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Abstract

Background: Network-based learning algorithms for Automated Function
Prediction (AFP) are negatively affected by the limited coverage of experimental
data and limited a priori known functional annotations. As a consequence their
application to model organisms is often restricted to well characterized biological
processes and pathways, and their effectiveness with poorly annotated species is
relatively limited. A possible solution to this problem might consist in the
construction of big networks including multiple species, but this in turn poses
challenging computational problems, due to the scalability limitations of existing
algorithms and the main memory requirements induced by the construction of big
networks. Distributed computation or the usage of big computers could in
principle respond to these issues, but raises further algorithmic problems and
require resources not satisfiable with simple off-the-shelf computers.

Results: We propose a novel framework for scalable network-based learning of
multi-species protein functions based on both a local implementation of existing
algorithms and the adoption of innovative technologies: we solve “locally” the
AFP problem, by designing “vertex-centric” implementations of network-based
algorithms, but we do not give up thinking “globally” by exploiting the overall
topology of the network. This is made possible by the adoption of secondary
memory-based technologies that allow the efficient use of the large memory
available on disks, thus overcoming the main memory limitations of modern
off-the-shelf computers. This approach has been applied to the analysis of a large
multi-species network including more than 300 species of bacteria and to a
network with more than 200, 000 proteins belonging to 13 Eukaryotic species. To
our knowledge this is the first work where secondary-memory based network
analysis has been applied to multi-species function prediction using biological
networks with hundreds of thousands of proteins.

Conclusions: The combination of these algorithmic and technological approaches
makes feasible the analysis of large multi-species networks using ordinary
computers with limited speed and primary memory, and in perspective could
enable the analysis of huge networks (e.g. the whole proteomes available in
SwissProt), using well-equipped stand-alone machines.
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1 Background
In recent years many efforts have been devoted to build automated tools for large

scale automated function prediction of proteins (AFP) exploiting the knowledge

generated by high throughput biotechnologies [1, 2]. As highlighted by a recent
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international challenge for the critical assessment of automated function predic-

tion [3], scalability and heterogeneity of the available data represent two of the

main challenges posed by AFP. Indeed on the one hand no single experimental

method can fully characterize the multiplicity of the protein functions, and on the

other hand the huge amount of data to be processed poses serious computational

problems. The complexity of the problem is furthermore exacerbated by the differ-

ent level of the functional annotation coverage in different organisms, thus making

very difficult the effective transfer of the available functional knowledge from one

organism to another.

Computational automated function prediction approaches can be useful for the

integration of diverse types of data coming from multiple, often unrelated, proteomic

and genomic pipelines. A recent example is represented by the IMP web server

[4] which integrates prior knowledge and data collections from multiple organisms

for the generation of novel functional working hypotheses used in experimental

follow-up. Despite its undoubted usefulness, IMP actually covers only seven model

organisms, preventing its application to the prediction of the functions of proteins

belonging to the proteomes of poorly annotated organisms.

Another popular approach for gene functional annotation transfer between species

relies on the availability of a collection of orthology relationships across interspecies

proteins, and on the usage of an evolutionary relationships network as a suitable

medium for transferring functional annotations to the proteins of poorly annotated

organisms [5]. Even if orthology is an evolutionary concept, rather than a func-

tional one, it can be used to link functionally equivalent genes across genomes and

enables the functional inference of unknown proteins using one or more functionally

characterized orthologs in other species [6, 7].

As noticed in [4], the accuracy of machine-learning algorithms for AFP tasks is

negatively affected by the sparse coverage of experimental data and by the limited

availability of prior functional knowledge. Consequently, these methods are often

applied only to biological processes and pathways that are already well characterized

for an organism. The construction of large scale multi species networks can be a

solution to this problem. Following this approach, network based learning algorithms

might benefit of the availability of a priori functional knowledge coming from well

annotated species to effectively perform a functional transfer to the proteins of

poorly annotated organisms.

Unfortunately this solution is only apparently simple, since the application of

classical graph-based algorithms such as the ones based on random walks [8] or label

propagation methods [9, 10] are often unfeasible with large multi-species networks,

especially when only single off-the-shelf machines are available. These approaches,

indeed, usually rely on an in-memory adjacency matrix representation of the graph

network, scale poorly with the size of the graph [11], and may have time complexity

that becomes quickly prohibitive. Performance optimization is usually realized by

adopting an adjacency-list representation of the graph to take its sparsity into

account, or by using parallel strategies for matrix multiplication [12]. However, when

the size of the graph becomes so high that is not possible to maintain it entirely in

primary memory, either approaches based on parallel distributed computation [13,

14, 15], or secondary memory-based computation [16, 17, 18] can be considered.



Mesiti et al. Page 3 of 20

With distributed computation techniques, the graph is spread on different machines

and the results are finally collected. However, as outlined in [16], a key issue of

these approaches is the need to identify a cut of the graph in order to minimize

the communication overhead among machines and their synchronization activities.

With secondary memory-based computation, the graph is stored on the disk of a

single machine and only limited portions of the graph are loaded in primary memory

for computation. In this way, it is possible to overcome the lack of enough primary

memory. The use of smart strategies for caching the portions of graph needed for

computation [19], the minimization of the number of accesses to secondary memory

[20], and the usage of compressed data structures for maintaining the graph in

primary memory [21] are the main challenges for making the management of large

graph networks in off-the-shelf machines comparable to distributed approaches.

