
Think Locally, Act Globally:
Highly Balanced Graph Partitioning?

Peter Sanders, Christian Schulz

Karlsruhe Institute of Technology, Karlsruhe, Germany
{sanders, christian.schulz}@kit.edu

Abstract. We present a novel local improvement scheme for graph partitions that
allows to enforce strict balance constraints. Using negative cycle detection algo-
rithms this scheme combines local searches that individually violate the balance
constraint into a more global feasible improvement. We combine this technique
with an algorithm to balance unbalanced solutions and integrate it into a parallel
multi-level evolutionary algorithm, KaFFPaE, to tackle the problem. Overall, we
obtain a system that is fast on the one hand and on the other hand is able to im-
prove or reproduce many of the best known perfectly balanced partitioning results
reported in the Walshaw benchmark.

1 Introduction

In computer science, engineering, and related fields graph partitioning is a common
technique. For example, in parallel computing good partitionings of unstructured graphs
are very valuable. In this area, graph partitioning is mostly used to partition the under-
lying graph model of computation and communication. Generally speaking, nodes in
this graph represent computation units and edges denote communication. This graph
needs to be partitioned such that there are few edges between the blocks (pieces). In
particular, if we want to use k processors we want to partition the graph into k blocks
of about equal size. Here, we focus on the case when the bounds on the size are very
strict, including the case of perfect balance when the maximal block size has to equal
the average block size.

The problem is NP-hard and hard to approximate on general graphs so that mostly
heuristics are used in practice. A successful heuristic for partitioning large graphs is
the multi-level approach. Here, the graph is recursively contracted to achieve a smaller
graph with the same basic structure. After applying an initial partitioning algorithm to
the smallest graph in the hierarchy, the contraction is undone and, at each level, a local
refinement method is used to improve the partitioning induced by the coarser level.

During the last years we started to put all aspects of the multi-level graph parti-
tioning (MGP) scheme on trial since we had the impression that certain aspects of the
method are not well understood. Our main focus is partition quality rather than parti-
tioning speed. In our sequential MGP framework KaFFPa (Karlsruhe Fast Flow Par-
titioner) [12], we presented novel local search as well as global search algorithms. In

? This paper is a short version of the TR [14].

the Walshaw benchmark [15], KaFFPa was beaten mostly for small graphs that com-
bine multi-level partitioning with an evolutionary algorithm. We therefore developed
an improved evolutionary algorithm, KaFFPaE (KaFFPa Evolutionary) [13], that also
employs coarse grained parallelism. Both of these algorithms are able to compute par-
titions of very high quality in a reasonable amount of time when some imbalance ε > 0
is allowed. However, they are not yet very good for small values of ε, in particular for
the perfectly balanced case ε = 0.

State-of-the-art local search algorithms exchange nodes between blocks of the parti-
tion trying to decrease the cut size while also maintaining balance. This highly restricts
the set of possible improvements. We introduce new techniques that relax the balance
constraint for node movements but globally maintain balance by combining multiple lo-
cal searches. We reduce the combination problem to finding negative cycles in a graph,
exploiting the existence of very efficient algorithms for this problem. We also provide
balancing variants of these techniques that are able to make infeasible partitions feasi-
ble. This makes our partitioner the only current system which is able to guarantee any
balance constraint. From a meta heuristic point of view our techniques are an interesting
example for a local improvement technique that vastly increases the size of the neigh-
borhood by efficiently combining many highly localized infeasible improvements into
a feasible one.

The paper is organized as follows. We begin in Section 2 by introducing basic con-
cepts. After presenting some related work in Section 3 we describe novel improvement
and balancing algorithms in Section 4. Here, we start by explaining the very basic idea
that allows us to find combinations of simple node movements. We then explain directed
local searches and extend the basic idea to a complex model containing more node
movements. This is followed by a description on how these techniques are integrated
into KaFFPaE. A summary of extensive experiments done to evaluate the performance
of our algorithms is presented in Section 5.

