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Abstract—Leveraging the benefits of service computing 

technologies for Internet of Things (IoT) can help in rapid system 
development, composition and deployment. But due to the 
massive scale, computational and communication constraints, 
existing software service models cannot be directly applied for 
IoT based systems. Service discovery and composition 
mechanism need to be decentralized unlike majority of other 
service models.  Moreover, IoT services’ interfaces require to be 
light weight and able to expose the device profile for seamless 
discovery onto the IoT based system infrastructure. In addition 
to this, the “things” data should be associated with its present 
context. To address these issues, this paper proposes a formal 
model for IoT services. The service model includes the physical 
property of “things” and exposes it to the user. It also associates 
the context with the “things” output, which in turn helps in 
extracting relevant information from the “things” data. To 
evaluate our IoT service model, a weather monitoring system and 
its associated services are implemented using node.js [31]. The 
service data is mapped to SSN ontology for generating context-
rich RDF data. This way, the proposed IoT service model can 
expose the device profile to the user and incorporate relevant 
context information with the things data.   

Keywords—Internet of Things, Things as a Service, SSN 
Ontology, Web Services. 

I. INTRODUCTION  
Nowadays Internet technology enables “things” to share 

information and collaborate with other “things”. This is what is 
usually called Internet of Things (IoT). It is envisioned as 
digital fabric woven with the interactive information of humans 
and machines, where “things” can be accessed and managed 
remotely as cloud services. This accelerated large scale 
adaption of IoT: Gartner estimates that there will be more than 
20 billion IoT devices by 2020 [1]. This scenario asks for the 
integration of service computing concepts into the IoT to 
manage the increasing volume and varieties of “things” 
integrated into the cyber world [2]. It will greatly enhance the 
capability of IoT and enable an efficient utilization of IoT 
resources by facilitating a seamless discovery, selection and 
composition mechanism inherent to service computing [3].  

Recent research on IoT services mainly focused on 
enabling technologies for various applications, ranging from 
home automation [4] to healthcare [5] and smart manufacturing 
[6]. Majority of these application specific approaches provide a 

significant insight of the challenges inherent to the IoT 
solutions. However, there is still a lack of formal mechanisms 
for modelling various aspects of IoT based system towards a 
common procedure for enabling technology irrespective of the 
application domain [8]. Recently several researchers [7, 9, 10] 
provided formal semantics of IoT based systems capable of 
addressing various aspects ranging from behavior modeling of 
the “things” to verify the correctness of network deployment of 
the “things”. Besides, few researchers provided abstract 
language semantics for modelling IoT system [11, 12]. 
However, most of the works cited so far don’t consider the 
service orientation of the “things”; this requires a layer of 
abstraction to hide most of the low-level complexities. 
Moreover, the IoT service model should provide users 
standardized access to various “things”. It should also associate 
context along with the “things” data. For this, it should include 
device profile in the modeling process. Instead, most of the 
recent literatures mainly focuses on the middleware 
architecture, potential provider and consumer of IoT services 
and its pricing model [2, 16]. 

Things as a Service (TaaS) refers to the concept of 
delivering IoT capabilities to the end user without operation or 
maintenance overhead. The primary objective of TaaS is to 
provide “things” data as a service [2]. But in most of the recent 
literature IoT services are not designed from a data 
representational perspective, as they only rely on measured 
values [2, 15]. Searching, reusing, integrating, and interpreting 
data become difficult without the studied feature of interest. 
This minimizes the interoperability and analytical capabilities, 
falling short of fulfilling the promises of IoT towards 
knowledge harvesting from sensed data. To enable this, 
physical property of the “things” is needed to be included in 
the IoT service modeling. This will help in incorporating 
certain context in the data. To this aim, Semantic Sensor 
Network (SSN) Ontology [29] can be used as a meta-model. It 
will be useful for describing devices (sensors and actuators), 
their observations, the procedures involved in observation, 
their features of interest, and the observable properties. It will 
not only incorporate context in the “things” data, but it will 
also enhance the IoT service discovery and selection 
mechanism. Moreover, IoT applications not only require 
having “things” connected to Internet but they should be 
integrated into current Internet infrastructure where Web 



