
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Things as a Service: Service model for IoT

Amit Kr Mandal1,2, Agostino Cortesi1, Anirban Sarkar3, Nabendu Chaki4
1DAIS, Università Ca’ Foscari Venezia, Venice, ITALY

2Department of Computer Science & Engineering, BML Munjal University, Gurugram, INDIA
3Department of Computer Science & Engineering, National Institute of Technology, Durgapur, INDIA

4Department of Computer Science and Engineering, University of Calcutta, Kolkata, INDIA
amitmandal.nitdgp@gmail.com, cortesi@unive.it, sarkar.anirban@gmail.com, nabendu@ieee.org

Abstract—Leveraging the benefits of service computing

technologies for Internet of Things (IoT) can help in rapid system
development, composition and deployment. But due to the
massive scale, computational and communication constraints,
existing software service models cannot be directly applied for
IoT based systems. Service discovery and composition
mechanism need to be decentralized unlike majority of other
service models. Moreover, IoT services’ interfaces require to be
light weight and able to expose the device profile for seamless
discovery onto the IoT based system infrastructure. In addition
to this, the “things” data should be associated with its present
context. To address these issues, this paper proposes a formal
model for IoT services. The service model includes the physical
property of “things” and exposes it to the user. It also associates
the context with the “things” output, which in turn helps in
extracting relevant information from the “things” data. To
evaluate our IoT service model, a weather monitoring system and
its associated services are implemented using node.js [31]. The
service data is mapped to SSN ontology for generating context-
rich RDF data. This way, the proposed IoT service model can
expose the device profile to the user and incorporate relevant
context information with the things data.

Keywords—Internet of Things, Things as a Service, SSN
Ontology, Web Services.

I. INTRODUCTION
Nowadays Internet technology enables “things” to share

information and collaborate with other “things”. This is what is
usually called Internet of Things (IoT). It is envisioned as
digital fabric woven with the interactive information of humans
and machines, where “things” can be accessed and managed
remotely as cloud services. This accelerated large scale
adaption of IoT: Gartner estimates that there will be more than
20 billion IoT devices by 2020 [1]. This scenario asks for the
integration of service computing concepts into the IoT to
manage the increasing volume and varieties of “things”
integrated into the cyber world [2]. It will greatly enhance the
capability of IoT and enable an efficient utilization of IoT
resources by facilitating a seamless discovery, selection and
composition mechanism inherent to service computing [3].

Recent research on IoT services mainly focused on
enabling technologies for various applications, ranging from
home automation [4] to healthcare [5] and smart manufacturing
[6]. Majority of these application specific approaches provide a

significant insight of the challenges inherent to the IoT
solutions. However, there is still a lack of formal mechanisms
for modelling various aspects of IoT based system towards a
common procedure for enabling technology irrespective of the
application domain [8]. Recently several researchers [7, 9, 10]
provided formal semantics of IoT based systems capable of
addressing various aspects ranging from behavior modeling of
the “things” to verify the correctness of network deployment of
the “things”. Besides, few researchers provided abstract
language semantics for modelling IoT system [11, 12].
However, most of the works cited so far don’t consider the
service orientation of the “things”; this requires a layer of
abstraction to hide most of the low-level complexities.
Moreover, the IoT service model should provide users
standardized access to various “things”. It should also associate
context along with the “things” data. For this, it should include
device profile in the modeling process. Instead, most of the
recent literatures mainly focuses on the middleware
architecture, potential provider and consumer of IoT services
and its pricing model [2, 16].

Things as a Service (TaaS) refers to the concept of
delivering IoT capabilities to the end user without operation or
maintenance overhead. The primary objective of TaaS is to
provide “things” data as a service [2]. But in most of the recent
literature IoT services are not designed from a data
representational perspective, as they only rely on measured
values [2, 15]. Searching, reusing, integrating, and interpreting
data become difficult without the studied feature of interest.
This minimizes the interoperability and analytical capabilities,
falling short of fulfilling the promises of IoT towards
knowledge harvesting from sensed data. To enable this,
physical property of the “things” is needed to be included in
the IoT service modeling. This will help in incorporating
certain context in the data. To this aim, Semantic Sensor
Network (SSN) Ontology [29] can be used as a meta-model. It
will be useful for describing devices (sensors and actuators),
their observations, the procedures involved in observation,
their features of interest, and the observable properties. It will
not only incorporate context in the “things” data, but it will
also enhance the IoT service discovery and selection
mechanism. Moreover, IoT applications not only require
having “things” connected to Internet but they should be
integrated into current Internet infrastructure where Web

