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Abstract
Objective.Most deep neural networks (DNNs) used as brain computer interfaces (BCI) classifiers
are rarely viable for more than one person and are relatively shallow compared to the
state-of-the-art in the wider machine learning literature. The goal of this work is to frame these as a
unified challenge and reconsider how transfer learning is used to overcome these difficulties.
Approach. We present two variations of a holistic approach to transfer learning with DNNs for BCI
that rely on a deeper network called TIDNet. Our approaches use multiple subjects for training in
the interest of creating a more universal classifier that is applicable for new (unseen) subjects. The
first approach is purely subject-invariant and the second targets specific subjects, without loss of
generality. We use five publicly accessible datasets covering a range of tasks and compare our
approaches to state-of-the-art alternatives in detail.Main results. We observe that TIDNet in
conjunction with our training augmentations is more consistent when compared to shallower
baselines, and in some cases exhibits large and significant improvements, for instance motor
imagery classification improvements of over 8%. Furthermore, we show that our suggested
multi-domain learning (MDL) strategy strongly outperforms simply fine-tuned general models
when targeting specific subjects, while remaining more generalizable to still unseen subjects.
Significance. TIDNet in combination with a data alignment-based training augmentation proves to
be a consistent classification approach of single raw trials and can be trained even with the
inclusion of corrupted trials. Our MDL strategy calls into question the intuition to fine-tune
trained classifiers to new subjects, as it proves simpler and more accurate while remaining general.
Furthermore, we show evidence that augmented TIDNet training makes better use of additional
subjects, showing continued and greater performance improvement over shallower alternatives,
indicating promise for a new subject-invariant paradigm rather than a subject-specific one.

1. Introduction

Despite the revolution that deep neural networks
(DNNs) have brought to machine learning (ML)
generally, they have had a more muted effect for
brain computer interfaces (BCI) [1]. Despite some
successes with shallow models [2–5], only limited
attempts have been made to use deeper models
with more than 2–3 layers, or modern architecture
choices such as residual connections, attention, and
adversarial losses [2, 6, 7]. A common claim as to
why DNNs are not more consistently viable in BCI

3 Author to whom any correspondence should be addressed.

is that there are not enough data to train a deep
model. This claim is well supported by the fact that
the largest impacts DNNs have had on traditional
ML have been accomplished using datasets that are
far larger than popular public BCI datasets or data
that are feasibly recorded by a single lab. Consider
that the ImageNet dataset used to train state-of-the-
art image classifiers consists of∼ 14.2million unique
images4, and the BERT natural language model is
pre-trained with two datasets: one of 800 million
words, and the second of 2.5 billion [8]. Contrast
this with the summary Roy et al collected in their

4http://image-net.org/about-stats.
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2019 review of deep-learning electroencephalography
(EEG) analysis where, aside from a few outliers, the
vast majority of datasets used in EEG research con-
tain well under 1 million examples (despite includ-
ing highly imbalanced data, and clinical data such as
sleep and seizure datasets less relevant to BCI). How-
ever, there is an even more insidious challenge. Why
is it that for most datasets, single-subject classifica-
tion is still more accurate than inter-subject classific-
ation (leveraging multiple subjects) [4]? This is not
accounted for by simply a lack of training examples—
including more subjects dramatically increases the
number of trials from which to learn; rather, this
exemplifies the degree to which each subject differs.
Indeed, single-subject neural-network classifiers suc-
ceed despite poorly leveraging the entirety of a dataset.

BCIs are affected by several sources of variabil-
ity including equipment, subjects, sessions, and even
trials (keeping all else largely constant). These dif-
ferences in context cause differing degrees of data
drift, so that classifiers trained in one context are sub-
optimal in another, even when they are meant to clas-
sify the same or similar tasks or paradigms. The res-
ulting decrease in performance is then unsurprising;
it crucially violates a fundamental axiom of trained
classifiers and ML generally, that data encountered in
practice (or in evaluation) should be independent and
identically distributed (i.i.d.) with respect to the ori-
ginal training data. The consequences of this violation
abound in practice. For example, Lawhern et al found
with all the DNNs they considered, that when trained
with the BCI Competition dataset IV 2a, a common
motor imagery (MI) benchmark, classification accur-
acy was nearly halved for cross-subject training as
compared to within-subject [3]. This was despite the
fact that they matched or surpassed state-of-the-art
single-subject classification using their shallow neural
network EEGNet, and their more traditional filter-
bank common spatial pattern (FBCSP) baseline.

In response, transfer learning (TL) is meant to
overcome the pitfalls of limited data, and the variabil-
ity between contexts by transferring shared qualities.
Data from other contexts are leveraged to enhance a
target context, thus better leveraging the entirety of
relevant data available. While TL is an effective tech-
nique, there are two slightly different sub-types of
TL that are often conflated in the BCI literature. We
suggest that this conflation has prevented leveraging
these aspects jointly, as they are not mutually exclus-
ive. These two concepts are better disambiguated by
the terms in the wider ML literature: domain adapt-
ation (DA) and domain generalization (DG). Both of
these approaches can be leveraged to enable classifi-
ers developed for one or more subjects to be useful
for one or more new, unseen people.

The differences between DA and DG lie in the
treatment of the so called target domain(s) relative
to the source domain(s). For the moment, we loosely
consider domains as the distribution of trials from

a single subject5, though we provide more formal
definitions in section 2. DA is primarily concerned
with adapting the trials from a set of source domains
(subjects) to be most useful for one or more target
domains (subjects). DG, on the other hand, does not
target any specific domain, but rather transforms data
from all domains in such a way as to make themmost
useful for any new relevant domain. Neither of these
techniques is new to BCI, but they are commonly
both referred to as TL without distinction and rarely,
if ever, synthesized. Perhaps the most well-known
examples of DA are methods that learn to select
(optionally weighted) features from a pool of source
subjects based on some criteria evaluated on target
features. For example, the invariant common spa-
tial patterns (iCSP) method proposed by Blankertz
et al [9] required discovering a unique parameter
ξ (optimization and cross validation were required
before ξ was viable) for each new subject [9], with
respect to the original pool of subjects; in effect,
this is a simple, target specific transformation (mostly
selection) of source domain features. Data alignment
approaches such as Riemannian alignment (RA) are
relevant examples of DG [10, 11]. RA ensures that all
trial covariance matrices are aligned with respect to
an a priori referencematrix and thus all trials function
as features that can be leveraged for any other aligned
trials. Crucially, the alignment is not dependent on
classifiers, features, or subsequent learning for any
domain-specific target; in the case of RA, alignment
is performed with respect to the mean of auxiliary
data from each subject to model subject-specific vari-
ability. In some work, both DG and DA approaches
are compared, but they are featured in juxtaposition
as mutually exclusive alternatives [12]. There is, how-
ever, no reason why a DG approach cannot be lever-
aged to enhance DA.

Work at the intersection of BCI, DNNs, and TL
[13–17] has more commonly involved DA, typically
through fine-tuning. This means using a pre-trained
model of some sort, like a model trained jointly with
a pool of subjects [13, 15]; however, others pretrain
using the same subject’s data [14] and, in a few cases,
models used weights previously tuned for different
tasks such as image recognition [18]. Using the net-
work weights from a pretrained model, most if not
all the weights are slightly adjusted (typically by using
a small learning rate) to fit a small pool of target
domain data. Some weights may be kept unchanged
to minimize the shift from the original features, but
the model is never expected to remain useful to non-
target or even original training domains. The par-
ticular combination of DG and DNNs in the BCI
literature is rare. While there are some examples of
multi-task DG [19, 20], or larger scale data (such as
clinical sleep data) self-supervision [21], the work of

5http://image-net.org/about-stats.
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Ozdenizci et al is, to our knowledge, one of the only
examples of generalizing across subjects [6]. In that
work, Ozdenizci et al used a variational autoencoder
to encode a latent space that is alternatively impli-
citly or explicitly generalized to be domain (subject)
non-specific. This is meant to generate features of
specific trials such that they are independent of sub-
ject. Unfortunately, their performance was relatively
underwhelmingwhen compared against work such as
Dose et al [15], who used the same public MI dataset
and a shallower network. While this seems to imply
that DG may be superfluous, there is good reason,
outlined in section 2, to suggest that their results were
due to their choice of shallow architecture, one that
was not sufficiently expressive.

