
Things Are Made for What They Are:

Solving Manipulation Tasks by Using Functional Object Classes

Daniel Leidner, Christoph Borst, and Gerd Hirzinger

Abstract—Solving arbitrary manipulation tasks is a key
feature for humanoid service robots. However, especially when
tasks involve handling complex mechanisms or using tools, a
generic action description is hard to define. Different objects
require different handling methods. Therefore, we try to solve
manipulation tasks from point of view of the object, rather
than in the context of the robot. Action templates within the
object context are introduced to resolve object specific task
constraints. As part of a centralized world representation, the
action templates are integrated into the planning process. This
results in an intuitive way of solving manipulation tasks. The
underlying architecture as well as the mechanisms are discussed
within this paper. The proposed methods are evaluated in two
experiments.

I. INTRODUCTION

For a humanoid service robot it is important to be able

to manipulate a wide variety of objects in the human en-

vironment. For this work, we assume that humans classify

objects by functionality. If a human cannot determine the

purpose of an object, it cannot be classified, and thus not be

assigned to an object class. The function is either learned by

demonstration or exploration and associated with the object

afterwards. We believe that this classification is a vital part

to solve manipulation tasks.

Objects in the human environment are made for special

purposes which follows symbolic and geometric conventions.

Therefore, we propose to organize the functionality along

with the object. For example, a user manual for e.g. a

television does not describe the actual motion of manipulating

the remote. Instead it focuses on the usage of the device.

This abstraction is associated with the object and is not only

valid for a single object, rather for a complete object family.

Individual object family members differ only in detail.

Furthermore, we assume that humans use their object

knowledge centralized in the context of the decision making

process. When applying this concept to a robot, decision

making can be seen as a planning process while centralizing

the knowledge leads to a database-like system. This can be

utilized to great benefit in arranging the object knowledge as

centralized background information for manipulation tasks.

Since different objects have to be treated in different ways, it

is not possible to describe a generic manipulation routine

for arbitrary objects and actions. Instead, object specific

action descriptions need to be defined. It would thus be

inappropriate to define these descriptions as sequences of

robot specific abilities.

All authors are affiliated with the Institute of Robotics and
Mechatronics, German Aerospace Center (DLR), Wessling, Germany,
daniel.leidner@dlr.de

Fig. 1. Justin, the humanoid robot of DLR manipulating a coffee machine.

In this paper we argue that all the information needed to

solve a manipulation task can be stored within descriptions

of the involved objects themselves. Therefore, we categorize

objects according to their functionality to obtain a hierarchi-

cal structure of functional object classes and augment the

object definition with robot independent action templates.

These action templates contain specific process models which

define arbitrary manipulation instructions. Therefore, a robot

need not to be aware of the handling, it simply asks the

object for it. This aspect brings the desired goal and the cor-

responding action for the object into focus instead of a pure

concatenation of robot capabilities. To achieve this behavior,

a centralized world representation serves as an information

hub for the robots symbolic and geometric planning process.

This allows the association of interactions between one or

multiple objects and a robot in an intuitive manner. We aim

to demonstrate that manipulating objects, even complex ones,

such as tools or machines, as seen in Fig. 1, can be easily

described under such aspects. Eventually, the goal is to create

a system that increases the abilities of a robot by simply

adding new objects to its knowledge base.

II. RELATED WORK

Using functional object classes for solving manipulation

tasks, is still a relatively unexplored topic. However the

required sub components are subject to ongoing research.

On a symbolic level a complex task, such as making coffee,

requires the robot to concatenate several subtasks. Consid-

ering the conditions and effects of the subtasks a symbolic

planner [1] can be used to find a feasible solution for a given

problem in a defined domain. One common way to define the

problem and the domain is the planning domain definition

language (PDDL) [2]. Predicates and actions are used to



describe object states and state transitions. The outcome is

an abstract list of subtasks. The geometric level describes the

interaction with the objects. Precomputed grasp positions are

mapped to the joint configuration of a robot. Probabilistic

path planning methods such as RRT [3] or PRM [4] can then

find a feasible, non-colliding path to this configuration.

However combing the symbolic level with the geometric

level is not straightforward. Usually symbolic planners have

no functionality for executing the proposed subtasks, neither

do geometric planners understand abstract task definitions.