In this work we propose a novel framework for scalable semi-supervised network-

based learning of multi-species protein functions: on the one hand we adopt a “local

learning strategy” to implement classical graph-based algorithms for protein func-

tion prediction, and on the other hand we apply secondary memory-based tech-

nologies to exploit the large disks available in ordinary off-the-shelf computers. The

combination of these algorithmic and technological approaches makes feasible the

analysis of large multi-species networks in ordinary computers with limited speed

and primary memory and in perspective could enable the analysis of huge networks

(e.g. the whole proteomes available in SwissProt), using well-equipped stand-alone

machines. Only very recently a paper has been devoted to the application of graph

database technologies in bioinformatics [22], and to our knowledge this is the first

work where secondary-memory based network analysis has been applied to multi-

species function prediction using big biological networks with hundreds of thousands

of proteins.

This paper is organized as follows. In the next section we introduce our proposed

approach based on the local implementation of network-based algorithms and sec-

ondary memory-based computation for the multi-species AFP problem. In particu-

lar we discuss the characteristics of Neo4j, a database technology for graph querying

and processing, and GraphChi, a disk-based system for graph processing. Then, we

show their application to a multi-species network involving proteins of about 300

bacteria species, and to a network including 13 species of Eukaryotes with more

than 200.000 proteins, using off-the-shelf notebook and desktop computers.

2 Methods
Our approach to big-graph analysis for AFP leverages on both a novel computa-

tional model for network analysis and on novel technologies for fast and efficient

secondary memory-based computation. More precisely we adopt at the same time

two strategies for scalable network-based learning of protein function:

1 Local Implementation of network-based algorithms. To solve the overall AFP

problem we adopt a local learning strategy, according to a “vertex-centric”

computational model.

2 Secondary memory-based computation. We exploit novel technologies for fast

and efficient secondary-memory access: the overall graph is maintained on disk

and only small parts of it are loaded each time into primary memory.
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It is worth noting that we do not propose novel algorithms, but simply their “local

implementation”, according to a vertex-centric programming model, necessary for

secondary memory-based computation [14]. Indeed the strength of the proposed

approach consists precisely in coupling a “local” vertex-centric implementation of

network-based algorithms with technologies based on secondary memory, to make

efficient the local access to graphs stored on disk, thus allowing the processing of

big biological networks also when limited RAM memory is available.

2.1 Local implementation of network-based algorithms

The most effective network-based algorithms for AFP learn by exploiting the overall

topology of the networks [23, 24, 25], and their implementation usually requires to

process in primary memory a large part or the overall underlying graph. The main

drawback of this implementation is that big networks cannot be entirely loaded into

primary memory using off-the-shelf machines.

We aim at providing local implementations of “global” network algorithms by

iteratively processing only one vertex and its incident edges at a time. In other

words we do not reject to think “globally” by exploiting the overall topology of the

network, but at the same time we solve “locally” by designing implementations of

these algorithms through a vertex-centric programming model [14, 26].

As an example, we consider the local implementation of the “vanilla” random

walk (RW) algorithm [8], a popular network-based method just successfully applied

to AFP [24]. It is worth noting that the RW algorithm is “global”, in the sense

that it may exploit the global topology of the graph, but it is also intrinsically

local, since at each step each vertex can be processed considering only its direct

neighbours. From this standpoint its local implementation is straightforward, since

it is sufficient to iteratively process each vertex, its edges and its directly connected

vertices to obtain a “vertex-centric” implementation of the algorithm. Other al-

gorithms that can process the adjacency matrix of a graph row by row (e.g. label

propagation algorithms [9]) can be easily implemented according to a vertex-centric

programming model and can benefit from disk-based approaches. More in general

the proposed approach can be extended to any other network-based method for

which a local implementation can be provided.

2.1.1 Basic notation

Having a graph G =< V,E >, representing a functional network, where the vertices

V correspond to proteins, and edges E to functional relationships between proteins,

we indicate proteins with integers, i.e. V = {1, 2, . . . , n}, where n = |V | is the

number of vertices/proteins, and edges (i, j) ∈ E represent functional relationships

between vertices i, j ∈ V . The weights wij ∈ R associated with edges (i, j) represent

the “strength” of their functional relationships and are elements of the symmetric

weight matrix W . C ⊂ V indicates the proteins belonging to a functional class c

(e.g. a specific Gene Ontology (GO) term [27]).

2.1.2 Local implementation of Random Walks

Random walk (RW) algorithms [8] explore and exploit the topology of the functional

network, starting and walking around from a subset C ⊂ V of nodes belonging to
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a specific class c by using a transition probability matrix Q = D−1W , where D

is a diagonal matrix with diagonal elements dii =
∑

j wij . The elements qij of Q

represent the probability of a random step from i to j. The probability to start the

walk can be set to po = 1/|C| for the nodes i ∈ C and to po = 0 for the proteins

i ∈ V \ C. If pt represents the probability vector of finding a “random walker” at

step t in the nodes i ∈ V (that is, pti represents the probability for a random walk

of reaching node i at step t), then the probability at step t+ 1 is:

pt+1 = QTpt (1)

and the update (1) is iterated until convergence or until a finite number of steps is

reached. From a “vertex-centric” standpoint the update rule (1) of the RW algorithm

becomes:

pt+1
i = Qi · pt (2)

where pi is the probability of the ith node, and Qi represents the ith column of

the probability transition matrix Q. By recalling that W represents the original

weighted adjacency matrix of the graph and Wi its i
th column, from (2) we obtain:

pt+1
i = D−1 ·Wi · pt =

n∑
j=1

d−1
jj wji p

t
j (3)