There are gaps in both theDA andDG approaches
taken with DNNs in prior work. Fine-tuning was
originally designed to transfer abilities from a large
generic set of images to a specific (sub)domain, for
example, leveraging general natural images to spe-
cifically predict skin-cancer from images of skin [22].
Once transferred, there is no need for the skin-cancer
classifier to distinguish between, say, lions and tigers
(as may have been the case in the original data).
While there is an argument for completely personal-
ized BCI classifiers, we suggest that preserving out-
of-target predictions remains valuable. As a single
model’s subject-specific performance is improved, it
is preferable that performance is improved (or at
least unharmed) for unseen subjects. In contrast, con-
sidering the image analogy from above: with more
images of skin, we would be indifferent to perform-
ance changes in the recognition of big cats. The cur-
rent gap we observe in DG amounts simply to weak
resulting performance, if using DG weakens the res-
ulting accuracy of a classifier as compared to not using
it, a loss of information is the cost of generalization,
appropriate DG methods should perform no worse
than unaugmented training.

In this work, we present three contributions to
thinker-invariant DNN training: DG-focused train-
ing augmentations that leverage non-target subjects
to outperform subject-specific shallow classifiers, a
multi-domain learning (MDL) procedure that lever-
ages both DG and DA to outperform either in isol-
ation, and an application-appropriate deeper DNN
architecture that can make better use of the bene-
fits of the two former contributions. These are eval-
uated using five separate publicly accessible datasets:
two MI datasets (in terms of subjects, one small
and one large), two rapid series visual presentation
(RSVP) datasets (a visual oddball paradigm and P300
speller), and an error-related negativity (ERN) data-
set. For each dataset we limit pre-processing, we per-
form no additional filtering unless needed to pre-
vent aliasing, we include trials marked as ‘unusable’
for training, and no dataset-specific normalization
with respect to baselines or otherwise is done. We
simply crop the trials in accordance with the task

and scale values between −1 and 1. We do this in
an effort to demonstrate this DNN architecture and
overall methodology can be easily adapted to new
applications with minimal prior knowledge. To aid
this further, we have made all of the code used in
our work available at https://github.com/SPOClab-
ca/ThinkerInvariance including both the PyTorch
implementation that we used for our own experi-
ments, and a reproduction using the more approach-
able Keras API as a convenience for those interested
in applying this work elsewhere.

2. Background

A supervised learning problem in its most general
form is taking some sort of feature space X and a
label space Y and learning a function f : X →Y . Any
individual instance of a supervised task can be seen as
(x,y) ∈ X ×Y with a probability distribution P(x, y).
The goal is learning f to approximateP(y |x). For such
problems, we can define domains as D = {X ,P(x)},
where P(x) is the posterior probability of each x ∈ X
for our task T = {Y, f(·)}. Furthermore, if we focus
on a BCI classifier with a set of possible subjectsT that
constitute our domain, we can restate our domain
as D =

∪
t∈TDt. We make the assumption that all

Dt ⊂D given the common difficulty of leveraging
one subject’s data for another. In other words, we
assume no single subject can represent the entire task
domain alone.

Consider the possible sources of error that pre-
vent an ideal determination of P(y |x), which we
use mostly interchangeably with f (·). Empirical risk
minimization characterizes the process of learning a
supervised task using a loss function l, which makes
up the vast majority of modern ML, neural networks
or otherwise [23, 24]. We can define risk for some
hypothesis h of the label function f

R(h) =

ˆ
l(h(x),y)dP(x,y) = E[l(h(x),y)]

Following Wang et al [23], we can break this
risk down into two terms, considering three different
hypotheses:

1. hopt = argminhR(h), the optimal hypothesis in
terms of risk.

2. harch = argminh∈HR(h), the optimal hypothesis
given the constraints imposed by the hypothesis
space.

3. hemp = argminh∈HRemp(h), the hypothesis con-
strained by the empirical estimate of risk for a
given hypothesis space.

We assume that there exists an hopt that is uniquely
optimal for each subject, and the union of all people.
The error of the empirically constrained solution,
with respect to the optimum, can now be expressed
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as the sum of two terms: the estimation error and the
approximation error [23]:

E[R(hemp)−R(hopt)] = E[R(hemp)−R(harch)]

+E[R(harch)−R(hopt)]

= Eest + Eapprox

The more expressive a model is, the greater its
theoretical capacity to mimic some arbitrary func-
tion, which is accounted for by Eapprox. Similarly, Eest
represents the better understanding captured with
more or better data during training. Consider a clas-
sifier (e.g. a shallow network, or constrained kernel-
based classifier) exhibiting high performance (thus
low risk) within a single subject domain Dss—which
error terms are likely to be low? Under our assump-
tion of a unique optimum, we can make some infer-
ences about its error from the change in performance
from adding new subjects. If performance remains
high, both terms are already likely low. The empir-
ical estimate of P(x, y) would seem to satisfactorily
cover additional domains, and the architecture satis-
factorily approaches the globally relevant optimum.
However, what if performance deteriorates with the
addition of new subjects? There should be little change
in Eapprox if using an appropriate classifier, as if it
were globally appropriate, adding more relevant data
should not affect this error (i.e. it is not dependent on
Remp). If there were a change, it implies that the classi-
fier was only optimal in a single domain (subject) and
not globally optimal—in other words, overfitting. If
the classifier were appropriate, then Eest has increased
due to Remp. DG is then an attempt to transform g(·)
each person as domain Dt to a new invariant domain
DTI ≈ g(Di),∀i, so that Eest is consistent across differ-
ent people, and each additional subject seen during
training should serve to bring hemp closer to harch.

Consider that, for example, EEGNet has been
highly successful on a subject-specific basis, but not
when leveraging more subjects [3]. This would seem
to encapsulate the challenge we describe above, so we
propose to use DG to improve Eest , and then minim-
ize Eapprox using a potentially more suitable hypothesis
space to find harch ≈ hopt, for example a DNN that is
deeper and more expressive. This is in general sup-
ported by two important factors: the hypothesis space
itself, i.e. the choice of architecture and the opera-
tions it can perform, and secondly, how it is searched
(i.e. how the argminh is performed). Crucially, some
h ∈H are easier to find than others, and thus the
optimization procedure employed plays a large role
[23]. As is detailed further in the sections below, to
avoid biasing our results by using better optimization
techniques than might not have been available to our
baselines, we re-implement and train both ours and
baseline models using the same optimization pro-
cedures. We address the choice of hypothesis space
by presenting what we claim is an improved DNN

architecture for BCI generally (where it is closer to hopt
than prior work).

3. Methods

3.1. TIDNet: DenseNet-inspired isolated
spatio-temporal operations
The most commonly used DNNs in BCI work are the
shallow convolutional network (SCN; its deep coun-
terpart seemed to be featured less often in the work
we investigated) proposed by Schirrmeister et al [2]
and the EEGNet architecture proposed by Lawhern
et al [3]. The common factor in these networks,
and others inspired by them [15, 20, 25], is the
marked separation of temporal and spatial convolu-
tions. Our proposal is also inspired by this feature,
but we offer two intertwined criticisms of the previ-
ous approaches that we address with our own: both
the SCN and EEGNet architectures do not use a non-
linear activation between the isolated temporal and
spatial networks, but rather apply two linear opera-
tions. Secondly, the structure of these architectures
provides no clear approach with which to increase the
number of layers used, particularly while respecting
spatiotemporal isolation. These are related criticisms
in some sense as, if there were a non-linearity between
the temporal and spatial operations, simply repeat-
ing either operation may be an effective strategy,
which we explored in our own previous work [26], at
increasing architecture depth and model complexity.

Interestingly the major drawback of the absent
non-linearity is likely in fact the advantage of these
two approaches, as this operation remains nicely con-
strained. While the absence of non-linear activation
preserves an overall linear nature to the composi-
tion of the temporal and spatial operations, the con-
volution operations impose constraints. Given the
apparent advantage of these isolated operations over
convolution operations that span time and chan-
nels (space), these constraints are crucial. If these
linear layers were simply repeated, the composition
still remains of course linear, but through success-
ive composition the overall operation is less con-
strained. In other words, simply adding more linear
layers amounts to loosening the necessary constraint
and enabling the sub-optimal operation that spans
both time and channels (space). The challenge then
is ensuring that appropriate spatiotemporal isolation
constraints are preserved, while increasing the depth
and complexity.

