 1 0 −1

−d 0 1 0

0 0 0 −1

 ,

which satisfies B2 = I. We note that

BRB = R−1 and BT−1B = T.

The fixed subspace of B is just the span of the second and third co-ordinate vectors. Let us
write V for this subspace.

This subspace plays a similar role in our construction to the horizontal axis in the two-
dimensional case discussed above, where the analogue of B is a reflection in the horizontal axis.

Remark 1. In the case where R is of finite order, V can be given a different description which
is instructive, because it emphasises the analogy of V with the horizontal axis in the two-
dimensional case.

The cases where R is finite order are exactly the cases where R has four distinct eigenvalues.
In these cases, the eigenvalues are roots of unity and come in complex conjugate pairs, so R
induces a decomposition of R4 into two-dimensional subspaces W1 and W2, on each of which R
acts by a rotation in an appropriate basis.

Each of W1,W2 has a one-dimensional intersection with the fixed space of T . It turns out
that V is the direct sum of these intersections, and B restricts to Wi, acting as a reflection fixing
the intersection of Wi with the fixed space of T .

Returning to the case of general R, let

P = log(T−1R) = log(U), Q = log(TR−1).

Throughout this paper, whenever we write log(K), K is a matrix such that K − I is nilpotent
of degree at most 4. We therefore define log(K) = (K − I)− (K − I)2/2 + (K − I)3/3.

If we consider the equation vTJPv = 0, there are two non-zero solutions in V up to scalar
multiples, which are (0, 0, 1, 0)T and

v = (0, 1, d/12− k/2, 0)T .

Now, define C+ to be the open cone generated by P iv for 0 6 i 6 3 (that is to say, linear
combinations of these four vectors, with all coefficients strictly positive). Define C− = BC+,
which can also be described as the open cone generated by Qiv for 0 6 i 6 3. Note that P 2v =
Q2v = (0, 0, d, 0)T , the other solution to the equation which we solved for v.

Finally, define
X = ±C+ ∪ ±C−, Y =

⋃
Ri 6=±I

RiX.

We now show that X and Y give ping-pong tables in the first seven examples from Table 1.

Case (1
5
, 2
5
, 3
5
, 4
5
), d = 5, k = 5

The matrix R has order 5. H = {I}. G1 is the group generated by T , and G2 is the group of
order 5 generated by R.

Write M for the matrix whose columns are the generating rays v, Pv, P 2v, P 3v of C+.
Similarly, write N for the matrix whose columns are the generating rays v,Qv,Q2v,Q3v of C−.
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We have

M =


0 1 0 0

1 0 0 0

−25/12 5/2 5 0

0 −25/12 0 −5

 , N =


0 −1 0 0

1 25/12 0 5

−25/12 −5/2 5 0

0 25/12 0 5

 .

The conditions we need to check are:

(i) X and Y are disjoint;

(ii) (G2 −H)X ⊆ Y ;

(iii) (G1 −H)Y ⊆ X.

In order to prove (i), it suffices to show that RjC+ and RjC− are disjoint from ±C+ for
1 6 j 6 4. (Disjointness from ±C− then follows by the symmetry with respect to B.)

Consider, for example, showing that RC+ is disjoint from ±C+. In order to do this, we
expand M−1RM :

M−1RM =


−23/12 −55/12 −5 −5

1 1 0 0

−103/144 −131/144 −13/12 −25/12

1/6 1/2 1 1

 .

Note that the entries in two of the rows are all non-negative, while the entries in the other two
rows are all non-positive. It follows that the same will be true for any positive linear combination
of the columns, and thus for any point in RC+ in the basis given by the columns of M . In
particular, there is no intersection between RC+ and ±C+.

The same argument works for the other cases of (i): it is always the case that two of the rows
have non-negative entries and two of the rows have non-positive entries.

Condition (ii) is true by construction.
As in the two-dimensional case, we break condition (iii) down into four subclaims:

(iv) T−1C+ ⊆ C+;

(v) TC− ⊆ C−;

(vi) T−1Rj(C+ ∪ C−) ⊆ ±C+ for 1 6 j 6 4;

(vii) TRj(C+ ∪ C−) ⊆ ±C− for 1 6 j 6 4.

