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Abstract

Copositive optimization is a quickly expanding scientific re-
search domain with wide-spread applications ranging from global
nonconvex problems in engineering to NP-hard combinatorial op-
timization. It falls into the category of conic programming (op-
timizing a linear functional over a convex cone subject to linear
constraints), namely the cone C of all completely positive sym-
metric n×n matrices (which can be factorized into FF⊤, where F
is a rectangular matrix with no negative entry), and its dual cone
C∗, which coincides with the cone of all copositive matrices (those
which generate a quadratic form taking no negative value over
the positive orthant). We provide structural algebraic properties
of these cones, and numerous (counter-)examples which demon-
strate that many relations familiar from semidefinite optimization
may fail in the copositive context, illustrating the transition from
polynomial-time to NP-hard worst-case behaviour. In course of
this development we also present a systematic construction prin-
ciple for non-attainability phenomena, which apparently has not
been noted before in an explicit way. Last but not least, also
seemingly for the first time, a somehow systematic clustering of
the vast and scattered literature is attempted in this paper.



1 Introduction

Copositive optimization (or copositive programming, coined in [47]) is a spe-
cial case of conic optimization, which consists of optimizing a linear function
over a cone subject to additional linear constraints.

It is well known that the simplest class of hard problems in contin-
uous optimization is that of quadratic optimization problems [214] – to
minimize a (possibly indefinite) quadratic form x⊤Qx over a polyhedron
{

x ∈ R
n
+ : Ax = b

}

. Note that a linear term in the objective function can
be removed by an affine transformation of the polyhedron. The number of
local, non-global solutions to this problem may be exponential in the number
of variables and/or constraints [42].

This class has a close connection to copositive optimization. The so–called
lifting idea here is to linearize the quadratic form

x⊤Qx = trace (x⊤Qx) = trace (Qxx⊤) = Q • xx⊤

by introducing the new symmetric matrix variable X = xx⊤ and Frobenius
duality X • Y = trace (XY ). This technique was mainly applied previously
to semidefinite optimization [194]. If Ax ∈ R

m
+ for all x ∈ R

n
+ and b ∈ R

m
+ ,

then the linear constraints can be squared, to arrive in a similar way at
constraints of the form Ai • X = b2

i .
Now the set of all these X generated by feasible x is non-convex since

rank (xx⊤) = 1. The convex hull

C = conv
{

xx⊤ : x ∈ R
n
+

}

,

results in a convex matrix cone called the cone of completely positive matrices
since [133]; see [22]. Note that a similar construction dropping nonnegativity
constraints leads to

P = conv
{

xx⊤ : x ∈ R
n
}

,

the cone of positive-semidefinite matrices, the basic set in semidefinite opti-
mization (or semidefinite programming, SDP); see for instance [59].

The first account on copositive optimization goes back to [47], who estab-
lished a copositive representation of a subclass of particular interest, namely
in Standard Quadratic Optimization (StQP). Here the feasible polyhedron
is the standard simplex ∆ =

{

x ∈ R
n
+ :

∑

i xi = 1
}

: this subclass is also NP-
hard from the worst-case complexity but allows for a polynomial-time ap-
proximation scheme [46]. There can be exponentially many local non-global
solutions (see [61] for the lower bound 30⌊n/9⌋.)

This phenomenon is typical for a problem of Global Optimization. While
researchers were aware of this phenomenon since long, the field of Determin-
istic Global Optimization received a decisive impact by the seminal book
[147] by R. Horst and H. Tuy. Soon after, R. Horst co-founded the journal
at hand and was its first managing editor, so he can be seen as one of the
most influential and driving personalities in Global Optimization.
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Now, with J the n × n all-ones matrix, we have

min
{

x⊤Qx : x ∈ ∆
}

= min {Q • X : J • X = 1 , X ∈ C} . (1)

Note that the right-hand problem is convex, so there are no more local, non-
global solutions. In addition, the objective function is now linear, and there
is just one linear equality constraint. The complexity has been completely
pushed into the feasibility condition X ∈ C, which also shows that there are
indeed convex minimization problems which cannot be solved easily.

Duality theory for conic optimization problems requires the dual cone C∗

of C w.r.t. the Frobenius inner product, which is

C∗ =
{

S ∈ Sn×n : S • X ≥ 0 for all X ∈ C
}

,

where Sn×n is the set of symmetric n × n matrices. Here it can easily be
shown that C∗ coincides with the cone of copositive matrices, which justifies
terminology:

C∗ =
{

S ∈ Sn×n : x⊤Sx ≥ 0 if x ∈ R
n
+

}

,

i.e., a matrix S is copositive [208] (most probably abbreviating “conditionally
positive-semidefinite”), if S generates a quadratic form x⊤Sx taking no neg-
ative values over the positive orthant. The dual of the special program (1)
over C above is then

max {y ∈ R : S = Q − yJ ∈ C∗} , (2)

a linear objective in just one variable y with the innocent-looking feasibil-
ity constraint S ∈ C∗. This shows that checking membership of C∗ (and,
similarly, of C) is already NP-hard, and there are many approaches to al-
gorithmic copositivity detection, we refer to Section 4. More generally, a
typical primal-dual pair in copositive optimization (COP) is of the following
form:

inf {C • X : Ai • X = bi , i = 1, . . . , m , X ∈ C}
≥ sup {∑ibiyi : y ∈ R

m , S = C − ∑

i yiAi ∈ C∗} .

The inequality above is just standard weak duality, but observe we have to
use inf and sup since – as in general conic optimization – there may be prob-
lems with attainability of either or both problems above, and likewise there
could be a (finite or infinite) positive duality gap without any further condi-
tions like strict feasibility (Slater’s condition). For the above representation
of Standard Quadratic Optimization problems, this is not the case:

min {Q • X : J • X = 1 , X ∈ C} = max {y ∈ R : S = Q − yJ ∈ C∗} .