services are predominant. IoT service model should support 
exposing the physical properties of “things” and event-based 
interaction among various other services, and Device Profile 
Web Service (DPWS) [28] can be considered as a standard for 
IoT service description. It provides specifications for 
describing, discovering, messaging, and eventing of services 
for devices. Fysarakis et al. [27] pointed out that the equivalent 
Node.js based implementation of DPWS is lightweight, faster 
and offers a large array of features compared to DPWS.  

 This paper proposes a formal model of the Things as a 
Service. The service model comprises “things” physical 
property and associates context to the “things” data.  

 In order to provide evidence of the benefits offered by this 
service model, a weather monitoring service is developed using 
Node.js, which is based on the devised concept and 
components of IoT service model and the “things” are mapped 
to SSN ontology for generating RDF data. This shows that the 
proposed IoT service model is capable of exposing “things” 
physical properties to the user and can incorporate relevant 
context with the “things” data. This will enable context-aware 
service discovery and composition mechanism. The RDF data 
can be directly used in different analytics scenarios.  

II. RELATED WORK 
Service computing technologies have been extensively 

applied IoT applications for enabling scalable and reusable 
system development and integration. However, the service 
models of IoT significantly differ from the existing service 
models. Zhu et al. [13] and Bastani et al. [14] pointed out that 
unlike web services, IoT service discovery and composition 
should be de-centralized. Thus, discovery and routing protocols 
requires to be enhanced. To address the modeling and design 
issues of IoT services various researcher proposed architectural 
frameworks. Perera et al. [2] proposed a sensing as a service 
model comprises of four layers namely, sensors and sensor 
owners' layer, sensor publishers' layer, extended service 
providers layer and sensor data consumers layer. They 
provided a detailed description and functionalities of individual 
layers and a real-world scenario based on the model. Kantarci et al. 
[15] presented a state-of-the-art framework for IoT and 
Sensing-as-a-Service. They defined an aggregation framework 
for Wireless Sensor Networks (WSN) which provides sensing 
and actuation clouds as a service. Further, a Service Oriented 
Architecture (SOA) based sensor data exchange pattern has 
been discussed. Vargiu et al. [19] proposed an agent-oriented 
abstraction for design and development of IoT systems. 
Whereas, Alam et al. [20] presented an event driven sensor 
virtualization technique for IoT cloud. Further, Kim et al. [16] 
proposed SenseCloud, platform to addresses the challenges of 
virtualization, multitenancy, and dynamic provisioning. It 
provides a two-level virtualization mechanism. However, these 
architectural frameworks provide very minimal information 
about service modeling for IoT systems, they mainly focused 
on service provisioning. Thus, the major challenges of IoT 
service modelling such as decentralized service discovery and 
selection, registry structure, routing and composition of IoT 

services remained unaddressed [13, 14]. Further, these models 
do not discuss about the data formats and their interoperability.  

However, the rapidly changing technology landscape 
induces difficulty towards selecting an approach for IoT 
service modeling which ensures the sustainability 
interoperability. For this purpose, various researcher opted for 
model driven development. Ciccozzi et al. [22] and Hassine et 
al. [18] provided a meta-model of the IoT domain. It helps in 
modeling and generating executable code for the “things”. 
Although it enables technology neutral development process, 
but the system did not include the service aspects of the 
“things”.  Fortino et al. [20] presented a smart object based IoT 
meta-model for design and development of IoT services. 
Whereas Morin et al. [23] proposed an UML based approach 
to address the distribution and heterogenicity challenges in IoT 
environment. But these approaches did not discuss about 
service composition aspects. Besides, Zhu et al. [13] and 
Bastani et al. [14] presented an ontology based meta model for 
IoT services by extending the OWL-S ontology. Alam et al. 
[20] proposed an ontology-based knowledge representation 
framework. Seydoux et al. [24] compared the available 
ontologies and proposed an ontology suitable for IoT. 
Whereas, De et al. [25] devised an SSN ontology based IoT 
services. However, majority of these models did not consider 
device profile in service modeling and did not discuss about 
event-based interaction among various devices. Some of the 
ontology-based approach did not discussed the service 
orientation of the ontology models. Whereas, many approaches 
do not provide support the standard SSN Ontology for sensor 
data representation. 