Dornhege et. al. [5] and Karlsson et. al. [6] attempted to

circumvent this by invoking geometric actions during the

symbolic planning phase and propose geometric backtracking

in case of failure. Another solution is a two-step approach

as seen in Ruehl et. al. [7] and Gravot et. al. [8]. [7]

includes knowledge about manipulation constraints during

the planning step and tries to verify them afterwards. In

[8] the symbolic output is mapped to a accessibility list

calculated a priori, which handles all known geometric states

for the corresponding actions.

Although the previously proposed methods use a geomet-

ric world representation, they disregard the maintenance of

the world representation on the symbolic level. One way

for achieving this, is to arrange the knowledge around the

object itself, as proposed by Levison [9] and Kallmann and

Thalmann [10]. While the later propose to store articulation

trajectories within the objects, [9] uses the well known

object-oriented paradigm to classify objects and augment the

symbolic domain with hierarchical properties and actions.

These actions are populated with concrete data at run time.

In case of failure the symbolic planner is forced to re-plan.

An approach for modeling object data is recently proposed by

Belkin [11] and Gheta et. al. [12]. Their world representation

is fed by an object-oriented prior knowledge base and the

robots sensor inputs. It is the robots actual belief state of the

world. Another recently introduced data-driven manipulation

process is concerned with the use of the web as symbolic

information resource [13]. On one hand, they try to interpret

informations from do-it-yourself web pages for humans [14]

on the other hand they develop a world wide web for

robots called KnowRob [15], [16]. A robot can download

information about its environment, the included objects as

well as complete action recipes to execute a given task rather

than solve it from scratch. Symbolic connections are linked

by using the ontology web language OWL [17]. The actions

are grounded to the robot using the CRAM system [18].

However, the mapping between the actions and the objects

is predefined in the action itself.

The rest of the paper is structured as followed: First, the

underlying architecture as well as the methods for planning

in the object context are described. A simple pick and place

example is therefore illustrated. The approach is validated

in two experiments on the humanoid robot Rollin’ Justin

[19]. Within these experiments we show how a robot can

solve manipulation tasks using only the information provided

by functional object classes and how even complex process

models can be described within the context of an object.

III. PROVIDING OBJECT INFORMATION

As humanoid service robots have to interact with a wide

variety of objects, it is necessary to store their respective

knowledge in a scalable manner, while maintaining a flexible

way of accessing the data. Therefore, the object handling

system is arranged in two separate modules as seen on the

left in Fig. 2. A data storage provides prior object knowledge

while a centralized world representation handles instantiated

objects.

The object storage is the backbone of the data driven

system, which forms the basis for all available objects. The

objects are categorized by functionality and hierarchically

arranged in the object oriented paradigm. Physical objects

may be derived from abstract objects (marked by a leading

underscore) and thus inherit their properties and actions. On

one hand this is convenient for creating new objects since it

is mostly just further differentiation of a previously defined

class. On the other hand the polymorphism feature, as known

in object-oriented programming, is adopted within the ma-

nipulation process. If the planner, for example, calls a serve

command, the outcome may differ from object to object on

the semantic level as well as the geometric level. Considering

a single functional object class such as a dispenser, the task

frame and the task motion may differ, but the general action is

described in the same fashion. Consequently, action templates

are described by the abstract classes, while the constraints are

determined by the derivatives as shown in Fig. 3. There are

no limitations for the data to be stored. Most of the data is

only related to an object or a functional object class, but it

is also possible to save robot dependent information such as

grasp sets.

world representation

object storage symbolic planner

geometric planner

Fig. 2. The flow chart for solving manipulation tasks within the object
context: The object storage (upper left) provides the world representation
(lower left) with prior object knowledge. As current belief state of the
robot, the world representation serves as initial state for the symbolic planner
(upper right). Action templates (marked red) are used to ground the symbolic
planners outcome. Within the action templates, individual robot components
are addressed to solve the commanded task on the geometric level (lower
right).



_object

_container

_dispenser

. . . _tool

ketchup_dispenser

serve() tool frame task motion

Fig. 3. An example polymorphism graph for the dispenser func-
tional object class. The serve function is populated with respect to the
ketchup dispensers constraints.