But for a similar class arising in many applications, the Multi-Standard
Quadratic Optimization problems [57], dual attainability is not guaranteed
while the duality gap is zero – an intermediate form between weak and strong
duality [234]. We will discuss in detail these phenomena in Section 3. But
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let us start with collecting a number of elementary properties and counterex-
amples illustrating the difference between the semidefinite cone P and the
copositive/completely positive cone C∗/C. This is important for many copos-
itivity detection procedures, and as we saw in (2), the feasibility constraint
incorporates most of the hardness in copositive optimization.

Therefore, this paper is organized as follows: Section 2 discusses some
algebraic properties of matrices belonging to the copositive or related cones,
some of them more or less well known, others apparently never noticed before.
Section 3 provides a complete picture of possible attainability/duality gap
constellations in primal-dual pairs of copositive programs. Here, apparently
for the first time in the literature, we also propose a systematic construction
principle for non-attainability phenomena. Finally, also seemingly for the
first time, Section 4 strives to provide a rough literature survey by clustering
a hopefully large part of copositivity-related publications.

2 Elementary algebraic properties

and counterexamples

Here we collect some properties which the cones C and C∗ share with the
more ubiquitous cones P and N (of nonnegative matrices), and some other
properties which distinguish C and C∗ from the other cones (and from each
other). Some of these properties apparently never have been noticed before
in the literature. For the sake of conciseness, in this section (and only here)
we will abuse notation by regarding C as the class of completely positive
matrices of any order ; likewise we use the symbols C∗, P and N in this
section. So let N consist of all symmetric matrices with nonnegative entries,
let P ∩ N be the set of doubly nonnegative matrices, and finally P + N =
{P + N : P ∈ P, N ∈ N , P, N of the same order}. We have the inclusion
C ⊆ P ∩ N ⊆ P + N ⊆ C∗, with equalities C = P ∩ N and P + N = C∗, if
and only if we restrict these classes to matrices of order at most 4, see [22,
Thm. 2.4, Rem. 1.10], [96], [133].

One readily observes that taking a principal submatrix of a member of
one of these six classes again yields a member of that class (this is called
completeness in [74]), and also, for A from one of these six classes, every
permutation similar matrix P−1AP (with P a permutation matrix) and ev-
ery positive diagonal congruence D⊤AD (with D a positive-definite diagonal
matrix, see [165]) is again a member of that class.

These properties are all special cases of the following more general one:

Proposition 2.1 (Sandwiching property):

(a) Let K ∈ {P,N , C,P ∩N ,P + N , C∗}.
If B ∈ K and A is a rectangular matrix of fitting order with no negative
entries, then we have A⊤BA ∈ K.

(b) Let K ∈ {P,N , C,P ∩N}. Then we have {A, B} ⊂ K ⇒ ABA ∈ K.
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(c) The counterpart of (b) is not true for the classes K ∈ {P + N , C∗}.

Proof. For the case of K = C, this is stated in [22, Prop. 2.2]. It is as
obvious as for the class K = P, and it is trivial for K = N . Assertion (b) is
a straightforward consequence of K ⊆ N and (a), while the claim in (c) is
demonstrated by the following example. ✷

Example 2.1 With A =

[

2 −1
−1 1

]

∈ P ⊂ C∗, B =

[

1 2
2 1

]

∈ N ⊂ C∗,

we have ABA⊤ =

[

−3 3
3 −2

]

/∈ C∗ . Note that P +N = C∗ when restricted

to matrices of order 2.

Similarly, for K ∈ {P,N , C,P∩N} and n ∈ N we have A ∈ K ⇒ An ∈ K.
This follows inductively, for even n directly, for odd n by sandwiching. This
is only true for even powers for the classes P + N and C∗, as can be shown
directly, but not for odd powers, as the following example demonstrates.

Example 2.2 Let

A =





1 2 −1
2 1 −1

−1 −1 1



 =





1 1 −1
1 1 −1

−1 −1 1



 +





0 1 0
1 0 0
0 0 0



 ∈ P + N .

Then

A3 =





20 21 −15
21 20 −15

−15 −15 11



 with [0, 2, 3] A3 [0, 2, 3]⊤ = −1 .

Thus A3 /∈ P + N . Note that P + N = C∗ when restricted to matrices of
order 3. Also the famous 5× 5 Horn matrix H ∈ C∗ \ (P +N ) [133] satisfies
x⊤H3x = −3 < 0 for x = [2, 0, 0, 2, 3]⊤ ∈ R

5
+.

The symmetrization AB + BA of the product AB is less well behaved.
Of course A, B ∈ N ⇒ AB + BA ∈ N , but there is no analogous result for
the other matrix classes, as shown below.

Example 2.3 Let A =

[

1 1
1 1

]

and B =

[

1 0
0 0

]

, which are both in C,

resulting in AB+BA =

[

2 1
1 0

]

, with eigenvalues 1±
√

2. Thus AB+BA /∈
K for K ∈ {P, C,P ∩ N}.

Example 2.4 For a demonstration of A, B ∈ K, AB + BA /∈ K for K ∈
{P + N , C∗} let A be the matrix from Example 2.2, and take B = A2.
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Table 1: Closure properties of cones for sandwiching, symmetrized products,
and posynomials p(A) =

∑

k ckA
k with ck ≥ 0, integer k ≥ 0.