Equation (3) is the update rule of the random walk resolved at the ith node of the

graph, and can be viewed as a “local” version of (1): by updating all the nodes i

of the graph, 1 ≤ i ≤ n, we update the probability vector pt+1 exactly in the same

way of (1). To compute (3) we need the following information:

1 d−1
jj =

1∑
i wji

(i.e, the inverse of the sum of weights of the edges coming from j)

2 wji, 1 ≤ j ≤ n (i.e., the weights of the inedges of i)

3 ptj , 1 ≤ j ≤ n (i.e., the probabilities of node j at the previous step).

We can observe the following facts:

a) If the graph is undirected (and this is the case for the AFP problem), the

weights of incoming and outcoming edges are the same, that is ∀i,∀j wij =

wji. This implies that only the list of edge weights outcoming from i: L(i) =

{wij |wij > 0} should be stored. This in turn implies that in sparse graphs the

spatial (and temporal) complexity at each node is sublinear, and (3) can be

expressed as:

pt+1
i =

∑
j∈N(i)

d−1
jj wji p

t
j (4)

where N(i) = {j|j ∈ V ∧ (i, j) ∈ E} are the neighborhood vertices of i.

b) We need to store ptj , and pt+1
j , 1 ≤ j ≤ n, that is the probabilities at the

current and previous step. Once a step is completed, the current probabilities

(pt+1
j ) can be used as starting probabilities for the next iteration.
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c) We can store d−1
jj , 1 ≤ j ≤ n, as a value associated to each node j. It could be

computed at each node j as a pre-processing step: d−1
jj = 1∑

i wji
.

d) The algorithm iterates for a predefined number of steps or until convergence.

e) It is easy to see from (3) that the complexity of each iteration of the algorithm

is O(n2), but with sparse graphs, i.e. when ∀i, |{(j, i)|wji > 0}| << n, the

complexity is O(n).

2.2 Secondary memory-based computation

To be actually applicable to real-world big networks, the local implementations of

the algorithm described in Section 2.1 require specific technologies for an efficient

access to the secondary memory: indeed we need to efficiently load small parts of a

graph, update them in primary memory and finally store them back to disk.

To this end we experimented with two different secondary memory-based tech-

nologies. The first one is based on graph DB technologies [28], and the second one

on efficient technologies for disk-based processing of graphs.

2.2.1 Neo4j: a DB technology for graph querying and processing

Neo4j [17] is a data management system written in Java based on the graph data

model. Nodes, relationships and their properties are first class citizen in the model

and their storage on disk is optimized by the adoption of specific data structures for

graph networks. The Neo4j Kernel is a fast graph engine with the main characteris-

tics expected by a DBMS, like recovery, management of transactions and indexing

structures. Neo4j can be used both as an embedded database within a Java ap-

plication and as a standalone server with an extensive REST interface for easy

integration with Web applications. A declarative query language, named cypher,

for the specification of SQL-style queries is provided.

Internally, Neo4j stores graph data spread across a number of files. Each store

file contains the data for a specific part of the graph (e.g. nodes, relationships,

properties) and their overall organization, which entails the separation of graph

structure from property data, allows the efficient traversal of the graph and the

generation of query answers. Both nodes, relationships and properties have a fixed

size representation (e.g. nodes have a fixed dimension of 9 bytes), and relationships

are implemented using doubly linked lists on disk in order to render efficient their

traversal. The fixed-size representation of nodes, relationships and properties has

the advantage that identifiers should not be stored (corresponds to the file offset)

and that their retrieval by means of their identifiers can be done in constant time.

Since this information is stored in secondary memory, its access is made efficient

through the use of caching techniques. At file system level, each store file is divided

in equally sized regions and these regions are cached. The cache holds a fixed number

of regions for each file, and regions are replaced relying on a least frequently used

(LFU)-like policy. On top of this mechanism, a more specific node/relationship cache

has been implemented that is optimized for traversal (for example, relationships of

a node are organized relying on their type and their direction).

In Neo4j the functional network G used for AFP has been implemented as follows.

Each node representing a protein i is associated with the properties name, d (i.e.

1/
∑

j wij), p1 and p2 (i.e. the probability of the protein at the previous and current
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step). Moreover, between two proteins i and j a relationship of type SIM is specified

with a property wij containing the strength of their functional relationship. The

graph has been enhanced with nodes representing the functional classes (with name

and count properties, i.e. the name of the class and the number of proteins belonging

to the class) and relationships of type CLASS, that represent the classes to which a

protein belongs to. Figure 1 reports a simple example of the graph with 10 bacteria

proteins and two GO terms with their relationships. For the sake of simplicity, the

values of p1 and p2 are not reported.

Even if the RW algorithm described in Section 2.1 has been implemented in Java

with the embedded version of Neo4j, it can be easily expressed through the cypher

language. This declarative query language allows the expression of the core defini-

tion of the “vanilla” RW with a single simple statement (Figure 3). More precisely,

starting from a generic protein i and a function class named c, the cypher imple-

mentation identifies the proteins j for which a relationship of type SIM exists with

i and such that j is of class c. Then, the probability i.p2 (at time t+1) is obtained

by using the value j.d and j.p1 (the probability computed at time t). Finally the

statement returns the name of protein i, the name of the class c, and the computed

probability i.p2 (Figure 3).

