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Abstract

The problem of dimensionality reduction arises in many fields of information processing, including

machine learning, data compression, scientific visualization, pattern recognition, and neural com-

putation. Here we describe locally linear embedding (LLE), an unsupervised learning algorithm

that computes low dimensional, neighborhood preserving embeddings of high dimensional data.

The data, assumed to be sampled from an underlying manifold, are mapped into a single global

coordinate system of lower dimensionality. The mapping is derived from the symmetries of locally

linear reconstructions, and the actual computation of the embedding reduces to a sparse eigen-

value problem. Notably, the optimizations in LLE—though capable of generating highly nonlinear

embeddings—are simple to implement, and they do not involve local minima. In this paper, we de-

scribe the implementation of the algorithm in detail and discuss several extensions that enhance its

performance. We present results of the algorithm applied to data sampled from known manifolds,

as well as to collections of images of faces, lips, and handwritten digits. These examples are used to

provide extensive illustrations of the algorithm’s performance—both successes and failures—and

to relate the algorithm to previous and ongoing work in nonlinear dimensionality reduction.

1. Introduction

Many problems in machine learning begin with the preprocessing of raw multidimensional sig-

nals, such as images of faces or spectrograms of speech. The goal of preprocessing is to obtain

more useful representations of the information in these signals for subsequent operations such as

classification, denoising, interpolation, visualization, or outlier detection. In the absence of prior

knowledge, such representations must be learned or discovered automatically. Automatic methods

which discover hidden structure from the statistical regularities of large data sets can be studied in

the general framework of unsupervised learning (Hinton and Sejnowski, 1999).

c©2003 Lawrence K. Saul and Sam T. Roweis.
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Two main goals have been proposed for algorithms in unsupervised learning: density estima-

tion and dimensionality reduction. The goal of density estimation is to learn the parameters of a

probabilistic model that can be used to predict or assess the novelty of future observations. The

goal of dimensionality reduction is to obtain more compact representations of the original data that

capture the information necessary for higher-level decision making. A recent trend in machine

learning has been to pursue these goals simultaneously, with probabilistic generative models of raw

sensory inputs whose hidden variables represent low dimensional degrees of freedom (Attias, 1999;

Dayan et al., 1995; Hyvärinen, 1998; Roweis, 1998; Roweis et al., 2002; Tipping and Bishop, 1999).

However, the goal of dimensionality reduction can also be pursued in a non-probabilistic and non-

parametric setting. This is the approach taken here, leading to an efficient eigenvector method for

nonlinear dimensionality reduction of large data sets.

Our work addresses a longstanding problem at the intersection of geometry and statistics: to

compute a low dimensional embedding of high dimensional data sampled (with noise) from an

underlying manifold. Many types of high dimensional data can be characterized in this way—

for example, images generated by different views of the same three dimensional object. Beyond

applications in machine learning and pattern recognition, the use of low dimensional manifolds to

represent continuous percepts is also a recurring theme in computational neuroscience (Seung and

Lee, 2000). The goal of our algorithm is to learn such representations from examples: to discover—

in a general setting, without the use of a priori knowledge—the few degrees of freedom that underlie

observed modes of continuous variability.

Two canonical forms of dimensionality reduction are the eigenvector methods of principal com-

ponent analysis (PCA) (Jolliffe, 1986) and multidimensional scaling (MDS) (Cox and Cox, 1994).

Most applications of PCA and MDS involve the modeling of linear variabilities in multidimensional

data. In PCA, one computes the linear projections of greatest variance from the top eigenvectors of

the data covariance matrix. In MDS, one computes the low dimensional embedding that best pre-

serves pairwise distances between data points. If these distances correspond to Euclidean distances

— the case of so-called classical scaling — then the results of MDS are equivalent to PCA (up to

a linear transformation). Both methods are simple to implement, and their optimizations are well

understood and not prone to local minima. These virtues account for the widespread use of PCA

and MDS, despite their inherent limitations as linear methods.

Recently, we introduced a more powerful eigenvector method—called locally linear embedding

(LLE)—for the problem of nonlinear dimensionality reduction (Roweis and Saul, 2000). This prob-

lem is illustrated by the manifolds in Figure 1. In these examples, dimensionality reduction by LLE

succeeds in recovering the underlying manifolds, whereas linear embeddings by PCA or MDS map

faraway data points to nearby points in the plane, creating distortions in both the local and global

geometry. Like PCA and MDS, our algorithm is simple to implement, and its optimizations do not

involve local minima. Unlike these methods, however, it is capable of generating highly nonlinear

embeddings, and its main optimization involves a sparse eigenvalue problem that scales well to

large, high dimensional data sets.

Note that mixture models for local dimensionality reduction (Fukunaga and Olsen, 1971;

Ghahramani and Hinton, 1996; Kambhatla and Leen, 1997), which cluster the data and perform

PCA within each cluster, do not address the problem considered here—namely, how to map high

dimensional data into a single global coordinate system of lower dimensionality. In particular, while

such models can be used to discover clusters in high dimensional data and to model their density,
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(A) (B) (C)

Figure 1: The problem of nonlinear dimensionality reduction, as illustrated for three dimensional

data (B) sampled from two dimensional manifolds (A). An unsupervised learning al-

gorithm must discover the global internal coordinates of the manifold without external

signals that suggest how the data should be embedded in two dimensions. The LLE algo-

rithm described in this paper discovers the neighborhood-preserving mappings shown in

(C); the color coding reveals how the data is embedded in two dimensions.
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they could not be used to compute the two dimensional embeddings in the rightmost panels of

Figure 1.

In this paper, we describe the LLE algorithm, providing significantly more examples and de-

tails of its implementation than can be found in our earlier work (Roweis and Saul, 2000). We

also discuss a number of extensions that enhance its performance. The organization of this paper

is as follows: In Section 2, we describe the algorithm in general terms, focusing on its main proce-

dures and geometric intuitions. In Section 3, we illustrate the algorithm’s performance on several

problems of different size and dimensionality. In Section 4, we discuss the most efficient ways to

implement the algorithm and provide further details on the nearest neighbor search, least squares

optimization, and eigenvalue problem. In Sections 5 and 6, we describe a number of extensions

to LLE, including how to estimate and/or enforce the dimensionality of discovered manifolds, as

well as how to derive mappings that generalize the results of LLE to examples outside the train-

ing set. Finally, in Section 7, we compare LLE to other eigenvector-based methods for clustering

and nonlinear dimensionality reduction (Belkin and Niyogi, 2002; Ng et al., 2002; Schölkopf et al.,

1998; Shi and Malik, 2000; Tenenbaum et al., 2000; Weiss, 1999) and mention several directions

for future work.

2. Algorithm

The LLE algorithm, summarized in Figure 2, is based on simple geometric intuitions. Essentially,

the algorithm attempts to compute a low dimensional embedding with the property that nearby

points in the high dimensional space remain nearby and similarly co-located with respect to one

another in the low dimensional space. Put another way, the embedding is optimized to preserve the

local configurations of nearest neighbors. As we shall see, under suitable conditions, it is possible

to derive such an embedding solely from the geometric properties of nearest neighbors in the high

dimensional space. Indeed, the LLE algorithm operates entirely without recourse to measures of

distance or relation between faraway data points.

To begin, suppose the data consist of N real-valued vectors ~Xi (or inputs), each of dimensional-

ity D, sampled from a smooth underlying manifold. Provided there is sufficient data (such that the

manifold is well-sampled), we expect each data point and its neighbors to lie on or close to a locally

linear patch of the manifold. More precisely, by “smooth” and “well-sampled” we mean that for

data sampled from a d-dimensional manifold, the curvature and sampling density are such that each

data point has on the order of 2d neighbors which define a roughly linear patch on the manifold

with respect to some metric in the input space. Under such conditions, we can characterize the local

geometry in the neighborhood of each data point by linear coefficients that reconstruct the data point

from its neighbors. The LLE algorithm derives its name from the nature of these reconstructions: it

is local, in the sense that only neighbors contribute to each reconstruction, and linear, in the sense

that reconstructions are confined to linear subspaces.

In the simplest formulation of LLE, one identifies K nearest neighbors per data point, as mea-

sured by Euclidean distance. (More sophisticated neighborhood criteria are discussed in Section 4.)

Reconstruction errors are then measured by the cost function:

E(W ) = ∑
i

∣

∣

∣

~Xi−∑ j
Wi j

~X j

∣

∣

∣

2

, (1)
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LLE ALGORITHM

1. Compute the neighbors of

each data point, ~Xi.

2. Compute the weights Wi j

that best reconstruct each

data point ~Xi from its neigh-

bors, minimizing the cost in

Equation (1) by constrained

linear fits.

3. Compute the vectors ~Yi

best reconstructed by the

weights Wi j, minimizing

the quadratic form in

Equation (2) by its bottom

nonzero eigenvectors.

Wik

Wij

Yk

Yj

iY

k

j

X X

XijW

Wiki

Xi

1

3

2

Map to embedded coordinates.