K A, B ∈ K A, B ∈ K A ∈ K
⇒ ABA ∈ K ⇒ AB + BA ∈ K ⇒ p(A) ∈ K

P yes: Prop. 2.1 no: Ex. 2.3 yes: follows

N yes: evident yes: evident yes: evident

P ∩ N yes: Prop. 2.1 no: Ex. 2.3 yes: follows

P + N no: Ex. 2.1 no: Ex. 2.4 noa: Ex. 2.2

C yes: Prop. 2.1 no: Ex. 2.3 yes: follows

C∗ no: Ex. 2.1 no: Ex. 2.4 noa: Ex. 2.2

a but Ak ∈ K for k ∈ N even (evident)

Example 2.5 Take A =

[

1 2
2 4

]

and B =

[

1 −1
−1 1

]

. Then A ∈ C =

P ∩ N and B ∈ C∗ = P + N , but AB + BA =

[

−2 −1
−1 4

]

/∈ C∗ = P + N .

Now consider tensor (or Kronecker) products. Recall that for an m × m
matrix A and an n×n matrix B, this product is defined as the block mn×mn
matrix A ⊗ B = [aijB]ni,j=1.

Proposition 2.2 (tensor product properties):
Let A and B be two symmetric matrices, not necessarily of same size.

(a) Let K ∈ {P,N , C,P ∩N}. Then {A, B} ⊂ K ⇒ A ⊗ B ∈ K.

(b) However, this implication is wrong if K ∈ {P + N , C∗}.

(c) Let K ∈ {C,P ∩N}. Then A ∈ K and B ∈ K∗ imply A ⊗ B ∈ K∗.

Proof. (a) is well known; for instance, closure under the tensor product of
the completely positive cone has been established already in [22, Prop. 2.3].
We include a simple proof for the readers’ convenience here. For K = C,
consider A = FF⊤ and B = GG⊤, so that A ⊗ B = (FF⊤) ⊗ (GG⊤) =
(F ⊗G)(F ⊗G)⊤ ∈ C, since F ⊗G has no negative entry if neither F nor G
have one. Along the same lines one can prove A, B ∈ P ⇒ A ⊗ B ∈ P, and
A, B ∈ N ⇒ A⊗B ∈ N is evident. Assertion (a) follows then also for P∩N .
Example 2.6 below illustrates claim (b). To establish (c), observe that (a)
implies A ⊗ B ∈ P + N , if A ∈ P ∩ N and B ∈ P + N . Finally, we have
to show that A ∈ C and B ∈ C∗ implies A ⊗ B ∈ C∗. Indeed, first observe
that any x ∈ R

mn
+ can be written as x =

∑m
i=1 ei ⊗ xi with {e1, . . . , em} the

standard basis of R
m and xi ∈ R

n
+. Let A = FF⊤ ∈ C with F an m × k
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matrix without negative entries, and B ∈ C∗. Then

x⊤(A ⊗ B)x =
∑

i,j(ei ⊗ xi)
⊤(FF⊤ ⊗ B)(ej ⊗ xj)

=
∑

i,j(e
⊤
i ⊗ x⊤

i )(FF⊤ej ⊗ Bxj)

=
∑

i,j(F
⊤ei)

⊤(F⊤ej) ⊗ x⊤
i Bxj .

Now the latter Kronecker factors are scalars, so that the product is the usual
scalar one. Hence

x⊤(A ⊗ B)x =
∑

i,j(F
⊤ei)

⊤(F⊤ej)(x
⊤
i Bxj)

=
∑

i,j(F
⊤ej)

⊤(F⊤ei)(x
⊤
i Bxj)

=
∑

i,j trace [(F⊤ei)(x
⊤
i Bxj)(F

⊤ej)
⊤] = trace [G⊤BG] ,

where G =
∑

j xje
⊤
j F is an n × k matrix without negative entries. Thus

x⊤(A ⊗ B)x = B • GG⊤ ≥ 0 for all x ∈ R
mn
+ ,

where A•B = trace (AB) denotes the Frobenius inner product of symmetric
n × n matrices A and B. ✷

Example 2.6 Let A =

[

1 −1

−1 1

]

∈ P ⊂ C∗, B =

[

0 1

1 0

]

∈ N ⊂ C∗.

Then

A ⊗ B =

[

0 0 1 −1

· · ·

]

/∈ C∗ .

(See also Example 2.7.) It does not help if both factors are the same: Let

C =

[

A 0

0 B

]

∈ C∗, with A and B as before. Then C ⊗ C has A ⊗ B as

one of its principle submatrices, therefore C ⊗ C /∈ C∗ .

Finally we turn to Hadamard products. For square matrices A, B of the
same size, the Hadamard product is defined as A.B = [aijbij ]i,j, so it is
bilinear. Also (A.B)⊤ = A⊤.B⊤ and A.B = B.A. We further define the
Hadamard power A(n) = [an

ij]i,j , and call Hadamard posynomial a function
that maps a matrix A to [p(aij)]i,j, where p is a polynomial with no negative
coefficients.

An important observation is that A.B is a principal submatrix of A ⊗
B [145, p.304]. Thus from Proposition 2.2 we conclude

A, B ∈ K ⇒ A.B ∈ K for K ∈ {P,N ,P ∩ N , C} . (3)

In case K = P, this is known as Schur’s theorem, see, e.g., [145, p.309] or
[22, Prop.1.7]. The case K = C is treated in [22, Cor.2.2]. The following is a
counterexample for the case K ∈ {P + N , C∗}:
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Table 2: Closure properties of cones for Kronecker and Hadamard products,
and Hadamard posynomials p(A) =

∑

k ckA
(k) with ck ≥ 0.