services are predominant. IoT service model should support
exposing the physical properties of “things” and event-based
interaction among various other services, and Device Profile
Web Service (DPWS) [28] can be considered as a standard for
IoT service description. It provides specifications for
describing, discovering, messaging, and eventing of services
for devices. Fysarakis et al. [27] pointed out that the equivalent
Node.js based implementation of DPWS is lightweight, faster
and offers a large array of features compared to DPWS.

 This paper proposes a formal model of the Things as a
Service. The service model comprises “things” physical
property and associates context to the “things” data.

 In order to provide evidence of the benefits offered by this
service model, a weather monitoring service is developed using
Node.js, which is based on the devised concept and
components of IoT service model and the “things” are mapped
to SSN ontology for generating RDF data. This shows that the
proposed IoT service model is capable of exposing “things”
physical properties to the user and can incorporate relevant
context with the “things” data. This will enable context-aware
service discovery and composition mechanism. The RDF data
can be directly used in different analytics scenarios.

II. RELATED WORK
Service computing technologies have been extensively

applied IoT applications for enabling scalable and reusable
system development and integration. However, the service
models of IoT significantly differ from the existing service
models. Zhu et al. [13] and Bastani et al. [14] pointed out that
unlike web services, IoT service discovery and composition
should be de-centralized. Thus, discovery and routing protocols
requires to be enhanced. To address the modeling and design
issues of IoT services various researcher proposed architectural
frameworks. Perera et al. [2] proposed a sensing as a service
model comprises of four layers namely, sensors and sensor
owners' layer, sensor publishers' layer, extended service
providers layer and sensor data consumers layer. They
provided a detailed description and functionalities of individual
layers and a real-world scenario based on the model. Kantarci et al.
[15] presented a state-of-the-art framework for IoT and
Sensing-as-a-Service. They defined an aggregation framework
for Wireless Sensor Networks (WSN) which provides sensing
and actuation clouds as a service. Further, a Service Oriented
Architecture (SOA) based sensor data exchange pattern has
been discussed. Vargiu et al. [19] proposed an agent-oriented
abstraction for design and development of IoT systems.
Whereas, Alam et al. [20] presented an event driven sensor
virtualization technique for IoT cloud. Further, Kim et al. [16]
proposed SenseCloud, platform to addresses the challenges of
virtualization, multitenancy, and dynamic provisioning. It
provides a two-level virtualization mechanism. However, these
architectural frameworks provide very minimal information
about service modeling for IoT systems, they mainly focused
on service provisioning. Thus, the major challenges of IoT
service modelling such as decentralized service discovery and
selection, registry structure, routing and composition of IoT

services remained unaddressed [13, 14]. Further, these models
do not discuss about the data formats and their interoperability.

However, the rapidly changing technology landscape
induces difficulty towards selecting an approach for IoT
service modeling which ensures the sustainability
interoperability. For this purpose, various researcher opted for
model driven development. Ciccozzi et al. [22] and Hassine et
al. [18] provided a meta-model of the IoT domain. It helps in
modeling and generating executable code for the “things”.
Although it enables technology neutral development process,
but the system did not include the service aspects of the
“things”. Fortino et al. [20] presented a smart object based IoT
meta-model for design and development of IoT services.
Whereas Morin et al. [23] proposed an UML based approach
to address the distribution and heterogenicity challenges in IoT
environment. But these approaches did not discuss about
service composition aspects. Besides, Zhu et al. [13] and
Bastani et al. [14] presented an ontology based meta model for
IoT services by extending the OWL-S ontology. Alam et al.
[20] proposed an ontology-based knowledge representation
framework. Seydoux et al. [24] compared the available
ontologies and proposed an ontology suitable for IoT.
Whereas, De et al. [25] devised an SSN ontology based IoT
services. However, majority of these models did not consider
device profile in service modeling and did not discuss about
event-based interaction among various devices. Some of the
ontology-based approach did not discussed the service
orientation of the ontology models. Whereas, many approaches
do not provide support the standard SSN Ontology for sensor
data representation.

