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incorporating a small parameter lead to boundary-layer phe-

nomena in which stretching typically dominates over much of

the plate while bending dominates locally as needed to accom-

modate boundary data or abrupt changes in geometry or the

distribution of loading. Such models incorporate both modes

of deformation in a single framework which is amenable to

conventional methods of analysis based on matched asymptotic

expansions.

The present work is aimed at furnishing a non-linear model

of precisely this kind. The approach used is to estimate the en-

ergy of a thin body generated in response to a given kinemat-

ically possible three-dimensional deformation. This generates

an expansion of the plate energy in powers of thickness which

is truncated at a level that incorporates stretching and bending

simultaneously. The relevant expression is developed in Section

2. In Section 3 it is shown that this expression subsumes the

extremes associated with membrane and inextensional bend-

ing behavior, both of which have been the subject of indepen-

dent analyses by the method of Gamma convergence [2,12].

The tacit assumption is that the terms retained in our expansion

dominate those not retained. In general this needs to be con-

firmed a posteriori after the solution to a specific problem is

obtained. The same remark applies to works based on asymp-

totic expansions or on the method of Gamma convergence. To

date neither approach has yielded theorems on the convergence

of thickness expansions of the energy. The equilibrium equa-

tions of the model are deduced in Section 4 from the station-

arity of the truncated energy. Associated boundary conditions

are discussed in Section 5.

The idea pursued here is similar in spirit to that devel-

oped in [13–15], albeit with some differences. In particular,

some of the Euler equations derived here are of an algebraic

type. These specify relationships among the deformation of

the plate midsurface and certain vector fields representing the

through-thickness derivatives of the three-dimensional defor-

mation. Thus, in principle these relations pertain to equilibrium

fields. Similar restrictions are obtained in [14,15] and assumed

to apply to all deformations of the plate, not merely those that

satisfy equilibrium conditions. Consequently our approach is

less restrictive, allowing for the possibility that different rela-

tionships may exist among these variables in a dynamical set-

ting.

The present development is based on the standard purely

mechanical theory of finite elasticity. The associated Piola stress

P is given by

P(F̃) = U
F̃

, (1)

the gradient with respect to the deformation gradient F̃ of the

strain energy U(F̃) per unit reference volume. This is assumed

for the sake of simplicity to be independent of x, the position

in a reference configuration � of a material point of the elastic

body. The force per unit area transmitted across a surface in the

reference configuration with unit normal N is p(N) = P(F̃)N.

The deformation gradient satisfies dy= F̃ dx, where y=�(x) is

the position after deformation of the same material point and �

is the deformation function. We assume throughout that equi-

librium deformations satisfy the well-known strong-ellipticity

condition

a ⊗ b · M(F̃)[a ⊗ b] > 0 for all a ⊗ b �= 0, (2)

where

M(F̃) = U
F̃F̃

(3)

is the tensor of elastic moduli. Here and elsewhere we use

notation defined, in terms of Cartesian components, by M[A]=

MiAjBAjBei ⊗EA for any second-order tensor A, where Latin

indices take values in {1, 2, 3}, {ei} and {EA} are orthonormal

bases, and MiAjB = �2U/�FiA�FjB . The scalar product of

second-order tensors A, B is A · B = trace(AtB) = AiABiA,

where the superscript t is used to denote the transpose.

It is well known that the restriction (2) on the moduli is nec-

essary for the stability of a homogeneously deformed equilib-

rium state against infinitesimal plane harmonic waves. We will

also have need of the tensor of second-order moduli [16]

A(F̃) = U
F̃F̃F̃

. (4)

In Section 4 we use this in conjunction with notation defined

by A[A][B] = AiAjBkCAjBBkCei ⊗ EA, where AiAjBkC =

�3U/�FiA�FjB�FkC .

In general the strain-energy function is subject to further

restrictions associated with frame invariance and material sym-

metry but these are not germane to the issues of concern to us

here. When we stipulate that (2) applies to equilibrium defor-

mations, we intend that it apply to all deformations that satisfy

the Euler equations and relevant boundary conditions generated

by the particular thin-plate potential energy functional consid-

ered. Thus we do not impose strong ellipticity as a constitu-

tive hypothesis for arbitrary deformations, nor do we adopt any

other constitutive hypothesis. In this respect our approach is

less restrictive than others based, for example, on the method

of Gamma convergence.