K A, B ∈ K A, B ∈ K A ∈ K
⇒ A ⊗ B ∈ K ⇒ A.B ∈ K ⇒ p(A) ∈ K

P yes: Prop 2.2 yes: (3) yes: follows

N yes: evident yes: (3) yes: evident

P ∩N yes: Prop 2.2 yes: (3) yes: follows

P + N nob: Ex. 2.6 noc: Ex. 2.7 yes: Prop. 2.3

C yes: Prop 2.2 yes: (3) yes: follows

C∗ nob: Ex. 2.6 noc: Ex. 2.7 unclear

b not even if A = B
c but A.A ∈ K (evident)

Example 2.7 Both matrices A, B from Example 2.6 belong to C∗, however

A.B =

[

0 −1

−1 0

]

/∈ C∗.

Remark 2.1 There is no way for concluding A ⊗ B ∈ C∗ from A.B ∈ C∗,
in particular the implication {A, B, A.B} ⊂ C∗ ⇒ A⊗B ∈ C∗ does not hold.
Just take A = B = C, with C from Example 2.6.

Proposition 2.3 (odd Hadamard powers):
If A ∈ P + N , and n = 2k + 1 with k ∈ N is odd, then A(n) ∈ P + N .

Proof. Assume A = P +N with P ∈ P and N ∈ N . Then by Schur’s theo-
rem, P (n) ∈ P, and by the monotonicity of odd power functions, A(n)−P (n) ∈
N . ✷

We conclude this section by observations on inversion and Schur comple-
ments. These two operations leave (the interior of) P invariant, but it is well
known that this is not true for N .

Example 2.8 The example

A =

[

1 2

2 3

]

∈ N ⊂ C∗ with A−1 =

[

−3 2

2 −1

]

/∈ C∗

shows that the Schur complement of a positive-definite principal submatrix in
a (co)positive matrix need not be (co)positive. Further,

A =

[

2 1

1 1

]

∈ P ∩ N but A−1 =

[

1 −1

−1 2

]

/∈ N ⊃ C .

Note that P ∩N = C when restricted to matrices of order 2.
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Table 3: Further closure properties of cones for several products

K A ∈ K, B ∈ K∗ A ∈ K, B ∈ K∗ A ∈ K, B ∈ K∗

⇒ A ⊗ B ∈ K + K∗ ⇒ A.B ∈ K + K∗ ⇒ AB + BA ∈ K + K∗

C yes: Prop 2.2(c) yes: follows no: Ex. 2.5

P ∩N yes: Prop 2.2(c) yes: follows no: Ex. 2.5

On the other hand, if the operator norm ‖A‖ < 1 and A ∈ C, then from
Table 1 and closedness of C we get (I−A)−1 =

∑∞
k=0 Ak ∈ C while I−A /∈ N

unless A is diagonal.

3 Duality and attainability

in copositive programs

We consider a primal/dual pair of copositive programs, whose primal consists
of optimizing a linear function over the intersection of an affine subspace with
the completely positive cone: for m symmetric matrices Ai of the order of
X, let AX = [A1 • X, . . . , Am • X]⊤ ∈ R

m, if X ∈ C, and b ∈ R
m. Then

p∗ = inf {C • X : AX = b , X ∈ C} (4)

and with multipliers y = [y1, . . . ym]⊤ ∈ R
m, the Lagrangian dual function

reads
Θp(y) = inf {C • X +

∑m
i=1 yi[bi − Ai • X] : X ∈ C}

= inf
{

(C −A⊤y) • X + b⊤y : X ∈ C
}

,

where A⊤y =
∑

i yiAi is again a symmetric matrix of the order of X. Ob-
viously, Θp(y) > −∞ if and only if C − A⊤y ∈ C∗, and then Θp(y) = b⊤y.
Hence the Lagrangian dual problem reads

d∗ = sup {Θp(y) : y ∈ R
m} = sup

{

b⊤y : C −A⊤y ∈ C∗ , y ∈ R
m
}

, (5)

which can be rewritten as a linear optimization problem over the intersection
of an affine subspace with the cartesian product cone R

m × C∗:

d∗ = sup
{

b⊤y : S + A⊤y = C , (y, S) ∈ R
m × C∗

}

. (6)

Arranging the multipliers of the constraints in a symmetric matrix U and
observing (A⊤y) • U = (AU)⊤y, the Lagrangian dual function of this prob-
lem (6) is

Θd(U) = sup
{

b⊤y + (C − S − A⊤y) • U : (y, S) ∈ R
m × C∗

}

= sup
{

C • U + (b −AU)⊤y − S • U : (y, S) ∈ R
m × C∗

}

.
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Again, Θd(U) < +∞ if and only if U ∈ (C∗)∗ = C and AU = b, so that the
bidual of (4)

inf
{

Θd(U) : U = U⊤
}

= inf {C • U : AU = b , U ∈ C} = p∗ ,

coincides indeed with the primal, as it should be. Of course, weak duality
d∗ ≤ p∗ always holds for the pair (4) and (5), and Slater’s condition applies
to guarantee full strong duality (i.e., d∗ = b⊤y∗ is attained for some dually
feasible (y∗, S∗) ∈ R

m × C∗ and coincides with p∗). However, unlike the LP
case, primal attainability is not guaranteed for general conic programs. This
is well known for semidefinite programs, and there are examples of all sorts of
phenomena like positive finite duality gap and/or non-attainability for either
the primal or the dual or both. Looking at one such example [139, Ex. 2.2.1],
taken from [252], we see that we cannot simply replace the semidefinite cone
P by either C or C∗, to arrive at suitable examples for copositive programs,
which is the main purpose of this section.

First, exclude the standard infeasible/unbounded cases where p∗ = −∞
or d∗ = +∞.