2 Preliminaries

Consider an undirected graph G = (V,E, ω) with edge weights ω : E → R>0,
n = |V |, and m = |E|. We extend ω to sets, i.e., ω(E′) :=

∑
e∈E′ ω(e). Γ (v) :=

{u : {v, u} ∈ E} denotes the neighbors of v. We are looking for blocks of nodes
V1,. . . ,Vk that partition V , i.e., V1 ∪ · · · ∪ Vk = V and Vi ∩ Vj = ∅ for i 6= j. A
balancing constraint demands that ∀i ∈ {1..k} : |Vi| ≤ Lmax := (1 + ε)d|V |/ke. In
the perfectly balanced case the imbalance parameter ε is set to zero. The objective is
to minimize the total cut

∑
i<j w(Eij) where Eij := {{u, v} ∈ E : u ∈ Vi, v ∈ Vj}.

A block Vi is called underloaded if |Vi| < Lmax and overloaded if |Vi| > Lmax. A
node v ∈ Vi that has a neighbor w ∈ Vj , i 6= j, is a boundary node. An abstract view
of the partitioned graph is the so called quotient graph, where nodes represent blocks
and edges are induced by connectivity between blocks. Given a partition, the gain of a
node v in block A with respect to a block B is defined as g(A,B) = ω({(v, w) | w ∈
Γ (v)∩B})−ω({(v, w) | w ∈ Γ (v)∩A), i.e. the reduction in the cut when v is moved
from block A to block B. By default, our initial inputs will have unit node weights.
However, the proposed algorithms can be easily extended to handle weighted nodes.

2

3 Related Work

There has been a huge amount of research on graph partitioning so that we refer the
reader to [3]. Well known software packages based on this multi-level approach include,
Jostle [17], Metis [9], and Scotch [11]. However, for various reasons they are not able
guarantee strict balance constraints. KaFFPaE [13] is a distributed parallel evolution-
ary algorithm that uses our multi-level graph partitioning framework KaFFPa [12] to
create individuals and modifies the coarsening phase to provide new effective combine
operations. It currently holds the best results for many graphs in Walshaw’s Benchmark
Archive [15] when some imbalance is allowed. Benlic et al. [2] provided multi-level
memetic algorithms for perfectly balanced graph partitioning. Their approach is able to
compute many entries in Walshaw’s Benchmark Archive [15] for the case ε = 0. How-
ever, they are not able to guarantee that the computed partition is perfectly balanced
especially for larger values of k.

4 Globalized Local Search by Negative Cycle Detection

In this section we describe our local search and balancing algorithms for strictly bal-
anced graph partitioning. Roughly speaking, all of our algorithms consist of two compo-
nents. The first component are local searches on pairs of blocks that share a non-empty
boundary, i.e. all edges in the quotient graph. These local searches are not restricted to
the balance constraint of the graph partitioning problem and are undone after they have
been performed. The second component uses the information gathered in the first com-
ponent. That means we build a model using the node movements performed in the first
step enabling us to find combinations of those node movements that maintain balance.

We begin by describing the very basic algorithm and go on by presenting an ad-
vanced model which enables us to combine complex local searches. This is followed
by a description on how local search and balancing algorithms are put together. At the
end of this section we show how we integrate these algorithms into our evolutionary
framework KaFFPaE.

Basic Idea – Using A Negative Cycle Detection Algorithm. We start with a very
simple case where the first component only moves single nodes. A node in the graph G
can have two states marked and unmarked. By default a node is unmarked. It is called
eligible if it is not adjacent to a previously marked node. We now build the model of
the underlying partition of the graph G, Q = ({1, · · · , k}, E) where (A,B) ∈ E if
there is an edge in G that runs between the blocks A and B. We define edge weights
ωQ : E → R in the following way: for each directed edge e = (A,B) ∈ E in a random
order, find a eligible boundary node v in blockA having maximum gain gmax(A,B), i.e.
a node v that maximizes the reduction in cut size when moving it from blockA to block
B. If there is more than one such node, we break ties randomly. Node v is then marked.
The weight of e is then ωQ(e) := −gmax(A,B), i.e., the negative gain value associated
with moving v from A to B. Note that, in general, ωQ((A,B)) 6= ωQ((B,A)). An
example for this basic model is shown in Figure 1. Observe that the basic model is a

3

A

B

C

A B

C
0

0

−1
−1

0

−1

B

C

A

Fig. 1. Left: example graph partitioned into three parts (A, B and C). Possible candidates are
highlighted. Middle: corresponding model and one negative cycle is highlighted. Right: updated
partition after associated node movements of cycle are performed. Moved nodes are highlighted.

directed and weighted version of the quotient graph and that the selected nodes form an
independent set.