A better insight about the different kind of IoT architectural
model is discussed by Taivalsaari et al [17] based on various
important factors such as cost, update capabilities, dynamic
programmability, security, energy efficiency, and
communication latency. This study shows that each model is
suited for a specific application domain. Thus, a formal model
of IoT service will help towards designing, development and
evaluation of IoT services irrespective of the architectural
framework. Buono et al. [9] proposed a formal language
namely EuDroid which helps in managing the home IoT
devices. Humayoun et al. [12] presented a formal task
modeling language for defining and evaluating IoT scenarios
called IoTGolog. It formalizes IoT system to evaluate the
characteristics of the system. Cacciagrano et al. [11] presented
a domain specific language called IRON, which incorporates
Event-Condition-Action (ECA) rules. It also helps to prevent
or report incorrect actions in the system modeling. Castiglion
et al. [7] presented a process calculus for IoT system modeling.
The formal notion is based on reduction semantics and
existential semantics. However, majority these approaches are
not designed to accommodate service orientation of the IoT
system. A few of the existing formal approach enables service
orientation but they did not consider the device profile into
consideration. Thus, not suitable for IoT service modeling.
This demands a formal model for conceptualizing various
aspects of IoT based system in order to attain a common

procedure for enabling technology irrespective of the
application domain supported by a suitable architectural
framework.

III. IOT SERVICE MODEL
 The primary constituent of “things” is the device capability:
sensor or actuator. The functionality of devices can be offered
as a service to the end user. IoT Eclipse Working Group [30]
provides a generic IoT architecture where many “things” use
some form of gateway to communicate through a network to an
enterprise back-end server. The proposed approach, depicted in
Fig.1, extends the architecture described in [30] for the IoT
services where “things” can expose the service interface via
service gateways and publish it in cloud of “things”.

The cloud maintains a registry and offers the generic
functionalities of service-oriented system such as discovery,
selection, contract negotiation, and composition. A formal
model of IoT services is devised to conceptualize the different
concepts and components of it. For this, device capabilities and
physical properties is conceptualized, which are the primary
constituents for “things”. These “things” are then used to
model the service.

A. Device:
In IoT, a device (𝒟) can be considered a mechanical or

electronic system which can be operated by analog or digital
signals. Based on the functionality it be categorized into a
sensing device (𝒟) or an actuating device (𝒟) . A sensing
device responds to stimulus in the environment by converting
the physical parameter to a signal which can be measured
electrically. Whereas, an actuating device converts control
signal into mechanical action. Formally, a device can be
defined as, 𝒟 =< 𝑖𝑑, 𝑓, 𝜇, 𝑝ℎ, 𝐼, 𝒪 >

Here, 𝑖𝑑 refers to a unique identity of the device. 𝑓
represents the current feature of interest of the device. It is
atomic and refers to the entity on which the sensor observation
or actuation is performed. 𝜇 is an unalterable observable

property. 𝑝ℎ represents the set of physical properties. It is
comprised of multiple system properties such as, accuracy,
operating range, battery life, detection limit etc. 𝐼 & 𝒪 are the
supported set of input and output respectively. For a device
input can be a user input (𝒾) and/or an event (𝑒). Similarly, a
device can return certain value (ℴ) to the user or generate an
event(𝑒ℴ). Thus, input and output of a device can be defined
as, 𝐼 = {𝑥|𝑥 ∈ 𝒾 ∨ 𝑥 ∈ 𝑒 }, 𝑤ℎ𝑒𝑟𝑒 𝒾 ∩ 𝑒 = ∅ 𝒪 = {𝑥|𝑥 ∈ ℴ ∨ 𝑥 ∈ 𝑒ℴ}, 𝑤ℎ𝑒𝑟𝑒 ℴ ∩ 𝑒ℴ = ∅

B. Things:
In the context of IoT, a “thing” can be considered an entity

or physical embedded system that has a unique identifier with
the ability to transfer or receive data over a network. Formally
it can be defined as: 𝒯 = { 𝒟, 𝒫, 𝒞, ℒ, 𝜑}