To address the concerns above, and to focus
on extracting appropriate features, we construct
a thinker-invariant DenseNet-inspired DNN (TID-
Net). It features two clear semi-isolated stages, with
operations that focus on extracting temporal and spa-
tial features respectively, followed by a simple clas-
sification layer. Residual connections exist through-
out, but crucially take two different forms depending
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Figure 1. The overall TIDNet architecture consists of two feature extraction stages followed by a simple classification layer.
Starting from an input trial on the left of C channels and T time samples, temporal filtering is first performed as detailed in
figure 2, which produces Tpool responses of a set of FT filters for each channel C. This is followed by a DenseFilter stage that
aggregates spatial operations across the C channels by appending filters to FT to produce FS. This is then flattened into a vector
and a single layer translates this to classification targets normalized to a probability distribution using the Softmax operation.

Figure 2. Temporal filtering stage in TIDNet. The bottom row vector represents one of C channels with length T. Each layer up is
a convolution operation, note the dilation (skipping samples).

on the stage. Similarly, standard non-linearity oper-
ations are used throughout the architecture, in this
case, the leaky rectified linear unit [27]. By design, the
architecture depth can be easily extended, independ-
ently in each stage, to model more complex temporal
or spatial features. Although, for consistency of data-
set treatments, we do not test this feature here, opt-
ing to focus on its features ‘out-of-the-box’, any hyper-
parameters not detailed in the next sections can be
found in Appendix A.

3.1.1. TIDNet: temporal stage
Looking specifically at the temporal filtering stage of
TIDNet, figure 2 shows the time series of a single
channel and two convolution layers. We show a single
sequence at each layer for simplicity, but there is typ-
ically more than a single channel, and TIDNet con-
sists of many more filters at each layer. Each con-
volution operation spans only along the temporal
sequence of each channel, in keeping with the prin-
ciple of isolation we discuss above. The convolution
weights are regularized using weight normalization
[28], and the result of each convolution operation is

followed by our non-linearity and by filter-level dro-
pout; the effect of different filters are removed during
training [28].

The major highlight of this structure is in includ-
ing both dilation and a residual connection, sim-
ilar towork in convolution-based sequencemodelling
[28]. Dilated convolution operations are performed
by skipping d− 1 samples in the weighted sum of the
convolution for a dilation rate of d. So, for a dila-
tion rate of d and samples st , t ∈ [0,T), if a convo-
lution operation with three weights w1,w2,w3 was
applied, the subsequent output is s̃t = w1 · st−d +w2 ·
st +w3 · st+d. Dilations are used in TIDNet to increase
the span of temporal operations over subsequent
layers, without needlessly increasing the number of
parameters. Since many BCI datasets are normally
sampled at rates well above what is necessary, and
knowing that handcrafted BCI features focus on
trends over tens of samples rather than immediate
changes, we begin the earliest layer with the largest
dilation rate, equal to the number of layers in the
stage, and reduce the dilation rate by 1 for each
subsequent layer. The last layer is then a standard

5
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Figure 3. The spatial stage is composed of NS layers of the DenseSpatial operation in (a), itself composed of FS filter activations
that are produced by the DenseFilter operation (b). Thus, the spatial stage consists of concatenating Fs new activations for each of
the N s layers to the previous layer, starting with the FT filters from the temporal stage, then finally integrating the activations
across all C channels. The DenseFilter operation in (b) consists of three main parts: a 1D convolution across the C channels with
Fs·Bn filters (where Bn is an inflation factor to create a bottleneck), a collapsing of the inflated (by the factor Bn) filters to FS (the
desired new activations), followed finally by concatenation with the original activations. Note that a non-linearity is applied
between the first and second operations within the DenseFilter, a dramatic increase in non-linear activations as compared to
previous work, even when there are a limited number of layers.

convolution with d= 1 (which is in fact the oppos-
ite of what would be more commonly used in speech
processing [28] or in other uses with EEG [29]). To
illustrate how this dramatically increases the potential
capture for long-term trends with fewer parameters,
consider the number of parameters needed to roughly
match the temporal span of EEGNet (64 samples in
length). With only two layers and 11 weights at each
layer, the final output includes samples from the ori-
ginal sequence between t− 30 through t+ 30, but
consists of only 22 convolution parameters (roughly
a third of the parameters needed by EEGNet). We
find through our early design process that setting the
number of weights per convolution at approximately
5% of the sequence (Nweights = 0.05 ·T) provided a
good trade-off between speed and accuracy.

While dilation allows TIDNet to capture long-
term trends, a residual connection facilitates integ-
rating short-term trends. Residual connections vary
in type, but here we simply perform the weighted
sum of the unmodified input series with the out-
put of the temporal stage up to this point. This also
facilitates the stage constructing features in terms
of difference with respect to the input, facilitating
deeper structures and more stable training [28, 30].
Finally, it is important to note the dramatic increase
in dimensionality that results. Multiple convolution
kernels (i.e. filters) at each stage requires the expan-
sion of the original matrix to a three dimensional
tensor. Including batch dimension during training,

the expansion is from 3 to 4 dimensional tensor. The
temporal aspect of the output of this stage is therefore
max-pooled to both limit the memory requirements
and regularize the features.

3.1.2. TIDNet: spatial stage
The primary goal of this stage is to transform the
channel space sequences to another latent space with
strong discriminatory power. Given that the most
common problem utilizing an overpowered network
with limited data is the tendency to overfit, care is still
needed when increasing the depth of the network. As
discussed in the introduction, despite leveraging the
data ofmany people, the number of training examples
still remains small relative to other classical ML fields,
so the regularizing effect ofmany examples is less reli-
able. While the dilations above help reduce the tend-
ency to overfit, they are not similarly suited to channel
space data.While the sequence ofC channels is loosely
spatial, it is only this waywith some immediate neigh-
bouring elements (and not sowith other neighbours).
There have been different attempts at re-creating the
spatial nature of channel space for trainingDNNs [31,
32], but these are relatively less common and do not
perform quite as well as networks that use channel
space directly. Instead we opt for a system that reuses
the activations of local integration from previous lay-
ers multiple times.

The DenseNet [33] family of DNNs is well known
for its strong performances in image classification

6
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tasks while retaining parameter efficiency through
its unique residual structure. We attempted to
circumvent our overfitting concerns, and the poor
spatial relation of our data format by simply trans-
lating the DenseNet structure to 1D convolution ker-
nels (rather than the standard 2D image kernels). The
advantage of this is that despite the depth of the net-
work, the number of parameters remains small by the
continual reuse of layers (other DNNs would need
to re-learn partial transformations) [33]. An addi-
tional advantage is that gradients easily propagate
back through the DenseNet network [33], potentially
allowing a short-circuit when temporal information
is of primary importance (e.g. ERP datasets).

The spatial stage then consists ofmultiple layers of
translated DenseNet-like operations (figure 3a) that
we called DenseFilters, followed by a final channel
mixing step. The goal is to iteratively expand the filter
space into a set of strong local features that are aug-
mented by progressively global ones, and then remove
the remaining effects of channel space, to ensure that
the former has expressed the needed variation of the
latter. Each DenseFilter (figure 3b) is composed of
two layers, each consisting of a LeakyReLU, batch nor-
malization [34], and convolution operation. The first
layer creates a bottleneck—a 1x1 convolution (filter
space transform) that expands the number of filters
as a composition of incoming filter activations. The
second layer, with activations from the expanded/-
composed filter set performs spatially isolated convo-
lutions with a kernel span of 5 in channel space (1 in
temporal space for isolation), selected for simplicity.
The activations of the resulting filters are then concat-
enated with the original incoming filters.