The second part of the object handling system is the

world representation. The world representation is the actual

understanding of the world from the point of view of the

robot. Objects as described in the data storage are instantiated

here to reflect objects in the real world. All instances consist

of geometric models with the corresponding probabilities

of the object locations as well as the appropriate symbolic

states. The world representation is not just used as an

information hub for the rest of the robot components, but

is also to cooperate with the planning process. Furthermore,

it is directly influenced in the backtracking mechanism. These

features are described in the next section.

IV. MANIPULATION OF FUNCTIONAL OBJECTS

As seen in [16] it is beneficial not just to save geometric

information within the context of an object but also symbolic

knowledge such as its usual habitat or application. [10]

proposes to store handling information while [9] attempts

to map related actions to the object. We propose to store

generic action descriptions of functional object classes within

the object context to solve manipulation tasks in an intuitive

way.

A. Action templates

To define related handling instructions, a functional object

class may contain several action templates (marked red in

Fig. 2). They are used to generate the domain for a symbolic

planner, and to ground the higher level commands like pick

back to the geometric level. Action templates contain generic

procedures which are populated with concrete values during

run time. Even though action templates are part of the

object to be manipulated, individual robot components can

be addressed that way. Action templates are thus the key

elements for solving manipulation tasks within the object

context. An action template consists of two segments. The

first segment is the symbolic header which describes the

symbolic state transition. The second segment defines the

grounding of that transition to the geometric level. The two

segments are further described according to the example code

below.

:parameters (?o - _object ?m - _manipulator ?t - _tray)

:precondition (and(free ?m) (on ?o ?t))

:effect (and(bound ?o ?m) (not(free ?m)) (not(on ?o ?t)))

def pick(manip, tray=None):

graspset = odb.get_prop(self.type, ’graspset’, manip)

for grasp in graspset:

if grasp in self.history:

continue

self.history.append(grasp)

g = grasp

break

if g is None:

raise RuntimeError(’no more alternatives’)

operations = [

(’move_hand’, manip, g.approach_grasp),

(’plan_to’, manip, g.approach_frame, self.frame),

(’plan_to’, manip, g.grasp_frame, self.frame),

(’bind’, manip, self.name),

(’move_hand’, manip, g.pre_grasp),

(’move_hand’, manip, g.grasp)

]

return operations

The action template describes in this case a generic pick

action. The first segment is the symbolic header which is

declared in the example here as a complete action description

as found in the PDDL language. It describes the parameters,

the preconditions and the effects for the action. This part of

the template is added to the domain of the symbolic planner.

Since the parameters are defined abstractly, all objects that

are derived from the generic object class can be picked by

any manipulator.

The second segment outlines the body of the action tem-

plate. It defines the process model for handling the object

and is used to ground the commanded action to the robot.

It is separated from the symbolic part and executed at run

time. First, the geometric information is resolved out of the

object storage. The provided manip is used as a key to load

the particular grasp set for the object out of the database.

The selected grasp is stored within the object history for

backtracking purpose. It is later used to fill up the corre-

sponding grasp operation. The actual grounding is defined as

a list of operations to be executed by the robots subsystems.

This means that a robot that wants to use the object, needs to

provide the methods required by the operations. However, the

way an operation is executed depends on the robots specific

implementation. Objects can not only access their own data,

but also the data of other objects involved in the action. The

task frame of a bottle opener is for example accessible in

an open action of a bottle to calculate the corresponding

lever position. As a result, one can think of arbitrary process

models as to be described including one or more objects using

this system.

B. Planning in the object context

Action templates are called within the environment of the

world representation during the execution loop of a manip-

ulation task according to Fig. 2. The world representation

including the action templates is the central node here. It

defines the current belief state of the robot’s world. The

symbolic action definitions are gathered out of the action

template headers. The required predicates are defined as

object properties in the object storage. The domain is however



only filled with information of objects currently found in

the world representation. Based on this a symbolic planner

is used to solve the problem on the symbolic level. The

body of the action template is revisited in a follow-up step

to resolve the grounding to the robot. Arbitrary modules to

simulate the geometric execution can therefore be used and

exchanged according to requirements and may differ from

robot to robot. If one simulation step succeeds, the next

actions are resolved until there is no more action in the

symbolic plan. Should the simulation fail on an operation

the action template is reviewed for alternatives such as other

grasps or put down positions. If all alternatives have been

attempted a backtracking mechanism is initiated which finds

the latest action with a remaining alternative to start over.