A better insight about the different kind of IoT architectural 
model is discussed by Taivalsaari et al [17] based on various 
important factors such as cost, update capabilities, dynamic 
programmability, security, energy efficiency, and 
communication latency. This study shows that each model is 
suited for a specific application domain. Thus, a formal model 
of IoT service will help towards designing, development and 
evaluation of IoT services irrespective of the architectural 
framework. Buono et al. [9] proposed a formal language 
namely EuDroid which helps in managing the home IoT 
devices. Humayoun et al. [12] presented a formal task 
modeling language for defining and evaluating IoT scenarios 
called IoTGolog. It formalizes IoT system to evaluate the 
characteristics of the system. Cacciagrano et al. [11] presented 
a domain specific language called IRON, which incorporates 
Event-Condition-Action (ECA) rules. It also helps to prevent 
or report incorrect actions in the system modeling. Castiglion 
et al. [7] presented a process calculus for IoT system modeling. 
The formal notion is based on reduction semantics and 
existential semantics. However, majority these approaches are 
not designed to accommodate service orientation of the IoT 
system. A few of the existing formal approach enables service 
orientation but they did not consider the device profile into 
consideration. Thus, not suitable for IoT service modeling. 
This demands a formal model for conceptualizing various 
aspects of IoT based system in order to attain a common 



procedure for enabling technology irrespective of the 
application domain supported by a suitable architectural 
framework. 

III. IOT SERVICE MODEL 
 The primary constituent of “things” is the device capability: 
sensor or actuator. The functionality of devices can be offered 
as a service to the end user. IoT Eclipse Working Group [30] 
provides a generic IoT architecture where many “things” use 
some form of gateway to communicate through a network to an 
enterprise back-end server. The proposed approach, depicted in 
Fig.1, extends the architecture described in [30] for the IoT 
services where “things” can expose the service interface via 
service gateways and publish it in cloud of “things”.  

 

 
The cloud maintains a registry and offers the generic 
functionalities of service-oriented system such as discovery, 
selection, contract negotiation, and composition. A formal 
model of IoT services is devised to conceptualize the different 
concepts and components of it. For this, device capabilities and 
physical properties is conceptualized, which are the primary 
constituents for “things”. These “things” are then used to 
model the service.  

A. Device:  
In IoT, a device (𝒟) can be considered a mechanical or 

electronic system which can be operated by analog or digital 
signals. Based on the functionality it be categorized into a 
sensing device (𝒟 ) or an actuating device (𝒟 ) . A sensing 
device responds to stimulus in the environment by converting 
the physical parameter to a signal which can be measured 
electrically. Whereas, an actuating device converts control 
signal into mechanical action. Formally, a device can be 
defined as,  𝒟 =< 𝑖𝑑, 𝑓, 𝜇, 𝑝ℎ, 𝐼, 𝒪 >  

Here, 𝑖𝑑  refers to a unique identity of the device. 𝑓 
represents the current feature of interest of the device. It is 
atomic and refers to the entity on which the sensor observation 
or actuation is performed. 𝜇  is an unalterable observable 

property. 𝑝ℎ  represents the set of physical properties. It is 
comprised of multiple system properties such as, accuracy, 
operating range, battery life, detection limit etc. 𝐼 & 𝒪 are the 
supported set of input and output respectively. For a device 
input can be a user input (𝒾) and/or an event (𝑒 ). Similarly, a 
device can return certain value (ℴ) to the user or generate an 
event(𝑒ℴ).   Thus, input and output of a device can be defined 
as,  𝐼 =  {𝑥|𝑥 ∈ 𝒾 ∨ 𝑥 ∈ 𝑒 }, 𝑤ℎ𝑒𝑟𝑒 𝒾 ∩ 𝑒 =  ∅ 𝒪 =  {𝑥|𝑥 ∈ ℴ ∨ 𝑥 ∈ 𝑒ℴ}, 𝑤ℎ𝑒𝑟𝑒 ℴ ∩ 𝑒ℴ =  ∅ 