Next let us examine the case of zero duality gap, i.e., d∗ = p∗. By
above exclusion, we are left with a common finite value. Full strong duality
(attainability of both) holds of course under Slater’s condition:

{X : AX = b} ∩ int C 6= ∅

implies zero duality gap and dual attainability, and

{

S : S + A⊤y = C for some y ∈ R
m

}

∩ int C∗ 6= ∅

implies zero duality gap and primal attainability. But full strong duality
also holds for the copositive reformulation of Standard Quadratic Problems
(StQPs), as was already observed in [47]. By contrast, failure of dual at-
tainability with d∗ = p∗ can happen in the general case of reformulation of
Multi-StQPs [57]. We complement these observations by two more exam-
ples, one where p∗ is not attained but d∗ is, and a second where both are not
attained.

Example 3.1 This is an adaptation of [139, Ex. 2.2.8] from P to C which
works: let n = 2, m = 1, C •X = x11, A1 •X = x12 + x21 and b1 = 2. Then

d∗ = sup

{

2y1 :

[

1 −y1

−y1 0

]

∈ C∗

}

= 0

is attained for y∗
1 = 0. Observe that y1 = −1 is also dually feasible, but not

optimal. On the other hand, the choice of x11 = 1
k

and x22 = k with x12 = 1
gives a primally feasible Xk with C •Xk = 1

k
ց 0 as k ր ∞, so that p∗ = d∗.

Obviously, p∗ cannot be attained since x11 = 0 conflicts with x12 = 1 and
X ∈ C ⊂ P.
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The next example results from a general principle of constructing non-
attainability, starting from a given instance (A,b, C) of a copositive pro-
gram (4) and (5).

Theorem 3.1 (constructing failure in dual attainability):
Let Td(A,b, C) denote the following new copositive primal problem: augment
the n × n variable matrices X by appending two more rows and columns, to
arrive at (n + 2) × (n + 2) variable matrices X̄; further, define the objective
and m + 2 constraints as follows: b̄ = [b⊤, 1, 0]⊤ and, with o ∈ R

n the zero
vector and O the n × n zero matrix,

C̄ =







C o o

o⊤ 0 −1

o⊤ −1 0






and Āi =







Ai o o

o⊤ 0 0

o⊤ 0 0






, 1 ≤ i ≤ m ,

while

Ām+1 =







O o o

o⊤ 1 0

o⊤ 0 0






and Ām+2 =







O o o

o⊤ 0 0

o⊤ 0 1






.

Then Td(A,b, C) is feasible if and only if (4) is feasible, in which case p∗ is
attained in (4) for (A,b, C) if and only if

p̄∗ = inf
{

C̄ • X̄ : Āi • X̄ = b̄i , 1 ≤ i ≤ m + 2 , X̄ ∈ C
}

(7)

is attained in the primal of Td(A,b, C). Furthermore, Td(A,b, C) has the
same primal and dual optimal values p∗ and d∗, but d∗ is not attained: p̄∗ = p∗

and

d̄∗ := sup

{

b̄⊤ȳ : C̄ −
m+2
∑

i=1

ȳiĀi ∈ C∗ , ȳ ∈ R
m+2

}

= d∗ , (8)

but d∗ /∈
{

b̄⊤ȳ : C̄ − ∑m+2
i=1 ȳiĀi ∈ C∗ , ȳ ∈ R

m+2
}

.

Proof. Choose a (4)-feasible sequence Xk ∈ C such that C • Xk → p∗ and
augment Xk by

X̄k =







Xk o o

o⊤ 1 0

o⊤ 0 0







to get a (7)-feasible sequence with C̄ • X̄k = C • Xk → p∗. Of course,
any (7)-feasible X̄ contains a leading n × n principal submatrix X which
is (4)-feasible. Further, X̄ ∈ C with X̄n+2,n+2 = 0 enforces X̄n+1,n+2 = 0
so that C̄ • X̄ = C • X. This proves p̄∗ = p∗, and also the assertions
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about equivalence of primal feasibility/attainability. Turning towards dual
feasibility, and putting ȳ = [y⊤, ȳm+1, ȳm+2]

⊤ with y ∈ R
m, we have

C̄ −
m+2
∑

i=1

ȳiĀi =











C −
m
∑

i=1

yiAi o o

o⊤ −ȳm+1 −1

o⊤ −1 −ȳm+2











,

so that C̄ −
m+2
∑

i=1

ȳiĀi ∈ C∗ entails C −
m
∑

i=1

yiAi ∈ C∗ and ȳm+1 < 0, which in

turn implies
b̄⊤ȳ = b⊤y + ȳm+1 < b⊤y ≤ d∗ , (9)

hence d̄∗ ≤ d∗. On the other hand, select a sequence yk ∈ R
m such that

C − A⊤yk ∈ C∗ and b⊤yk → d∗. Then the sequence ȳk = [y⊤
k ,− 1

k
,−k]⊤ ∈

R
m+2 clearly satisfies C̄ −A⊤ȳk ∈ C∗ since its lower-right 2× 2 block is even

positive-semidefinite, and

b̄⊤ȳk = b⊤yk −
1

k
→ d∗ as k → ∞ ,

which shows d̄∗ ≥ d∗. The strict inequality in (9) implies dual non-attainability.
✷

Clearly, Td(A,b, C) violates Slater’s condition even if (A,b, C) satisfies
it. Any such instance therefore generates, by Theorem 3.1 above, an example
of zero duality gap with dual non-attainability. Even more:

Example 3.2 Choose (A,b, C) as in Example 3.1. Then Td(A,b, C) has
zero duality gap but neither of the (finite) optimal values are attained.

Next we turn to the case to a finite positive duality gap:

−∞ < d∗ < p∗ < +∞
where we need four examples for (non-)attainability.