Reconstruct

weights.
linearwith

Select neighbors.

Figure 2: Summary of the LLE algorithm, mapping high dimensional inputs ~Xi to low dimensional

outputs ~Yi via local linear reconstruction weights Wi j.

j

XjΣWij
j

j’

Xi

X

X

Figure 3: A data point ~Xi, its neighbors ~X j, and its locally linear reconstruction ∑ j Wi j
~X j. The

reconstruction weights are constrained to satisfy ∑ j Wi j = 1.

which adds up the squared distances between all the data points and their reconstructions. The

weight Wi j summarizes the contribution of the jth data point to the ith reconstruction. To compute

the weights, we minimize the cost function in Equation (1) subject to two constraints: a sparseness

constraint and an invariance constraint. The sparseness constraint is that each data point ~Xi is

reconstructed only from its neighbors, enforcing Wi j = 0 if ~X j does not belong to this set. The

invariance constraint is that the rows of the weight matrix sum to one: ∑ j Wi j = 1. The reason for

this latter constraint will become clear shortly. The optimal weights Wi j subject to these constraints

are found by solving a set of constrained least squares problems, as discussed further in Section 4.
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0.5
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1
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Figure 4: The effects of shearing on reconstruction weights. Shown are the optimal weights that

linearly reconstruct the black point in terms of its gray neighbors; the resulting recon-

structions are indicated by white squares. Note that the optimal weights and linear recon-

structions are not invariant to shear transformations.

Note that the constrained weights that minimize these reconstruction errors obey several im-

portant symmetries: for any particular data point, they are invariant to rotations, rescalings, and

translations of that data point and its neighbors.1 The invariance to rotations and rescalings follows

immediately from the form of Equation (1); the invariance to translations is enforced by the sum-

to-one constraint on the rows of the weight matrix. A consequence of these symmetries is that the

reconstruction weights characterize geometric properties that do not depend on a particular frame

of reference. Note that the optimal weights and linear reconstructions for each data point are not in

general invariant to local affine transformations, such as shears. (See Figure 4 for a counterexam-

ple.)

Suppose the data lie on or near a manifold of dimensionality d≪ D. To a good approxima-

tion, then, we imagine that there exists a linear mapping—consisting of a translation, rotation,

and rescaling—that maps the high dimensional coordinates of each neighborhood to global inter-

nal coordinates on the manifold. By design, the reconstruction weights Wi j reflect those geometric

properties of the data that are invariant to exactly such transformations. We therefore expect their

characterization of local geometry in the input space to be equally valid for local patches on the

manifold. In particular, the same weights Wi j that reconstruct the input ~Xi in D dimensions should

also reconstruct its embedded manifold coordinates in d dimensions.

(Informally, imagine taking a pair of scissors, cutting out locally linear patches of the underlying

manifold, and arranging them in the low dimensional embedding space. If the transplantation of

each patch involves no more than a translation, rotation, and rescaling, then the angles between data

points on the patch will be preserved. It follows that when the patch arrives at its low dimensional

destination, the same weights will provide the optimal reconstruction of each data point from its

neighbors.)

LLE constructs a neighborhood preserving mapping based on the above idea. In the third and

final step of the algorithm, each high dimensional input ~Xi is mapped to a low dimensional out-

put ~Yi representing global internal coordinates on the manifold. This is done by choosing the d-

dimensional coordinates of each output ~Yi to minimize the embedding cost function:

Φ(Y ) = ∑
i

∣

∣

∣

~Yi−∑ j
Wi j

~Yj

∣

∣

∣

2

. (2)

1. Naturally, they are also invariant to global rotations, translations and homogeneous rescalings of all the inputs, but

the invariance to local transformations has more far-reaching implications.
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This cost function—like the previous one—is based on locally linear reconstruction errors, but here

we fix the weights Wi j while optimizing the outputs~Yi. Note that the embedding is computed directly

from the weight matrix Wi j; the original inputs ~Xi are not involved in this step of the algorithm. Thus,

the embedding is determined entirely by the geometric information encoded by the weights Wi j. Our

goal is to find low dimensional outputs~Yi that are reconstructed by the same weights Wi j as the high

dimensional inputs ~Xi.

The embedding cost function in Equation (2) defines a quadratic form in the outputs ~Yi. Subject

to constraints that make the problem well-posed, the cost function has a unique global minimum.

This unique solution for the outputs ~Yi is the result returned by LLE as the low dimensional embed-

ding of the high dimensional inputs ~Xi. The embedding cost function can be minimized by solving

a sparse N×N eigenvalue problem. Details of this eigenvalue problem are discussed in Section 4.

There, we show that the bottom d + 1 non-zero eigenvectors of an easily computed cost matrix

provide an ordered set of d embedding coordinates.

Note that while the reconstruction weights for each data point are computed from its local

neighborhood—independent of the weights for other data points—the embedding coordinates are

computed by an N×N eigensolver, a global operation that couples all data points (or more precisely,

all data points that lie in the same connected component of the graph defined by the neighbors). This

is how the algorithm discovers global structure—by integrating information from overlapping local

neighborhoods. Note also that the dth coordinate output by LLE always corresponds to the (d +1)st

smallest eigenvector of the cost matrix, regardless of the total number of outputs requested. Thus,

the LLE coordinates are ordered or “nested”; as more dimensions are added to the embedding space,

the existing ones do not change.

Implementation of the algorithm is straightforward. In the simplest formulation of LLE, there

exists only one free parameter: the number of neighbors per data point K (or any equivalent

neighborhood-determining parameter, such as the radius of a ball to be drawn around each point).

Once neighbors are chosen, the optimal weights Wi j and outputs ~Yi are computed by standard meth-

ods in linear algebra, as detailed in Section 4. The algorithm involves a single pass through the

three steps in Figure 2 and finds global minima of the reconstruction and embedding costs in Equa-

tions (1) and (2). No learning rates or annealing schedules are required during the optimization, and

no random initializations or local optima affect the final results.

3. Examples

The embeddings discovered by LLE are easiest to visualize for data sampled from two dimensional

manifolds. In Figure 1, for example, the input to LLE consisted of N = 1000 data points sampled

from the manifolds shown in panel (A). The resulting embeddings show how the algorithm, using

K =8 neighbors per data point, faithfully maps these manifolds to the plane.

The example in the bottom row of Figure 1 shows that, under the right conditions, LLE can learn

the stereographic mapping from the sphere to the plane. For the algorithm to succeed in this case, a

neighborhood of the north pole must be excluded, and the data must be sampled uniformly in man-

ifold (stereographic) coordinates (which corresponds to increasing density as one approaches the

north pole in the input space). This example suggests that LLE can recover conformal mappings—

mappings which locally preserve angles, but not distances. Such a conjecture is also motivated by

the invariance of the reconstruction weights in Equation (1) to translations, rotations, and scalings

of local neighborhoods. Nevertheless, it remains an open problem to prove whether such manifolds
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can generally be discovered by LLE, and if so, under what sampling conditions. A survey of known

theoretical results for algorithms in nonlinear dimensionality reduction (Tenenbaum et al., 2000;

de Silva and Tenenbaum, 2002; Bengio et al., 2003; Brand and Huang, 2003; Donoho and Grimes,

2003) is given in Section 7.

Figure 5 shows another two dimensional manifold, but one living in a much higher dimensional

space. Here, we generated examples—shown in the middle panel of the figure—by translating the

image of a single face across a larger background of random noise. The noise was independent from

one example to the next. Thus, the only consistent structure in the resulting images describes a two

dimensional manifold parameterized by the face’s center of mass. The input to LLE consisted of

N = 961 grayscale images, with each image containing a 28×20 face superimposed on a 59×51

background of noise. Note that while easy to visualize, the manifold of translated faces is highly

nonlinear in the high dimensional vector space (D=3009) of pixel coordinates. The bottom portion

of Figure 5 shows the first two components discovered by LLE, with K =4 neighbors per data point.

By contrast, the top portion shows the first two components discovered by PCA. It is clear that the

manifold structure in this example is much better modeled by LLE. (The minor edge effects are due

to selecting a constant number of neighbors per data point. Thus, the neighbors of boundary points

lie further away than the neighbors of interior points.)

We also applied LLE to a data set containing many different images of a single person’s face.

This data set (consisting of frames from a digital movie) contained N = 1965 grayscale images at

20×28 resolution (D=560). Figure 6 shows the first two components of these images discovered

by LLE with K =12 nearest neighbors. These components appear correlated with highly nonlinear

features of the image, related to pose and expression.

Finally, we applied LLE to images of lips used in the animation of talking heads (Cosatto and

Graf, 1998). This data set contained N =15960 color (RGB) images of lips at 144×152 resolution

(D = 65664). Figure 7 shows the first two components of these images discovered by LLE with

K =24 nearest neighbors. These components appear to capture highly nonlinear degrees of freedom

associated with opening the mouth, pursing the lips, and clenching the teeth. Figure 8 shows how

one particular neighborhood of lip images is embedded in this two dimensional space. Dimension-

ality reduction of these images is useful for faster and more efficient animation. In particular, the

low dimensional outputs of LLE can be used to index the original collection of high dimensional

images. Fast and accurate indexing is an essential component of example-based video synthesis

from a large library of stored frames.