3.2. Euclidean alignment
Given our framing ofDG asminimizing the empirical
risk estimate of a single invariant domain rather than
a set of possible subject domains, a simple method-
ology follows. We leverage characteristics consistent
across all domains and try to express instances with
respect to this reference. Euclidean alignment (EA)
[10] is a data alignment technique that can be seen
as narrowing the scope of P(X), and consequently
P(y, x). As a DG strategy, it follows the methodo-
logy of projecting data into a domain-invariant space,
leveraging the fact that EEG is a continuous mul-
tivariate time series, implying it has a symmetric pos-
itive definite covariance matrix. It takes its inspira-
tion from RA, which shifts each trial for each subject
with respect to the Riemannian mean of a set of rest-
ing trials, but instead trials under EA are expressed
simply with respect to the identity matrix. While
RA asserts perhaps a stronger prior, and thus may
be more effective [1, 35], it requires the subsequent
use of Riemannian classifiers, which operate on cov-
ariance matrices in Riemannian space rather than
raw time-series. Although, previous work attempted
to perform manifold learning with DNNs generally

[36], the vastmajority ofDNNresearch is still tailored
towards learning in Euclidean space. The advantage
of EA is that operations are performed exclusively
in Euclidean space and thus do not exclude stand-
ard DNN approaches. The alignment process of EA
is centred around asserting a consistent mean covari-
ance matrix of all the trials for each subject—in this
case, the identity matrix. Consider a subject with n
trials each represented by matrixM:

R̄=
1

n

n∑
i=0

MiM
T
i

Alignment is then simply performed by using the
matrix square root of the arithmetic mean:

M̃i = R̄− 1
2Mi

After re-weightingMi, the mean of all covariance
matrices becomes the identity matrix I:

1

n

n∑
i=0

MiM
T
i =

1

n

n∑
i=0

R̄− 1
2MiM

T
i R̄

− 1
2

= R̄− 1
2

(1
n

n∑
i=0

MiM
T
i

)
R̄− 1

2

= R̄− 1
2 R̄R̄− 1

2 = I

Note that, while data for the subject is needed to
establish the unaligned mean, labels are not needed.
In the original presentation of EA, He et al visualized
the pre- and post-alignment distributions of trials.
The alignment procedure created much more homo-
geneous and less sparsely distributed data for each
subject (P(x)). This suggests that it requires less data
to achieve an accurate empirical estimate of the data
distribution, as it is isolatedwithin a smaller subspace.
For convenience, alignment was computed for (and
applied to the trials within) each single recorded file
for each single subject. Finally, this process is notably
similar in methodology as that of the more conven-
tional process of spatial whitening [37], where all tri-
als are first concatenated and then a global covariance
is used to align data, instead of the mean covariance
across trials.

3.3. Mixup
The second approach we consider is mixup regu-
larization. This technique has the effect of enfor-
cing more linear model behaviour in the immediate
vicinity around training points [24], the degree of
this is tuned by a hyperparameter α. It can also be
interpreted as a data-augmentation technique as, in
effect, linear interpolation is used to create artificial
points between training points. However, it was ori-
ginally motivated from the standpoint of improving
the empirical estimate of P(y, x). It trades the naive
empirical estimate, which is a probability distribution
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P(x, y) made up of the sum of Dirac masses located at
each training point (xi,yi), with a vicinal estimate that
assumes a vicinity distribution ν around each point.
The probability of finding the virtual point (x̃, ỹ) is:

P(x̃, ỹ) = ν(x̃, ỹ|xi,yi)

Thus, mixup is an assumed prior distribution
for the empirical learning problem that functions as
a stochastic interpolation between existing points,
driven by the parameters λ∼Beta(α,α) and α ∈
(0,∞):

νmixup(x̃, ỹ) =
1

n

n∑
j=0

E[δ(x̃= λ · xi +(1−λ) · xj,

ỹ= λ · yi +(1−λ) · yj)]

Furthermore, Zhang et al suggested another
potentially relevant feature of mixup that could bene-
fit the approach we take here. As we are particularly
interested in employing a relatively deep and com-
putationally expressive neural network, it becomes
easier for the network to fall into the degenerate case
ofmemorizing training points [24]. Sincemixup con-
stantly presents a modified version (the degree of this
is tuned by increasing α, if α= 0 we never present
virtual points) of the original points, the exact values
of the points become much more difficult to memor-
ize outright [24], minimizing this risk when using a
network with a greater capacity for memorization.

3.4. MDL as DG-DA fusion
The distinction between what is strictly DG andMDL
requires some consideration. Recall the ‘thinker-
invariant domain’ from above,DTI = {X̄ ,P(X̄)}. DG
methods attempt to produce a single function fTI :
X̄ → Y independent of source domain. MDL on the
other hand constructs a similar f TI , but through a
slightly different process. At least latent in a MDL
model is some identification of source domain di,
through a factor z implicitly (z= g(x)) or explicitly
(z= di), and f TI is approximating P(y|x̄,z). We can
seeMDL and DG along a continuum then, at one end
z≈ di and the learning problem is MDL, at the other
z ̸≈ di and the problem is DG. A strict implementa-
tion of DG might penalize any z≈ d at different lay-
ers. We aim not to penalize any ability to distinguish
domain, which has been tried before with less suc-
cess, for example by using a conditional variational
auto-encoder (cVAE) to remove domain as a vari-
able, or adversarial penalties to penalize identification
[6]. These methods seem too harsh a restriction, pre-
venting the internal ensemble that may require some
sort of domain identification. In practice, we suspect
that most forms of DG are to differing degrees still
MDL; for example, Ozdenizci et al found that subject
identity could still be determined by their cVAE’s lat-
ent parameter z well above chance levels, albeit at a
dramatically reduced rate to not using the cVAE [6].

Interestingly, if we accept that practically most
expressions of DG are bound to be MDL to differing
degrees, a further possible training strategy becomes
apparent. Recall that the closer the original train-
ing domain is to the test/online domain, the better
the quality of training data by the i.i.d. principle.
Although a classifier trained with some reserve set of
subjects that requires no tuning in the future is best
in online environments, it is not uncommon or par-
ticularly difficult to have some training data from a
new subject. The common motivating premise of TL
was to positively leverage reserve data to make use of
minimal target data. Our proposal is to re-frame this
in terms of MDL, rather than DA or DG, by simply
including a small amount of training data from the
target domain to improve performance for that sub-
ject. This is a known and simple approach considered
in the TL literature, that often amounts to similar
performance to much more complex methods, using
largely the same data, all while being faster and relat-
ively simple to implement [38].

3.5. Datasets
All datasets are publicly accessible, and are selec-
ted to represent tasks better separated spatially and
more temporal evoked potential tasks: two MI tasks
followed by a P300 speller and ERN (itself from a
P300 speller’s feedback) respectively. We supplemen-
ted these four datasets with a visual oddball task used
by the authors of the EA technique for a comparison
focused on EA. We use PhysioNet [39] and priorit-
ize larger datasets, in terms of the number of people,
where possible. We particularly select for those with
existing DNN benchmarks or, in the case of the P300
speller, a performance level using DNNs that could
be used for comparison. Herein, we discuss details of
the tasks and datasets and briefly elaborate on related
work and their previous performances to motivate
our choice of reference classifier for each dataset.
When there were explicit test splits (IV-2a and ERN),
test performance is reported using exclusively these.

With the exclusion of the MDL experiments (see
sections 3.4 and 3.6.1), all experiments are performed
in a leave-one- or leave-multiple-subjects-out (LOSO
and LMSO respectively) framework. This means that,
forN subjects in a LOSO framework,N − 2 are selec-
ted as training subjects and the remaining two are
held out as validation and test subjects respectively
(with the test split specifically used for that subject
in the IV-2a case below). For LOSO, this is repeated
N times, leaving each subject out as test in turn, and
selecting the previous test subject as the new valida-
tion subject. Under the LMSO framework, a similar
procedure is performed for N f folds of data, where
each fold contains an even division of the number
of subjects, with the first folds inflated whenever a
remainder is present after equal division. So, for S
subjects, each fold has

⌊
S/Nf

⌋
and the first (S mod

Nf) folds have one extra subject in each fold. Subjects
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are selected for folds in alphanumeric order. As an
example, consider ten subjects labelled S1 though S10
being split into five folds, S1 and S2 are assigned to the
first, S3 and S4 to the next, and so on. If instead, there
were an eleventh subject S11, they would be part of
the final fold along with S10 and the first fold would
hold S1, S2 and S3 (the remaining folds would hold
each next sequential pair). Performance is evaluated
using accuracy, balanced accuracy, and area under the
receiver operating characteristic (AUROC) depend-
ing on the most common metrics used in prior work
as detailed in section 3.5. We compare the perform-
ance of TIDNet to a re-implemented baseline from
the literature with no DG, with EA, with mixup, and
with both EA and mixup. In other words, we com-
pare TIDNet with or without DG augmentations to
both an equivalently augmented and non-augmented
baselinemodels. A pairedWilcoxon test across the test
performance of each subject finds statistically detect-
able differences in performance.