B. Things:  
In the context of IoT, a “thing” can be considered an entity 

or physical embedded system that has a unique identifier with 
the ability to transfer or receive data over a network. Formally 
it can be defined as: 𝒯 =  { 𝒟, 𝒫, 𝒞, ℒ, 𝜑} 

Where, 𝒟 is the set of devices and may consists multiple 
sensing (𝒟 ) and/or actuating (𝒟 ) devices,  𝒟 = 𝒟 , 𝒟 … 𝒟 ∪ 𝒟 , 𝒟 … 𝒟  

where,  |𝒟 ∪ 𝒟 | ≥ 1 𝑎𝑛𝑑  𝒟 ∩ 𝒟 = ∅, 𝒫 represents the physical property of the “things”, which 
comprises of physical properties of all the sensing and 
actuating devices. Thus,  𝒫 =< 𝑝ℎ , 𝑝ℎ … 𝑝ℎ >. 𝒞  is the current set of context associated with the “things” 
which is a combination of its current feature of interest and 
observable property. Thus, context of a device 𝒹  can be 
defined as a tuple: 𝒞 = < 𝑓 , 𝜇 >  and context of the 
“things”, 𝒞 =< 𝒞 , 𝒞 … 𝒞 > ℒ  represents the operational semantics of the “things”, it 
comprises of procedures, communication protocols, 
encryptions, maximum no of client “things” can be connected 
to etc. 𝜑  represents set of operational functions of the “things” 
which specifies how to make an observation for a specific 
device. The “things” use procedures to measure the observable 
property of the device by using a supported input format. The 
operational function for a device 𝑑, which takes input (𝐼 ) to 
produce an output (𝒪 ) at timestamp 𝓉 with associated context (𝒸 ) can be defined as: 𝜑 : 𝐼 →< 𝒪 , 𝓉, 𝒸 > 

C. Things as a Service (TaaS):  
The TaaS enables interface-based access to the “things” 

capabilities over internet. All the service components of TaaS 
will be implemented through an interface. Formally, it (𝑇𝑎𝑎𝑆) 
can be defined as: 

Fig. 1. Architectural Framework for Thing as a Service 



𝑇𝑎𝑎𝑆 =  {𝑎𝑑𝑑𝑟, 𝒯, 𝜓, 𝑝𝑜𝑟𝑡, 𝑚𝑠𝑔, 𝑝𝑓}   
Here, 𝑎𝑑𝑑𝑟  is the unique interface address,  𝒯  represents 

the “things” which hosting the service, a “thing” can host 
multiple services.  𝜓 is the exposed set of capabilities offered by the various 
devices in the “things” as functions. Thus,  𝜓 ={𝜑 , 𝜑 … 𝜑 }.  𝑝𝑜𝑟𝑡 represents a set of ports in the interface. 𝑚𝑠𝑔 defines the information exchange patterns supported 
by the service interface. Where, messages consist of a unique 
identifier (𝑚𝑖𝑑) , message type (𝑡𝑦𝑝𝑒) , description (𝑚𝑑𝑒𝑠) 
and message fault (𝑚𝑓). It can be formally defined as: 𝑚𝑠𝑔 = < 𝑚𝑖𝑑, 𝑡𝑦𝑝𝑒, 𝑚𝑑𝑒𝑠, 𝑚𝑓 >.   𝑝𝑓  is the description of the “things” profile. It includes 
physical & operational properties. Here, 𝒫 ∈ {𝒫 ∪ ℒ} and it 
only consists of the properties of the devices responsible for 
providing the service. 