The data set of lip images is the largest data set to which we have applied LLE. LLE scales

relatively well to large data sets because it generates sparse intermediate results and eigenproblems.

Figure 9 shows the sparsity pattern of a large sub-block of the weight matrix Wi j for the data set of

lip images. Computing the twenty bottom eigenvectors (d =20) for this embedding took only about

2.5 hours on a high end workstation, using specialized routines for finding eigenvectors of sparse,

symmetric matrices (Fokkema et al., 1998).

4. Implementation

The algorithm, as described in Figure 2, consists of three steps: nearest neighbor search (to identify

the nonzero elements of the weight matrix), constrained least squares fits (to compute the values

of these weights), and singular value decomposition (to perform the embedding). We now discuss

each of these steps in more detail.
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Figure 5: Successful recovery of a manifold of known structure. Shown are the results of PCA

(top) and LLE (bottom), applied to N =961 grayscale images of a single face translated

across a two dimensional background of noise. Such images lie on an intrinsically two

dimensional manifold, but have an extrinsic dimensionality equal to the number of pixels

in each image (D = 3009). Note how LLE (using K = 4 nearest neighbors) maps the

images with corner faces to the corners of its two dimensional embedding (d =2), while

PCA fails to preserve the neighborhood structure of nearby images.

127



SAUL AND ROWEIS

Figure 6: Images of faces mapped into the embedding space described by the first two coordinates

of LLE, using K =12 nearest neighbors. Representative faces are shown next to circled

points at different points of the space. The bottom images correspond to points along the

top-right path, illustrating one particular mode of variability in pose and expression. The

data set had a total of N =1965 grayscale images at 20×28 resolution (D=560).

4.1 Step 1: Neighborhood Search

The first step of LLE is to identify the neighborhood of each data point. In the simplest formulation

of the algorithm, one identifies a fixed number of nearest neighbors, K, per data point, as measured
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Figure 7: High resolution (D=65664) images of lips, mapped into the embedding space discovered

by the first two coordinates of LLE, using K =24 nearest neighbors. Representative lips

are shown at different points in the space. The inset shows the first two LLE coordinates

for the entire data set (N =15960) without any corresponding images.

Figure 8: A typical neighborhood of K =24 lip images mapped into the embedding space described

by the first two coordinates of LLE. The rectangle in the left plot locates the neighborhood

shown on the right in the overall space of lip images.
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Figure 9: Sparsity pattern of the weight matrix Wi j for the data set of lip images. (Only a 1000×
1000 sub-block of the matrix is shown to reduce blurring of zero and nonzero elements

during printing.) Positive weights are indicated in blue; negative weights, in red. Roughly

99.85% of the elements are zero, although the ink density of the image above does not

reflect this accurately.

by Euclidean distance. Other criteria, however, can also be used to choose neighbors. For example,

one can identify neighbors by choosing all points within a ball of fixed radius. One can also use

locally derived distance metrics (based on a priori knowledge, estimated curvature, pairwise dis-

tances, or nonparametric techniques such as box counting) that deviate significantly from a globally

Euclidean norm. The number of neighbors does not have to be the same for each data point. In

fact, neighborhood selection can be quite sophisticated. For example, we can take all points within

a certain radius up to some maximum number, or we can take up to a certain number of neighbors

but none outside a maximum radius. In general, specifying the neighborhoods in LLE presents the

practitioner with an opportunity to incorporate a priori knowledge about the problem domain.

The results of LLE are typically stable over a range of neighborhood sizes. The size of that range

depends on various features of the data, such as the sampling density and the manifold geometry.

Several criteria should be kept in mind when choosing the number of neighbors per data point. First,

the algorithm can only be expected to recover embeddings whose dimensionality, d, is strictly less2

2. The K neighbors span a space of dimensionality at most K−1.
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than the number of neighbors, K, and we have observed that some margin between d and K is gen-

erally necessary to obtain a topology-preserving embedding. (The exact relation between K and the

faithfulness of the resulting embedding remains an important open question.) Second, the algorithm

is based on the assumption that a data point and its nearest neighbors can be modeled as locally

linear; for curved data sets, choosing K too large will in general violate this assumption. Finally

in the unusual case where K > D (indicating that the original data is itself low dimensional), each

data point can be reconstructed perfectly from its neighbors, and the local reconstruction weights

are no longer uniquely defined. In this case, some further regularization must be added to break

the degeneracy.3 Figure 10 shows a range of embeddings discovered by the algorithm, all on the

same data set but using different numbers of nearest neighbors, K. The results are stable over a wide

range of values but do break down as K becomes too small or large.

The nearest neighbor step in LLE is simple to implement, though it can be time consuming for

large data sets (N ≥ 104) if performed without any optimizations. Computing nearest neighbors

scales in the worst case as O(DN2), or linearly in the input dimensionality, D, and quadratically in

the number of data points, N. For many distributions of data, however—and especially for those

concentrated on a thin submanifold of the input space—constructions such as K-D trees or ball trees

can be used to compute the neighbors in O(N logN) time (Friedman et al., 1977; Gray and Moore,

2001; Moore et al., 2000; Omohundro, 1989, 1991). Recent work by Karger and Ruhl (2002)

specifically addresses the problem of computing nearest neighbors for data on low dimensional

manifolds. Efficient but approximate methods are also possible, some of which come with various

guarantees as to their accuracy (Indyk, 2000).

An implementation of LLE also needs to check that the graph formed by linking each data point

to its neighbors is connected. Efficient algorithms (Tarjan, 1972, 1983) exist for this purpose. If the

graph is disconnected (or weakly connected), then LLE should be applied separately to the data in

each of the graph’s (strongly) connected components; or else the neighborhood selection rule should

be refined to give a more strongly connected graph. In the disconnected or weakly connected case,

data from different connected components should be interpreted as lying on distinct data manifolds.

In theory, such situations could be detected after the fact by zeros in the eigenvalue spectrum (Perona

and Polito, 2002) of LLE.4 In practice, though, it seems much more straightforward to first compute

connected components and then apply LLE separately to each component. This not only reduces

the computational complexity of the algorithm, but also avoids any possible confounding of results

from different components.

4.2 Step 2: Constrained Least Squares Fits

The second step of LLE is to reconstruct each data point from its nearest neighbors. The optimal

reconstruction weights can be computed in closed form. Consider a particular data point ~x with K

nearest neighbors~η j and reconstruction weights w j that sum to one. We can write the reconstruction

error as:

ε =
∣

∣~x−∑ jw j~η j

∣

∣

2
=

∣

∣∑ jw j (~x−~η j)
∣

∣

2
= ∑ jk w jwkG jk, (3)

3. A simple regularizer is to penalize the sum of the squares of the weights ∑ j W
2
i j , which favors weights that are

uniformly distributed in magnitude. This is discussed further in Section 4.2.

4. The corresponding eigenvectors have constant values within each connected component, but different values in dif-

ferent components. This yields a zero embedding cost in Equation (2).
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Figure 10: Effect of neighborhood size on LLE. Embeddings of the two dimensional S-manifold

in the top panels of Figure 1, computed for different choices of the number of nearest

neighbors, K. A reliable embedding from D=3 to d =2 dimensions is obtained over a

wide range of values. If K is too small (top left) or too large (bottom right), however,

LLE does not succeed in unraveling the manifold and recovering the two underlying

degrees of freedom.

where in the first identity, we have exploited the fact that the weights sum to one, and in the second

identity, we have introduced the “local” Gram matrix,

G jk = (~x−~η j) · (~x−~ηk). (4)

By construction, this Gram matrix is symmetric and semipositive definite. The reconstruction error

can be minimized analytically using a Lagrange multiplier to enforce the constraint that ∑ j w j = 1.

In terms of the inverse Gram matrix, the optimal weights are given by:

w j =
∑k G−1

jk

∑lm G−1
lm

. (5)

The solution, as written in Equation (5), appears to require an explicit inversion of the Gram matrix.

In practice, a more efficient and numerically stable way to minimize the error (which yields the
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Figure 11: Degeneracy of reconstruction weights. If there are more neighbors (K) than input di-

mensions (D), then the weights which minimize the reconstruction error in Equation (1)

do not have a unique solution. Consider, for example, a two dimensional data point

whose four neighbors lie at the corners of a diamond. In this case, many different set-

tings of the weights lead to zero reconstruction error. Three possible settings are shown

above. Adding a regularizer that penalizes the squared magnitude of the weights favors

the left solution over all others. Note that while this example has particular symmetries

(chosen for ease of visualization), the degeneracy arises whenever K>D, even for points

in general position.

same result as above) is simply to solve the linear system of equations, ∑k G jkwk = 1, and then to

rescale the weights so that they sum to one.