3.5.1. BCI Competition IV Dataset 2a (IV-2a)
These recordings are of a four-class MI dataset ori-
ginally recorded to represent a continuousmulti-class
challenge for session to session transfer, as a part
of the BCI competition IV [40]. Nine subjects per-
formed imaginary movement of the left hand, right
hand, both feet, and tongue in equal proportions,
with six runs of 48 trials each. Each class is represen-
ted 12 times per run, repeated across two sessions per
subject. The sessions are crucially performed on dif-
ferent days, to challenge classifier transfer of capab-
ility. Twenty-two channels were used to record EEG
signals and three for electro-ocular (EOG) signals.
All were sampled at 250 Hz, with a band-pass filter
between 0.5 and 100 Hz and 50 Hz notch filter to
reject line noise.

This dataset has been consistently, and well util-
ized by many people using DNNs for BCI work over
the last several years [2, 3, 41], most of which follow
in some way or another the known pattern of isol-
ated temporal and spatial stages, with mostly linear
layer activations as described in section 3.1. Lawhern
et al in particular considered cross-subject training,
but notably leveraged only five subjects of nine when
training their general model. This was perhaps not
enough data, andwe further investigate these require-
ments with the larger MI dataset, in section 3.7. This
makes it a poor direct comparison to our use of
at least eight subjects. The authors compared their
own EEGNet and Schirrmeister et al’s shallow and
deep models, and found no discernible difference in
performance across models, achieving approximately
40% 4-way classification accuracy. All of these works
further band-pass filtered their data between 4 and
40 Hz, and used a z-score-like normalization pro-
cedure based on the exponentially weighted mean
and variance as described by Schirrmeister et al [2].

As mentioned in section 3.6, we avoid these dataset-
specific pre-processing steps where possible, but as
multiple prior works leveraged the highly cited Shal-
lowConvnet (SCN) model, and this dataset features
in the original presentation of this model, we elect to
use this as our baseline for this dataset, and use the
author’s own implementation found at . We similarly
use the 4.5 s time period from [−0.5 s, 4 s) around
each event marker, and use classification accuracy as
our evaluation metric.

This dataset also elucidates suitable hyperpara-
meter selection for TIDNet andmixup across all data-
sets. Rather than performing searches for all data-
sets, we create an out-of-box solution based on strong
hyperparameters for this dataset. To do this, we per-
formed one hundred iterations of a random hyper-
parameter search, maximizing the validation accur-
acy of the first fold of our LOSO training. This causes
our parameters to be particularly well suited to this
validation fold (and dataset to some degree), which
for our implementation of LOSO training implies
potential overfitting to the test performance of the
final subject. While we notice no obvious differ-
ence in this subject’s performance compared to the
remainder, the current configuration of TIDNet is
particularly well suited to this dataset at the very least.
To avoid strong errors, we exclude this subject from
the statistical test for this dataset, and used only the
remaining eight subjects.

3.5.2. Physionet Movement and Motor Imagery
Database (MMI)
This dataset [42] consists of 109 subjects, where each
performed 14 experimental runs. The first two runs
are baselines, and the subsequent twelve are three
repetitions of four tasks. The first and third are the
not-imagined counterparts of the second and third,
respectively, and we ignore them for our own work.
The second task consisted of two possible sub tasks:
the imagined opening and closing of either the left or
right fist respectively, and the fourth run, rather than
the left or right fists, consisted of imagined opening
and closing of both fists or feet. The recordings were
made with 64 EEG channels sampled at 160 Hz, in a
10-10 montage with exceptions of electrodes Nz, F9,
F10, FT9, FT10, A1, A2, TP9, TP10, P9, and P10.

Much like IV-2a, MMI has been used for previ-
ous experiments that use DNN classifiers [6, 15]. As
we outlined in the introduction above, Ozdenizci et al
[6] leveraged a thinker-invariant DG approach with
this dataset. Their work heavily relied on using the
original SCN architecture, so that they could focus
on DG. While they successfully made a more gen-
eral model, it was less performant than the work of
Dose et al, who use a very similar architecture but
managed absolute accuracies on the order of 10%
higher without DG. Dose et al [15], for the most part,
used the SCNmodel, but with the more conventional
rectified linear (ReLU) non-linear activation [27],
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rather than the FBCSP-like activations. Furthermore,
rather than focusing on DG, Dose et al used fine-
tuning (DA) and further boosted the absolute subject-
specific classification accuracies by 6.11%, 9.43%,
and 9.92% for their two, three, and four-class prob-
lems they defined (which we also use, below) respect-
ively. Given that Dose et al’s performance was well
above even the SCN implementation alone (Ozden-
izci et al also trained a baseline without DG), we use
this model as our baseline until, during initial experi-
mentation, it became difficult to achieve anything but
chance level performance using this model in con-
junction with EA . We instead try the EEGNet model,
and find that its performance meets or surpasses the
performance of the architecture used by Dose et al.

When examining the dataset, we find that, in the
copy of the data we had access to, subjects S088,
S090, S092, and S100 contained unusable data, and
are therefore removed, leaving 105 usable subjects.
These are trained in a LMSO fashion using five folds
to accord with Dose et al [15]. Again, for ease of com-
parison with Dose et al, we also turn the two bin-
ary imaginary tasks into three different problems: a
two-class comparison that distinguishes left- or right-
fist from task 2, a three-class problem that adds seg-
ments of the eyes-open baseline (experiment run 1)
to the two-class problem for three targets, and finally
a four-class problem that further integrates the ima-
gined open and closing of both feet from task 4 (this is
appended to the three class problem for four total tar-
gets). While Dose et al added in random trial length
segments from the baseline, we instead use N evenly
spaced out segments at intervals that evenly divide
the entire baseline duration. In other words, for a
baseline recording of length T, we took trial lengths at
the offsets 0, NT , ...

T−N
T , to encourage reproducibility.

Finally, we use the same 3 s time window (although,
similar to Dose et al, it seems that the 6 s window
increases performance) [0 s, 3 s).

3.5.3. Matrix Speller (P300)
The traditionalmatrix speller is a commonly used and
important BCI paradigm, and as such, performance
improvements stand to make a large impact. These
data were originally recorded to better understand
the limitations of the paradigm and to better model
the progressive changes in the marked P300 ERP that
the speller is designed around [43]. The idea behind
the matrix speller BCI is to rapidly flash the columns
and rows of a matrix of characters, while the sub-
ject focuses on the single character they would like to
use to spell out a word. The momentary visual flash
of the target character is used to elicit a P300 ERP
from the subject, and the current column and row are
used to localize the character. The authors followed
a very common setup, using a 6× 6 character mat-
rix, and randomly flashed each column and row 20
times without replacement for 100 ms, and left a gap
of 50ms between flashes (150ms SOA). In their work,

the subjects were also asked to count the number of
times the character focused on was flashed, and all
but the first two subjects were also asked to report
this number for recording. There were a total of 12
subjects, from which we excluded subjects s08, s10,
and s12 due to missing annotations, for 9 total sub-
jects for LOSO training. The recordings were made
using 64 EEG channels, four EOG channels (hori-
zontal and vertical for both left and right), and two
earlobe references for a total of 70 total time series,
each sampled at 2048Hz.We used all 70 channels, but
unlike the rest of our work, opted to perform some
down-sampling due to the coupling of higher channel
numbers and sampling rate limiting compute capab-
ilities. To adhere to our premise of minimal to no pre-
processing, we first low pass filtered the data at 120Hz
(zero phase finite impulse response using hamming
window) to prevent aliasing, and then simply decim-
ated the data by two. In other words, we took every
other sample for a new sampling rate of 1024 Hz.
We take a trial window of [−0.05 s, 0.65 s), including
pre-trial data for self-baseline-referencing. Unlike the
other datasets considered, this dataset also provided
left and right earlobe measurements in addition to
EEG (and EOG)