Note that each cycle in this model defines a set of node movements and furthermore
when the associated nodes of a cycle are moved, then each block contains the same
number of nodes as before. Also the weight of a cycle in the model is equal to the
reduction in the cut when the associated node movements are performed. However, the
most important aspect is that a negative cycle in the model corresponds to a set of node
movements that will decrease the overall cut and maintain the balance of the partition.
To detect a negative cycle in this model we introduce a node s and connect it to all
nodes in Q. The weight of the inserted edges is set to zero. We can apply a standard
shortest path algorithm [4] that can handle negative edge weights to detect a negative
cycle. If the model contains a negative cycle we can perform a set of node movements
that will not alter the balance of the blocks since each block obtains and emits a node.

We can find additional useful augmentations by connecting underloaded blocks to
s by a zero weight edge. Now, negative cycles containing s change some block weights
but will not violate any additional balance constraints. Indeed, when the node following
s is overloaded initially, this overload will be reduced.

If there is no negative cycle in the model, we apply a diversification strategy based
on cycles of weight zero. This strategy is explained in the TR [14]. Moreover, we apply
a balancing algorithm which is explained in the following sections. An interesting ob-
servation is that the algorithm can be seen as an extension of the classical FM algorithm
[6] which swaps nodes between two adjacent blocks (two at a time) which is basically
a negative cycle of length two in our model if the gain of the two node movements is
positive.

Advanced Model. We now integrate advanced local search algorithms. Each edge in
the advanced model stands for a set of node movements found by a local search. Hence,
a negative cycle corresponds to a combination of local searches with positive overall
gain that maintain balance or that can improve balance. Before we build the advanced
model we perform directed local search on each pair of blocks that share a non-empty
boundary, i.e. each pair of blocks that is adjacent in the quotient graph. A local search
on a directed pair of blocks (A,B) is only allowed to move nodes from block A to
block B. The order in which the directed local search between a directed pair of blocks
is performed is random. That means we pick a random directed adjacent pair of blocks

4

on which local search has not been performed yet and perform local search as described
below. This is done until local search was done between all directed adjacent pairs of
blocks once.

Directed Local Search. We now explain how we perform a directed local search be-
tween a pair (A,B) of blocks. A directed local search between two blocks A and B is
very localized akin to the multi-try method used in KaFFPa [12]. However, a directed
local search between A and B is restricted to move nodes from block A to block B. It
is similar to the FM-algorithm: We start with a single random eligible boundary node
of block A having maximum gain gmax(A,B) and put this node into a priority queue.
The priority queue contains nodes of the block A that are valid to move. The priority is
based on the gain, i.e. the decrease in edge cut when the node is moved from block A
to block B. We always move the node that has the highest priority to block B. After a
node is moved, its eligible neighbors that are in block A, are inserted into the priority
queue. We perform at most τ steps per directed local search, where τ is a parameter.
Note that during a directed local search we only move nodes that are not incident to
a node moved during a previous directed local search. This restriction is necessary to
keep the model described below accurate. Thus we mark all nodes touched during a
directed local search after it was performed which also implies that each node is moved
at most once. In addition, all moved nodes are moved back to their origin, since these
movements would make the partition imbalanced. We stress that all nodes incident to
nodes that have been moved during a directed local search are not eligible for any later
local search during the construction since this would make the gain values computed
imprecise.

The Model Graph. The advanced model allows us to find combinations of directed
local searches such that the balance of the given partition is at least maintained. The
challenge here is that, in contrast to movements of single nodes, we cannot combine
arbitrary local searches since they do not all move the same number of nodes. Hence,
we specify a more sophisticated graph with the property that a negative cycle maintains
feasibility.

The local search process described above yields for each pair of blocks e = (A,B)
in the quotient graph a sequence of node movements Se and a sequence of gain values
ge. The d’th value in ge corresponds to the reduction in the cut between the pair of
blocks (A,B) when the first d nodes in Se are moved from their source block A to
their target block B. By construction, a node v ∈ V can occur in at most one of the
sequences created and in its sequence only once.