2.2.2 GraphChi: a disk-based system for graph processing

GraphChi is a disk-based system for the analysis of big graphs on single off-the-shelf

computers [16]. Differently from Neo4j, GraphChi has not been conceived for query-

ing large graph-structured databases, but for efficiently processing graphs stored in

secondary memory. To this end it implements specialized data structures to effi-

ciently break large graphs into small parts that can be quickly loaded into primary

memory, and provides efficient disk I/O operations to reduce the number of non se-

quential accesses to disk. Moreover, it offers an asynchronous model of computation

that directly supports the vertex-centric programming model.

GraphChi requires enough primary memory to contain the edges and their asso-

ciated values of only a relatively small subset of vertices at a time, while the rest of

the graph is efficiently stored on disk. More precisely, the vertices of the graph are

split in K intervals, and each interval is associated to a shard which stores all the

inedges for the vertices in the interval itself (Figure 2 a). Note that the inedges are

sorted by their source vertex. The dimensions of the intervals are chosen in such

a way that the corresponding shards can be entirely loaded into primary memory:

hence all the inedges are available for the vertices in the interval. Moreover, the

outedges can be efficiently loaded requiring at most K non sequential disk-reads,

through the mechanism of the Parallel Sliding Windows (PSW): by exploiting the

ordering of the edges with respect to the source vertices, when PSW moves from

an interval to the next, it “slides” a window over each of the shards (Figure 2 b).

Schematically, the execution flow of GraphChi can be summarized in an iterative

cycle, repeated across each interval of vertices:

1 Read: select an interval and load in primary memory its inedges stored in the

associated shard (the “memory shard”). Through at most K non sequential

reads load its outedges.

2 Execute: perform a parallel update of vertices and edges of the memory shard

through multi-thread asynchronous computation in primary memory.
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3 Write: The updated vertices and edges are written back to disk.

Note that the mechanism of Parallel Sliding Windows requires at most K2 non

sequential reads/writes on disk for a full visit of the entire graph (K reads/writes

for each interval), thus resulting in a very efficient management of primary and

secondary memory [16].

The GraphChi implementation of the RW algorithm requires a data structure for

representing a vertex containing the same properties specified for the Neo4J imple-

mentation (namely, d, p1 and p2 – Section 2.2.1). Moreover, a weight is associated

with each edge e (referred to as e.wij). Figure 4 reports the pseudo-code of the

1-step RW vertex-centric implementation, including the start and the update func-

tions, that specify the actions to perform on a vertex i during the first and the

succeeding update iterations. In the start function each vertex is initialized with

the value of d and the initial probability p1. In the update function the probability

of the 1-step RW algorithm is determined by simply applying eq. 4. By means of

the GraphChi execution engine, these functions are automatically applied to all the

vertices of the graph, according to a multi-thread and asynchronous mode of com-

putation. This implementation can be easily extended to an arbitrary number of

steps by modifying the update function in order to read previous probabilities from

p1 during the odd iterations and from p2 during the even iterations (and writing

the current probability in the other variable).

The C++ implementation of this algorithm in GraphChi entails to keep in main

memory a global vector containing a copy of the data structures for each vertex

v ∈ V . Indeed, during the execution of the update function, it is only possible

to access the identifier of the neighbour vertex j contained in the data structure

representing the edge e, but not its associated probability j.p1 and j.d values,

necessary for the computation of the probability i.p2 (Figure 4). Therefore, the

global vector in main memory is used just to access this information. We remark

that this solution makes our implementation even faster and feasible in our AFP

context, since the number of vertices is by far smaller than the number of edges, and

thus there is no risk of running out of memory also with off-the-shelf computers,

even for very large biological networks involving hundreds of thousands or even

millions of proteins.

3 Analyses
We applied our methods based on the local implementation of network-based al-

gorithms and secondary memory-based computation to the multi-species protein

function prediction in bacteria and eukarya. In the remainder of the section we

summarize the experimental set-up and the characteristics of the data, and then

we compare the empirical computational time required by secondary and primary

memory-based implementations of network based algorithms for AFP.

3.1 Data description and experimental set-up

We applied our methods to two multi-species networks of proteins: the first one

(Bacteria-net, Section 3.1.1) accounts 301 species of bacteria, and the second one

(Eukarya-net, Section 3.1.2) includes the proteomes of 13 Eukaryotic species.
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3.1.1 Bacteria-net

We constructed a multi-species bacteria network (Bacteria-net), using the proteins

proposed as part of a large scale experiment for a recent international challenge

aimed at the evaluation of gene function prediction methods (CAFA2: [29]).

The CAFA2 bacteria proteins belong to 10 species (Table 1) and amount to

15, 451. We added to this set other 2, 187 bacteria proteins having at least one

experimental GO annotation in the Uniprot knowledgebase / Swissprot (release:

May 2013), but coming from organisms not considered in the CAFA2 challenge [1],

for a total of 17, 638 bacteria proteins belonging to 301 different species.