Where, 𝒟 is the set of devices and may consists multiple
sensing (𝒟) and/or actuating (𝒟) devices, 𝒟 = 𝒟 , 𝒟 … 𝒟 ∪ 𝒟 , 𝒟 … 𝒟

where, |𝒟 ∪ 𝒟 | ≥ 1 𝑎𝑛𝑑 𝒟 ∩ 𝒟 = ∅, 𝒫 represents the physical property of the “things”, which
comprises of physical properties of all the sensing and
actuating devices. Thus, 𝒫 =< 𝑝ℎ , 𝑝ℎ … 𝑝ℎ >. 𝒞 is the current set of context associated with the “things”
which is a combination of its current feature of interest and
observable property. Thus, context of a device 𝒹 can be
defined as a tuple: 𝒞 = < 𝑓 , 𝜇 > and context of the
“things”, 𝒞 =< 𝒞 , 𝒞 … 𝒞 > ℒ represents the operational semantics of the “things”, it
comprises of procedures, communication protocols,
encryptions, maximum no of client “things” can be connected
to etc. 𝜑 represents set of operational functions of the “things”
which specifies how to make an observation for a specific
device. The “things” use procedures to measure the observable
property of the device by using a supported input format. The
operational function for a device 𝑑, which takes input (𝐼) to
produce an output (𝒪) at timestamp 𝓉 with associated context (𝒸) can be defined as: 𝜑 : 𝐼 →< 𝒪 , 𝓉, 𝒸 >

C. Things as a Service (TaaS):
The TaaS enables interface-based access to the “things”

capabilities over internet. All the service components of TaaS
will be implemented through an interface. Formally, it (𝑇𝑎𝑎𝑆)
can be defined as:

Fig. 1. Architectural Framework for Thing as a Service

𝑇𝑎𝑎𝑆 = {𝑎𝑑𝑑𝑟, 𝒯, 𝜓, 𝑝𝑜𝑟𝑡, 𝑚𝑠𝑔, 𝑝𝑓}
Here, 𝑎𝑑𝑑𝑟 is the unique interface address, 𝒯 represents

the “things” which hosting the service, a “thing” can host
multiple services. 𝜓 is the exposed set of capabilities offered by the various
devices in the “things” as functions. Thus, 𝜓 ={𝜑 , 𝜑 … 𝜑 }. 𝑝𝑜𝑟𝑡 represents a set of ports in the interface. 𝑚𝑠𝑔 defines the information exchange patterns supported
by the service interface. Where, messages consist of a unique
identifier (𝑚𝑖𝑑) , message type (𝑡𝑦𝑝𝑒) , description (𝑚𝑑𝑒𝑠)
and message fault (𝑚𝑓). It can be formally defined as: 𝑚𝑠𝑔 = < 𝑚𝑖𝑑, 𝑡𝑦𝑝𝑒, 𝑚𝑑𝑒𝑠, 𝑚𝑓 >. 𝑝𝑓 is the description of the “things” profile. It includes
physical & operational properties. Here, 𝒫 ∈ {𝒫 ∪ ℒ} and it
only consists of the properties of the devices responsible for
providing the service.

IV. APPLYING THE MODEL TO IOT SERVICE DESIGN
To evaluate the proposed IoT service model, a weather

monitoring system (“thing”) and its REST based services is
developed first. Later, a mechanism for mapping the “things”
concepts and components to SSN ontology has been devised.

A. Weather Monitoring Service:

The weather monitoring system provides the current
temperature and humidity. The DHT22 sensor module is used
for this. It is installed in a Raspberry Pi 3B+ board with 64-bit,
Quad-Core, Broadcom BCM2837B0 CPU running at 1.4GHz
and 1GB of LPDDR2 SDRAM. Figure 2 depicts the circuit
diagram of the system. Further, Node.js is used to develop a
REST service. The service offers device profile, current
temperature and current humidity in JSON format. For
simplicity device profile is described in a JSON file which
includes few important parameters such as, Things ID,
deployment platform, supported protocol, service type,
Endurance, Up-Time and constituent devices information. The
individual device is further described to provided: device ID,
device type, manufacturer, accuracy, and service endpoints.
The profile (𝒫) for the devised thing is depicted in Figure 3.
Whereas, partial Node.js implementation is depicted in Figure
4. Here the things profile is parsed and used in the thingProfile
endpoint to expose it to users. Again, for the DHT22 Sensor