Generally speaking, the advanced model consists of τ layers. Essentially each layer
is a copy of the quotient graph. An edge starting and ending in layer d of this model
corresponds to the movement of exactly d nodes. The weight of an edge e = (A,B) in
layer d of the model is set to the negative value of the d’th entry in ge. In other words,
it encodes the negative value of the gain, when the first d nodes in Se are moved from
block A to block B. Hence, a negative cycle whose nodes are all in layer d will move
exactly d nodes between each of the respective block pairs contained in the cycle and
results in a overall decrease in the edge cut. We add additional edges to the model such

5

that it contains more possibilities in presence of underloaded blocks. To be more precise,
in these cases we want to get rid of the restriction that each block sends and emits
the same number of nodes. To do so we insert forward edges between all consecutive
layers, i.e. block k in layer d is connected by an edge of weight zero to block k in
layer d + 1. These edges are not associated with node movements. Furthermore, we
add backward edges as follows: for an edge (A,B) in layer d we add an edge with the
same weight between block A in layer d and block B in layer d− ` if block B can take
` nodes without becoming overloaded. The newly inserted edge is associated with the
same node movements as the initial edge (A,B) within layer d. This way we encode
movements in the model where a block can emit more nodes then it gets and vice versa
without violating the balance constraint. Additionally we connect each node in layer d
back to s if the associated block can take at least d nodes without becoming overloaded.
Again this means that the model might contain cycles through swhich stand for paths in
the quotient graph being associated with node movements that decrease the overall cut.
Moreover, these moves never increase the imbalance of the input partition. An example
for the advanced model can be found in the TR [14]. We can apply the same zero weight
cycle diversification as in the basic model. The advanced model can contain conflicting
cycles that cannot be used. Due to space constraints, we explain when conflicts occur
and how we handle them in the TR [14].

Multiple Directed Local Searches. The algorithm can be further improved by per-
forming multiple directed local searches (MDLS) between each pair of blocks that share
a non-empty boundary. More precisely, after we have computed node movements on
each pair of blocks e = (A,B), we start again using the nodes that are still eligible.
This is done µ times. The model is then slightly modified in the following way: For the
creation of edges in the model that correspond to the movement of d nodes from block
A to block B we use the directed local search on e = (A,B) from the process above
with the best gain when moving d nodes from block A to block B (and use this gain
value for the computation of the weight of corresponding edges).

Balancing. As we will see, to create ε-balanced partitions we start our algorithm with
partitions where larger imbalance is allowed. Hence, to satisfy the balance constraint,
we have to think about balancing strategies. A balancing step will only be applied if
the model does not contain a negative cycle (see next section for more details). Hence,
we can modify the advanced model such that we can find a set of node movements that
will decrease the total number of overloaded nodes by at least one and minimizes the
increase in the number of edges cut. Specifically, we introduce a second node t. Now
instead of connecting s to all vertices, we connect it only to nodes representing over-
loaded blocks, i.e. |Vi| > d|V |/ke. Additionally, we connect a node in layer ` to t if
the associated block can take at least ` nodes without becoming overloaded. Since the
underlying model does not contain negative cycles, we can apply a shortest path algo-
rithm to find a shortest path from s to t. We use a variant of the algorithm of Bellman
and Ford since edge weights might still be negative (for more details see Section 5). It
is now easy to see that a shortest path in this model yields a set of node movements with
the smallest increase in the number of cut edges and that the total number of overloaded

6

nodes decreases by at least one. If τ is set to one we call this algorithm basic balancing
otherwise advanced balancing.

However, we have to make sure that there is at least one s-t path in the model. Let
us assume for now that the graph is connected. If the graph is connected then the di-
rected version of the quotient graph is strongly connected. Hence an s-t path exists in
the model if we are able to perform local search between all pairs of blocks that share
a non-empty boundary. Because a directed local search can only start from an eligible
node, we might not be able to perform directed local search between all adjacent pairs
of blocks, e.g. if there is no eligible node between a pair of blocks left. We try to en-
sure that there is at least one s-t path in the model by doing the following. Roughly
speaking we try to integrate an s-t path into the model by changing the order in which
directed local searches are performed. First we perform a breadth first search (BFS)
in the quotient graph which is initialized with all nodes that correspond to overloaded
blocks in a random order. We then pick a random node in the quotient graph that cor-
responds to a block A that can take nodes without becoming overloaded. Using the
BFS-forest we find a path P = B → · · · → A from an overloaded block B to A.

w

z

v

B C

A

C AB

Fig. 2. Top: a graph partitioned
into three parts. Bottom: BFS-
tree in the quotient graph start-
ing in overloaded block B. This
path cannot be integrated into
the model. After a directed lo-
cal search on pair (B,C), v is
marked and there is no eligible
node left for the local search on
pair (C,A). A similar argument
holds if local search is done on the
pair (C,A) first.