In unusual cases, it can arise that the Gram matrix in Equation (4) is singular or nearly singular—

for example, for example, when there are more neighbors than input dimensions (K >D), or when

the data points are not in general position. In this case, the least squares problem for finding the

weights does not have a unique solution (see Figure 11), and the Gram matrix must be conditioned

(before solving the linear system) by adding a small multiple of the identity matrix,

G jk← G jk +δjk

(

∆2

K

)

Tr(G),

where δjk is 1 if j = k and 0 otherwise, Tr(G) denotes the trace of G, and ∆2≪1. This amounts to

adding a regularization term to the reconstruction cost that measures the summed squared magnitude

of the weights. (One can also consider the effect of this term in the limit ∆→ 0.)

The regularization term acts to penalize large weights that exploit correlations beyond some

level of precision in the data sampling process. It may also introduce some robustness to noise

and outliers. This form of regularization (with ∆ = 0.1) was used, for example, to compute all

the embeddings in Figure 1. For these synthetic manifolds, the regularization is essential because

there are more neighbors (K =8) than input dimensions (D=3). (For most real data sets requiring

dimensionality reduction, however, D is much larger than K.)

Computing the reconstruction weights Wi j is typically the least expensive step of the LLE algo-

rithm. The computation scales as O(DNK3); this is the number of operations required to solve a

K×K set of linear equations for each data point. It is linear in both the number of data points and the

number of input dimensions. The weight matrix can be stored as a sparse matrix with NK nonzero
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elements. The inputs ~Xi do not all need to be in memory at once for this step because the algorithm

fills in the weights based on a purely local computation.

4.3 Step 3: Eigenvalue Problem

The final step of LLE is to compute a low dimensional embedding based on the reconstruc-

tion weights Wi j of the high dimensional inputs ~Xi. Note that only information captured by the

weights Wi j is used to construct an embedding; the actual inputs ~Xi do not appear anywhere in the

final step of the algorithm (and hence do not need to remain in memory once the weights are com-

puted). The low dimensional outputs ~Yi are found by minimizing the cost function, Equation (2),

for fixed weights Wi j . This cost function is minimized when the outputs ~Yi are reconstructed (or

nearly reconstructed) by the same weighted linear combinations of neighbors as computed for the

inputs. Note that the assignment of neighbors is always based on the locations of the inputs ~Xi; the

algorithm does not dynamically recompute neighbors based on the locations of the outputs ~Yi.

To optimize the embedding cost function in Equation (2), we rewrite it as the quadratic form:

Φ(Y ) = ∑
i j

Mi j(~Yi ·~Yj), (6)

involving inner products of the outputs ~Yi. The square N×N matrix M that appears in Equation (6)

is given by:

Mi j = δi j−Wi j−Wji +∑
k

WkiWk j. (7)

The matrix M is sparse, symmetric, and semipositive definite.

The optimization of Equation (6) is performed subject to constraints that make the problem well

posed. Note that we can translate the outputs ~Yi by a constant displacement without affecting the

cost, Φ(Y ), in Equation (2). We remove this translational degree of freedom by requiring the outputs

to be centered on the origin:

∑
i

~Yi =~0. (8)

We can also rotate the outputs ~Yi without affecting the cost, Φ(Y ), in Equation (2). To remove this

rotational degree of freedom—and to fix the scale—we constrain the~Yi to have unit covariance, with

outer products that satisfy
1

N
∑

i

~Yi
~Y ⊤i = I, (9)

where I is the d×d identity matrix. This constraint that the output covariance be equal to the identity

matrix embodies three assumptions: first, that the different coordinates in the embedding space

should be uncorrelated to second-order; second, that reconstruction errors for these coordinates

should be measured on the same scale; and third, that this scale should be of order unity. (Note

that these assumptions are rather mild. Since we are free to rotate and homogeneously rescale

the outputs, we can always make the covariance of ~Y to be diagonal and of order unity. Further

restricting the covariance to be the identity matrix only introduces the additional assumption that all

the embedding coordinates should be of the same scale.)

Under these restrictions, the optimal embedding—up to a trivial global rotation of the embed-

ding space—is found by minimizing Equation (2) subject to the constraints in Equations (8–9). This

can be done in many ways, but the most straightforward is to find the bottom d+1 eigenvectors of
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the cost matrix, M. (The “bottom” or “top” eigenvectors are those corresponding to the smallest or

largest eigenvalues.) This equivalence between the optimization of a normalized quadratic form and

the computation of largest or smallest eigenvectors is a version of the Rayleitz-Ritz theorem (Horn

and Johnson, 1990). The optimization is performed by introducing Lagrange multipliers to enforce

the constraints in Equations (8–9). Setting the gradients with respect to the vectors~Yi to zero leads to

a symmetric eigenvalue problem, exactly as in derivations of principal component analysis (Bishop,

1996). The eigenvector computation in LLE also has the same form as the eigenvector computation

for image segmentation by normalized cuts (Shi and Malik, 2000). The bottom eigenvector of the

matrix, M, which we discard, is the unit vector with all equal components; it represents the free

translation mode of eigenvalue zero. Discarding this eigenvector enforces the constraint in Equa-

tion (8) that the outputs have zero mean, since the components of other eigenvectors must sum to

zero, by virtue of orthogonality with the bottom one. The remaining d eigenvectors constitute the

d embedding coordinates found by LLE.

Note that the bottom d+1 eigenvectors of the sparse, symmetric matrix M can be found without

performing a full matrix diagonalization (Bai et al., 2000). Operations involving M can also exploit

its representation as the product of two sparse matrices,

M = (I−W )⊤(I−W),

giving substantial computational savings for large values of N. In particular, left multiplication

by M (the subroutine required by most sparse eigensolvers) can be performed as:

M~v = (~v−W~v)−W⊤(~v−W~v),

requiring just one multiplication by W and one multiplication by W⊤. Thus, the matrix M never

needs to be explicitly created or stored; it is sufficient just to store and multiply by the (even sparser)

matrix W . An efficient implementation of the multiplication ~v← M~v can be achieved using the

update~v←~v−W~v followed by the update~v←~v−W⊤~v.

The final step of LLE is typically the most computationally expensive. Without special opti-

mizations, computing the bottom eigenvectors scales as O(dN2), linearly in the number of embed-

ding dimensions, d, and quadratically in the number of data points, N. Specialized methods for

sparse, symmetric eigenproblems (Bai et al., 2000; Fokkema et al., 1998), however, can be used to

reduce the complexity to subquadratic in N. For very large problems, one can consider alternative

methods for optimizing the embedding cost function, such as direct descent by conjugate gradi-

ent methods (Press et al., 1993), iterative partial minimizations, Lanczos iterations, or stochastic

gradient descent (LeCun et al., 1998).

Note that the dth coordinate output by LLE always corresponds to the (d + 1)st smallest eigen-

vector of the matrix M, regardless of the total number of outputs computed or the order in which

they are calculated. Thus, for efficiency or convenience, we can compute the bottom eigenvectors of

Equation (7) one at a time, yielding a “nested” set of embeddings in successively higher dimensions.

5. Extensions

In this section, we describe several useful extensions to the basic LLE algorithm, including the

handling of input in the form of pairwise distances, the use of convex reconstructions, and the

estimation of a manifold’s underlying dimensionality.
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5.1 LLE from Pairwise Distances

The LLE algorithm, as described in Figure 2, takes as input the N high dimensional vectors, ~Xi. In

many settings, however, the user may not have access to data of this form, but only to measurements

of dissimilarity or distance between data points. A simple variation of LLE can be applied to input

of this form. In this way, matrices of pairwise distances can be analyzed by LLE just as easily as by

MDS (Cox and Cox, 1994) or other distance-based approaches to dimensionality reduction (Tenen-

baum et al., 2000).

To derive the reconstruction weights for each data point, we need to compute the Gram matrix

G jk between its nearest neighbors, as defined by Equation (4). This matrix can be found by inferring

dot products from pairwise distances in exactly the same manner as MDS. In particular, consider

a point ~x and its K neighbors ηi, and let Si j denote the symmetric square matrix, of size (K+1)×
(K+1), that records pairwise squared distances between these points. (In a slight abuse of notation,

here we will allow the indices to range from i, j = 0,1, . . . ,K, where positive values refer to the K

neighbors of ~x and the zero index refers to the point ~x itself.) For the purpose of computing the

Gram matrix G in Equation (4), we can assume without loss of generality that these K+1 points are

centered on the origin. In this case, their dot products ρi j are given exactly in terms of their pairwise

squared distances Si j by:

ρi j =
1

2

[

(

1

K+1

)

K

∑
k=0

(Sik + Sk j)−

(

1

K+1

)2 K

∑
k,ℓ=0

Skℓ−Si j

]

.