The backtracking mechanism is described in detail with the

following example.

As seen in Fig. 4 the humanoid robot Rollin’ Justin is

commanded to place all bottles on the tray. The big bottle is

already located in the center of the tray, which blocks most

of the space. The small bottle has not been moved yet. The

commanded goal state is thus on small bottle tray. To solve

this problem the symbolic planner found the solution

_object.pick small_bottle right_arm table,

_object.place small_bottle tray right_arm

which implies that the pick and place operations are

defined by the generic object class. The method for picking

the bottle and the location for placement on the tray have to

be investigated by the pick and place actions itself. In the

pick action, a grasp is chosen out of the object storage and

attempted. The place action depends on several constraints.

Due to the size of the robots hand, there are not many

solutions for a feasible position where the bottle can be safely

placed without colliding with the big bottle. Provided with

the surface of the tray and the footprint of the small bottle,

a uniform distribution is calculated to determine a location

to place the object. In case of failure, the simulation for the

action is repeated with an alternative position to place the

bottle. To shorten the illustration, the place action is only

allowed to carry out three of the calculated random positions

in this example. If the bottle can not be placed after those

Fig. 4. A simple pick and place scenario. The initial state is illustrated on
the left and the goal state on the right.

small_bottle.pick small_bottle.place

pick_1 place_1

place_2

place_3

pick_2

pick_3 place_4

place_5

place_6

pick_4 place_7

place_8

Fig. 5. A pick and place example to illustrate the backtracking mechanism.
Using the grasp of the actions pick 1 and pick 3, the place action was
not able to find a non-colliding position for the bottle. Pick 2 could not
even succeed in grasping the bottle. With the last pick attempt it was
eventually possible to place the object on the tray. Finally, the actions with
the parameters of pick 4 and place 8 are executed on the real robot.

attempts, the backtracking mechanism is initiated which finds

an alternative grasp for the previous pick action. An example

run, where a non-colliding placement position was found

after four tried grasps, is shown in Fig. 5. If no geometric al-

ternative is successful, the world representation is augmented

by an additional symbolic state for the corresponding object

such as unreachable ?o - object ?m - manipulator and the

task is revisited on the symbolic level to get an alternative

solution. In case of success, the successful alternatives are

executed on the real robot and geometric as well as symbolic

effects are applied to the world representation.

Action templates behave like an intermediate layer be-

tween the symbolic level and the geometric level. From the

symbolic side, it interprets the planner output and grounds

the actions to executable operations. From the geometric

side the world representation acts as backtracking layer. The

failure history and the method of recovery are part of the

action template as seen in the example code segment in sub-

section IV-A. The geometric system can also react directly to

geometric failures, rather than inform the symbolic planner

and force it to re-plan from scratch. This allow arbitrary

recovery strategies to be redefined. In case of the pick action,

it is for now another attempted grasp. However, one could

think of arbitrary actions such as cleaning up a cluttered scene

beforehand



Geometric backtracking is a time consuming process. It

involves several inverse kinematic calculations and motion

planning calls which may not even be used for the final

execution. Therefore, it is essential to keep the number

of unsuccessful attempts minimal. However, it is difficult

to develop a generic method for accomplish this. We are

nonetheless able to back propagate the chosen parameters

which led to a successful execution. They are stored with

respect to the corresponding actions as they might be of value

for potential learning mechanisms based on the proposed

architecture.

V. EVALUATION

To prove that the system can also cope with complex

manipulation actions, two manipulation tasks are solved with

the humanoid robot Rollin’ Justin. The first task is to serve

ketchup to a bowl, using either a ketchup bottle or a ketchup

dispenser. In the second task a hedge shear is used as tool

to cut a ribbon. The process model of the shear describes

how the tool is to be used. The preliminary implementation

uses the Fast Downward Planning System [20] to interpret the

PDDL definition of the world representation. Fast Downward

is a forward direction planner that makes use of hierarchical

task decomposition. OpenRAVE [21] is integrated as geo-

metric simulation to solve inverse kinematics and make use

of path planners to find feasible, collision free trajectories.

The extension to further modules such as the vision system

or low level robot controlling is subject to future work.

A. Using mechanisms: Serve ketchup

Ketchup can come in many different containers: in tubes,

small plastic bags, glass bottles, plastic bottles or dispensers.