IV. APPLYING THE MODEL TO IOT SERVICE DESIGN 
To evaluate the proposed IoT service model, a weather 

monitoring system (“thing”) and its REST based services is 
developed first. Later, a mechanism for mapping the “things” 
concepts and components to SSN ontology has been devised. 

 
A. Weather Monitoring Service: 

The weather monitoring system provides the current 
temperature and humidity. The DHT22 sensor module is used 
for this. It is installed in a Raspberry Pi 3B+ board with 64-bit, 
Quad-Core, Broadcom BCM2837B0 CPU running at 1.4GHz 
and 1GB of LPDDR2 SDRAM. Figure 2 depicts the circuit 
diagram of the system.  Further, Node.js is used to develop a 
REST service. The service offers device profile, current 
temperature and current humidity in JSON format. For 
simplicity device profile is described in a JSON file which 
includes few important parameters such as, Things ID, 
deployment platform, supported protocol, service type, 
Endurance, Up-Time and constituent devices information. The 
individual device is further described to provided: device ID, 
device type, manufacturer, accuracy, and service endpoints. 
The profile (𝒫) for the devised thing is depicted in Figure 3. 
Whereas, partial Node.js implementation is depicted in Figure 
4. Here the things profile is parsed and used in the thingProfile 
endpoint to expose it to users. Again, for the DHT22 Sensor 

rpi-dht-sensor [26] library is used. The getTemp (ℒ) endpoint 
provides the current temperature (𝒪 ) , feature of interest, 
observable property (𝒸 ) and timestamp (𝓉) in JSON format. 
Similarly, getHumidity (ℒ)endpoint provides current humidity (𝒪 )  feature of interest, observable property (𝒸 )  and 
timestamp (𝓉).  

1. {"ThingID": "123-456-222",   
2.  "Device 1":  
3.     { 
4.       "DeviceID": "D1", 
5.       "DeviceType": "DHT22" 
6.       "Manufacturer":"XYZ srl" 
7.       "accuracy ": "+/- 0.5", 
8.       "ServiceEndpoint": " getTemp" 
9.     }, 
10.  "Device 2":  
11.     { 
12.       "DeviceID": "D2", 
13.       "DeviceType": " DHT22" 
14.       "Manufacturer":"XYZ srl" 
15.       "accuracy ": "+/- 0.5", 
16.       "ServiceEndpoint": " getHumid" 
17.     }, 
18.   "Platform": "RaspberryPiB3+",   
19.   "protocol": "HTTP",   
20.   "ServiceType": "REST" 
21.   "Endurance":"96 Hrs"; 
22.   "UpTime": "38:45 Hrs" 
23.  } 

Fig. 3. ThingsProfile.json 

1. var express = require('express'); 
2. var rpiDhtSensor = require('rpi-dht-sensor'); 
3. var dateTime = require('node-datetime'); 
4. var app = express(); 
5. var fs = require("fs"); 
6. var dht = new rpiDhtSensor.DHT22(2); 
7. var dtx = dateTime.create(); 
8. var dt = dtx.format('Y-m-d H:M:S'); //timestamp 
9. var fi = "Venice Metropolitan Area"; //feature 
of Interest 
10. var opD1 = "temperature ºC"; //observable 
property 
11. var opD2 = "Humidity %"; //observable property 
12. const port = process.env.PORT || 3000; 
13. const server = app.listen(port); 
14. app.use(function (req, res, next) { 
15.  res.header('Content-Type', 'application/json'); 
16.  next(); 
17. }); 
18. app.get('/api/thingProfile',(req, res) => { 
19.  var contents = 
fs.readFileSync("ThingsProfile.json"); 
20.  var tp = JSON.parse(contents); 
21.   res.send(JSON.stringify(tp)); 
22. }) 
23. app.get('/api/getTemp', (req, res) => { 
24.   var readout = dht.read(); 
25.   var tc = readout.temperature.toFixed(2); 
26.   var res1 = {"temperature":tc, 
"location":fi,"measurement":opD1, "Timestamp": dt}; 
27.   setTimeout(read, 5000); 
28.   res.send(JSON.stringify(res1)); 
29. }) 
30. app.get('/api/getHumidity', (req, res) => { 
31.   var readout = dht.read(); 
32.   var humid = readout. humidity.toFixed(2); 
33.   var res2 = {" humidity ": humid, 
"location":fi,"measurement":opD2, "Timestamp": dt}; 