We now first perform directed local search on all con-
secutive pairs of blocks in P . Here, we use τ = 1 for
the number of node movements to minimize the num-
ber of non-eligible nodes. If this was successful, i.e.
we have been able to move one node between all di-
rected pairs of blocks in that path, we perform directed
local searches as before on all pairs of blocks that
share a non-empty boundary. Otherwise we undo the
searches done (every node is eligible again) and start
with the next random block that can take a node with-
out becoming overloaded. In some rare cases the algo-
rithm fails to find such a path, i.e. each time we look
at a path we have one directed pair of blocks where no
eligible node is left. An example is shown in Figure 2.
In this case we apply a fallback balance routine that
guarantees to reduce the total number of overloaded
nodes by one if the input graph is connected. Given the
BFS-forest of the quotient graph from above, we look
at all paths in it from an overloaded block to a block
that can take a node without becoming overloaded. At

this point there are at most O(k) such paths in our BFS-forest. Specifically for a path
P = Z → Y → X → · · · → A we select a node having maximum gain gZ,Y in Z
and move it to Y . We then look at Y and do the same with respect to X and so on until
we move a node to block A. Note that this time we can ensure to find nodes because
after a node has been moved it is not blocked for later movements. After the operations
have been performed they are undone and we continue with the next path. In the end
we use the movements of the path that resulted in the smallest number of edges cut. If
the graph contains more than one connected component then the algorithms described

7

above may not work. If this is the case we use a fall back algorithm which is described
in the TR [14].

Putting Things Together. In practice we start our algorithms with an unbalanced input
partition. We define two algorithms, basic and advanced, depending on the models used.
Both the basic and the advanced algorithm operate in rounds. In each round we iterate
the negative cycle based local search algorithm until there are no negative cycles in the
corresponding model (basic or advanced). After each negative cycle local search step
we try to find zero weight cycles in the model to introduce some diversification. Since
we have random tie breaking at multiple places, we iterate this part of the algorithm.
If we do not succeed to find an improved cut using these two operations for λ itera-
tions, we perform a single balancing step if the partition is still unbalanced; otherwise
we stop. The parameter λ basically controls how fast the unbalanced input partition is
transformed into a partition that satisfies the balance constraint. After the balancing op-
eration, the total number of overloaded nodes is reduced by at least one depending on
the balancing model. In the basic algorithm we use the basic balancing model (τ = 1)
and in the advanced algorithm we use the advanced balancing model. Since the bal-
ance operation can introduce new negative cycles in the model we start the next round.
The refinement techniques introduced within this paper are called Karlsruhe Balanced
Refinement (KaBaR).

Integration into KaFFPaE. We now describe how we integrate our new algorithms
into our distributed evolutionary algorithm KaFFPaE [13]. An evolutionary algorithm
starts with a population of individuals (in our case partitions of the graph) and evolves
the population into different populations over several rounds. In each round, the evolu-
tionary algorithm uses a selection rule based on the fitness of the individuals (in our case
the edge cut) of the population to select good individuals and combine them to obtain
improved offspring. Roughly speaking, KaFFPaE uses KaFFPa to create individuals
and modifies the coarsening phase to provide new effective combine operations.

We adopt the idea of allowing larger imbalance since this is useful to create good
partitions [16]. To do so, we modify the create and combine operations as follows:
each time we perform such an operation, we randomly choose an imbalance parameter
ε′ ∈ [0.005, ε̂] where ε̂ is an upper bound for the allowed imbalance (a tuning param-
eter). This imbalance is then used to perform the operation, i.e. after the operation is
performed, the offspring/partition has blocks with size at most (1 + ε′)d|V |/ke. After
the respective operation is performed, we apply our advanced algorithms to obtain a
partition of the graph that fulfils the required balance constraint. This individual is the
final offspring of the operation. We insert it into the population using the techniques of
KaFFPaE [13]. Note that at all times each individual in the population of the evolution-
ary algorithm fulfils the balance constraint. Also note that allowing larger imbalance en-
ables us to use previously developed techniques that otherwise would not be applicable,
e.g. max-flow min-cut based local search methods from [12]. We call the overall algo-
rithm Karlsruhe Balanced Partitioner Evolutionary (KaBaPE). When we use KaBaPE
to create ε-balanced partitions we choose ε′ ∈ [ε + 0.005, ε + ε̂] for the combine and
create operations and transform the offspring into an ε-balanced partition afterwards.