A plate is a material body identified with a reference config-

uration � generated by the parallel translation of a simply con-

nected plane region �, with piecewise smooth boundary curve

��, in the direction orthogonal to �. The body itself occupies

the volume �̄ × (−h/2, h/2), where �̄ = � ∪ �� and h is the

(uniform) thickness. Let l be another length scale such as the

diameter of �. We assume that � := h/l>1. Further, we re-

gard l as a fixed scale and adopt it as the measure of length.

This allows us to set l = 1 and thus to simplify the notation.

The discussion is further simplified by taking the material of

the body to have uniform properties.

2. Small-thickness estimate of the energy

The reference placement of the plate is described by the

three-dimensional normal-coordinate parametrization

x = u + �k, (5)

where u ∈ � and � ∈ (−�/2, �/2). We assume the origin of the

position x to lie on �. The projection

1 = I − k ⊗ k, (6)



where I is the identity for E3, is the (two-dimensional) identity

on the translation (vector) space �′ of �, and may be used to

expand F̃ = F̃I in the form

F̃ = F + d ⊗ k, (7)

where

F = F̃1 and d = F̃k. (8)

Using dy = F̃ dx with ŷ(u, �) = �(u + �k) and du ∈ �′ yields

the alternative representation

(F̃1) du + F̃k d� = dŷ = (∇ŷ) du + ŷ′ d�, (9)

where ∇() is the (two-dimensional) gradient with respect to u

at fixed � and the notation ()′ is used to denote �()/�� at fixed

u. It follows that

F = ∇ŷ and d = ŷ′. (10)

The total strain energy E in a given deformation is

E =

∫

�
U(F̃(x)) dV =

∫

�

∫ �/2

−�/2

U(F̂(u, �)) d� dA, (11)

where F̂(u, �) = F̃(u + �k). We write the through-thickness

integral in the form

I (�) =

∫ �/2

−�/2

G(�) d�, (12)

where G(·)=U(F̂(u, ·)). If F̃(x) is a C4 function (so that �(x)

is C5), then by Leibniz’ rule and Taylor’s theorem,

I (�) = �G0 +
1

24
�3G′′

0 +
1

16(5!)
�5G′′′′(�̄) (13)

for some �̄ ∈ (−�/2, �/2), where the subscript ()0 identifies

function values at � = 0 and where, by the chain rule,

G0 = U(F̂0), G′
0 = P(F̂0) · F̂′

0 and

G′′
0 = M(F̂0)[F̂

′
0] · F̂′

0 + P(F̂0) · F̂′′
0 . (14)

Now, from (7),

F̂ = F + d ⊗ k, F̂′ = D + g ⊗ k and F̂′′ = G + h ⊗ k

(15)

with

D = F′, G = D′, g = d′ and h = g′. (16)

Using these with (10) and the symmetry of crossed partials

furnishes

D = (∇ŷ)′ = ∇d and G = (∇d)′ = ∇g. (17)

We thus obtain

F0 = ∇(ŷ0), D0 = ∇(d0), G0 = ∇(g0) and h0 = g′
0,

(18)

in which it is emphasized that ŷ0, d0, g0 and h0 are independent

functions of u.

Henceforth we suppress the subscript ()0 and write the strain

energy as

E =

∫

�
U(F̃(x)) dV = E + O(�5), (19)

where

E =

∫

�
W(d, g, h, F, D, G) dA (20)

in which

W = �U(F + d ⊗ k) + 1
24

�3{P(F + d ⊗ k) · (G + h ⊗ k)

+ M(F + d ⊗ k)[D + g ⊗ k] · (D + g ⊗ k)} (21)

is the strain energy through order O(�4) per unit area of �,

r(u)(=ŷ0) is the map from the plate midsurface � to its de-

formed image �, and d(u), g(u), h(u) are director fields de-

fined on �. These are the coefficient vectors in the expansion

ŷ(u, �) = r(u) + �d(u) + 1
2
�2g(u) + 1

6
�3h(u) + O(�4), (22)

and F=∇r maps �′ to the tangent plane T�(u) of the deformed

midsurface � at the point r(u).