rpi-dht-sensor [26] library is used. The getTemp (ℒ) endpoint
provides the current temperature (𝒪) , feature of interest,
observable property (𝒸) and timestamp (𝓉) in JSON format.
Similarly, getHumidity (ℒ)endpoint provides current humidity (𝒪) feature of interest, observable property (𝒸) and
timestamp (𝓉).

1. {"ThingID": "123-456-222",
2. "Device 1":
3. {
4. "DeviceID": "D1",
5. "DeviceType": "DHT22"
6. "Manufacturer":"XYZ srl"
7. "accuracy ": "+/- 0.5",
8. "ServiceEndpoint": " getTemp"
9. },
10. "Device 2":
11. {
12. "DeviceID": "D2",
13. "DeviceType": " DHT22"
14. "Manufacturer":"XYZ srl"
15. "accuracy ": "+/- 0.5",
16. "ServiceEndpoint": " getHumid"
17. },
18. "Platform": "RaspberryPiB3+",
19. "protocol": "HTTP",
20. "ServiceType": "REST"
21. "Endurance":"96 Hrs";
22. "UpTime": "38:45 Hrs"
23. }

Fig. 3. ThingsProfile.json

1. var express = require('express');
2. var rpiDhtSensor = require('rpi-dht-sensor');
3. var dateTime = require('node-datetime');
4. var app = express();
5. var fs = require("fs");
6. var dht = new rpiDhtSensor.DHT22(2);
7. var dtx = dateTime.create();
8. var dt = dtx.format('Y-m-d H:M:S'); //timestamp
9. var fi = "Venice Metropolitan Area"; //feature
of Interest
10. var opD1 = "temperature ºC"; //observable
property
11. var opD2 = "Humidity %"; //observable property
12. const port = process.env.PORT || 3000;
13. const server = app.listen(port);
14. app.use(function (req, res, next) {
15. res.header('Content-Type', 'application/json');
16. next();
17. });
18. app.get('/api/thingProfile',(req, res) => {
19. var contents =
fs.readFileSync("ThingsProfile.json");
20. var tp = JSON.parse(contents);
21. res.send(JSON.stringify(tp));
22. })
23. app.get('/api/getTemp', (req, res) => {
24. var readout = dht.read();
25. var tc = readout.temperature.toFixed(2);
26. var res1 = {"temperature":tc,
"location":fi,"measurement":opD1, "Timestamp": dt};
27. setTimeout(read, 5000);
28. res.send(JSON.stringify(res1));
29. })
30. app.get('/api/getHumidity', (req, res) => {
31. var readout = dht.read();
32. var humid = readout. humidity.toFixed(2);
33. var res2 = {" humidity ": humid,
"location":fi,"measurement":opD2, "Timestamp": dt};

Fig. 2. Schematic Diagram of the Weather Monitoring Thing

@prefix sosa: <http://www.w3.org/ns/sosa/>.
@prefix ssn: <http://www.w3.org/ns/ssn/> .
@prefix xsd:
<http://www.w3.org/2001/XMLSchema#>.
@prefix qudt-1-1:
<http://qudt.org/1.1/schema/qudt#>.
@prefix qudt-unit-1-1:
http://qudt.org/1.1/vocab/unit#>.
@base <http://myproj.org/data/>

<sensor/DHT22> rdf:type sosa:Sensor ;
 sosa:observes <Venice/temperature ºC>;
 sosa:madeObservation
<Observation/1>,<Observation/2>.
<Venice/temperature ºC> rdf:type
sosa:ObservableProperty ;
 sosa:isObservedBy <sensor/DHT22>.
<Observation/1> rdf:type sosa:Observation ;
 sosa:observedProperty <Venice/temperature ºC>;
 sosa:madeBySensor <sensor/DHT22> ;
 sosa:hasResult [
 rdf:type qudt-1-1:QuantityValue ;
 qudt-1-1:numericValue "6.8"^^xsd:double ;
 qudt-1-1:unit qudt-unit-1-1:temperature ºC];
 sosa:resultTime "2019-02-02
10:34:47.048"^^xsd:dateTimeStamp.
 <Observation/2> ...//similar to observation 1