8

5 Experiments

Implementation. We have implemented the algorithm described above using C++. We
implemented negative cycle detection with subtree disassembly and distance updates as
described in [4]. Overall, our program (including KaFFPa(E)) consists of about 23 000
lines of code. The implementation of the presented local search algorithms has about
3 400 lines of code.

System. Experiments have been done on two machines. Machine A has four Quad-core
Opteron 8350 (2.0GHz), 64GB RAM, running Ubuntu 10.04. Machine B is a cluster
where each node has two Quad-core Intel Xeon processors (X5355, 2.667 GHz) and 16
GB RAM, 2x4 MB of L2 cache and runs Suse Linux Enterprise 11 SP 1. All programs
were compiled using GCC Version 4.7 and optimization level 3 using OpenMPI 1.5.5.

Parameters. After an extensive evaluation of the parameters we fixed the number of
multiple directed local searches to µ = 20 (larger values of µ, e.g. iterating until no
boundary node is eligible did not yield further improvements). The maximum number
of node movements per directed local search is set to τ = 15 for k ≤ 8 and to τ = 7
for k > 8. The number of unsuccessful iterations until we perform a balancing step λ
is set to three. Each time we perform a create or combine operation we pick a random
number of node movements per directed local search τ ∈ [1, 30], a random number of
multiple directed local searches µ ∈ [1, 20] and λ ∈ [1, 10] and use these parameters
for the balancing and negative cycle detection strategies.

5.1 Walshaw Benchmark
In this section we apply our techniques to all graphs in Chris Walshaw’s benchmark
archive [15]. This archive is a collection of real-world instances for the graph partition-
ing problem. The rules used there imply that the running time is not an issue, but one
wants to achieve minimal cut values for k ∈ {2, 4, 8, 16, 32, 64} and balance parame-
ters ε ∈ {0, 0.01, 0.03, 0.05}. It is the most used graph partitioning benchmark in the
literature. Most of the graphs of the benchmark come from finite-element applications,
VLSI design. A road network is also included.

Improving Existing Partitions. When we started to look at perfectly balanced par-
titioning we counted the number of perfectly balanced partitions in the benchmark
archive that contain nodes having positive gain, i.e. nodes that could reduce the cut
when being moved to a different block. Astonishingly, we found that 55% of the per-
fectly balanced partitions in the archive contain nodes with positive gain (some of them
have up to 1400 of such nodes). These nodes usually cannot be moved by simple lo-
cal search due to the balance constraint. Therefore, we now use the existing perfectly
balanced partitions in the benchmark archive and use them as input to our local search
algorithms KaBaR. This experiment has been performed on machine A and for all con-
figurations of the algorithm we used λ = 20 for the number of unsuccessful tries.
Table 1 shows the relative number of partitions that have been improved by different
algorithm configurations and k (in total there are 34 graphs per number of blocks k).

9

k Basic +ZG Adv. +MDLS
2 0% 0% 0% 0%
4 18% 24% 41% 44%
8 38% 50% 64% 74%
16 64% 68% 71% 79%
32 76% 76% 88% 91%
64 82% 82% 79% 88%
sum 47% 50% 57% 63%

Table 1. Rel. no. of improved in-
stances in the Walshaw Benchmark.
Configurations: Basic (Basic Neg. Cy-
cle Impr.), +ZG (Basic + Cycle Diver-
sification), Adv. (Adv. Model + Cycle
Div.), +MDLS. (Adv. + MDLS)

It is somewhat surprising that already the most
basic variant of the algorithm, i.e. negative cycle
detection without the zero weight cycle diversifi-
cation mechanism, can improve 47% of the ex-
isting entries. All of the algorithms have a ten-
dency to improve more partitions when the num-
ber of blocks k increases. Less surprisingly, more
advanced local searches and models increase this
percentage further. When applying the advanced
algorithm with multiple directed local searches
(the most expensive configuration of the algo-
rithm), we are able to improve 128 partitions,
i.e. 63% of the entries. Note that it took overall
roughly two hours to compute these entries using
one core of machine A. This is very affordable
considering the fact that some of the previous ap-

proaches reported in this benchmark, such as Soper et. al. [15], have taken many days
to compute one entry to the benchmark tables. Of course in practice we want to find
high quality partitions without using input partitions generated by other algorithms. We
therefore compute partitions from scratch in the next section.