Interestingly, prior work applying DNNs to P300
signals showed less consensus on architecture choice.
Recognizing the need here to capture a temporal sig-
nature is likely crucial, and therefore it is no surprise
that recurrent neural network architectures feature
more commonly [19, 31, 44] thanwithMI tasks, given
their propensity for sequence modelling (although
they find themselves presently out of fashion for this
purpose). That said, shallow separated (mostly lin-
ear) temporal and spatial convolution architectures
were also well represented [3, 31, 45–47]. Through-
out most of the work we encountered, aside from the
work of Ditthapron et al, we find consistent use of
P300 datasets recorded for BCI competitions II and
III6, which feature only one and two subjects respect-
ively, making them poor choices for thinker-invariant
evaluation. Additionally, as these feature so few sub-
jects, it is perhaps no surprise that shallow approaches
remain dominant. The work of Ditthapron et al rep-
resents a clearly relevant approach to ours, as they
employ DG across P300 tasks. The authors used a 7-
layer encoder (6 layers decoding, 1 classifying the lat-
ent encoding) to create a multi-task latent encoding.
They created general and fine-tuned models in a
leave-one-task-out procedure. Crucially, they feature
the same P300 dataset that we use, and thus would
appear a good baseline for comparison, but their
approach required creating a latent space common
to multiple recording contexts, out of the scope of
our current focus on differences due to subjects, but
we use their results for reference. As Ditthapron et al

6http://www.bbci.de/competition/iii/.
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used EEGNet as an additional baseline model, and
Lawhern et al [3] reported results using EEGNet with
their own P300 dataset, we select EEGNet as our ref-
erence model.

Finally, unlike the MI datasets above which have
balanced classes, the P300 dataset is distinguished by
a highly imbalanced class ratio (in this case 5:1, see 3.6
for how training was adjusted to compensate) needed
to evoke the P300 response [48]. There are many dif-
ferent potential metrics for reporting performance
despite imbalances; we use the AUROC common to
both prior uses of EEGNet above.

3.5.4. Error related negativity (ERN)
Pairing nicely with the previous dataset, these data
were originally collected for the 2015 BCI Challenge
Kaggle competition7, with the intent of detecting
when an error was made by a P300 speller. The speller
system would provide feedback about which letter
was selected, and the EEG recordings of this feed-
back were used to determine the likelihood of mis-
takes. While this paradigm does not appear to have
any particular DNN architecture lineage like the MI
or P300 paradigms, there are existing benchmarks of
performance [3, 20]. Once again, EEGNet is a relev-
ant reference point, as Lawhern et al used this data-
set in their original publication [3], showing com-
petitive performance to the entries of the original
competition.

This dataset features 26 subjects, with 16 explicit
training subjects and likewise 10 for testing. For com-
parison with the original competition numbers and
Lawhern et al, wemodify our LMSO procedure to use
the ten reserved test subjects, and split the remain-
ing training data into four folds for cross-validation:
three for training and one for validation. The data
were composed of 56 EEG channels in a standard 10-
20 arrangement recorded at 600 Hz, which we leave
unchanged for training. As trial window, we select
[−0.5 s, 1.5 s).

3.5.5. Visual oddball RSVP (N2PC)
This dataset is included to provide an ERP perform-
ance reference (IV-2a was also used) to the original
work presenting EA. To our knowledge, it has not pre-
viously been considered by any work using DNNs, so
rather than use a reference DNN, we simply compare
the subject-wise performance originally reported by
He et al [10]. While this dataset was originally collec-
ted to facilitate the more difficult task of approxim-
ately locating an odd image change (a plane added
to an overhead view landscape), it is fundament-
ally an oddball RSVP task which results in a P300
response [48] that can be detected, and as is used by
He et al [10].

These data consist of 11 subjects presented images
at three different rates 5, 6 and 10 Hz, of which we

7https://www.kaggle.com/c/inria-bci-challenge.

use the 5z to match He et al [10]. The number of
available electrodes were limited to only eight EEG
channels (PO8, PO7, PO3, PO4, P7, P8, O1 and O2),
each sampled at 2048 Hz and band-passed by the ori-
ginal investigators between 0.15 and 28 Hz. As such,
we felt no need to unnecessarily keep such a high
sampling rate and needlessly boosting the number
of parameters, so the data was decimated by 4 (took
every 4th sample). Finally, we took a trial windows
of [−0.05 s, 0.65 s) for consistency with the P300
dataset.

3.6. Model training and evaluation
We train each model using the Adam optimizer with
the AMSGrad fix [49], and we used a cosine learning
rate policy with warmup. This means the rate would
peak at a default value of 0.001 after a linear warm-
up period which lasted one fifth of the total epochs,
and then a cosine decay for the remainder of training,
which has been beneficial in many instances of deep
network training [50]. The learning rate at any epoch
e of total epochs E is:

η(e) =

{
ηmax × 5e

E e< E
5

ηmax × 1
2

(
1+ cos

(
π

(e− E
5 )

E
4

))
e≥ E

5

We include a second-order weight decay (L2)
of 0.01 across all network parameters and dropout
throughout the TIDNet is 0.4. We also employ label
smoothing as implemented byHe et al [50] at a factor
of 0.2 to penalize overly confident predictions, and
model somenoise in the labels. As done by Zhang et al
in the original work onmixup, we first gather batches
and apply mixup within each minibatch. Specifically,
a minibatch is first accumulated with a set of trials,
and then we apply mixup to each trial by matching
it with another from the minibatch with replacement
(this could lead to scenarios where a batch is matched
with itself). The number of total epochs, batch size,
αmixup and number of final epochs to smooth weights
over are the only parameters that vary between data-
sets (and they do not vary much), determined heur-
istically by finding values that ensured validation
accuracy mostly increments over the first training
fold/subject of the respective datasets. A summary of
these hyperparameters for each dataset can be found
in Appendix A. Wherever there was an imbalance
in examples between classes, we under-sampled the
majority class(es) without replacement so that the
total samples drawn is equal to the number of classes
multiplied by the number of examples in the minor-
ity class. Furthermore, as hinted above, to stabilize
the final model weights, we save the parameters from
the last Newma epochs and sum all the exponentially
weighted parameters for each epoch e by we

ewma = ce ·
0.5Nepochs−e, where ce = we

ewma(
∑Newma

i wi
ewma)

−1).
Electro-ocular channels are ignored for the three

datasets where they are provided (IV-2a, P300 and
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ERN) for consistency with the other datasets which
are only available this way (see Appendix B for
an ablation on the effects of EOG on TIDNet and
baselines). The A1 and A2 reference electrodes from
the P300 dataset are included in training to allow for
learned referencing, see the end of Appendix B for res-
ults that also exclude these references. Secondly, we
also include those trials that were originally annotated
as bad, meaning predominantly artifacts or unusable.
While these are normally rejected to increase classi-
fier performance, in our experience with larger mod-
els, these additional trials do not hamper training.
Filtering is limited to that performed by the original
recording equipment or data providers, and down-
sampling is only used in the P300 and N2PC data-
sets due to their much higher sampling rates. These
are detailed in section 3.5. Each trial is normalized
to range between −1 and 1, preserving relative scale
between channels (trial values are divided by themax-
imum absolute value per trial), but no baseline sub-
traction is performed. Thus, any dataset-specific pre-
processing that may be necessary is left to TIDNet
to perform internally, as our approach aspires to be
as much of a self-contained and end-to-end solution
as possible. While we do not explicitly evaluate this,
any specialized filtering or normalization that does
increase the downstream signal to noise ratio should
provide similar boosts in performance to any selected
classifier, save for coincidental overfitting (where the
pre-processing is likely not affecting signal to noise
ratio at all).

3.6.1. Multi-domain learning
For our implementations of MDL, we reserve target
data by taking the first of multiple runs if more than
one and fewer than four runs are performed. Oth-
erwise, we select a quarter of the test dataset, select-
ing the first nc × pc points, where nc is the number
of points in that class and pc is the probability of
that class observed for that subject. This is done for
both validation and test subjects, so that the valid-
ation domain is an accurate simulation of test con-
ditions, albeit with different subjects. Furthermore,
in LMSO experiments, the above is performed for
each test and validation subject in their respective
folds. Thus, every MDL experiment has data from
every subject for each respective dataset. We make
the same statistical comparisons to baseline models
under MDL evaluation.