3. Membrane theory and inextensional bending theory

Membrane theory and inextensional bending theory have

recently been the focus of intensive research on rigorous small-

thickness limits of three-dimensional elasticity. Two main lines

of inquiry, one based on the method of asymptotic expansions

(see [6–8]) and the other on the method of Gamma convergence

(see [2–5,12]) have succeeded in putting both models on firm

mathematical foundations. Before developing the full theory

for combined stretching and bending, we show in the present

section that the membrane and inextensional bending energies

are subsumed under the expression (20).

3.1. Membrane theory

Thus, membrane theory emerges in the limit

Em = lim
�→0

�−1
E =

∫

�
M(F, d) dA, (23)

where

M(F, d) = U(F + d ⊗ k) (24)

is the membrane strain-energy function. To find the gradients

of this function we consider a one-parameter family of defor-

mations parametrized by a real variable u and use superposed

dots to denote the associated derivatives, evaluated at u = 0,

say. Thus, from (1) and (8),

MF · Ḟ + Md · ḋ = P(F + d ⊗ k)1 · Ḟ

+ P(F + d ⊗ k)k · ḋ. (25)

Then

P(F + d ⊗ k)1 = MF and P(F + d ⊗ k)k = Md. (26)



The Euler equations are

div MF = 0 and Md = 0 in �, (27)

wherein div is the two-dimensional divergence with respect to

u ∈ �, while typical boundary conditions entail the specifica-

tion of r and (MF)� on complementary parts of ��, where �

is the exterior unit normal to the latter in the sense of Green’s

theorem. From (26)2 and (27)2 it follows that no tractions are

transmitted across the midsurface, i.e.

P(F + d ⊗ k)k = 0. (28)

This in turn furnishes a relationship between d and F which

is uniformly valid over �. The derivative of the left-hand side

with respect to d is the acoustic tensor A, with components

given by

Aij = Mi3j3 = MiAjBkAkB , (29)

in which M is evaluated at F + d ⊗ k. Our assumption that

strong ellipticity holds at equilibrium states implies that this

is positive definite at equilibrium values of the argument. The

implicit function theorem then ensures that (28) can be solved

uniquely for the associated values of d in the form [6,7,14,15]

d = d̄(F). (30)

For example, it is known that if the three-dimensional strain-

energy function possesses reflection symmetry with respect to

the midsurface �, then d̄ = �n, where � is a scalar-valued

function of F and n is a unit normal to the tangent plane T�(u)

to the deformed midsurface [14,15]. Substitution into (26)1

and (27)1 furnishes a problem for the determination of the

midsurface position field r(u).

It transpires that the function M(·, d̄(·)) fails to satisfy the

relevant (two-dimensional) Legendre–Hadamard inequality

(semi-strict strong ellipticity) and thus fails to be quasicon-

vex, even when U is strongly elliptic in the three-dimensional

sense. This is due to the presence of compressive stresses in

the stress–deformation relation (26)1, whereas compressive

stresses are ruled out by the Legendre–Hadamard condition

[18]. For this reason equilibrium boundary-value problems

for a membrane theory based on (23) will generally fail to

possess energy-minimizing solutions. In such circumstances

well-posedness may be restored via relaxation, in which the

function M(·, d̄(·)) is replaced by its quasiconvexification [17];

i.e., the largest quasiconvex function nowhere exceeding the

original function on its domain. One then proceeds as usual

with the Euler equations based on the relaxed problem [18,19].

Precisely the same result is obtained by the method of Gamma

convergence [12].

3.2. Inextensional bending theory

To recover inextensional bending theory we assume that

U(I)= 0 and P(I)= 0. For frame-invariant strain-energy func-

tions we then have U(Q) = 0 and P(Q) = 0 for all rotations

Q. These follow from the general rules U(QF̃) = U(F̃) and

P(QF̃) = QP(F̃), respectively [20]. Inextensional bending is

associated with pure rotation of material on the midsurface. In

the treatment given in [2–4], U(F̃) is required to be bounded

below by the squared distance between F̃ and the group of rota-

tions, so that it is positive definite as a function of strain. Thus

inextensional bending is energetically optimal for points on the

midsurface whenever it is allowed by boundary conditions. In

this case F̃|�=0 reduces to the rotation factor in its polar decom-

position; we write F̂(u, 0) = R(u). From (15)1 we then have

F + d ⊗ k = R (31)