In this experiment we explore the two latter ones as seen

in Fig. 6. Polymorphism is used to distinguish the related

actions. A plastic bottle needs to be squeezed above the

target container, while a dispenser needs the container to

be placed beneath the nozzle. These process models differ

completely from each other. Nevertheless both models can

be described in the corresponding serve action. The symbolic

headers are compared below. They belong to the abstract

object classes for the appropriate derived physical objects

ketchup dispenser and ketchup bottle:

_squeeze_bottle.serve:

:parameters (?s - _squeeze_bottle

?g - _container

?l - _content

?m - _manipulator)

:precondition (and (bound ?s ?m)

(filled ?s ?l))

:effect (and (filled ?g ?l)

(not (filled ?s ?l)))

_dispenser.serve:

:parameters (?s - _dispenser

?g - _container

?l - _content

?m1 - _manipulator

?m2 - _manipulator)

:precondition (and (free ?m2)

(bound ?g ?m1)

(filled ?s ?l))

:effect (and (filled ?g ?l)

(not (filled ?s ?l)))

Fig. 6. The upper row illustrates serving ketchup by using a flexible plastic
bottle, while the lower row shows the manipulation of a dispenser to achieve
the same goal.

The first thing to notice is that both actions have the same

effect and are thus semantically equivalent. In both cases

the content ?l has to be transferred to the goal container

?g. Besides this, they have little in common. The actions

described are valid for the complete object family. The source

container ?s is either a squeeze bottle or a dispenser.

Depending on the container type, the executed function is

predetermined. The main difference is that squeezing the

bottle requires only one manipulator ?m holding the bottle

as described by the precondition (bound ?s ?m). Operating

the dispenser is a two handed job. The goal container needs

to be held by a first manipulator ?m1, see precondition

(bound ?g ?m1), and a second manipulator ?m2 is required

to actuate the dispenser. The second manipulator has to be

empty, (free ?m2). This leads to completely different action

templates of both actions.

Serving the ketchup out of the bottle leads to a rather

simple action template. The spot where the ketchup should

be served is defined by the goal container, which is a bowl

in this case. The motion planner is used, by exploiting the

height information of the bowl and the ketchup bottle, to

reach the serving position. Finally, the grasp force has to be

increased to compress the volume of the bottle. This is done

by integrating the force between the fingers.

Manipulating the ketchup dispenser is more interesting, as

this is a bi-manual task with more complex task constraints.

The location where the bowl must be positioned, is defined

by the bowl and the dispenser, with respect to the chosen

grasp. The bowl defines a task frame for the desired position

of the ketchup, and the ketchup dispensers nozzle defines the

task frame for the outlet. After the first manipulator moves

the bowl into position, the second arm has to trigger the

pump mechanism. Therefore, we use a tagged grasp, for

a special purpose. A serve-tagged grasp is only usable in

combination with the serve action. As soon as the pump

grasp is reached the pump is actuated by moving the hand

down and up. This task motion is stored in the physical

ketchup dispenser object, while the serve action is part of



the abstract dispenser class. That means that every object

belonging to the functional object class dispenser can use

the dispenser action template with its own task constraints.

In case of the ketchup dispenser example, it is very

likely that the chosen grasp is not suitable for serving the

ketchup. Most of the stable grasps grasp the bowl from above,

which results in the right hand colliding with the nozzle

of the ketchup dispenser. For this reason the backtracking

mechanism is triggered several times until a grasp from the

side is chosen in the pick action and the task can be executed

successfully.

B. Using tools: Cut a ribbon

Many objects, such as tools and machines, consist of

several articulated parts to be handled. Furthermore, most

actions include more than just one object, and may require a

robot to coordinate multiple manipulators. An example is the

cutting of a ribbon with a pair of scissors, or a larger hedge

shear. A shear consists of two blades with handles connected

to each other. Both handles have to be gripped to open and

close the blades. The task involves the shear to be used as

a tool to manipulate the target. The symbolic header for

the corresponding cut action is outlined below. The shear

?s needs one handle to be grabbed by manipulator ?m1.

The second handle is grabbed with manipulator ?m2 while

approaching the cutting position provided by the ribbon ?r.

As a result, the ribbon is cut afterwards.