Example 3.3 Again, this is an adaptation of an example in [139], now by
switching dual with primal. For n = 3 and m = 2 matrices, let C be such
that C • X = x33 whereas A1 • X = x33 + 2x12 and A2 • X = x22. Further,
let b = [1, 0]⊤ ∈ R

2. Then

p∗ = inf {x33 : x33 + 2x12 = 1 , x22 = 0 , X ∈ C} = 1 ,

attained for an X∗ ∈ C with all x∗
ij = 0 except x∗

33 = 1. The dual reads

d∗ = sup











y1 :







0 −y1 0

−y1 −y2 0

0 0 1 − y1






∈ C∗











= 0 ,

attained for y∗ = [0, 0]⊤.
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Note that the remedy via eigenspaces for SDPs as suggested in [139] does
not seem to apply to copositive programs, the situation appears to be much
more difficult.

Anyhow, by Theorem 3.1 we immediately have

Example 3.4 With (A,b, C) as in Example 3.3, (Ã, b̃, C̃) = Td(A,b, C)
has a positive duality gap, and p∗ is attained but d∗ is not.

We now provide a direct primal construction as a counterpart to Td, which
is slightly simpler:

Theorem 3.2 (constructing failure in primal attainability):
Let Tp(A,b, C) denote the following new copositive primal problem: aug-

ment the n×n variable matrices X by appending two more rows and columns,
to arrive at (n+2)×(n+2) variable matrices X̄; further, define the objective
and m + 1 constraints as follows: augment Ai by two more zero rows and
columns to Āi and put b̄ = [b⊤, 2]⊤ ∈ R

m+1 while, with o ∈ R
n the zero

vector and O the n × n zero matrix,

C̄ =







C o o

o⊤ 1 0

o⊤ 0 0






and Ām+1 =







O o o

o⊤ 0 1

o⊤ 1 0






.

Then Tp(A,b, C) is dually feasible if and only if (5) is feasible, in which case
d∗ is attained in (5) if and only if

d̄∗ := sup

{

b̄⊤ȳ : C̄ −
m+1
∑

i=1

ȳiĀi ∈ C∗ , ȳ ∈ R
m+2

}

(10)

is attained. Furthermore, Tp(A,b, C) has the same primal and dual optimal
values p∗ and d∗, but p∗ is not attained: d̄∗ = d∗ and

p̄∗ := inf
{

C̄ • X̄ : Āi • X̄ = b̄i , 1 ≤ i ≤ m + 1 , X̄ ∈ C
}

= p∗ , (11)

but p∗ /∈
{

C̄ • X̄ : Āi • X̄ = b̄i , 1 ≤ i ≤ m + 1 , X̄ ∈ C
}

.

Proof. The constraint Ām+1 • X̄ = 2 means xn+1,n+2 = 1 which forces
xn+1,n+1 > 0, so that for any (11)-feasible X̄ we have

C̄ • X̄ = C • X + xn+1,n+1 > C • X ≥ p∗ , (12)

and hence p̄∗ ≥ p∗. If, on the other hand, a sequence Xk ∈ C with AXk = b
satisfies C • Xk → p∗ and we form X̄k by

X̄k =







Xk o o

o⊤ 1
k

1

o⊤ 1 k






,
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then this is a (11)-feasible sequence such that limk→∞ C̄ • X̄k = p∗, which
shows p̄∗ ≤ p∗, and non-attainability of p̄∗ follows from the strict inequality
in (12). Turning towards dual feasibility, and putting ȳ = [y⊤, ȳm+1]

⊤ with
y ∈ R

m, we have

C̄ −
m+1
∑

i=1

ȳiĀi =











C −
m
∑

i=1

yiAi o o

o⊤ 1 −ȳm+1

o⊤ −ȳm+1 0











,

so that C̄ −
m+1
∑

i=1

ȳiĀi ∈ C∗ entails C −
m
∑

i=1

yiAi ∈ C∗ and ȳm+1 ≤ 0, which in

turn implies
b̄⊤ȳ = b⊤y + 2ȳm+1 ≤ b⊤y ≤ d∗ ,

and thus d̄∗ ≤ d∗. On the other hand, for any y ∈ R
m such that C−A⊤y ∈ C∗

the point ȳ = [y⊤, 0]⊤ ∈ R
m+1 is (10)-feasible with b̄⊤ȳ = b⊤y, so that

d̄∗ ≥ d∗, and also equivalence of dual feasibility/attainability follows. ✷

Example 3.5 Let (A,b, C) be as in Example 3.3 and consider Tp(A,b, C).
Then Theorem 3.2 gives an instance with positive finite duality gap where p∗

is not attained but d∗ is attained. Applying Theorem 3.1, we finally see that
Td(Tp(A,b, C)) has a positive finite duality gap where neither of p∗ and d∗

are attained.

Example 3.6 The previous effect is also generated by Tp(Ã, b̃, C̃), where
(Ã, b̃, C̃) is the instance from Example 3.4, in other words by considering
Tp(Td(A,b, C)) with (A,b, C) from Example 3.3.

Now we have to deal with infeasibility of exactly one problem and bound-
edness of the other one. In this case, the duality gap is infinite, but we still
can have attainability or non-attainability in the bounded problem.