so that

F = R1 and d = Rk = n, (32)

where n(u) is a unit normal to T�(u), this following from

R(u)e� = Fe� ∈ T�(u) for any orthonormal e� ∈ �′ (� = 1, 2)

and the fact that R preserves the orthonormality and handed-

ness of {e�, k}. The first of (32) gives FtF = 1, so that r(u)

is an isometry, while the second implies that transverse fibers

located on � suffer no extension or contraction and no shear

relative to fibers lying in �′. The energy associated with inex-

tensional bending is thus given by

Eb = lim
�→0

�−3
E = �−3E =

∫

�
B(∇n; R, g) dA, (33)

where

B (∇n; R, g) = 1
24
M(R)[∇n + g ⊗ k] · (∇n + g ⊗ k). (34)

The Euler equation associated with variations in g is given

simply by Bg = 0, which is equivalent to

{M(R)[∇n + g ⊗ k]}k = 0. (35)

If strong ellipticity is satisfied in the three-dimensional sense,

then the solution

g = ḡ(∇n, R) (36)

is unique and minimizes B (∇n; R, ·). To see this we write (35)

in the form

A(R)g = −{M(R)[∇n]}k, (37)

where A(R) the acoustic tensor defined by (29) with M eval-

uated at R. Our hypotheses imply that this is positive defi-

nite; (36) then follows immediately from (37). We note that the

solution ḡ delivered by (37) does not conflict with the kine-

matic requirement that the determinant of the deformation gra-

dient be positive. In the present case this requirement may be

cast in the form

1 + �R · (∇n + g ⊗ k) + o(�) > 0; � ∈ (−�/2, �/2), (38)

which is assured for all g if � is sufficiently small.

To prove that (36) is optimal we define R(·)/12 :=

B(∇n; R, ·). If g(u) is a regular curve in E3 with no points of

self-intersection, then the derivatives of 	(u) = R(g(u)) with

respect to u are

	̇ = ġ · {M(R)[∇n + g ⊗ k]}k = ġ · Rg (39)



and

	̈ = g̈ · {M(R)[∇n + g ⊗ k]}k + ġ ⊗ k · M(R)[ġ ⊗ k]

= g̈ · Rg + ġ · (Rgg)ġ, (40)

where we have used the major symmetry of M. Thus,

Rg = {M(R)[∇n + g ⊗ k]}k (41)

vanishes by (35), whereas

Rgg = A(R). (42)

Strong ellipticity ensures that this is positive definite and thus

that 	̈ > 0 on straight-line paths defined by g(u) = ug2 +

(1 − u)g1 with g1, g2 fixed and 0�u�1. These paths belong

to the convex set E3, the domain of R(·). Integrating with re-

spect to u yields 	̇(u) > 	̇(0) and 	(1) − 	(0) > 	̇(0), proving

that R(g) is strictly convex, i.e.

R(g2) − R(g1) > Rg(g1) · (g2 − g1) (43)

for all unequal pairs g1, g2. It follows immediately that R is

minimized absolutely at a stationary point and thus that the

solution ḡ to (35) is energetically optimal. The uniqueness

of ḡ may be proved from (43) and is immediately apparent

from (37).

The expression for B may be simplified by exploiting the

frame invariance of the constitutive equations [20]. To see this

we again consider a one-parameter family of deformations.

Thus, for any fixed rotation Q we have

P(QH) · QḢ = U̇ (QH) = U̇ (H) = P(H) · Ḣ. (44)

Differentiating the outer equality at fixed Ḣ yields

M(QH)[QḢ] · QḢ = M(H)[Ḣ] · Ḣ. (45)

Applying this with Q = R, H = I and Ḣ = S, where

S = Rt[∇n + ḡ ⊗ k], (46)

then furnishes

M(R)[∇n + ḡ ⊗ k] · (∇n + ḡ ⊗ k) = M(I)[S] · S. (47)

To interpret the bending strain S we combine dn = (∇n) du

and dr = (∇r) du with dn=−b dr, where b is the (symmetric)

curvature tensor on T�(u) [8], to derive ∇n = −bF. This maps

�′ to T�(u) because n · dn = 0. Further, from the properties of

R it follows that Rt maps T�(u) to �′ and thus that

Rt∇n = −FtbF. (48)