Fig. 6: Sample TTL output

Method ParseSensorData(){
 String gettemp = getTemp(http://host:3000/api/
getTemp)
 JSONObject tempobj = new JSONObject("gettemp");
 for(each attribute value in tempobj){
 if(CObject.getsrting("location")!=NULL)
 sosa:FeatureOfInterest =
CObject.getsrting("location")
if(CObject.getsrting("temperature")!=NULL){
 sosa:Result =
CObject.getsrting("temperature")
 sosa:resultTime =
CObject.getsrting("Timestamp")
 }
 …//parse other attributes
 }
}
Method ParseDeviceProfile(){
 String dp =
getDeviceProfile(http://host:3000/api/thingsProf
ile)
 JSONObject obj = new JSONObject("dp");
 for(each nested device attribute in obj){
 JSONObject CObject = obj.get("Device1");
 for(each attribute value in CObject){
 if(CObject.getsrting("DeviceID")!=NULL)
 ssn:sensor =
CObject.getsrting("DeviceID")
 if(CObject.getsrting("DeviceType ")!=NULL)
 ssn:property =
CObject.getsrting("DeviceType")
 …//parse other attributes
 }
 }
 if(CObject.getsrting("DeviceType ")=NULL)
 ssn-system:BatteryLifetime =
CObject.getsrting("Endurance")
 if(CObject.getsrting("UpTime")!=NULL)
 ssn-system:BatteryLifetime =
CObject.getsrting("UpTime")
 …//parse other attributes
}
Method GenerateTTL("temperature.ttl"){
 Create("<sensor/DHT22>","sosa:Sensor "){
 add values for:
sosa:observes,sosa:madeObservation
 }
 Create("<Venice/temperature ºC>","
sosa:ObservableProperty"){
 add values for: sosa:isObservedBy
 }
 for(each observation: i){
 Create("<Observation/i> ","sosa:Observation
"){
 add values for: sosa:observedProperty,
sosa:madeBySensor, sosa:hasResult
 }
 }
}

Fig. 5: Parsing JSON output to generate SSN Ontology data

34. setTimeout(read, 5000);
35. res.send(JSON.stringify(res2));
36. })

Fig. 4. Node.js REST Service for Weather Monitoring Thing

B. Compatibility with SSN Ontology
The semantic sensor ontology is widely accepted as

standard for sensor data representation. The service developed
using the TaaS model can easily be mapped to SSN ontology.
On successful invocation of the services, the user gets the
output in JSON format. The users get “things” profile as

defined in the Figure 3, whereas the output format of getTemp
and getHumid is defined in line 26 (opD1) and line 33 (opD2)
of the code snippet depicted in Figure 4. The resultant JSON
file is parsed and then mapped to the various SSN ontology
classes. Figure 5 depicts the partial pseudocode for parsing the
“things” output and stored as SSN Ontology RDF data. The
method ParseSensorData() of the decided algorithm parses
device output and maps it to various SSN ontology classes
such as: sosa:FeatureOfInterest, sosa:Result etc. Similarly
ParseDeviceProfile () parses the devise profile data and
assigns values for SSN ontology classes such as, ssn:sensor,
ssn:property etc. Whereas, GenerateTTL() method uses these
values to populate the RDF data and saves it as ".ttl" file. The
sample output of the devised mechanism is shown in Figure 6.

V. FUTURE RESEARCH DIRECTION
It is clear from the literature review that the massive scale

of the IoT services poses many crucial challenges. This work
primarily addressed issues related to the service design from
the perspective of “things” and associated context with
“things” data. However, many other challenges need to be
overcome to foster wide spread adaption of IoT services:

a) Service Registry Structure: A “thing” may provide
multiple service, which should be published in the registry to
facilitate discovery. The registry structure can be centralized,
hierarchical, cache based or combination of these. Moreover, it
must provide efficient mechanism to support mobile “things”.
In addition to these, it also possess challenges of publishing
REST services with minimum overhead.

b) Service Discovery and Composition: The computational-
constrains and mobility measures of “things” resulted in highly
dynamic environment for IoT services, which demands
context-aware decentralized service discovery mechanism.