We also compare how effectiveMDL is in compar-
ison to fine-tuning the general model to specific indi-
vidual subjects, as was done in previous work [4, 15],
and as is common in other ML fields. Fine-tuning
DNN parameters (or, at the very least, re-training
the final classification layers) is generally a simple yet
effective method for TL [51]. What is less often con-
sidered in the context of BCI is the potentially cata-
strophic effect on generality after multiple training

stages [52]. We expected that a MDL approach would
remain effective on unseen subjects while fine-tuning
would not—a potential advantage if fine-tuning and
MDL target performance are largely similar in per-
formance. To this end, we focus only on the two data-
sets that we trained in the LMSO scenario, providing
a test-bench subset of four tasks, three from the MMI
dataset and one from the ERN. The reason we focus
on LMSO datasets is to study the performance of
both target subjects and unseen subjects. A subject-
wise paired Wilcoxon test again identifies statistically
detectable differences between fine-tuning and MDL
for each task and either target or unseen subjects.

Focusing on the best performing LMSO configur-
ation TIDNet (with EA and/orMixup added), we tar-
get each subject in each test fold. To fine-tune a target-
specific model, we refine the general model in two
phases, using 50%of target data. The first phase trains
a new classification layer over ten epochs, keeping all
other parameters frozen. This means only the final
layer’s weights are updated after each batch. Then,
the entire model, including previously frozen para-
meters and the new classification layer, is updated for
five epochs using a tenth of the original learning rate.
Both phases again use a cosine learning rate decay but
no warmup. This is compared against a limited MDL
approach, which consists of augmenting the training
data (those that produced the general model above)
with the same 50% of the target subject’s data. The
training procedure remains the same as for the gen-
eralmodel. Each of these approaches results in a single
model tuned for a single subject, using the same train-
ing data cumulatively.We then compare the perform-
ance of each of these models on the remaining target
data and the remaining subjects in each of their respect-
ive test folds.

3.7. Number of subjects regression
In order to get a sense of how many people’s data
might be required to observe a benefit in deeper
approaches, and the effect of our proposed meth-
ods on this choice, we limit the number of subjects

to a subset from each fold and repeat LMSO cross-
validation, in this case with ten-folds for a greater
range of total accessible people. We then plot the
performance of the MMI dataset against the num-
ber of people used. The cross validation was per-
formed for each of 20 logarithmically increasing sub-
sets of subjects, starting with 1 to a maximum of 85,
for a total of 400 trained models per configuration
(architecture + TI). This is repeated for four config-
urations, for each of the three tasks of the MMI data-
set. The configurations are both TIDNet and EEGNet
with no thinker-invariant techniques, in addition to
the highest performing thinker-invariant configura-
tion (EA and/or mixup) for the TIDNet and EEGNet
from the base classification experiments above.
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Table 1. The results of re-training the reference implementations using our more updated optimization procedures (and reprinting of
EA result [10] for N2PC, which is simply an EA configuration) without and with MDL respectively.

Dataset IV-2a MMI P300 ERN N2PC

Accuracy

Metric (4-way) (2-way) (3-way) (4-way) AUROC BAC

Base 59.76% 80.93% 72.39% 61.53% 0.820 0.702 –
+Mixup 60.55% 81.49% 71.74% 59.01% 0.816 0.712 –
+ EA 64.31% 82.09% 73.93% 63.95% 0.819 0.724 68.80%

LO/MSO

+ Both 64.62% 82.16% 73.31% 62.62% 0.817 0.724 –
Base 71.95% 81.69% 73.62% 62.33% 0.857 0.810 –

LO/MSO +Mixup 69.10% 82.93% 73.09% 61.33% 0.855 0.799 –
+MDL + EA 77.74% 82.71% 75.05% 65.03% 0.857 0.797 –

+ Both 77.39% 82.84% 74.44% 64.04% 0.854 0.794 –

Table 2. The absolute increases in TIDNet performance metrics across examined datasets with respect to reference network LOSO or
LMSO performance with no EA or mixup used. Values with a leading ∗ indicate statistically detectable differences between configuration
and baseline without DG, using a paired Wilcoxon test (p< 0.05). Bold values are significant after Bonferroni correction for all 96
comparisons (including those of tables 2, 3 and 4; significance p< 0.00052). Dashed lines under N2PC indicate that the configuration
scored at chance level (0.5 BAC).

Dataset IV-2a MMI P300 ERN N2PC

Accuracy

Metric (4-way) (2-way) (3-way) (4-way) AUROC BAC

TIDNet −1.47 1.16 3.25 4.56 0.003 −0.038 –
+Mixup −2.78 ∗1.09 2.16 1.48 0.002 −0.060 –
+ EA 5.63 −0.46 4.02 6.05 0.002 0.042 −1.23

LO/MSO

+ Both 5.48 0.98 2.60 4.19 0.003 0.046 0.12
TIDNet −5.25∗ 1.06 4.51 6.01 −0.001 −0.032 –

LO/MSO +Mixup −2.16 1.83 2.63 ∗3.41 0.003 −0.058 –
+MDL + EA 7.10∗ −0.37 6.53 8.91 0.000 0.007 −1.52

+ Both 7.45∗ 1.86 5.31 6.53 0.000 0.007 2.78

Table 3. The absolute increases of TIDNet over reference network in performance metrics across examined datasets with respect to the
same augmentations, EA and/or mixup. Values with a trailing ∗ indicate statistically detectable differences between configuration and
baseline with the same DG technique, using a paired Wilcoxon test (p< 0.05). Bold values are significant after Bonferroni correction for
all 96 comparisons (including those of tables 2, 3 and 4; significance p< 0.00052). Note that N2PC is not in this table as the baseline was
simply with EA and thus table 2 is already with respect to this (and no comparison of TIDNet+mixup to Base+mixup is possible).

Dataset IV-2a MMI P300 ERN

Accuracy

Metric (4-way) (2-way) (3-way) (4-way) AUROC

+Mixup −2.78 0.53 2.81 ∗4.00 0.006 −0.070
+ EA 5.63 −1.63 2.48 3.63 0.004 0.020

LO/MSO

+ Both 5.48 −0.26 1.68 3.10 0.006 0.024
+Mixup 0.69 0.59 ∗3.16 ∗4.42 0.005 −0.046
+ EA 1.31 −1.40 ∗5.10 6.21 0.000 0.020

LO/MSO+MDL

+ Both 2.01 0.71 4.49 4.82 0.002 0.023

Table 4. Fine-tuning against our proposed alternative MDL in targeted performance versus general performance on unseen subjects. In
our tasks, improvement is universal, with a Wilcoxon paired (person to person) comparison well below p< 0.00052 (Bonferroni
correction) for all comparisons except for 2-way MMI and ERN target subject comparisons.

Target Subject Performance Unseen Subject Generalization

Dataset Fine-Tuned MDL Fine-Tuned MDL

MMI (2-way) 88.19% 88.87% 73.60% 82.60%
MMI (3-way) 83.62% 86.40% 60.47% 76.64%
MMI (4-way) 76.01% 78.73% 47.67% 67.60%
ERN (AUROC) 0.828 0.868 0.626 0.743
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4. Results

Table 2 captures the average absolute improvement
on the selected metrics for each dataset in section 3.5
with respect to the re-implemented reference models
(performances from table 1), and table 3 shows the
same when equivalently augmenting the reference
model training with EA and Mixup. While TIDNet
alone or with only mixup shows mixed results, once
alignment is included there is a nearly universal per-
formance benefit to the deeper network (TIDNet),
this improvement ismuchmore consistentwhen both
mixup and EA are used, with only a single (statistic-
ally insignificant) case showing verymildlyworse per-
formance. While the more temporally discriminative
datasets, such as the P300 and ERN, show relatively
mild improvements overall, there are more dramatic
performance benefits for both the IV-2a and MMI
datasets, in some cases 7%–8% absolute increase in
classification accuracy.