With this result the bending energy

Eb =
1

24

∫

�
M(I)[S] · S dA (49)

is seen to be identical to that obtained in [2,3] by the method

of Gamma convergence. For isotropic materials the solu-

tion obtained in [2] for g = ḡ exists if M(I) satisfies the

strong-ellipticity condition imposed here. Specifically, the so-

lution cited requires that � + 2
 �= 0, where � and 
 are the

classical Lamé moduli for isotropic materials, this being guar-

anteed by strong ellipticity. The Euler equations and boundary

conditions associated with Eb are developed in [6,7].

Gauss’ Theorema Egregium requires that the Gaussian cur-

vature, det b, be everywhere equal to its value on the reference

configuration and hence that it vanish identically. The bending

energy, being valid for isometries only, fails of course to furnish

a model for combined stretching and flexure of the midsurface.

It does model stiff sheets, such as paper, which tear or crum-

ple rather than incur the large energetic penalty accompanying

midsurface strain.

We note that the foregoing expressions for the membrane and

bending energies incorporate partial information about equilib-

ria in the form of the constraints d = d̄ and g = ḡ, respectively.

Moreover, these constraints are energetically optimal in their

respective contexts. Their adoption therefore does not im-

pede the attainment of the optimal overall energy. This fact

justifies typical approaches to the variational theory for equi-

librium problems in which such constraints are imposed on

all geometrically possible configurations [2,3,13–15,18], as

in the foregoing, followed by minimization of the result-

ing expression for the energy with respect to the remaining

free variables. We show in Section 4 that similar restrictions

emerge as Euler equations in the case of combined bend-

ing and stretching. However, they do not in general furnish

optimal values of the local energy in that context. In partic-

ular, the method used is not specific to energy minimizers

and may thus be extended to a dynamical setting in which

the notion of energy minimization is irrelevant. It also ac-

commodates equilibrium states that need not be energetically

optimal.

4. Combined bending and stretching

In the general case the appropriate functional is

E[r, d, g, h] =

∫

�
W(d, g, h, F, D, G) dA, (50)

where W is given by (21). We have in mind the conventional idea

that equilibria should be energy minimizers. This identification

is possible only if the energy has a lower bound. To explore the

implications, consider the choice

h = −�P(F + d ⊗ k)k, (51)

for some continuous function �(u) > 0. From the expression

(21) for W, the associated term in the energy is proportional to

−�|P(F+d⊗k)k|2, which is arbitrarily large and negative in the

limit � → ∞ unless Pk vanishes identically. For pure traction

problems this choice of h is admissible with �(u) constant.

For mixed traction/placement (51) is admissible if � tapers off

to zero on the boundary, and the argument then requires that

maxu∈� �(u) → ∞. For the energy to have a lower bound it



is thus necessary that

P(F + d ⊗ k)k = 0, (52)

whether or not the deformation is in equilibrium. If this

restriction is adopted as a constraint on all deformations,

then for reasons discussed in the previous section no gen-

erality is lost if the objective is to minimize the energy

absolutely.

We use superposed dots to denote variational derivatives.

These are derivatives, evaluated at an equilibrium state, with

respect to a parameter pertaining to a one-parameter family of

configurations. Equilibria render the energy stationary and thus

satisfy Ė = 0; i.e.,

0 =

∫

�
[ḋ · (Wd − div WD) + ġ · (Wg − div WG)

+ ḣ · Wh − ṙ · divWF] dA

+

∫

��
[ṙ · (WF)� + ḋ · (WD)� + ġ · (WG)�] dS, (53)

and the Euler equations are

div WF = 0, Wd = div WD, Wg = div WG and Wh = 0.

(54)

From (21), the last of these is seen to be equivalent to (52).

Accordingly, the necessary (52) for the existence of a lower

bound on the energy is also a stationarity condition. This has

important implications for dynamical problems. Since dynam-

ical states are not energy minimizers, there is no reason to

require the existence of a lower bound on the total strain energy,

and thus no reason to impose (52) at the outset. The framework

of the present section would thus seem to lend itself more natu-

rally to the study of dynamical problems. This will be pursued

in detail elsewhere.