This in turn brings new challenges for service composition in
IoT.

c) Routing and Scheduling: IoT services uses different
types of communication protocols which can be intra-domain
or inter-domain, single-hop or multi-hop. Further, such
heterogeneity of IoT demands certain level of intelligence in
the communication mechanism. This will enhance the ability of
“things” to be aware of the settings in which it is functioning
and collaborate with the other devices. Further the
collaboration should be supported by an efficient scheduling
mechanism.

VI. CONCLUSION
In this paper, a formal model for IoT services is devised.

The service model comprises “things” physical property and
incorporated context to the “things” data which in turn helps in
extracting relevant information. In order to evaluate the
devised IoT service model, a weather monitoring service using
node.js is devised and later the service data is mapped to SSN
ontology to generate context-rich RDF data. It shows that the
proposed IoT service model can expose the device profile to
the user. This will enable context-aware IoT service discovery
and composition mechanism. Further, the proposed model
incorporates relevant context with the “things” data, which will
help in various analytics scenarios. Moreover, based on the
studied literature some crucial challenges for the IoT services
is outlined.

Besides the raised research agendas, the future work
includes the refinement of the IoT service model to add
operational semantics for IoT service composition.

REFERENCES
[1] M. Hung, "Leading the IoT, Gartner Insights on How to Lead in a

Connected World." Gartner Research (2017), pp. 1 – 29, 2017.
[2] C. Perera, A. Zaslavsky, P. Christen, D. Georgakopoulos, "Sensing as a

service model for smart cities supported by internet of things",
Transactions on Emerging Telecommunications Technologies, Vol. 25,
no. 1, pp. 81 – 93, 2014.

[3] L. H. Nunes, J. C. Estrella, C. Perera, S. Reiff-Marganiec, A. C. Delbem.
"The elimination-selection based algorithm for efficient resource
discovery in Internet of Things environments." In Consumer
Communications & Networking Conference (CCNC), 2018 15th IEEE
Annual, pp. 1-7. IEEE, 2018.

[4] V. Vladimir, M. Maksimović, "Raspberry Pi as a Sensor Web node for
home automation" Computers & Electrical Engineering Vol. 44, pp. 153
– 171, 2015.

[5] P. A. Laplante, N. Laplante. "The internet of things in healthcare:
Potential applications and challenges." IT Professional 3, pp. 2 - 4, 2016.

[6] F. Tao, Q. Qi, "New IT driven service-oriented smart manufacturing:
framework and characteristics." IEEE Transactions on Systems, Man,
and Cybernetics: Systems, Vol. 49, No. 1, pp. 81 – 91, 2017

[7] V. Castiglioni, R. Lanotte, M. Merro. “A Semantic Theory of the
Internet of Things.” arXiv preprint arXiv:1510.04854 (2015).

[8] I. Lanese, L. Bedogni, M. Di Felice, "An Operational Semantics for a
Calculus for Wireless Systems", Theoretical Computer Science, Vol.
411, No. 19, pp. 1928 – 1948, 2010.

[9] P. Buono, F. Cassano, A. Legretto, A. Piccinno. "EUDroid: a formal
language specifying the behaviour of IoT devices", IET Software, Vol.
12, No. 5, pp. 425 – 429, 2018.

[10] C. Mahmoudi, F. Mourlin, A. Battou, "Formal definition of edge
computing: An emphasis on mobile cloud and IoT composition", Third
International Conference on Fog and Mobile Edge Computing (FMEC),
pp. 34 – 42, IEEE 2018.

[11] D. R. Cacciagrano, R. Culmone, "Formal semantics of an IoT-specific
language", 2018 32nd International Conference on Advanced
Information Networking and Applications Workshops (WAINA), pp.
579 – 584, IEEE, 2018.

[12] S. R. Humayoun, Y. Dubinsky, R. AlTarawneh. "Using IoTGolog to
formalize IoT scenarios", 2015 IEEE 2nd World Forum on Internet of
Things (WF-IoT), pp. 234 – 238, IEEE, 2015.