In terms of our earlier notation, the elements in this matrix store the dot products ρ00 = |~x|2, ρ0 j =
~x ·~η j (for j > 0), and ρi j =~ηi ·~η j (for i, j > 0). The elements of the “local” Gram matrix Gi j are

given in terms of these dot products ρi j by:

Gi j = (~x−~ηi) · (~x−~η j) = ρ00−ρi0−ρ0 j +ρi j.

Note that Gi j is a K×K square matrix, whereas ρi j is one dimension larger. In terms of the Gram

matrix Gi j, the reconstruction weights for each data point are given by Equation (5). The rest of the

algorithm proceeds as usual.

Note that this variant of LLE does not in fact require the complete N×N matrix of pairwise

distances. Instead, for each data point, the user needs only to specify the nearest neighbors, the

distances to neighbors, and the pairwise distances between neighbors. This information can be

conveniently stored in a sparse matrix. The first step of the algorithm remains to identify nearest

neighbors; these can be identified, for example, by the K smallest non-missing elements of each

row in the given distance matrix.

It is natural to wonder if this variant of LLE could succeed with the user specifying even

fewer elements in the matrix of pairwise distances. Figure 12 shows that just preserving the

pairwise distances between nearest neighbors is not in general sufficient to recover an underlying

manifold. Consider the three dimensional data set whose points have integer coordinates satisfy-

ing x+ y+ z = 0; that is, they lie at the sites of a planar square lattice. Suppose that points with even

x-coordinates are colored black and those with odd x-coordinates are colored white. The degenerate

“two point” embedding that maps all black points to the origin and all white points one unit away

exactly preserves the distance between each point and its four nearest neighbors. Nevertheless, this

embedding completely fails to preserve the structure of the underlying manifold.
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Figure 12: Preserving just the distances to nearest neighbors is not sufficient to recover the under-

lying manifold. Shown above is a trivial “two-point” embedding that exactly preserves

the distances between each point and its four nearest neighbors without revealing the

two dimensional structure of the data.

5.2 Convex Reconstructions

The rows of the weight matrix Wi j computed by the second step of LLE are constrained to sum to

one but may be either positive or negative. In simple geometric terms, this constraint forces the

reconstruction of each data point to lie in the subspace spanned by its nearest neighbors; the optimal

weights compute the projection of the data point into this subspace. One can additionally constrain

these weights to be nonnegative, thus forcing the reconstruction of each data point to lie within

the convex hull of its neighbors. It is more expensive to compute the least squares solution with

nonnegativity constraints, but the additional cost is usually negligible compared to the other two

steps of LLE.5 In conjunction with the sum-to-one constraint, the constraint of nonnegativity limits

the weights strictly to the range [0,1]. Such a constraint has both advantages and disadvantages.

On one hand, it tends to increase the robustness of linear fits to outliers. On the other hand, it can

degrade the reconstruction of data points that lie on the boundary of a manifold and outside the

convex hull of their neighbors. For such points, negative weights may be helpful.

A general prescription for using convex versus linear reconstructions does not exist to cover all

applications of LLE. In certain applications, it may be straightforward to certify that neighborhoods

are free of outliers, thus minimizing the dangers of unbounded weights; in others, it may be sim-

pler to choose K nearest neighbors everywhere and and require convex reconstructions. A useful

heuristic is to inspect a histogram of the reconstruction weights obtained without nonnegativity con-

straints. If certain data points have very large (positive or negative) reconstruction weights, it may

be wise to re-assign their neighbors or to constrain their linear reconstructions to be convex. In our

5. In particular, one must solve a problem in quadratic programming: minimize ∑ jk w jwkG jk from Equation (3) subject

to ∑ j w j =1 and w j≥0. The required optimization is convex, with solutions that often lie on the edge of the constraint

region (Judge and Takayama, 1966).
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applications of LLE to images and other data sets, these warning signals did not arise. Thus, in our

general experience, we have not found the extra constraint of convexity to be especially necessary

for well-sampled data.

5.3 Estimating the Intrinsic Dimensionality, d

Given data sampled from an underlying manifold, it is naturally of interest to estimate the mani-

fold’s intrinsic dimensionality, d. Recall how PCA solves this problem for linear subspaces: the

dimensionality is estimated by the number of eigenvalues of the sample covariance matrix compa-

rable in magnitude to the largest eigenvalue. An analogous strategy for LLE (Perona and Polito,

2002) immediately suggests itself—that is, to estimate d by the number of eigenvalues compara-

ble in magnitude to the smallest nonzero eigenvalue of the cost matrix, M, from Equation (7). In

practice, however, we have found this procedure to work only for contrived examples, such as data

that lies on an essentially linear manifold, or data that has been sampled in an especially uniform

way (so that the lowest nonzero eigenvalues are equal or nearly equal due to symmetry). More

generally, we have not found it to be reliable. Figure 13 plots the eigenvalue spectrum of the cost

matrix in Equation (7) for several data sets of intrinsic dimensionality d =2. The eigenvalues reveal

a distinguishing signature at d =2 in some of these plots, but not in others.

We have found it more useful to rely on classical methods (Pettis et al., 1979) for estimating

the intrinsic dimensionality d of a data set. One way to estimate this dimensionality is by examin-

ing the eigenvalue spectra of local covariance matrices. Performing in essence a local PCA in the

neighborhood of each data point, we can then ask whether these analyses yield a consistent estimate

of the intrinsic dimensionality. Yet another estimate can be obtained by box-counting. Suppose we

consider two points to be neighbors if they lie within a distance, ε. If the data are uniformly sam-

pled over the manifold, then the number of neighbors should scale for small ε as Kε ∝ ε d, where d

is the intrinsic dimensionality. Recently, robust variations on this basic idea have been developed

to estimate the intrinsic dimensionality of finite data sets with noise and several degrees of free-

dom (Brand, 2003; Kegl, 2003). Both these methods can be used prior to the final step of LLE to

set the number of embedding coordinates computed by the algorithm.

5.4 Enforcing the Intrinsic Dimensionality, d

LLE normally computes an ordered set of embedding coordinates without assuming the particular

number that will be used. In some applications, however, a manifold’s intrinsic dimensionality

may be known a priori, or the user may wish to bias the results of LLE toward an embedding

of a particular dimensionality (such as d = 2, which is easily visualized). In these circumstances,

the second step of LLE can be modified in a simple way to suppress spurious or noisy degrees of

freedom and force a desired intrinsic dimensionality, d. For each data point, the idea is to project

its neighbors into their d-dimensional subspace of maximal variance before performing the least

squares reconstruction. The subspace is computed from the d dominant eigenvectors of the Gram

matrix G in Equation (4). The effect of this projection is to limit the rank of G before solving for the

reconstruction weights. (Note that this is a far better way to limit the rank of the Gram matrix than

simply reducing the number of nearest neighbors.) The reconstruction weights are then computed

as before, but from the rank-limited Gram matrix (and using the minimum norm solution to the least

squares problem).
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Figure 13: Eigenvalues from the third step of LLE are not reliable indicators of intrinsic dimen-

sionality. Plots show the smallest nonzero eigenvalues λn of the embedding cost matrix

in Equation (7) for several data sets. The gap between the n=2 and n=3 eigenvalues

reveals the true dimensionality (d =2) of regularly sampled data in the plane and on the

sphere. There is no similar signature, however, for the randomly sampled data on the

two bottom manifolds.

As an example of this method, Figure 14 shows the results of applying LLE to scanned images

of handwritten digits from the USPS data set (Hull, 1994). The digits (ZERO through NINE) were

taken from zip codes on Buffalo postal envelopes. The images were preprocessed by downsampling

to 16×16 resolution (D=256) and quantizing the grayscale intensity to 256 levels. The inputs ~Xi to

LLE were the raw pixel values. For the results in Figure 14, neighbors were projected into an eight
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Figure 14: Embeddings of N =11000 handwritten digits from K = 18 nearest neighbors per digit.

The inputs ~Xi were grayscale images of handwritten numerals (ZERO through NINE)

taken from the USPS data set (Hull, 1994) at 16×16 resolution (D=256) A maximum

manifold dimensionality of d =8 was enforced by singular value decomposition of the

local Gram matrices, as described in Section 5.4. The top panels show the first two

coordinates discovered by LLE. Many digit classes (labelled) are well clustered in just

these two dimensions. Classes that overlap in the first two dimensions are typically

separated in others, as the bottom panels show for FIVES versus EIGHTS in the third,

fifth and seventh LLE coordinates.

dimensional subspace (d = 8) before performing the least squares reconstructions and computing

the weights Wi j. Interestingly, the resulting embedding provides a low dimensional clustering of the

handwritten digits, even though LLE did not itself make use of the labels distinguishing different

digits. Note that digit classes confounded in certain projections are often separated in others. En-

forcing the dimensionality of d =8 is not essential for this effect; it is interesting to see, however,

that this number does yield an accurate clustering, with the higher-order coordinates discovered by

LLE playing as important a role as the first and second.
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6. From embeddings to mappings

LLE provides an embedding for the fixed set of training data to which the algorithm is applied.