Computing Partitions from Scratch. We now compute perfectly balanced partitions
from scratch. We use machine B and run KaBaPE with a time limit tk = 225 · k sec-
onds using 32 cores (four nodes of the cluster) per graph and k > 2. On the eight
largest graphs of the archive we gave KaBaPE a time limit of t̂k = 4 · tk per graph
and k > 2. For k = 2 we gave KaBaPE one hour of time. ε̂ was set to 4% for the
small graphs and to 3% for the eight largest graph in the archive. We summarize the
results in Table 2 and report the complete list of results obtained in the TR [14]. Cur-
rently we are able to improve or reproduce 86% of the entries reported in this bench-
mark1. In the bipartition case we mostly reproduce the entries reported in the benchmark

k 2 4 8 16 32 64
∑

< 4 19 24 25 30 29 64%
≤ 29 31 27 27 31 30 86%

Table 2. Number of improvements
computed from scratch for the per-
fectly balanced case.

(instead of improving). This is not surprising
since the models presented in this paper can con-
tain only trivial cycles of length two in this case.
Also recently it has been shown by Delling et. al
[5] that some of the balanced bipartitions reported
there are optimal. We also applied our algorithm
for larger imbalances, i.e. 1%, 3% and 5%, in the
Walshaw Benchmark. For the case ε = 1% we run
our algorithm KaBaPE on all instances using the
same parameters ε̂ and tk as above. Here, we are able to improve or reproduce the cut in
160 out of 204 cases. A table reporting detailed per instance results can be found in the
TR [14]. Afterwards we performed additional partitioning trials on all instances where
our systems (including [8]. [10]. [12], [13]) currently not have been able to reproduce
or improve the entry reported there using different parameters and different machines.

1 1. Oct. 2012.

10

We now improved or reproduced 97%, 99%, 99%, 99% of the entries reported there for
the cases ε = 0, 1%, 3%, 5% respectively. These numbers include the entries where we
used the current record as an input to our algorithms and actually improved the input
partition. They contribute roughly 4%, 7%, 11%, 9% for the cases ε = 0, 1%, 3%, 5%
respectively.

Costs for Perfect Balance. It is hard to perform a meaningful comparison to other
partitioners since publicly available tools such as Scotch [11], Jostle [17] and Metis [9]
are either not able to take the desired balance as an input parameter or are not able to
guarantee perfect balance. This is a major problem for the comparison with these tools

k 2 4 8 16 32 64
Rel. EC [%] 9 7 5 6 4 3
Rel. t [%] 12 56 99 107 134 163

Table 3. Cost for Perfect Balance, Rel. to
KaFFPa with ε = 1% imbalance. Rel. EC
average increase in cut after 1% partitions
are balanced and Rel. t is average time used
by KaBaR rel. time of KaFFPa.

since allowing larger imbalances, i.e. ε = 3%,
decreases the number of edges cut signifi-
cantly. However, we have shown in [12] that
KaFFPa produces better partitions compared
to Scotch and Metis. Hence, we have a look
at the number of edges cut by our algorithm
when perfect balance is enforced, i.e. the in-
crease in the number of edges cut when we
seek a perfectly balanced partition. We use
machine B and KaFFPaStrong to create parti-
tions having an imbalance of ε = 1% and then create perfectly balanced partitions using
our advanced negative cycle model and advanced balancing. KaFFPaStrong is designed
to achieve very good partition quality. For each instance (graph, k) we repeat the exper-
iment ten times using different random seeds. We compare the final cuts of the perfectly
balanced partitions to the number of edges cut before the balancing and negative cycle
search started. We further measure the runtime consumed by the algorithm and report
it relative to the runtime of KaFFPa. The instances used for this experiment are the
same as in KaFFPa [12] and are available for download at [1]. The main properties of
these graphs can be found in the TR [14]. Table 3 summarizes the results, detailed per
instance results are reported in the TR [14].