Figure 5 sketches the main steps for the construction of the net of bacteria pro-

teins. At first, we have collected data from the different databases reported in Ta-

ble 2 to obtain different profiles for each protein. More precisely, each protein has

been associated to a binary feature vector, representing a protein profile, whose

elements are 1 when the protein is annotated for a specific feature (e.g. includes a

specific domain, or a specific motif), or 0 otherwise (second phase in Figure 5). The

protein profiles have then been used to construct a set of similarity networks (one for

each data type) with edge scores based on the computation of the classical Jaccard

similarity coefficient between each possible pair of protein profiles, thus obtaining 8

protein networks. Then we constructed two additional networks by computing the

hierarchical Jaccard similarities between the Molecular Function (MF) and Cellu-

lar Component (CC) profiles associated to each protein and populated only with

the experimentally supported GO annotations previously extracted from Swissprot

(May 2013). The hierarchical Jaccard index is computed in the same way of the

classical Jaccard, but the components of the vector (the GO terms) are weighted

according to their distance from the leaves: GO terms corresponding to the leaves

have weight w = 1, those at distance d = 1 weight w = 1/2, and more in general

nodes at distance d have weight w = 1
d+1 . In this way we put more emphasis on the

most specific annotations, and two proteins annotated with the same more specific

terms receive a similarity score larger than that obtained by two proteins annotated

with less specific GO terms.

The 10 protein networks constructed according to the previously described steps

have been integrated in an unique “consensus” network using the Unweighted Av-

erage (UA) network integration scheme [30]: the weight of each edge is computed

by simply averaging across the available n networks, and “missing data”, i.e. pairs

of vertices i, j not present in a given network, result in a weight wij = 0:

w̄ij =
1

n

n∑
d=1

wd
ij (5)

where w̄ij is the weight of the integrated network and wd
ij represents the weight

associated to the edge (i, j) of the dth network (final phase of Figure 5).

[1]For experimental annotation we considered all the available associations having

GO evidence codes not included in the following list: IEA, ND, IC, NAS, TAS, ISS, ISO, ISA,

ISM, IGC, IBA, IBD, IKR, IRD and RCA. A complete list of the GO evidence codes and their

meanings is available at http://www.geneontology.org/GO.evidence.shtml.
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As class labels for the proteins included in our integrated network we used the

Gene Ontology Biological process (BP) experimental annotations extracted from

Swissprot (May 2013). To ensure the availability of a reasonable amount of vertices

from which to start the exploration of the direct and indirect neighborhood in the

integrated protein network, we discarded all the GO BP classes with less than 20

annotated proteins, and this led to a final set of 381 GO terms with an amount of

positives varying from 21 to 2, 000 (Table 5).

The performance of the considered methods have been quantified both in terms

of area under the receiving operating curve (AUC) and precision at different recall

levels in a standard 5 folds stratified cross validation scheme. We compared the

execution times required for the completion of each ranking task in primary memory

(on a machine with 16 Gb of RAM) and in secondary memory (on two machines

with 16 and 4 GB of RAM). The machine with 16 GB of RAM has been equipped

with an i7 Intel core processor with 8 cores at 2.80 GHz, while the 4 GB machine

with an Intel i7 core processor with 4 cores at 1.90 GHz (both have been equipped

with off-the-shelf ATA hard disk drives). Both the machines run an Ubuntu 12.04

Linux operating system.

3.1.2 Eukarya-net

In the aim to test the ability of the proposed local methods to scale to large

multi-species networks, we constructed a second network (hereafter referred to as

Eukarya-net). Instead of considering different types of data, as we did in the con-

struction of Bacteria-net, all the proteins interactions composing Eukarya-net were

downloaded in precomputed form from the STRING protein-protein interactions

database. STRING (http://string-db.org/) is a collection of networks composed by

real and predicted protein-protein interactions (based on genetic data, physical data

and literature data) and aims at providing a global view of all the available inter-

action data, including lower-quality data and/or computational predictions for as

many organisms as feasible [31]. Since version 7, STRING adopted a two-layered ap-

proach when accommodating fully sequenced genomes: important model organisms

and those for which experimental data are available from the “core genomes”, while

all the other genomes represent the “periphery” [32]. Starting from the STRING

interaction data (version 9.05), we selected all the Eukaryotic species in the core

region of STRING having 10, 000 or more proteins. Our choice is motivated by the

expected high quality of the interactions coming from the core region of STRING.

The selected Eukaryotic species are listed in Table 3.

This network includes proteins coming from 2 invertebrates (a lancelet of the

genus Branchiostoma and the fruit fly), 3 plants (Arabidopsis thaliana, the rice and

the moss Physcomitrella patens), and 8 vertebrates including a frog, the chicken

and 6 mammals. The total number of proteins in Eukarya-net is 202, 442. This

basic version of Eukarya-net is obtained by extracting from STRING all the inter-

actions occurring between proteins of the selected core species. This led to an initial

collection of 25, 132, 538 interactions. A simple connected components analysis re-

vealed that this network is composed by 666 connected components of which only

13 composed by more than 30 vertices (and corresponding to the biggest connected

components of the networks associated to each species). This “big” network is thus
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a collection of the protein networks of the selected species. In order to find a way to

“connect” the core components, we extracted all the clusters of orthologous genes

from the STRING website according to the following steps:

• the cluster of orthologs id obtained by the STRING team using the eggNOG

database (we considered only clusters of type NOG: non-supervised ortholo-

gous groups);

• the filtering of each NOG cluster in order to remove the proteins not coming

from the selected core species. Note that some NOGs are composed by more

than 2, 000 proteins, but after our filtering procedure each selected NOG is

composed by no more than 10 proteins.