To interpret the terms in (54) we use the chain rule and (21)

to obtain

Wd · ḋ + WD · Ḋ + Wg · ġ + WG · Ġ + WF · Ḟ + Wh · ḣ

= Ẇ

= �P · (Ḟ + ḋ ⊗ k) +
�3

24
{M[G + h ⊗ k] · (Ḟ + ḋ ⊗ k)

+ A[D + g ⊗ k][D + g ⊗ k] · (Ḟ + ḋ ⊗ k)

+ P · (Ġ + ḣ ⊗ k) + 2M[D + g ⊗ k] · (Ḋ + ġ ⊗ k)},

(55)

where the stress and the first- and second-order moduli are

evaluated at F+d⊗k. We have made use of certain symmetries

in M and A that follow from (3) and (4). The second-order

moduli yield a non-standard term arising from the variation of

M(F + d ⊗ k) in the expression (21) for the strain energy.

This has no counterpart in inextensional bending theory as the

first-order moduli appearing therein are fixed (cf. (49)). Thus,

Wh =
�3

24
Pk, Wg =

�3

24
2{M[D + g ⊗ k]}k,

WG =
�3

24
P1, WD =

�3

24
2{M[D + g ⊗ k]}1,

Wd = �Pk +
�3

24
{M[G + h ⊗ k]}k

+
�3

24
{A[D + g ⊗ k][D + g ⊗ k]}k,

WF = �P1 +
�3

24
{M[G + h ⊗ k]}1

+
�3

24
{A[D + g ⊗ k][D + g ⊗ k]}1. (56)

The Euler equations then furnish the system

Pk = 0, (57)

{M[D + g ⊗ k]}k = 1
2

div(P1), (58)

{M[G + h ⊗ k]}k = 2 div({M[D + g ⊗ k]}1)

− {A[D + g ⊗ k][D + g ⊗ k]}k (59)

and

0 =
�2

24
div{M[G + h ⊗ k]1 + A[D + g ⊗ k][D + g ⊗ k]1}

+ div(P1). (60)

The component forms are

Pi3 = 0, Aijgj = 1
2
Pi�,� − Mi3j�dj,�, (61)

Aijhj = 2(Mi�j�dj,� + Mi�j3gj ),� − Mi3j�gj,�

− Ai3j�k�dj,�dk,� − Ai3j3k�gjdk,�

− Ai3j�k3dj,�gk − Ai3j3k3gjgk , (62)

and

�2

24
Ti�,� + Pi�,� = 0, (63)

where

Ti� = Mi�j�gj,� + Mi�j3hj + Ai�j�k�dj,�dk,�

+ Ai�j3k�gjdk,� + Ai�j�k3dj,�gk + Ai�j3k3gjgk

(64)

and

Pi�,� = Mi�j�rj,�� + Mi�j3dj,�, (65)

where Greek indices take values in {1, 2}.

Under the strong-ellipticity hypothesis equations (61)1,2 and

(62) furnish a decoupled algebraic system which may be used

to eliminate d, g and h in favor of r and its derivatives. These

may be used in (63) to obtain a set of three equations for (the

components of) r. The resulting system is of the fourth order

in r(u).

The Euler equations involve the spatial derivatives di,�. These

may be expressed in terms of the derivatives of the midsur-

face deformation function r(u). To this end we observe that



the function d̄(F) satisfies (57) identically in F. Differentiation

of this identity yields

Mi3j� + AikKkj� = 0, (66)

where

Kkj� = �d̄k/�Fj�. (67)

Accordingly [14],

Kkj� = −A−1
ki Mi3j�, (68)

where the right-hand side is evaluated at F+ d̄(F)⊗k, yielding

di,� = Kij�rj,��. (69)