Fig. 2. Schematic Diagram of the Weather Monitoring Thing 
 



@prefix sosa: <http://www.w3.org/ns/sosa/>. 
@prefix ssn:  <http://www.w3.org/ns/ssn/> . 
@prefix xsd:  
<http://www.w3.org/2001/XMLSchema#>. 
@prefix qudt-1-1: 
<http://qudt.org/1.1/schema/qudt#>. 
@prefix qudt-unit-1-1: 
http://qudt.org/1.1/vocab/unit#>. 
@base <http://myproj.org/data/> 
 
<sensor/DHT22> rdf:type sosa:Sensor ; 
 sosa:observes  <Venice/temperature ºC>; 
 sosa:madeObservation 
<Observation/1>,<Observation/2>. 
<Venice/temperature ºC> rdf:type 
sosa:ObservableProperty ; 
 sosa:isObservedBy <sensor/DHT22>.  
<Observation/1> rdf:type sosa:Observation ; 
 sosa:observedProperty <Venice/temperature ºC>; 
 sosa:madeBySensor <sensor/DHT22> ;  
 sosa:hasResult [ 
 rdf:type qudt-1-1:QuantityValue ; 
 qudt-1-1:numericValue "6.8"^^xsd:double ; 
 qudt-1-1:unit qudt-unit-1-1:temperature ºC]; 
 sosa:resultTime "2019-02-02 
10:34:47.048"^^xsd:dateTimeStamp. 
 <Observation/2> ...//similar to observation 1 

Fig. 6: Sample TTL output 

Method ParseSensorData( ){ 
 String gettemp = getTemp(http://host:3000/api/ 
getTemp) 
 JSONObject tempobj = new JSONObject("gettemp"); 
 for(each attribute value in tempobj){ 
  if(CObject.getsrting("location")!=NULL) 
    sosa:FeatureOfInterest = 
CObject.getsrting("location")  
if(CObject.getsrting("temperature")!=NULL){ 
    sosa:Result = 
CObject.getsrting("temperature") 
    sosa:resultTime = 
CObject.getsrting("Timestamp") 
   } 
  …//parse other attributes 
 } 
} 
Method ParseDeviceProfile( ){ 
 String dp = 
getDeviceProfile(http://host:3000/api/thingsProf
ile) 
 JSONObject obj = new JSONObject("dp"); 
  for(each nested device attribute in obj){ 
  JSONObject CObject = obj.get("Device1"); 
    for(each attribute value in CObject){ 
     if(CObject.getsrting("DeviceID")!=NULL) 
       ssn:sensor = 
CObject.getsrting("DeviceID") 
     if(CObject.getsrting("DeviceType ")!=NULL) 
       ssn:property = 
CObject.getsrting("DeviceType") 
 …//parse other attributes 
    }  
  } 
  if(CObject.getsrting("DeviceType ")=NULL) 
    ssn-system:BatteryLifetime = 
CObject.getsrting("Endurance") 
  if(CObject.getsrting("UpTime")!=NULL) 
    ssn-system:BatteryLifetime = 
CObject.getsrting("UpTime") 
  …//parse other attributes 
} 
Method GenerateTTL("temperature.ttl"){ 
 Create("<sensor/DHT22>","sosa:Sensor "){ 
 add values for: 
sosa:observes,sosa:madeObservation  
 } 
 Create("<Venice/temperature ºC>"," 
sosa:ObservableProperty"){ 
  add values for: sosa:isObservedBy  
 } 
 for(each observation: i){ 
  Create("<Observation/i> ","sosa:Observation 
"){ 
   add values for: sosa:observedProperty, 
sosa:madeBySensor, sosa:hasResult 
  } 
 } 
} 