Often, however, we need to generalize the results of LLE to new locations in the input space. For

example, suppose that we are asked to compute the output ~y corresponding to a new input ~x. In

principle, we could rerun the entire LLE algorithm with the original data set augmented by the new

input. For large data sets of high dimensionality, however, this approach is prohibitively expensive.

For the purposes of generalization, it is therefore useful to derive an explicit mapping between the

high and low dimensional spaces of LLE that does not require an expensive eigenvector calculation

for each query. A natural question is how to construct such a mapping given the results of LLE

from a previous run of the algorithm. In this section, we describe two possible solutions—one

non-parametric, one parametric—to this problem.

6.1 Non-parametric Model

The non-parametric solution relies on a natural mapping between the low and high dimensional

spaces of LLE. In particular, to compute the output~y for a new input~x, we can do the following: (i)

identify the K nearest neighbors of ~x among the training inputs; (ii) compute the linear weights w j

that best reconstruct ~x from its neighbors, subject to the sum-to-one constraint, ∑ j w j = 1; (iii)

output ~y = ∑ j w j
~Yj, where the sum is over the outputs corresponding to the neighbors of ~x. A

non-parametric mapping from the embedding space to the input space can be derived in the same

manner: to compute the input ~x for a new output ~y, identify the nearest neighbors of ~y among the

training outputs, compute the analogous reconstruction weights, and output~x = ∑ j w j
~X j. (Note that

in this direction, moreover, there does not exist the option of rerunning LLE on an augmented data

set.)

To evaluate the usefulness of this non-parametric mapping, we investigated LLE as a front

end for statistical pattern recognition. Dimensionality reduction is often used as a form of feature

extraction to simplify or accelerate other algorithms in machine learning. We compared the features

produced by LLE to those of PCA for a benchmark problem in handwritten digit recognition. The

raw data were images of handwritten digits from the USPS database, as described in Section 5.4.

Half the images (5500 examples, 550 per digit) was used for training, and the other half for testing.

On test images, LLE features were computed by nearest-neighbor interpolation from the training

images (as described above), while PCA features were computed by subtracting the mean of the

training images then projecting onto their principal components.

Two simple classifiers were implemented: a K-nearest-neighbor classifier—with K chosen to

optimize leave-one-out performance on the training set—and a log-linear classifier obtained from

multiclass logistic regression (or softmax regression) (Bishop, 1996). The parameters of the softmax

regression were set to maximize the conditional log likelihood of the training set. As features for

these classifiers, we used either the first d coordinates discovered by LLE on the entire (unlabeled)

training set of 5500 images, or else the projection onto the first d principal components of the

training data, as computed by running PCA on the training set (i.e. subtracting the sample mean

and finding the leading eigenvectors of the sample covariance matrix). LLE was run using K = 18

nearest neighbors per data point to compute the reconstruction weights.

Figure 15 shows the results of these experiments. For small numbers of features, LLE leads

to significantly lower error rates than PCA on both the training and test sets (though only the test

error rates are shown in the figure). These results suggest that nearest-neighbor interpolation is an
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Figure 15: Comparison of LLE and PCA features for classification of handwritten digits from the

USPS database (Hull, 1994). Both K-nearest neighbor (K-NN) and log-linear classifiers

were evaluated; see the text for more details. The plots show error rates on the test set,

for which LLE features were computed by nearest-neighbor interpolation. LLE features

initially lead to better performance, but a crossover in error rates occurs as the number of

features approaches the neighborhood size (K = 18) in LLE. For reference, the test error

rate of K-NN applied directly to the high dimensional (D = 256) digit images (without

any feature extraction) is 7.6%, using 4 nearest neighbors.

effective way to apply LLE to test examples. Note, however, that a crossover in error rates occurs

as the number of features approaches the neighborhood size (K = 18) used in the preprocessing by

LLE. In this regime, it appears that LLE cannot extract further information from its locally linear

fits; thus, its performance saturates while that of PCA continues to improve. Taking more neighbors

in LLE might extend the number of meaningful features that could be extracted, but in this case,

one would lose the benefits of nonlinearity (assuming that the sampling density of the data is held

fixed, and that the underlying manifold is only locally linear over a fixed scale).

In summary, the non-parametric mapping derived from nearest-neighbor interpolation is based

on the same underlying intuitions as LLE. It provides a simple way to generalize to new data when

the assumptions of local linearity are met. An open problem is to establish the asymptotic con-

ditions under which this non-parametric mappings yield the same (or nearly the same) result as

rerunning LLE on the augmented data set of original plus new inputs. Though straightforward to

implement, this approach to generalization has the disadvantage that it requires access to the entire

set of previously analyzed inputs and outputs — potentially a large demand in storage. Also, the

non-parametric mapping can change discontinuously as query points move between different neigh-

borhoods of the inputs ~Xi or outputs ~Yi. These concerns motivate the parametric model discussed in

the next section.
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6.2 Parametric Model

Methods in supervised learning and function approximation can be used to derive more compact

mappings that generalize over large portions of the input and embedding space. In particular, one

can take the input-output pairs of LLE as training data for an invertible function approximator and

learn a parametric mapping between the two spaces. Here, we discuss one such approach that is

based on similar intuitions as its non-parametric counterpart.

Given the results of LLE, we consider how to learn a probabilistic model of the joint distribu-

tion, P(~x,~y), over the input and embedding spaces. The joint distribution can be used to map inputs

to outputs and vice versa by computing the expected values E[~y|~x] and E[~x|~y]. To represent the joint

distribution, we propose a mixture model (McLachlan and Basford, 1988) that is specifically tai-

lored to data that lies on a low dimensional manifold. The individual components of this mixture

model are used to represent the densities of locally linear neighborhoods on the manifold. Mixture

models have been widely used for this purpose in the past (Beymer and Poggio, 1996; Bregler and

Omohundro, 1995; Hinton et al., 1997; Kambhatla and Leen, 1997; Roweis et al., 2002; Saul and

Rahim, 1999; Vlassis et al., 2002), so their treatment here is necessarily brief.

The model that we consider is a mixture of conditional linear models with Gaussian noise dis-

tributions. It describes a three-step generative process for high and low dimensional vectors~x ∈R D

and~y ∈ R d . First, a discrete hidden variable z is sampled from its prior distribution, P(z), to select

a particular neighborhood on the manifold. Next, a d-dimensional vector ~y is sampled from a con-

ditional Gaussian distribution, P(~y|z), with mean vector~νz and (full) covariance matrix Σz. Finally,

a D-dimensional vector ~x is sampled from a conditional Gaussian distribution, P(~x|~y,z) with mean

vector Λz~y +~µz and diagonal covariance matrix Ψz. Here, Λz is a D×d loading matrix that de-

scribes the locally linear mapping from low to high dimensional observations. The model is similar

to an unsupervised mixture of factor analyzers (Rubin and Thayer, 1982; Ghahramani and Hinton,

1996), except that the low dimensional variable ~y is observed, not hidden, and the Gaussian distri-

butions P(~y|z) have nonzero mean vectors and full covariance matrices. The overall distribution is

given by:

P(~x,~y,z) = P(~x|~y,z)P(~y|z)P(z)

P(~x|~y,z) =
|Ψz|

−1/2

(2π)D/2
exp

{

−
1

2
[~x−Λz~y−~µz]

T Ψ−1
z [~x−Λz~y−~µz]

}

P(~y|z) =
|Σz|

−1/2

(2π)d/2
exp

{

−
1

2
[~y−~νz]

T Σ−1
z [~y−~νz]

}

.

The parameters in this model which need to be estimated from data are the prior probabilities P(z),
the mean vectors~νz and~µz, the full covariance matrices Σz and the diagonal covariance matrices Ψz,

and the loading matrices Λz. The training examples for the model consist of the input-output pairs

from a D-dimensional data set ~X and its d-dimensional locally linear embedding ~Y .

The parameters in this model can be learned by an Expectation-Maximization (EM) algorithm

for maximum likelihood estimation (Dempster et al., 1977). The EM algorithm is an iterative proce-

dure that attempts to maximize the total log-likelihood of observed input-output pairs in the training

set. The re-estimation formulae for this model are given in Appendix A.

Figure 16 shows a model with 32 mixture components learned from the results of LLE on the S-

shaped manifold in Figure 1. The Gaussian distributions P(~x|~y,z) are depicted by planes centered on

the points Λz~νz +~µz, whose normal vectors are perpendicular to the subspaces spanned by the rows
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Figure 16: Mixture of linear models learned from data sampled from the surface of a two dimen-

sional manifold. Each mixture component parameterizes the density over a locally linear

neighborhood on the manifold. The mixture model with 32 components was trained on

the input-output pairs of LLE shown in the top row of Figure 1. Thick lines indicate

increasing coordinates on the manifold, while light squares (and their normals) indicate

the subspaces modeled by individual mixture components. Parameters of the mixture

model were estimated by the EM algorithm described in Section 6.2 and appendix A.

of Λz. These subspaces very accurately model the locally linear neighborhoods on the manifold

(d = 2) from which the data was generated. Note that mixture models in high dimensional spaces

(even D=3) are typically plagued by very poor local minima, and that an unsupervised mixture of

factor analyzers—treating ~y as a hidden variable—would be unlikely to discover a solution of this

quality. Clamping these latent variables to the outputs of LLE, as is done here, makes learning much

easier.