6 Conclusion and Future Work

In this paper we have presented novel algorithms to tackle the balanced graph partition-
ing problem, including the case of perfect balance when the maximal block size has to
equal the average block size. These algorithms combine local searches by a model in
which a cycle corresponds to a set of node movements in the original partitioned graph
that roughly speaking do not alter the balance of the partition. Experiments indicate
that previous algorithms have not been able to find such rather complex movements.
In contrast to previous algorithms such as Scotch [11], Jostle [17] and Metis [9], our
algorithms are able to guarantee that the output partition is feasible.

An open question is whether it is possible to define a conflict-free model that en-
codes the same kind of node movements as our advanced model. In future work, it could
be interesting to see if one can integrate other types of local searches from KaFFPa [12]

11

into our models. The MDLS algorithm can be improved such that it finds the best com-
bination of the computed local searches. It will be interesting to see whether our tech-
niques are useful for other problems where local search is restricted by constraints, e.g.
multi-constraint or hypergraph partitioning.

Shortly after we submitted our results to the benchmark archive we lost entries to an
implementation of [7] by Frank Schneider (the original work does not provide perfectly
balanced partitions). However, we are still able to improve more than half of these en-
tries when using those as input to KaBaR. Furthermore, we integrated the techniques of
[7] and again have been able to improve many entries. We conclude that the algorithms
presented in this paper are still very useful.

Acknowledgements. Financial support by the Deutsche Forschungsgemeinschaft (DFG)
is gratefully acknowledged (DFG grant SA 933/10-1).

References
1. D. Bader, H. Meyerhenke, P. Sanders, and D. Wagner. 10th DIMACS Implementation Chal-

lenge - Graph Partitioning and Graph Clustering.
2. U. Benlic and J.-K. Hao. An effective multilevel tabu search approach for balanced graph

partitioning. Computers & OR, 38(7):1066–1075, 2011.
3. C. Bichot and P. Siarry, editors. Graph Partitioning. Wiley, 2011.
4. B. V. Cherkassky and A. V. Goldberg. Negative-cycle detection algorithms. In 4th European

Symposium on Algorithms, volume 1136 of LNCS, pages 349–363, 1996.
5. D. Delling and R.F. Werneck. Better bounds for graph bisection. In 20th European Sympo-

sium on Algorithms, volume 7501 of LNCS, pages 407–418, 2012.
6. C. M. Fiduccia and R. M. Mattheyses. A Linear-Time Heuristic for Improving Network

Partitions. In 19th Conference on Design Automation, pages 175–181, 1982.
7. P. Galinier, Z. Boujbel, and M. Coutinho Fernandes. An efficient memetic algorithm for the

graph partitioning problem. Annals of Operations Research, pages 1–22, 2011.
8. M. Holtgrewe, P. Sanders, and C. Schulz. Engineering a Scalable High Quality Graph Parti-

tioner. 24th IEEE IPDPS, pages 1–12, 2010.
9. G. Karypis and V. Kumar. Parallel multilevel k-way partitioning scheme for irregular graphs.

SIAM Review, 41(2):278–300, 1999.
10. V. Osipov and P. Sanders. n-level graph partitioning. In 18th European Symposium on

Algorithms, volume 6346 of LNCS, pages 278–289, 2010.
11. F. Pellegrini. http://www.labri.fr/perso/pelegrin/scotch/.
12. P. Sanders and C. Schulz. Engineering multilevel graph partitioning algorithms. In 19th

European Symposium on Algorithms, volume 6942 of LNCS, pages 469–480, 2011.
13. P. Sanders and C. Schulz. Distributed evolutionary graph partitioning. In ALENEX, pages

16–29. SIAM / Omnipress, 2012.
14. P. Sanders and C. Schulz. Think Locally, Act Globally: Perfectly Balanced Graph Partition-

ing. Technical Report. arXiv:1210.0477, 2012.
15. A.J. Soper, C. Walshaw, and M. Cross. A combined evolutionary search and multilevel op-

timisation approach to graph-partitioning. J. of Global Optimization, 29(2):225–241, 2004.
16. C. Walshaw and M. Cross. Mesh Partitioning: A Multilevel Balancing and Refinement Al-

gorithm. SIAM Journal on Scientific Computing, 22(1):63–80, 2000.
17. C. Walshaw and M. Cross. JOSTLE: Parallel Multilevel Graph-Partitioning Software – An

Overview. In Mesh Partitioning Techniques and Domain Decomposition Techniques, pages
27–58. Civil-Comp Ltd., 2007.

12