_shear.cut:

:parameters (?s - _shear

?r - _ribbon

?m1 - _manipulator

?m2 - _manipulator)

:precondition (and (bound ?s ?m1)

(free ?m2))

:effect (and (cut ?r))

Even though the symbolic header appears to be rather sim-

ple, the structure of the template body is quite sophisticated.

The shear has an intrinsic kinematic constraint that has to be

followed. It would be inappropriate to define this constraint

within the context of the robot. The robot has to move along

two articulation trajectories simultaneously with respect to

the shear constraints and the ribbons task frame. We define

Fig. 7. Justin cutting a ribbon with a hedge shear. The size of the shear
requires the robot to manipulate it with both arms simultaneously.

the articulation as a continuous function with respect to the

local task frame of the object and discretize it at run time.

In case of the shear the local task frame lies between the

blades where the ribbon is cut. In turn, the task frame is

defined in the local coordinate system of the shear. The task

motions for both blades must be followed simultaneously.

The grasp frames are used to resolve the end effector motion

with respect to the articulation.

Describing an action in this way leads to a robot indepen-

dent definition. As mentioned in section IV a robot specific

inverse kinematics module is used during the planning pro-

cess to compute the corresponding joint values. Furthermore,

a robot has to provide the required grasp sets for the shear. If

a robot is unable to satisfy the symbolic header, due to, for

example, it having only one manipulator, this action cannot

be used. Fig. 7 shows the experiment on the real robot Justin.

The experiments show that even complex manipulation

tasks can be described and solved within the involved ob-

jects context. This is made possible by defining arbitrary

process models in the corresponding action templates. The

shown tasks were solved autonomously by using only the

information provided by the objects. The experiments are also

illustrated in the accompanied video.

VI. CONCLUSION

In this paper, we present an approach to solve manipulation

tasks by using functional object classes. Action templates are

arranged in the object context to describe arbitrary process

models. They are used to populate the domain of a symbolic

planner and ground the geometric actions to the robot. Within

an action template arbitrary sub components of a robot can

be addressed. This paradigm brings the desired goal and the

corresponding action description into focus rather than the

capabilities of a robot. Effects to the world representation are

thus applied in a natural way. We show that even complex

manipulation tasks such as using mechanisms or handling bi-

manual tools can be described by the proposed architecture

and the included mechanisms.

Even though we are able to backtrack on failures during

the simulation, currently we are not able to recognize failures

that may occur during execution. For example, if the robot

loses an object during an action, it will simply perform the

action as if nothing happened. However, we believe that the

proposed architecture and the included mechanisms can be

used to notice such events. Action templates consist of a set

of different operations, which are parameterized during run

time, in the same fashion that one could parameterize and

execute observation methods. For examining a pick action,

one could measure the forces an object is grasped with,

before actually lifting the object. If the forces decrease during

manipulation, it is very likely that it has slipped out of

the hand. In this case, the task has to be aborted, and the

belief state of the world representation is no longer valid.

Furthermore, evaluators may be integrated to validate the

goal state by using the vision system or tactile feedback after

execution.



Another field of interest concerns the learning process.

Humans learn over time to handle different objects. This

behavior can be reflected to the proposed architecture. In case

of a successful task execution, the chosen parameters to solve

the individual sub tasks probably contributes to the success

and are thus valuable. Consequently these parameters can be

rated as more relevant for the next execution of the same task.

A learning strategy could be used to learn over time which

parameters are related to which task and solve them more

quickly and more reliable. The required logging mechanisms

are already designated within the proposed architecture.

All action templates so far are related to a specific object

or an object class. However, when treating different objects

with similar properties, one could consider adopting the same

actions. For example If a robot is to knock in a nail but has no

hammer, it may consider other objects available to it, such as

a heavy stone. By investigating the properties of the hammer

and comparing it with the stone, it might be deemed possible

to apply the stones properties, to the hammers knock action.

Those mechanisms would be a significant improvement

to the proposed architecture and any service robot and are

scheduled for future work.

VII. ACKNOWLEDGMENTS

The project was partially funded by the European Commu-

nitys Seventh Framework Programme under grant agreement

no. ICT - 248273 GeRT.

REFERENCES

[1] M. Ghallab, D. Nau, and P. Traverso, Automated Planning: theory and

practice. Morgan Kaufmann, 2004.
[2] M. Ghallab, A. Howe, D. Christianson, D. McDermott, A. Ram,

M. Veloso, D. Weld, and D. Wilkins, “Pddl—the planning domain
definition language,” AIPS98 planning committee, vol. 78, no. 4, pp.
1–27, 1998.