Example 3.7 For n = 3, consider the constraints A1 • X = 2x22 + 2x23 =
0 = b1 and A2 • X = 2x12 − 2x33 = 2 = b2. If X ∈ C, then x23 ≥ 0 and
x22 ≥ 0 imply x22 = 0, hence x12 = 0, hence x33 = −1 < 0, which is absurd.
Hence the primal problem is infeasible, p∗ = +∞. Now choose C = O. Since

C − A⊤y =







0 −y2 0

−y2 −2y1 −y1

0 −y1 2y2







has a zero in its top-left corner, we infer y2 ≤ 0 for any y ∈ R
2 such that

C−A⊤y ∈ C∗. Of course, y∗ = o is dually feasible, thus optimal, and d∗ = 0
is attained.
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Table 4: Possible attainability/duality gap constellations in primal-dual pairs
of copositive programs. Only the doubly infeasible case d∗ = −∞, p∗ = ∞ is
omitted.

attained

duality gap zero
d∗ = p∗ ∈ R

finite positive
−∞<d∗<p∗<∞

infinite
−∞<d∗<p∗=∞

infinite
−∞=d∗<p∗<∞

both attained StQP [47],
strong duality,
Slater for both

Ex.3.3 impossible impossible

p∗ attained,
d∗ not attained

MStQP [57],
Slater for dual

Ex.3.4 impossible Ex.3.9

p∗ not attained,
d∗ attained

Ex.3.1,
Slater for primal

Ex.3.5 Ex.3.7 impossible

neither attained Ex.3.2 Ex.3.6 Ex.3.8 Ex.3.10

Example 3.8 An application of Theorem 3.1 yields Td(A,b, C) from the
instance (A,b, C) in Example 3.7, an instance with d∗ = 0 < p∗ = +∞
where d∗ is not attained.

To conclude, we need an instance (A,b, C) with infeasible dual and
bounded primal, where p∗ is attained:

Example 3.9 We keep A from the instance in Example 3.7 but change b =
o now. Then any feasible X satisfies x33 = 0. Now choose C with all zero
entries except c33 = −1. Then X∗ = O ∈ C is optimal, so p∗ = 0 is attained.
However,

C −A⊤y =







0 −y2 0

−y2 −2y1 −y1

0 −y1 −1 + 2y2






∈ C∗

is impossible, as y2 ≤ 0 must still hold, which implies the absurd −1 + 2y2 ≤
−1 < 0 for the lower-right corner entry. Hence d∗ = −∞.

Example 3.10 The last example is generated by Tp(A,b, C) from the in-
stance (A,b, C) in Example 3.9. Here −∞ = d∗ < p∗ < +∞ and p∗ is not
attained.

Finally, already in the LP domain we also are familiar with the case
d∗ = −∞ and p∗ = +∞ where both problems are infeasible. Hence, all
possible combinations are demonstrated.
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4 A clustered bibliography

Of course, any collection of literature references is doomed incomplete (and
outdated by the appearance date of printed issues). Nevertheless, we tried
to cluster the following lists somehow systematically.

4.1 Surveys, reviews, entries, book chapters

Copositive optimization receives increasing interest in the Operations Re-
search community, and is a rapidly expanding and fertile field of research.
While the time may not yet be ripe for writing up the final standard text
book in this domain, several authors nonetheless bravely took the challenge
of providing an overview, thereby aiming at a rapidly moving target. Recent
surveys on copositive optimization are offered by [108] and [43], while [152]
and [141] provide reviews on copositivity with less emphasis on optimiza-
tion. [41] and [71] are entries in the most recent edition of the Encyclopedia
of Optimization. Recent book chapters with some character of a survey on
copositivity from an optimization viewpoint are [42, Section 1.4] and [68].

4.2 Copositivity checking and properties

To check whether a given matrix is copositive is NP-hard, see [214]; for the
completely positive side, see [99], cf. also [21]. There are several algorithmic
approaches for this problem, among them recursive methods [2, 7, 25, 69, 82,
83, 88, 105, 172, 188].

On the dual side, an explicit certificate for complete copositivity is given
by a non-negative factorization [11, 19, 22, 21, 23, 40, 102, 171, 174, 189,
193, 200, 233, 238, 255, 262, 264].

Other approaches for copositivity checking can be found in [10, 12, 13, 14,
15, 16, 17, 18, 20, 24, 29, 30, 33, 36, 39, 48, 64, 65, 63, 76, 77, 75, 80, 96, 97,
98, 100, 104, 103, 106, 109, 111, 115, 116, 119, 123, 124, 128, 132, 133, 134,
135, 138, 140, 142, 144, 143, 149, 151, 160, 162, 163, 164, 165, 169, 170, 173,
176, 183, 184, 185, 192, 196, 197, 198, 199, 203, 205, 208, 209, 210, 213, 212,
211, 218, 224, 225, 243, 244, 245, 247, 248, 249, 250, 251, 254, 256, 257, 258,
259, 260]. These references also include investigations of (mainly algebraic,
but sometimes also geometric) properties of copositive and/or completely
positive matrices.

4.3 Role of copositivity in optimization theory

Copositivity occurs in many different optimization contexts. A meanwhile
classical role of copositivity is connected to the linear complementarity prob-
lem (LCP) [60, 136, 148, 166, 175, 204, 213, 235]. This list also includes
references which address feasibility and/or attainability issues.

Other papers dealing with the role of copositivity in theory and applica-
tion of optimization are [1, 6, 8, 9, 26, 27, 44, 45, 34, 35, 47, 38, 54, 50, 53,
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41, 49, 57, 58, 73, 75, 78, 74, 79, 81, 85, 84, 86, 87, 91, 89, 100, 113, 114, 117,
121, 124, 125, 150, 161, 168, 167, 184, 190, 191, 195, 202, 214, 219, 220, 222,
223, 230, 234, 237, 240, 244, 253, 254, 263].

4.4 Copositive programming algorithms

According to Franz Rendl, nobody knows how to solve a copositive program
(personal communication). To put it in less categorical terms: there is no
state-of-the-art algorithm for copositive optimization. Various attempts have
been made to tackle this problem [6, 24, 28, 44, 45, 31, 32, 34, 47, 38, 37,
46, 50, 53, 41, 52, 49, 51, 70, 68, 85, 84, 86, 93, 94, 103, 107, 110, 112, 118,
120, 121, 125, 127, 137, 162, 184, 185, 186, 216, 219, 220, 221, 226, 227,
228, 231, 253, 266]. The apparently most successful procedures up to now
employ adaptive simplicial subdivision (see [146] for a good survey on this
topic including convergence results): see [65, 66, 261, 265]; related variants
for testing copositivity are [48, 243].