Statement (iii) follows from (iv)–(vii) in essentially the same way as in the two-dimensional
case. An element of (G1 − I)Y is of the form T iRjx for some i 6= 0, 1 6 j 6 4, x ∈ X. If i < 0,
then (vi) tells us that T−1Rjx ∈ ±C+, and then (iv) applies to tell us that T iRjx ∈ ±C+ ⊆ X.
Similarly, if i > 0, apply (vii) and (v).

To establish (iv), we first argue that T−1C+ ⊆ C+. To show this, it suffices by convexity to
see that the generating rays of T−1C+ are contained in C+. We evaluate

M−1T−1M =


1 25/12 0 5

0 1 0 0

0 125/144 1 25/12

0 0 0 1

 .

We observe that the entries are all non-negative, which is exactly what we needed. Finally, since
T−1 is an invertible linear transformation, it takes open sets to open sets, so the image of C+

will be contained in C+.
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We can show (v) either by a completely similar argument, checking that the entries ofN−1TN
are non-negative, or by deducing it from (iv) using the symmetry encoded by B.

The proof of (vi) works in exactly the same way: it reduces to checking that the entries of the
following matrices are either all non-negative or all non-positive:M−1T−1RjM and M−1T−1RjN
for 1 6 j 6 4. Again (vii) is established by the same argument or by deducing it from (vi).

Ping-pong therefore establishes that the monodromy group is isomorphic to Z ∗ Z/5Z.

Case (1
8
, 3
8
, 5
8
, 7
8
), d = 2, k = 4

We have R4 = −I. Now H = {I,R4}. G1 is generated by T and R4 (forming a group isomorphic
to Z× Z/2Z). The subgroup G2 is generated by R.

Since X and Y are symmetric with respect to negation, the conditions on H hold.
Condition (i) is proved exactly as before.
As before, condition (ii), that (G2 −H)X ⊆ Y is true by construction.
Condition (iii) follows as before from conditions (iv)–(vii). In conditions (vi) and (vii), note

that now j runs from 1 to 3. The conditions are checked the same way as before.
Ping-pong therefore establishes that the monodromy group is isomorphic to (Z×Z/2Z)∗Z/2Z

Z/8Z.

Case ( 1
12

, 5
12

, 7
12

, 11
12

), d = 1, k = 4

We have R6 = −I. As in the previous case, H = {I,−I}. G1 is generated by T and R6 (forming
a group isomorphic to Z× Z/2Z). The subgroup G2 is generated by R.

Everything is checked exactly as in the previous case. Ping-pong establishes that the
monodromy group is (Z× Z/2Z) ∗Z/2Z Z/12Z.

Case (1
2
, 1
2
, 1
2
, 1
2
), d = 16, k = 8

The order of R is infinite. H = {I}. G1 is generated by T and G2 by R.
The situation is very similar to the first case d = k = 5, except that, in order to perform

the check of conditions (i), (vi), and (vii) as in that case, an infinite number of checks would
be required. To establish (i) we must show that RjC+ and RjC− are disjoint from C+ for all
j 6= 0. To establish (vi), we must show that the entries of M−1T−1RjM and M−1T−1RjN are
all non-positive or all non-negative for each j 6= 0. As before, (vii) then follows by symmetry.

We note that R consists of a single Jordan block with eigenvalue −1. We therefore define
Z = log(−R), which is nilpotent. Now

Rj = (−1)j exp(jZ) = (−1)j(I + jZ + j2Z2/2 + j3Z3/6).

We find that M−1RjM can therefore be expressed as

M−1RjM = (−1)j(I + jA1 + j2A2 + j3A3)

for certain matrices A1, A2, A3. Since the entries in A3 have all entries in two rows positive, and
all entries in two rows negative, the cubic term will eventually dominate, leading us to conclude
that M−1RjM will have all entries in two rows positive and all entries in two rows negative, for
j sufficiently large. In fact, it is easy to see that the cubic term dominates if |j| > 6; one then
checks the cases 1 6 |j| 6 5 individually.
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To check condition (vi) we take a similar approach. We find that

M−1T−1RjM = (−1)j(M−1T−1M + jD1 + j2D2 + j3D3)

for certain matrices D1, D2, D3.