After these steps, we selected all the NOGs in which the number of proteins

equals the number of species (i.e. NOG composed by 10 proteins coming from

10 species, NOG composed by 9 proteins coming from 9 species, and so on). We

finally constructed an enriched version of the basic Eukarya-net network simply by

including in Eukarya-net all the possible edges linking the members of the selected

set of NOGs. Following this strategy we obtained a network composed by 25, 155, 631

edges (network density: 0.000613). In order to verify the impact of the additional

23, 093 NOGs based edges on the connectivity of Eukarya-net, we repeated the

connected components analysis and we found that this “NOGs augmented” version

of Eukarya-net is composed by 552 connected components of which two (190, 755

nodes (94.22%) and 10, 233 (5.05%)) account for more than 99% of the 202, 442

proteins composing the network.

As class labels for the proteins included in Eukarya-net we used the GO annota-

tions available in STRING (version 9.05). The STRING website provides flat text

files containing a mapping from Gene Ontology (GO) annotations to STRING pro-

teins and a STRING internal confidence score for each GO annotation, ranging

from 1 (low confidence) to 5 (high confidence). While extracting the GO labels we

considered only the annotations with confidence score 5. We then filtered out all the

GO terms associated with less than 20 and more than 100 proteins (473 GO terms).

We finally randomly selected from this set 50 GO terms irrespective of their GO

division (Molecular function, Biological process and Cellular component). We then

repeated all the test performed on Bacteria-net on the bigger Eukarya-net network.

3.2 Results and discussion

We compared the runtime required by main memory and secondary memory-based

implementations (Section 2.2) of the RW algorithm described in Section 2.1. More-

over, even if our main aim consists in showing that the combination of local im-

plementation and secondary memory-based computation allows the analysis of big

biological networks on small computers, we performed also a comparison of the

performance achieved with single-species and multi-species networks of bacteria

proteins to experimentally assess the impact of a multi-species approach to the

prediction of protein functions.

3.2.1 Results with Bacteria-net

Table 4 shows the average per term runtime required to complete a 5-fold cross-

validation on the Bacteria-net (17, 638 nodes/proteins and more than 7 millions of
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edges). We considered 381 GO BP terms characterized by more than 20 annotations

and involving 301 species of bacteria. (see Section 3.1.1 for details).

Results on the desktop computer (16 GB RAM machine) show that the computa-

tional time required by the secondary memory based implementations, even if larger,

is of the same order of magnitude of the time needed by the main-memory-based

implementation. In particular, quite surprisingly, the empirical time complexity of

the GraphChi implementation is very close to that of the the main-memory version.

This fact can be partially explained by the very efficient secondary memory access of

GraphChi, but above all by the characteristics of the main-memory implementation

of the RW algorithm. Even if the efficient BLAS-based fortran subroutines for lin-

ear algebra are used for the classical stochastic matrix / probability vector product

(eq. 1), the sparsity of the Bacteria-net network is not adequately exploited.

The results of the main-memory algorithm with the notebook (4 GB RAM ma-

chine) are not reported since on this task the main memory implementation of the

algorithm fails, due to disk trashing, by which processor time is mainly used to

continuously swap from main memory and the virtual memory on disk. On the

contrary, the GraphChi implementation results only in a small increment of the

computational time, mainly due to the larger time required to construct the shards

when less RAM memory is available (Section 2.2.2) and to the lower speed of the

processor in the notebook machine.

Note that with the smaller machine the empirical computational time required

by Neo4j increases of about one order of magnitude, while the GraphChi implemen-

tation introduces only a small increment of the required execution time (Table 4).

This is particularly relevant when we consider the overall computational time re-

quired to predict the 381 GO terms: with the “small” machine Neo4j moves from

about 3 hours to about one day with the 1-step RW, and from about 7 hours to

almost 3 days with the 3-steps RW.

Even if the main aim of this work consists in showing that secondary-memory

based technologies allow us to analyse large multi-species networks also with “rela-

tively small” stand-alone computers, we report also the average AUC, and precision

at 20 and 40% recall across the considered 381 GO BP terms. Table 6 shows that

RW algorithms achieve reasonable results (AUC is always significantly larger than

0.5). In particular 1-step RW obtains the best results in terms of both AUC and

P20R and P40R: on the average, the direct neighbours of each node seem to be the

most informative.

3.2.2 Results with Eukarya-net

Table 7 summarizes the average per-term runtime required to complete a 5-fold

cross validation with the Eukarya-net involving more than 200, 000 proteins of 13

multi-cellular eukarya organisms (Section 3.1.2). The spatial requirements induced

by Eukarya-net prevents the application of the main memory implementation also

with the 16 GB RAM machine, while secondary memory-based implementations

make this task feasible also with this large protein network.

It is worth noting that in this task involving a bigger net, the GrapChi implemen-

tation is significantly faster than the Neo4j implementation (Table 7). Moreover,

the average computational time is in practice the same when the 4 GB and the 16
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GB RAM machines run the GrapChi implementation of the RW algorithm, while

we observe a relevant increment in computational time with Neo4j, as previously

observed also with Bacteria-net.