7. Discussion

We conclude by tracing the origins of this work, comparing LLE to other well known algorithms

for nonlinear dimensionality reduction, and mentioning some open problems for future research.

7.1 Early Motivation

The motivation for LLE arose from an extended line on work on mixture models. A number of re-

searchers had shown that mixtures of locally linear models could be used to parameterize the distri-

butions of data sets sampled from underlying manifolds (Bregler and Omohundro, 1995; Kambhatla

and Leen, 1997; Ghahramani and Hinton, 1996; Hinton et al., 1997; Saul and Rahim, 1999). These

density models, however, exhibited a peculiar degeneracy: their objective functions (measuring ei-

ther least squares reconstruction error or log likelihood) were invariant to arbitrary rotations and

reflections of the local coordinate systems in each linear model. In other words, their learning algo-

rithms did not favor a consistent alignment of the local linear models, but instead yielded internal

representations that changed unpredictably as one traversed connected paths on the manifold.
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LLE was designed to overcome this shortcoming—to discover a single global coordinate system

of lower dimensionality. Initially, we imagined that such a coordinate system could be obtained by

patching together the local coordinate systems of individual components in a mixture model (Hinton

and Revow, 1998). Difficulties with this approach led us to consider a non-parametric setting in

which the local coordinate systems were defined by each data point and its nearest neighbors. The

main novelty of LLE lies, we believe, in its appeal to particular symmetries. The reconstruction

weights in LLE capture the intrinsic geometric properties of local neighborhoods—namely, those

properties invariant to translation, rotation, and scaling. The appeal to these symmetries was directly

motivated by the degeneracy observed in earlier work on mixture models.

While LLE is a non-parametric method, recent studies (Roweis et al., 2002; Verbeek et al.,

2002a) have, in fact, shown that it is possible to learn a probabilistic mixture model whose indi-

vidual coordinate systems are aligned in a consistent way, thus unifying nonlinear dimensionality

reduction and density estimation in a single framework. These approaches rely on LLE to initialize

certain parameter estimates and overcome the otherwise difficult problem of local maxima. Related

eigenvector methods have also been proposed (Brand, 2003; Teh and Roweis, 2003) that decouple

the processes of density estimation and manifold learning into two consecutive steps. First, a local

density model, with the degeneracies described above, is fit to the data. Second, the internal co-

ordinate systems of the model are “post-aligned” in a way that does not change the likelihood, but

achieves the goal of learning global structure.

7.2 Related and Ongoing Work

At its core, LLE uses linear methods—least squares optimization and matrix diagonalization—to

obtain highly nonlinear embeddings. The only element of nonlinearity is introduced by the first step

of the algorithm—a nearest neighbor search—which can be viewed as a highly nonlinear thresh-

olding procedure. Because its optimizations are straightforward to implement and do not involve

local minima, LLE compares favorably in implementation cost to purely linear methods, such as

PCA and classical MDS. Unlike these methods, however, LLE can be used to address problems in

nonlinear dimensionality reduction, and so may yield superior results. LLE also generates a sparse

eigenvalue problem, as opposed to the dense eigenvalue problems in PCA and MDS. This has many

advantages for scaling its computations up to large, high dimensional data sets.

LLE illustrates a general principle, elucidated by earlier studies (Martinetz and Schulten, 1994;

Tenenbaum, 1998), that overlapping local neighborhoods—collectively analyzed—can provide in-

formation about global geometry. The formulation of LLE in terms of reconstruction weights and

eigenvectors arose, somewhat serendipitously, from a completely unrelated line of work in signal

processing (Saul and Allen, 2001). LLE is more properly viewed, however, as belonging to a fam-

ily of recently proposed algorithms that use eigenvector methods to solve highly nonlinear prob-

lems in dimensionality reduction, clustering, and image segmentation (Belkin and Niyogi, 2002;

Ng et al., 2002; Schölkopf et al., 1998; Shi and Malik, 2000; Tenenbaum et al., 2000; Weiss, 1999).

These algorithms—discussed in more detail below—avoid many of the pitfalls that plague other

nonlinear approaches, such as autoencoder neural networks (DeMers and Cottrell, 1993; Kramer,

1991), self-organizing maps (Durbin and Wilshaw, 1987; Kohonen, 1988), latent variable mod-

els (Bishop et al., 1998), principal curves and surfaces (Hastie and Stuetzle, 1989; Verbeek et al.,

2002b), and many variants on multidimensional scaling (Cox and Cox, 1994; Klock and Buhmann,

1999; Littman et al., 1992; Takane and Young, 1977). These latter approaches, especially those
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based on hill-climbing methods, do not have the same guarantees of global optimality or conver-

gence as eigenvector methods; they also tend to involve many free parameters, such as learning

rates, initial conditions, convergence criteria, and architectural specifications—all of which must be

tuned by the user or set by cross validation.

The first and third steps of LLE are similar to those of the normalized cut algorithm for image

segmentation (Shi and Malik, 2000) and related Laplacian-based methods for clustering (Ng et al.,

2002) and dimensionality reduction (Belkin and Niyogi, 2002). At the heart of all these algorithms

is a sparse eigenvalue problem derived from a weighted graph representing neighborhood relations.

Recent work (Belkin and Niyogi, 2002) has related LLE to the Laplacian-based methods and ar-

gued that both approaches can be understood in terms of a unified framework for clustering and

dimensionality reduction (see also Brand and Huang, 2003; Bengio et al., 2003). There have been

several extensions of the normalized cut algorithm for clustering and image segmentation—to di-

rected graphs (Yu and Shi, 2001) and to probabilistic settings (Meila and Shi, 2000)–that would be

interesting to explore for problems in manifold learning. Likewise, Figure 14 gives an indication that

LLE might be useful for certain types of clustering: the algorithm’s unsupervised dimensionality

reduction of N =11000 handwritten digits (from D=256 to d =8) largely preserves the separation

between different classes.

A different but equally successful approach to nonlinear dimensionality reduction is the Isomap

algorithm (Tenenbaum, 1998; Tenenbaum et al., 2000). Isomap is a nonlinear generalization of

MDS in which embeddings are optimized to preserve “geodesic” distances between pairs of data

points—that is to say, distances along the manifold from which the data is sampled. These dis-

tances are estimated by computing shortest paths through large sublattices of data. Like LLE, the

Isomap algorithm has three steps: (i) construct a graph in which each data point is connected to its

nearest neighbors; (ii) compute the shortest distance between all pairs of data points among only

those paths that connect nearest neighbors; (iii) embed the data via MDS so as to preserve these

distances. Though similiar in its aims, Isomap is based on a radically different philosophy than LLE

(as well as the other Laplacian-based spectral methods discussed above). In particular, Isomap at-

tempts to preserve the global geometric properties of the manifold, as characterized by the geodesic

distances between faraway points, while LLE attempts to preserve the local geometric properties of

the manifold, as characterized by the linear coefficients of local reconstructions.

As LLE and Isomap are based on somewhat different intuitions, when they break down, they

tend to make different errors. The embeddings of LLE are optimized to preserve the geometry of

nearby inputs; though the collective neighborhoods of these inputs are overlapping, the coupling

between faraway inputs can be severely attenuated if the data is noisy, sparse, or weakly connected.

Thus, the most common failure mode of LLE (often arising if the manifold is undersampled) is to

map faraway inputs to nearby outputs6 in the embedding space. By contrast, the embedding cost

for Isomap is dominated by the (geodesic) distances between faraway inputs. Thus, its embeddings

are biased to preserve the separation of faraway inputs at the expense of distortions in the local

geometry. Depending on the application, one algorithm or the other may be most appropriate. A

difficult example for LLE is shown in Figure 17, where the data was generated from the volume

of a three-dimensional “barbell”. For this example, most settings of the parameters K and ∆ in the

6. Such failures can be detected by computing pairwise distances between outputs and testing that nearby outputs

correspond to nearby inputs. Note that one could modify the embedding cost function in Equation (2) to include

repulsive as well as attractive terms—in other words, to push non-neighbors apart as well as to keep neighbors close.

This, however, creates a less sparse eigenvalue problem.
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Figure 17: A difficult data set for LLE. Top: data generated from the volume of a three-dimensional

barbell. Bottom left: a two dimensional embedding obtained from carefully tuned pa-

rameter settings for the number of nearest neighbors, K, and the regularization coeffi-

cient, ∆ = 0.3. Bottom right: a more typical result from LLE, where the algorithm fails

to discover a faithful embedding. The different colors and symbols reveal the embedding

for different parts of the barbell.