Since the entries of D3 are all strictly negative, for |j| sufficiently large the cubic term

dominates, and the entries of M−1T−1RjM are all of the same sign. In fact, the absolute value

of each entry of D3 is at least as great as the corresponding entries in the other matrices, so the

cubic term dominates starting with |j| > 6. We then check the cases 1 6 |j| 6 5 individually.

The same analysis is applied to M−1T−1RjN .

Case (1
3
, 1
2
, 1
2
, 2
3
), d = 12, k = 7

As in the previous case, the order of R is infinite. H = {I}. G1 is generated by T and G2 by R.

The analysis is very similar to the previous case. However, R has eigenvalues exp (±2πi/3),

and one two-dimensional Jordan block with eigenvalue −1. Therefore, we cannot simply take the

logarithm of R. However, R6 has all eigenvalues equal to 1, so we can define Z = log(R6). Note

that Z2 = 0. Now

R6n+j = Rj exp(nZ) = Rj(I + nZ).

To check that RmC+ is disjoint from ±C+ for m > 0, we observe that for each 1 6 j 6 6,

M−1RjM and M−1RjZM have the same two rows consisting of positive entries, and the same

two rows consisting of negative entries. This suffices, since any positive m can be written as 6n+j

for some 1 6 j 6 6. For m < 0, we proceed similarly, writing m = 6n+ j with −6 6 j 6 −1. To

show that RkC− is disjoint from ±C+, we proceed similarly.

To establish (vi), we consider

M−1T−1R6n+jM = M−1T−1RjM + nM−1T−1RjZM.

If 1 6 j 6 6, all the entries of the two matrices on the right-hand side have the same sign.

This establishes that T−1RmC+ ⊆ ±C+ for any m > 0. For m < 0, we proceed similarly, writing

m = 6n+ j with −6 6 j 6 −1. Again, we check that M−1T−1RjM and −M−1T−1RjZM have

all entries with the same sign for −6 6 j 6 −1. This establishes that T−1RmC+ ⊆ ±C+ for

m < 0. We then repeat the same two steps to show that T−1RmC− ⊆ ±C+. This completes the

proof of (vi). Then (vii) follows by symmetry.

Case (1
4
, 1
2
, 1
2
, 3
4
), d = 8, k = 6

The matrix R has eigenvalues ±i together with one Jordan block of rank 2 with eigenvalue

−1. We therefore proceed as in the previous case, but defining Z = log(R4). The analysis goes

through in exactly the same way.

Case (1
6
, 1
2
, 1
2
, 5
6
), d = 4, k = 5

The matrix R has eigenvalues exp (±πi/3) together with a Jordan block of rank two with

eigenvalue −1. We define Z = log(−R3). The analysis goes through as in the previous two

cases.
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3. Logic behind the choice of ping-pong tables

The rough outline of the shapes of the ping-pong tables was inspired by the two-dimensional
case. Given that, one wants to define cones C+ and C− (as in the previous section). C+ should
be stable under T−1 and U , while C− should be stable under T and U−1. The two cones will
therefore lie on opposite sides of the fixed hyperplane of T .

It is not clear why C+ and C− should be chosen to have extreme rays in V , which is
codimension one in the fixed hyperplane of T .

As we already remarked, the cone C+ should be stable under U . An awkward feature of this
condition is that if we, for some reason, decide that some vector x is in C+, then it follows that
the infinite set Ux,U2x, . . . all also lie in C+. The convex hull of this infinite set will typically
have infinitely many extremal rays, making further analysis complicated.

Therefore, we instead chose to require that C+ be stable under P = log(U). Since U = exp(P ),
stability under P implies stability under U , but since P is nilpotent, stability under P is easier
to work with. Indeed, since P 4 = 0, for any x, the cone generated by P ix for 0 6 i 6 3 will be
stable under P .
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