The performance in terms of the average precision at fixed recall levels obtained

in this test are relatively low, especially when compared with the high average AUC

obtained with the RW at 1, 2 and 3 steps (Table 8). The observed relatively low

precision can be explained by taking into account that it is more negatively affected

by class unbalance and, in the Eukarya-net network task, the positives are at most

100 while the number of vertices in the network is 202, 442 (i.e. the positives are

less than 0.05% of the vertices at best).

Note that in this case the 2-steps RW achieves the best AUC results: it is likely

that these results could be due by the eggNOG orthology relationships added be-

tween the single-species disconnected components in Eukarya-net (Section 3.1.2).

Indeed in this way the annotations for a certain species can be propagated to other

philogenetically related species by exploiting the orthology relationships.

3.2.3 Experimental comparison between multi-species and single-species approaches

In this section we provide an experimental comparison between multi-species and

single-species approaches to AFP. We repeated the same AFP task performed with

Bacteria-net but considering this time each species separately. More precisely, we

constructed a separate net for each species of Bacteria, using exactly the same

data we used for the multi-species net (Section 3.1.1), and then we predicted the

probabilities for each of the 381 GO terms considered in the multi-species task

(Section 3.2.1). Average per-species results show that the multi-species approach,

by exploiting the multi-species network of proteins Bacteria-net, achieves better

results in terms of both AUC, and precision at a fixed recall rate (Table 9), and the

difference is statistically significant independently of the number of steps and the

performance measure considered (Wilcoxon signed rank test, α = 0.01).

These results can be explained, considering two characteristics of multi-species

networks: 1) the number of nodes and the number of available annotated proteins;

2) the overall topology of the network.

Indeed in single-species nets either the reduced number of available proteins or

the reduced number of annotated nodes can negatively affect the generalization

capabilities achieved with random walks or any other learning algorithm, while in

multi-species networks, by construction, more nodes and more annotated proteins

from other species can be available.

Moreover in single-species networks usually the number of available functional

connections (edges) between proteins can be reduced (for instance, since no suf-

ficient data are available) and in many cases we may have highly disconnected

networks, making very difficult the application of algorithms based on the prop-

agation of the information between nodes. On the contrary, in the multi-species

setting learning algorithms can enjoy a richer network topology by exploring con-

nections not available in single-species nets: the evolutionary relationships between

species assure that proteins not connected with other proteins of the same species,

can in principle be connected with other homologous proteins in other species, thus

enhancing the propagation of the information across the multi-species network.
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Summarizing, our results show the feasibility of the “vertex-centric” algorithmic

approach coupled with secondary memory-based technologies to process large multi-

species protein networks with single off-the-shelf computers. Moreover, our prelim-

inary experiments show that in perspective we can also improve performances by

constructing large multi-species networks, and by integrating heterogeneous sources

of biomolecular and evolutionary information.

4 Conclusions
Our approach based on local implementations of network-based algorithms and on

novel secondary memory-based technologies provides a solution to the large main

memory requirements induced by large multi-species protein networks, thus mak-

ing possible the analysis of big networks using off-the-shelf machines. Our results

show that both graph DB technologies (i.e. Neo4j) and secondary memory based

systems for graph processing (i.e. GraphChi) can be successfully applied to the anal-

ysis of large multi-species networks, even if the latter seems to be less sensitive to

the amount of available primary memory, and more efficient for the implementa-

tion of network-based algorithms for AFP. The local implementation strategy can

be applied to other network-based learning algorithms, ranging e.g. from simple

guilt-by-association methods (that are inherently local) [33, 34] to more complex

label propagation methods [9, 10], kernelized graph algorithms [35, 36, 25] and the

recently proposed parametrized Hopfield networks [37], but in principle any algo-

rithm, that can be expressed according to a “vertex-centric” programming model,

can be adapted to this framework.

In perspective, by exploiting orthologous genes and multiple genomic sources,

multi-species prediction can be applied to annotate poorly annotated species and

discover new functions for uncharacterized genes in model organisms. Indeed our

proposed approach allows computational biologists to experiment with large multi-

species networks using their own notebooks, but in perspective applications to huge

networks including e.g. the proteomes available in SwissProt/TrEmbl could be per-

formed using well-equipped stand-alone machines.

Our framework could be also adapted and devised to other relevant computational

biology scenarios characterized by the construction and processing of large networks,

such as in the context of the “Network medicine” [38], or in drug discovery and

repositioning problems [39].

5 Availability of supporting data
The files containing the Bacteria-net and Eukarya-net along with the files contain-

ing the labels used in our experiments are available from GigaDB. The content

and format of each file is described in readme files available at the aforementioned

database.
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Figures

Figure 1 A sample Neo4j net. A graphical representation of a sample Neo4j net.

(a)

(b)

Figure 2 Efficient disk access with GraphChi. (a) Shards: Int1, . . . IntK refer to the K intervals
in which the vertices are split, while S1, . . . SK to the corresponding shards (b) Parallel Sliding
Windows.