LLE algorithm do not lead to reasonable results. Arguably, in this case, the data is best described

as belonging to a collection of manifolds of different dimensionality. Thus, it would appear that a

hybrid strategy of some sort (e.g., identifying weakly connected components, varying the number

of neighbors K per data point) is required by LLE to give consistently faithful embeddings.

Other important differences between LLE and Isomap are worth mentioning. In terms of com-

putational requirements, LLE does not involve the need to solve large dynamic programming prob-

lems, such as computing the geodesic distances between data points. It also creates only very sparse

matrices, whose structure can be exploited for savings in time and space. This efficiency gain is

especially important when attempting to diagonalize large matrices. By subsampling the data to use

147



SAUL AND ROWEIS

only certain “landmark” points, Isomap’s optimization can also be made relatively sparse, although

at the expense of approximating its original objective function.

In Section 3, we conjectured that under appropriate conditions, LLE can recover conformal

mappings—mappings which locally preserve angles, but not necessarily distances. Such mappings

cannot generally be recovered by Isomap, whose embeddings explicitly aim to preserve the dis-

tances between inputs. Noting this, de Silva and Tenenbaum (2002) recently proposed a variant of

Isomap that is able to recover conformal mappings, under the assumption that the data is distributed

uniformly (or with known density) in the low dimensional embedding space. The new algorithm,

called c-Isomap, uses the observed density in the high dimensional input space to estimate and

correct for the local neighborhood scaling factor of the conformal mapping.

Certain formal guarantees have been established for Isomap (Tenenbaum et al., 2000; Donoho

and Grimes, 2002) and c-Isomap (de Silva and Tenenbaum, 2002), and more recently, for a refor-

mulation of LLE that uses Hessian information (Donoho and Grimes, 2003). The strongest results

show that in the asymptotic limit of infinite sampling, both Isomap and “Hessian LLE” can recover

manifolds that are locally isometric to subsets of a lower dimensional Euclidean space. For Isomap,

these subsets must be open and convex, whereas for Hessian LLE, they need only be open and

connected. The contrast here is particularly interesting, showing that the principles behind Isomap

and LLE give rise to algorithms with provably different properties. Notwithstanding these recent

results, our theoretical understanding of algorithms for nonlinear dimensionality reduction is far

from complete. Important issues for LLE are its non-asymptotic behavior for finite data sets and

its suitability for manifolds that can be conformally (but not isometrically) mapped to subsets of a

lower dimensional Euclidean space.

Yet another eigenvector-based algorithm for nonlinear dimensionality reduction is kernel

PCA (Schölkopf et al., 1998). This approach builds on the observation that PCA can be formu-

lated entirely in terms of dot products between data points. In kernel PCA, one substitutes the

inner product of a Hilbert space for the normally Euclidean dot products of PCA. This amounts to

performing PCA on a nonlinear mapping of the original inputs into a different (possibly infinite di-

mensional) space where their intrinsically low dimensional structure is easier to discover. Williams

(2001) has pointed out a connection between kernel PCA and metric MDS. Unlike LLE, kernel

PCA does not appeal explicitly to the notion that the data lies on a manifold. However, by viewing

the elements of the cost matrix M in Equation (7) as kernel evaluations for pairs of inputs, LLE can

be seen as kernel PCA for a particular choice of kernel (Schölkopf and Smola, 2002, see p. 455).

In related work, a “kernalized” version of LLE has been proposed (DeCoste, 2001) to visualize the

effects of different kernels.

This paper has focused on the application of LLE to high dimensional data sampled (or believed

to be sampled) from a low dimensional manifold. LLE can also be applied to data for which the

existence of an underlying manifold is not obvious. In particular, while we have focused on real

valued signals such as images, relationships between categorial or discrete valued quantities can also

be analyzed with LLE. In previous work (Roweis and Saul, 2000), for example, we applied LLE

to documents of text, where it can be viewed as a nonlinear alternative to the traditional method of

latent semantic analysis (Deerwester et al., 1990).

Whatever the application, though, certain limitations of the algorithm should be kept in mind.

Not all manifolds are suitable for LLE, even in the asymptotic limit of infinite data. How should

we handle manifolds, such as the sphere and the torus, that do not admit a uniformly continuous

mapping to the plane (Pless and Simon, 2001)? Likewise, how should we embed data sets whose
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intrinsic dimensionality is not the same in all parts of space (as in the barbell example), or whose

structure is better described as fractal? Further work is needed in these settings. A closely related

issue—how to cope with poorly or nonuniformly sampled data—should also be investigated. While

the success of LLE hinges on a sufficiently dense sampling of the underlying manifold, recent

work (Ham et al., 2003) suggests that bootstrapping methods and self-consistency constraints can

be used to improve the algorithm’s performance on smaller data sets.

7.3 Summary

In this paper, we have provided a thorough survey of the LLE algorithm—the details of its im-

plementation, an assortment of possible uses and extensions, and its relation to other eigenvector

methods for clustering and nonlinear dimensionality reduction. LLE is, of course, an unsupervised

learning algorithm, one that does not require labeled inputs or other types of feedback from the

learning environment. An oft-made criticism of unsupervised algorithms is that they attempt to

solve a harder problem than is necessary for any particular task (or in some cases, even the wrong

problem altogether). In our view, LLE belongs to a new class of unsupervised learning algorithms

that removes much of the force behind this argument. These new algorithms do not make strong

parametric assumptions, and they are distinguished by simple cost functions, global optimizations,

and the potential to exhibit highly nonlinear behavior. We expect these algorithms to be broadly

useful in many areas of information processing, and particularly as a tool to simplify and accelerate

other forms of machine learning in high dimensional spaces.
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Appendix A. EM Algorithm for Mixture of Linear Models

In this section, we present the update rules for the EM algorithm in Section 6.2. The algorithm is

used to estimate the parameters of that section’s generative model for input-output pairs of LLE, here

denoted by {~xn,~yn}
N
n=1. The derivation is a special case of the full derivation of the EM algorithm for

mixtures of factor analyzers (Ghahramani and Hinton, 1996) and is not repeated here. The E-step

of the EM algorithm uses Bayes’ rule to compute the posterior probabilities:

P(z|~yn,~xn) =
P(~xn|~yn,z)P(~yn|z)P(z)

∑z′ P(~xn|~yn,z′)P(~yn|z′)P(z′)
. (10)
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The M-step uses these posterior probabilities to re-estimate the parameters of the model. To simplify

the updates in the M-step, we introduce the following notation:

γzn = P(z|~xn,~yn),

ωzn =
γzn

∑n′ γzn′
.

Here, γzn and ωzn are the elements of M×N matrices, where M is the number of mixture components

and N is the number of examples. In terms of this notation, the M-step consists of the following

updates, to be performed in the order shown:

~νz ← ∑
n

ωzn~yn, (11)

~Σz ← ∑
n

ωzn [~yn−~νz] [~yn−~νz]
T
, (12)

Λz ← ∑
n

ωzn~xn(~yn−~νz)
T Σ−1

z , (13)

~µz ← ∑
n

ωzn [~xn−Λz~yn] , (14)

[

~Ψz

]

ii
← ∑

n

ωzn [~xn−Λz~yn−~µz]
2
i , (15)

P(z) ←
∑n γzn

∑z′n′ γz′n′
. (16)

The total log-likelihood, L = ∑n log P(~xn,~yn), can also be computed at each iteration, with the

marginal likelihood P(~xn,~yn) for each input-output pair given by the denominator of Equation (10).

The updates in Equations (11–16) are derived in a standard way from the auxiliary function for

EM algorithms (Dempster et al., 1977). Thus, they lead to monotonic improvement in the total

log-likelihood and converge to a stationary point in the model’s parameter space.
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N. Vlassis, Y. Motomura, and B. Kröse. Supervised dimension reduction of intrinsically low-

dimensional data. Neural Computation, 14(1):191–215, 2002.

Y. Weiss. Segmentation using eigenvectors: a unifying view. In Proceedings of the IEEE Interna-

tional Conference on Computer Vision (ICCV), pages 975–982, 1999.

C. K. I. Williams. On a connection between kernel PCA and metric multidimensional scaling. In

T. K. Leen, T. G. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing

Systems 13, pages 675–681, Cambridge, MA, 2001. MIT Press.

S. Yu and J. Shi. Grouping with directed relationships. In M. Figueiredo, J. Zerubia, and A. K.

Jain, editors, Proceedings of the Third International Workshop on Energy Minimization Methods

in Computer Vision and Pattern Recognition, (EMMCVPR-01), volume 2134 of Lecture Notes in

Computer Science, pages 283–297. Springer, 2001.

155


	Think Globally, Fit Locally : Unsupervised Learning of Low Dimensional Manifolds
	Recommended Citation

	Think Globally, Fit Locally : Unsupervised Learning of Low Dimensional Manifolds
	Abstract
	Keywords
	Comments

	saul03a.dvi