4.5 Copositive reformulations and relaxations for hard

optimization problems

A considerable part of the success of copositive optimization lies in the versa-
tility of this model, which allows for reformulating many hard problems from
several, seemingly unrelated optimization domains. This includes graph the-
oretical and other discrete optimization models, mixed-integer, (fractional)
quadratic problems [1, 28, 55, 34, 35, 47, 38, 37, 46, 50, 53, 41, 49, 67, 68,
93, 91, 94, 89, 107, 111, 112, 126, 129, 130, 131, 149, 185, 186, 202, 216, 217,
219, 220, 221, 226, 227, 228, 230, 231, 232, 239, 240, 241, 242, 244, 253, 261].

4.6 Applications of copositivity

The copositivity concept plays an already classical role in (Linear) Comple-
mentarity Problems and connected feasibility questions [106, 113, 114, 132,
213]. An interesting application to Simpson’s paradox can be found in [129],
while the connection of copositivity with conic geometry and angles is dis-
cussed at length in [8, 122, 153, 154, 155, 156, 157, 158, 159, 205, 222, 223,
235, 236].

The central solution concepts in (evolutionary) game theory, evolution-
arily and/or neutrally stable strategies, are both refinements of the Nash
equilibrium concept. They are closely connected to copositivity, as shown
in [56, 28, 38].

Copositive formulations of robust optimization and/or uncertainty mod-
eling are addressed in [125, 216].

Friction and contact problems in rigid body mechanics are treated from a
copositive perspective in [3, 4, 5, 168, 167, 182]. Network (stability) problems
in queueing, traffic, and reliability are tackled along this approach in [150,
177, 178, 179, 180, 187, 206, 207].
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Also in the domain of dynamical systems and optimal control, copositive
matrices play an important role, see, e.g. [60, 66, 72, 81, 160, 181, 201, 229,
257], while the articles [62, 191, 215] deal with questions of majorization,
under/overestimation and tight bounding.

A few applications of complete positivity can be found in the book [22].
Finally, graph theory application aspects of copositivity (and closely re-

lated domains), and those of more general combinatorial optimization charac-
ter can be found, e.g., in [92, 95, 90, 101, 107, 126, 130, 131, 227, 265], and in
the following articles which provide a partial survey in this domain: [186, 246].

Acknowledgement. The authors are indebted to two anonymous referees
for their constructive and helpful comments.
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[8] D. Azé and J.-B. Hiriart-Urruty. Optimal Hoffman-type estimates in eigen-
value and semidefinite inequality constraints. J. Global Optim., 24(2):133–
147, 2002.

[9] L. Baratchart, M. Berthod, and L. Pottier. Optimization of positive gen-
eralized polynomials under lp constraints. J. Convex Anal., 5(2):353–379,
1998.

[10] F. Barioli. Decreasing diagonal elements in completely positive matrices.
Rend. Sem. Mat. Univ. Padova, 100:13–25, 1998.

[11] F. Barioli and A. Berman. The maximal cp-rank of rank k completely posi-
tive matrices. Linear Algebra Appl., 363:17–33, 2003.

17



[12] G. P. Barker. Theory of cones. Linear Algebra Appl., 39:263–291, 1981.

[13] V. J. D. Baston. Extreme copositive quadratic forms. Acta Arith., 15:319–
327, 1968/1969.

[14] L. D. Baumert. Extreme copositive quadratic forms. PhD thesis, California
Institute of Technology, 1965.

[15] L. D. Baumert. Extreme copositive quadratic forms. Pacific J. Math.,
19:197–204, 1966.

[16] L. D. Baumert. Extreme copositive quadratic forms. II. Pacific J. Math.,
20:1–20, 1967.

[17] A. Berman. Cones, matrices and mathematical programming. Springer-
Verlag, Berlin, 1973. Lecture Notes in Economics and Mathematical Systems,
Vol. 79.

[18] A. Berman. Complete positivity. Linear Algebra Appl., 107:57–63, 1988.

[19] A. Berman and D. Hershkowitz. Combinatorial results on completely positive
matrices. Linear Algebra Appl., 95:111–125, 1987.

[20] A. Berman and R. J. Plemmons. Nonnegative matrices in the mathematical
sciences, volume 9 of Classics in Applied Mathematics. Society for Industrial
and Applied Mathematics (SIAM), Philadelphia, PA, 1994.

[21] A. Berman and U. G. Rothblum. A note on the computation of the CP-rank.
Linear Algebra Appl., 419(1):1–7, 2006.

[22] A. Berman and N. Shaked-Monderer. Completely positive matrices. World
Scientific Publishing Co. Inc., River Edge, NJ, 2003.

[23] M. W. Berry, M. Browne, A. N. Langville, V. P. Pauca, and R. J. Plemmons.
Algorithms and applications for approximate nonnegative matrix factoriza-
tion. Comput. Statist. Data Anal., 52(1):155–173, 2007.

[24] D. Bertsimas and I. Popescu. Optimal inequalities in probability theory: a
convex optimization approach. SIAM J. Optim., 15(3):780–804, 2005.

[25] I. M. Bomze. Remarks on the recursive structure of copositivity. J. Inform.
Optim. Sci., 8(3):243–260, 1987.

[26] I. M. Bomze. Copositivity and optimization. In XII Symposium on Op-
erations Research (Passau, 1987), volume 58 of Methods Oper. Res., pages
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