[13] W. Zhu, G. Zhou, I. Yen, F. Bastani. "A pt-soa model for cps/iot
services." 2015 IEEE International Conference on Web Services
(ICWS), pp. 64 – 654. IEEE 2015.

[14] F. Bastani, W. Zhu, H. Moeini, S. Hwang, Y. Zhang. "Service-Oriented
IoT Modeling and Its Deviation from Software Services", IEEE
Symposium on Service-Oriented System Engineering, pp. 40-47, 2018.

[15] B. Kantarci, H. T. Mouftah, "Sensing as a Service in Cloud-Centric
Internet of Things Architecture", Enabling Real-Time Mobile Cloud
Computing through Emerging Technologies, pp. 83-115, IGI Global,
2015.

[16] M. Kim, M. Asthana, S. Bhargava, K. K. Iyyer, R. Tangadpalliwar, J.
Gao, "Developing an on-demand cloud-based sensing-as-a-service
system for internet of things." Journal of Computer Networks and
Communications, URL: https://www.hindawi.com/journals/jcnc/2016/
3292783 /cta/ [Accessed On: January 28, 2019], Hindwai, 2016.

[17] A. Taivalsaari and T. Mikkonen, "A Taxonomy of IoT Client
Architectures," in IEEE Software, vol. 35, no. 3, pp. 83-88, 2018.

[18] T. B, Hassine, O. Khayati, H. B. Ghezala. "An IoT domain meta-model
and an approach to software development of IoT solutions", 2017
International Conference on Internet of Things, Embedded Systems and
Communications (IINTEC) , pp. 32-37. IEEE, 2017.

[19] E. Vargiu, F. Zambonelli. "Agent abstractions for engineering IoT
systems: A case study in smart healthcare", In 14th IEEE International
Conference on Networking, Sensing and Control, pp. 667-672, 2017.

[20] S. Alam, M. M. R Chowdhury, J. Noll. "Senaas: An event-driven sensor
virtualization approach for internet of things cloud", 2010 IEEE
International Conference on Networked Embedded Systems for
Enterprise Applications (NESEA), pp. 1-6. IEEE, 2010.

[21] G. Fortino, A. Guerrieri, W. Russo, C. Savaglio, "Towards a
development methodology for smart object-oriented IoT systems: a
metamodel approach", 2015 IEEE International Conference on Systems,
Man, and Cybernetics (SMC), , pp. 1297-1302. IEEE, 2015.

[22] F. Ciccozzi, I. Crnkovic, D. Di Ruscio, I. Malavolta, P. Pelliccione, R.
Spalazzese. "Model-driven engineering for mission-critical iot systems",
IEEE Software 1 (2017): 46-53, 2017.

[23] B. Morin, N. Harrand, F. Fleurey, "Model-based software engineering to
tame the iot jungle", IEEE Software Vol. 34, No. 1, pp. 30-36, 2017.

[24] N. Seydoux, K. Drira, N. Hernandez, T. Monteil. "IoT-O, a core-domain
IoT ontology to represent connected devices networks", European
Knowledge Acquisition Workshop, pp. 561-576, 2016.

[25] S. De, P. Barnaghi, M. Bauer, S. Meissner, "Service modelling for the
Internet of Things", 2011 Federated Conference on Computer Science
and Information Systems (FedCSIS), pp. 949-955. IEEE, 2011.

[26] rpi-dht-sensor, URL: https://github.com/roland-vachter/rpi-dht-
sensor[Accessed On: January 28, 2019].

[27] K. Fysarakis, D. Mylonakis, C. Manifavas, I. Papaefstathiou, "Node.
dpws: Efficient web services for the internet of things", IEEE Software,
Col. 33, No. 3 pp. 60-67, 2016.

[28] Devices Profile for Web Services, URL: http://ws4d.org/technology
/dpws/ [Accessed On: January 28, 2019].

[29] Semantic Sensor Network Ontology, URL: https://www.w3.org/TR
/vocab-ssn/ [Accessed On: January 28, 2019].

[30] Eclipse IoT Working Group. "The three software stacks required for IoT
architectures”, (latest update: December 2017).

[31] Node.js, URL: https://nodejs.org/en/, [Accessed On: January 28, 2019].