5. Edge conditions

Boundary conditions for this model may be deduced from

(53). For example, if the three-dimensional deformation is

assigned on the cylindrical surface ��c × (−�/2, �/2), then its

dependence on the through-thickness coordinate � is pre-

scribed. Differentiating this function with respect to � and

evaluating it at � = 0 leads to the conclusion that the restric-

tions to ��c of r, d, g and h are also prescribed, and thus that

the variations ṙ, ḋ, ġ and ḣ vanish on ��c. We refer to this as

a clamped boundary. It is clear that this condition is somewhat

non-standard in the sense that the boundary values of d, g and

h cannot be fixed arbitrarily. For, such data cannot be expected

to agree with the continuous extensions to ��c of the equi-

librium fields d, g and h delivered by the algebraic formulae

(61)1,2 and (62), respectively. To avoid the non-existence of

solutions implied by this circumstance, we stipulate that the

assigned boundary data for d, g and h be fixed at the values

furnished by the continuous extensions to ��c of the respective

equilibrium fields, while the boundary values of r are specified

as genuine data a priori. In effect this procedure entails the

simultaneous assignment of r and its normal derivative r on

a clamped boundary. To see this we write

∇r = r′ ⊗ � + r ⊗ �, (70)

where � and � are the unit tangent and normal to ��c, ar-

ranged such that {�, �, k} has positive orientation, and r′ is the

arclength derivative of r on ��c. The arclength derivative r′ is

fixed by the values of r on ��c. The boundary values of the

equilibrium field d = d̄(∇r) are thus controlled by those of r

and r. Boundary data of this type also occur in the theory of

Hilgers and Pipkin [13–15], in which a relation like d = d̄(∇r)

is imposed on all configurations, not merely those that render

the energy stationary. In our approach, we take the view that

boundary values of g and h are delivered a posteriori by the so-

lutions to the equilibrium problem. For the resulting model to

represent actual position data on the boundary of a thin three-

dimensional body, it is thus necessary that the boundary effec-

tively adjust to the problem at hand, in a way that does not

conform to the usual intention when such data are imposed.

This is a price to be paid for using a two-dimensional theory

to represent three-dimensional behavior.

The deformation is unrestricted on a traction-free cylindri-

cal surface ��t × (−�/2, �/2) of the thin body. Accordingly,

the manner in which the deformation function varies with � is

similarly unrestricted. It follows from this that ṙ, ḋ, ġ and ḣ are

unrestricted on ��t in principle. The associated natural bound-

ary conditions may be read off from (53); these require that

(WF)�, (WD)� and (WG)� vanish on ��t . However, this results

in an overdetermined problem. For, we have seen that the final

system for r(u) is of the fourth order. Compatible data entail

the specification of two vector conditions on a boundary part

of given type. This is exemplified by the data on a clamped

part of the boundary. To avoid overdeterminacy, we relax the

requirement that (WG)� vanish and require only that (WF)� and

(WD)� vanish. This is consistent with the variational statement

(53) provided that ġ vanishes on the boundary. In effect, we

require g to be fixed at the values furnished by the continuous

extension to the boundary of the equilibrium values of g in the

interior, as before.

If dead loads are assigned on ��t × (−�/2, �/2), then the

potential energy of the three-dimensional body is E−L, where

E is the total strain energy defined by (19), and

L =

∫

��t

(∫ �/2

−�/2

p · � d�

)

dS (71)

is the load potential in which p(x) = p̂(u, �) is the assigned

Piola traction. Using a formula like (13), it is straightforward

to show that

E − L = E − L + O(�4), (72)

in which E is defined by (20) and

L =

∫

��t

�(r, d, g) dS, (73)

with

�(r, d, g) =

(

�p̂0 +
�3

24
p̂′′

0

)

· r +
�3

24
2p̂′

0 · d +
�3

24
p̂0 · g, (74)

is the O(�3) estimate of L, where the primes now identify

derivatives with respect to � and the subscript ()0 their values

at � = 0. To avoid overdeterminacy we impose ġ = 0 on the

edge, as before, and arrive at the natural boundary conditions

(WF)� = �r and (WD)� = �d on ��t , (75)

where

�r = �p̂0 +
�3

24
p̂′′

0 and �d =
�3

24
2p̂′

0. (76)

Finally, we consider a part ��p of the boundary to be

pinned if the three-dimensional position on the surface

��p × (−�/2, �/2) is assigned only at � = 0 while the

remainder of the surface is traction free. Thus, r is as-

signed on ��p whereas kinematic admissibility imposes no

restriction on the midsurface value, d, of the �-derivative of

the three-dimensional deformation. Accordingly, ḋ is arbi-

trary and the natural boundary condition (WD)� = 0 follows.



Combinations of the foregoing are possible, and lead in a

straightforward manner to relevant boundary data.
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