[3] S. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” Tech. Rep., 1998.

[4] L. Kavraki, P. Svestka, J. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,”
IEEE Transactions on Robotics and Automation, vol. 12, no. 4, pp.
566–580, 1996.

[5] C. Dornhege, P. Eyerich, T. Keller, S. Trüg, M. Brenner, and B. Nebel,
“Semantic attachments for domain-independent planning systems,”
in International Conference on Automated Planning and Scheduling

(ICAPS), 2009, pp. 114–121.

[6] L. Karlsson, J. Bidot, A. Saffiotti, U. Hillenbrand, and F. Schmidt,
“Combining task and path planning for a humanoid two-arm robotic
system,” in International Conference on Automated Planning and

Scheduling (ICAPS), 2012.

[7] S. Ruehl, Z. Xue, T. Kerscher, and R. Dillmann, “Towards automatic
manipulation action planning for service robots,” in Advances in

Artificial Intelligence, (KI). Springer, 2010, pp. 366–373.

[8] F. Gravot, S. Cambon, and R. Alami, “asymov: a planner that deals
with intricate symbolic and geometric problems,” Robotics Research,
pp. 100–110, 2005.

[9] L. Levison, “Connecting planning and acting via object-specific rea-
soning,” Ph.D. dissertation, University of Pennsylvania, 1996.

[10] M. Kallmann and D. Thalmann, “Modeling objects for interaction
tasks,” in Eurographics Workshop on Computer Animation and Simu-

lation, vol. 98, 1998, pp. 73–86.

[11] A. Belkin, “Object-oriented world modelling for autonomous systems,”
in Joint Workshop of Fraunhofer IOSB and Institute for Anthropomat-

ics. KIT Scientific Publishing, 2010, p. 231.

[12] I. Gheta, M. Heizmann, A. Belkin, and J. Beyerer, “World modeling
for autonomous systems,” in Advances in Artificial Intelligence, (KI),
vol. 6359. Springer-Verlag New York Inc, 2010, p. 176.

[13] M. Tenorth, U. Klank, D. Pangercic, and M. Beetz, “Web-enabled
robots,” Robotics & Automation Magazine, IEEE, vol. 18, no. 2, pp.
58–68, 2011.

[14] M. Beetz, U. Klank, A. Maldonado, D. Pangercic, and T. Rühr,
“Robotic roommates making pancakes,” in IEEE International Con-

ference on Robotics and Automation (ICRA), 2011, pp. 9–13.

[15] M. Waibel, M. Beetz, J. Civera, R. D’Andrea, J. Elfring, D. Galvez-
Lopez, K. Haussermann, R. Janssen, J. Montiel, A. Perzylo et al.,
“Roboearth,” Robotics & Automation Magazine, IEEE, vol. 18, no. 2,
pp. 69–82, 2011.

[16] M. Tenorth, A. Perzylo, R. Lafrenz, and M. Beetz, “The roboearth lan-
guage: Representing and exchanging knowledge about actions, objects,
and environments,” in IEEE International Conference on Robotics and

Automation (ICRA), 2012.

[17] D. McGuinness, F. Van Harmelen et al., “Owl web ontology language
overview,” W3C recommendation, vol. 10, pp. 2004–03, 2004.

[18] L. Mosenlechner and M. Beetz, “Parameterizing actions to have
the appropriate effects,” in IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS). IEEE, 2011, pp. 4141–4147.

[19] M. Fuchs, C. Borst, P. Giordano, A. Baumann, E. Kraemer, J. Lang-
wald, R. Gruber, N. Seitz, G. Plank, K. Kunze et al., “Rollin Justin–
Design considerations and realization of a mobile platform for a
humanoid upper body,” in IEEE International Conference on Robotics

and Automation (ICRA), 2009.

[20] M. Helmert, “The fast downward planning system,” Journal of Artifcial

Intelligence Research, vol. 26, pp. 191–246, 2006.

[21] R. Diankov, “Automated construction of robotic manipulation pro-
grams,” Ph.D. dissertation, Carnegie Mellon University, Robotics In-
stitute, August 2010.