Fig. 5: Parsing JSON output to generate SSN Ontology data 

34.   setTimeout(read, 5000); 
35.   res.send(JSON.stringify(res2)); 
36. }) 

Fig. 4. Node.js REST Service for Weather Monitoring Thing  

B.  Compatibility with SSN Ontology 
The semantic sensor ontology is widely accepted as 

standard for sensor data representation.  The service developed 
using the TaaS model can easily be mapped to SSN ontology. 
On successful invocation of the services, the user gets the 
output in JSON format. The users get “things” profile as 

defined in the Figure 3, whereas the output format of getTemp 
and getHumid is defined in line 26 (opD1) and line 33 (opD2) 
of the code snippet depicted in Figure 4. The resultant JSON 
file is parsed and then mapped to the various SSN ontology 
classes. Figure 5 depicts the partial pseudocode for parsing the 
“things” output and stored as SSN Ontology RDF data. The 
method ParseSensorData( ) of the decided algorithm parses 
device output and maps it to various SSN ontology classes 
such as: sosa:FeatureOfInterest, sosa:Result etc. Similarly 
ParseDeviceProfile ( ) parses the devise profile data and 
assigns values for SSN ontology classes such as, ssn:sensor, 
ssn:property etc. Whereas, GenerateTTL( ) method uses these 
values to populate the RDF data and saves it as ".ttl" file. The 
sample output of the devised mechanism is shown in Figure 6.  

V. FUTURE RESEARCH DIRECTION 
It is clear from the literature review that the massive scale 

of the IoT services poses many crucial challenges. This work 
primarily addressed issues related to the service design from 
the perspective of “things” and associated context with 
“things” data. However, many other challenges need to be 
overcome to foster wide spread adaption of IoT services: 

a) Service Registry Structure: A “thing” may provide 
multiple service, which should be published in the registry to 
facilitate discovery. The registry structure can be centralized, 
hierarchical, cache based or combination of these. Moreover, it 
must provide efficient mechanism to support mobile “things”. 
In addition to these, it also possess challenges of publishing 
REST services with minimum overhead. 

b) Service Discovery and Composition: The computational-
constrains and mobility measures of “things” resulted in highly 
dynamic environment for IoT services, which demands 
context-aware decentralized service discovery mechanism. 



This in turn brings new challenges for service composition in 
IoT. 

c) Routing and Scheduling: IoT services uses different 
types of communication protocols which can be intra-domain 
or inter-domain, single-hop or multi-hop. Further, such 
heterogeneity of IoT demands certain level of intelligence in 
the communication mechanism. This will enhance the ability of 
“things” to be aware of the settings in which it is functioning 
and collaborate with the other devices. Further the 
collaboration should be supported by an efficient scheduling 
mechanism. 

VI. CONCLUSION 
In this paper, a formal model for IoT services is devised. 

The service model comprises “things” physical property and 
incorporated context to the “things” data which in turn helps in 
extracting relevant information. In order to evaluate the 
devised IoT service model, a weather monitoring service using 
node.js is devised and later the service data is mapped to SSN 
ontology to generate context-rich RDF data. It shows that the 
proposed IoT service model can expose the device profile to 
the user. This will enable context-aware IoT service discovery 
and composition mechanism. Further, the proposed model 
incorporates relevant context with the “things” data, which will 
help in various analytics scenarios. Moreover, based on the 
studied literature some crucial challenges for the IoT services 
is outlined. 

Besides the raised research agendas, the future work 
includes the refinement of the IoT service model to add 
operational semantics for IoT service composition.   
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