START i=node:proteins(name,"*"), c=node:classes(name,"c")
MATCH (i)-[e:SIM]->(j), (j)-[:CLASS]->(c)
SET i.p2 := j.d * j.p1 * SUM(e.wij)/c.count
RETURN i.name, c.name, i.p2

Figure 3 Neo4j Implementation of 1-step RW algorithm in cypher. The notation
(i)-[e:rtype]->(j) is used to represent a relationship e of type rtype between nodes i and j.
The dot-notation is used to access a single property of a node/edge.
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1: function start(vertex i)
2: x=0
3: for each e ∈ Edges(i) do
4: x = x+ e.wij
5: end for
6: i.d = 1/x
7: if i ∈ C then
8: i.p1 = 1/|C|
9: else
10: i.p1 = 0
11: end if

1: function update(vertex i)
2: for each e ∈ Edges(i) do
3: j = GetEndpoint(e)
4: if j.p1 6= 0 then
5: i.p2= i.p2+ j.d ∗ e.wij ∗ j.p1
6: end if
7: end for

Figure 4 Pseudocode of the GraphChi vertex-centric implementation of the 1-step RW algorithm.

Figure 5 Construction of bacteria net. Data flows from different sources of information,
construction of the data-type specific networks and networks integration.
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Tables

ID. Species n. proteins
83333 Escherichia coli 4431

224308 Bacillus subtilis 4188
99287 Salmonella typhimurium 1771

208964 Pseudomonas aeruginosa 1245
321314 Salmonella enterica choleraesuis 882
160488 Pseudomonas putida 693
223283 Pseudomonas syringae 675
85962 Helicobacter pylori 581

170187 Streptococcus pneumoniae 502
243273 Mycoplasma genitalium 483

Table 1 CAFA2 bacteria species and their proteins available in Swissprot (May 2013). The first
column reports the SwissProt organism identifier, the last one the number of proteins

database Description
Pfam [40] Protein domain
Protein superfamilies [41] Structural and functional annotations
PRINTS [42] Motif fingerprints
PROSITE [43] Protein domains and families
InterPro [44] Integrated resource of protein families, domains and functional sites
EggNOG [45] Evolutionary genealogy of genes: Non-supervised Orthologous Groups
SMART [46] Simple Modular Architecture Research Tool (database annotations)
Swissprot Manually curated keywords describing the function of the proteins

at different degrees of abstraction
Table 2 Public databases exploited for the construction of protein profiles

NCBI taxon Id. Species n. proteins

3218 Physcomitrella patens 10352
3702 Arabidopsis thaliana 23576
7227 Drosophila melanogaster 12845
7739 Branchiostoma floridae 16418
8364 Xenopus (Silurana) tropicalis 13678
9031 Gallus gallus 13119
9258 Ornithorhynchus anatinus 13333
9606 Homo sapiens 20140
9615 Canis lupus familiaris 16912

10090 Mus musculus 20023
13616 Monodelphis domestica 15409
39947 Oryza sativa Japonica 13330
69293 Gasterosteus aculeatus 13307

Table 3 Selected species from the core region of the STRING protein networks database. Each
species is represented by at least 10000 proteins.

Table 4 Empirical time complexity of the main and secondary memory-based implementations of
network based algorithms for multi-species function prediction with the Bacteria-net.

16 GB RAM machine 4 GB RAM machine

Algorithm Main mem. Neo4j GraphChi Main mem. Neo4j GraphChi

RW - 1 step 8.11s 27.92s 8.84s – 208.27s 12.32s

RW - 2 steps 16.05s 54.36s 16.98s – 408.57s 25.06s

RW - 3 steps 23.95s 81.18s 25.12s – 621.92s 36.51s
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Min. 1st Qu. Median Mean 3rd Qu. Max.
21.0 31.0 53.0 135.4 131.0 2000.0

Table 5 Summary of the distribution of the number of positives across the 381 GO BP classes
involved in the functional labelling of the 17638 proteins comprised in the bacterial multi species
protein network.

Table 6 Bacteria-net: average AUC, precision at 20% recall (P20R) and precision at 40% recall
across 381 GO BP terms estimated through 5-fold cross-validation.

Algorithm AUC P20R P40R

RW - 1 step 0.8744 0.2264 0.1673

RW - 2 steps 0.8590 0.1318 0.0893

RW - 3 steps 0.8419 0.1064 0.0713

Table 7 Eukarya-net: Average per-term empirical time complexity between Neo4j and GraphChi
implementations.

16 GB RAM machine 4 GB RAM machine

Algorithm Neo4j GraphChi Neo4j GraphChi

RW - 1 step 189.60s 20.44s 2520.00s 21.46s

RW - 2 steps 367.82s 31.68s 4919.35s 33.19s

RW - 3 steps 549.84s 45.73s 7333.10s 46.69s

Table 8 Eukarya-net: average AUC, precision at 20% recall (P20R) and precision at 40% recall across
50 GO terms estimated through 5-fold cross-validation.

Algorithm AUC P20R P40R

RW - 1 step 0.8601 0.1449 0.0943

RW - 2 steps 0.9667 0.1329 0.0929

RW - 3 steps 0.9598 0.0927 0.0785

Table 9 Comparison of the average AUC, precision at 20% recall (P20R) and precision at 40% recall
between multi-species and single-species approaches with 301 species of bacteria.

Multi-species approach

Algorithm AUC P20R P40R

RW - 1 step 0.8744 0.2264 0.1673

RW - 2 steps 0.8590 0.1318 0.0893

RW - 3 steps 0.8419 0.1064 0.0713

Single-species approach

Algorithm AUC P20R P40R

RW - 1 step 0.8263 0.1801 0.1176

RW - 2 steps 0.8146 0.1059 0.0647

RW - 3 steps 0.8179 0.1009 0.0563