TheMMI results show a strong increase over prior
work, particularly when considering the 3- and 4-
way comparisons. Interestingly, in all three tasks, our
baseline outperformed what was to our knowledge
the previous state-of-the-art [15]. Dose et al showed
80.38%, 69.82% and 58.58% for the three tasks
respectively, whereas our EEGNet baseline achieved
80.93%, 72.39% and 61.53% (our re-implementation
of the model by Dose et al was 81.42%, 71.76% and
48.93%, butwas not stable trainingwith EAormixup,
often degenerating into chance performance,we how-
ever are more suspicious of the model architecture
than anything else for this). TIDNet alone outper-
formed all of these, with the 3 and 4-way comparison
statistically significant. After including augmenta-
tions, in each task we significantly surpass state-of-
the-art. Focusing on the largest increase in perform-
ance, we find a significant 8.91% increase in 4-way
classification performance using EA, jumping from
61.53% to 70.44%.

Looking at the IV-2a dataset alone, results are
more mixed as previous work by He et al used this
dataset in their original presentation of EA and scored
an average LOSO accuracy of 73.53% [10] using a
more traditional set of features and a linear discrim-
inant analysis classifier. While this significantly out-
performs the LOSO approach which would be the
closest equivalent comparison, the MDL approach is
where TIDNet with EA and mixup score very well,
which is (detectable with p< 0.004, but not signific-
ant after correction) 5.867% higher than the results
by He et al. Furthermore, this score is 5.7% higher
than the original subject-specific SCN [2], while the
MDL SCN has a more modest 3.7% improvement
(significances are unknown as only mean results were
published).

With the P300 dataset we see improvement
over baseline performance across all permutations
considered. Notably, we can make a comparison to

previous workwheremultiple P300 datasets are lever-
aged to augment performance [19]. Their perform-
ance on this dataset, without seeing it, but pre-trained
on 5 other P300 tasks is 0.806± 0.004 3 (mean and
standard deviation across ten fold cross-validation).
They then fine-tuned the pre-trained model on 80%
of the target dataset (this same P300 dataset), not-
ably randomly from all subjects. To compare our own
performance to theirs, the highest performing results
are 0.824± 0.068 LMSO and 0.856± 0.061 7 MDL
(which similarly includes data from all subjects, but
leverages 83% of the dataset). Our results exhibit
higher variability, but appear on par with their res-
ults, without any pre-processing beyond our rough
down-sampling, and without pre-training with five
additional datasets.

Considering the ERN dataset, TIDNet in con-
junction with EA and/or mixup again outper-
forms the baseline, in a notably significant fash-
ion, although these are relatively minor increases.
This implies that the performance benefit, although
mild, is highly consistent on a subject-to-subject
basis. Furthermore, while EEGNet (our employed
baseline) to our knowledge was the highest previ-
ously performing DNN on this dataset, and our res-
ults indicate that TIDNet with EA might be better,
a previous method using covariance-based classi-
fication well exceeded our own performance scor-
ing 0.846 mean AUROC to our 0.748, although this
performance notably was the result of 500 bagged
models trained, in aggregate, across all subjects
and included meta-features beyond raw trial data
(see https://github.com/alexandrebarachant/bci-
challenge-ner-2015 for more information). Con-
sidering the closest comparison to our own
arrangement, that similarly employed LMSO cross-
validation, the performance is much lower at 0.729
AUROC, 0.024 lower than the best performing TID-
Net configuration.

4.1. TargettedMDL vs. fine-tuning
Comparing our DG+DA fusion approach to pure
DA shows unanimous performance gains across data-
sets, tasks, and subject types. For the MMI data, fine-
tuning TIDNet in fact outperforms prior work under
the exact same stratification of subjects and target
data [15] by 1.70%, 4.37% and 7.50% across 2, 3,
and 4 way classification respectively, again observing
that TIDNet performs progressively better than shal-
low models in the more complex 4-way classifica-
tion task from these data. Despite this increase over
prior work, ourMDL approach further increases per-
formance by 0.68%, 2.78% and 2.72% in the 2-,
3-, and 4-way tasks respectively. This appears to be
the highest performing overall subject-specific per-
formance achieved with this dataset. Notably, tak-
ing a 3 s window rather than a 6 s window actu-
ally hampers performance generally [15]. Taking a
6 s window, the target subject MMI performance
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Figure 4.Mean ten-fold cross-validation performance of TIDNet and EEGNet on the 2, 3 and 4-way classification tasks of the
MMI dataset plotted against the number of subjects used for training. For each model, the addition of highest performing TI and
unaugmented configurations are compared. The dashed lines join the 20 different subsets of training subjects, while the solid lines
(with like colour of solid line corresponding to like model/augmentation dashed line) are a log-space regression of each series,
modelling the performance trend for each configuration.

usingMDL dramatically improves to 92.33%, 90.33%
and 84.22%. To the best of our knowledge, these are
the highest published results using this dataset by far
(with an improvement of 5.84%, 11.28% and 15.71%
for each task respectively). It is worth noting that with
the expanded window in the 2-way task, nearly half of
the subjects had their trials classified at rates greater
than 95% (50 of 105) and nearly a third overall (31
of 105) achieved 100% accuracy, and the over 90%
accuracy in the 3-way task is MI between left hand,
right hand and rest.

4.2. Subject regression
By plotting the performance of TIDNet and EEGNet,
bothwith andwithoutDGagainst the number of sub-
jects used for training, we model some of the differ-
ences between these conditions as a function of train-
ing subjects. Figure 4 shows the mean performance
across 10 different cross-validation stratifications for
20 logarithmically spaced subsets of subjects on a log–
log plot. We add log-space regression lines fit using
individual test performances (of all points, not of the
mean line) against the number of subjects used to

train the model. When performing the regression,
we exclude subsets with fewer than five subjects, as
the mean performance below this point is not well
suited to a logarithmic relationship. The 2-way fig-
ure stands out due to the relative saturation of per-
formance levels compared to the 3 and 4 way tasks.
It gives context to the scale of improvements in per-
formance, as by 20 training subjects each configura-
tion is well within 5% of the maximum value. Other
features that stand out include the tendency for the
DG-free shallow network to have good performance
with fewer subjects, and for this performance to trend
below the remaining configurations as more subjects
are added. Similarly for TIDNet+EA, performance
begins quite low, but makes steady improvement
coming out ahead in terms of absolute perform-
ance and trend in the 3- and 4-way tasks. The addi-
tion of EA does not seem particularly helpful to
TIDNet in the two-way task, but given the satur-
ation of the performance, it is unclear. Otherwise,
in terms of both trend and peak performance, EA
seems consistently beneficial to EEGNet as well as
TIDNet.
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While each regression line is determined with
p<< 10−5, the r-values are quite low for the 2-way
classification (sub-figure (a)) with 0.49, 0.52, 0.53,
and 0.34 for the TIDNet+EA, TIDNet, EEGNet+EA,
and EEGNet lines, again indicating that, at least with
this level of performance, the marginal addition of
subjects provides little performance gain, but the
shallow model without DG is the most affected. In
contrast, the 3- and 4-way task exhibit much higher
r-values, with EEGNet alone consistently having the
lowest r-values in its group. In terms of model slope,
we find amostly consistent pattern of increasing slope
values in the order of EEGNet, EEGNet with EA, TID-
Net, and then TIDNet with EA. The only inconsist-
ency was the promotion of EEGNet with EA to have
the highest slope in the 2-way task, with all other
positions staying consistent. This strongly suggests, at
least for this dataset, that there is a greater capacity
for leveraging additional subjects when using TIDNet
and EA.

5. Discussion

We suggest that the weakest aspect of TIDNet is
an unnecessary loss of spatial information caused
by treating each channel as an element of a largely
unordered list, one that is crucially one-dimensional
rather than that which would naturally better repres-
ent a 2D or 3D sensor layout. We preserve this for
twomain reasons: in this way, a deeper architecture is
much more computationally tractable and, as of yet,
there is no established common way to represent the
sensor layout topology for use by a neural network.
While there exists two somewhat common methods
to do this—direct pixel to channel mapping [31] and
an interpolated image of sensor values assigned loc-
ations based on azimuthal equidistant projection of
sensor locations on the scalp [53] (and similarly with
anMEG helmet in our previous work [26])—it is our
opinion that neither of these has been established as
superior even to the single list.

A notable difference in how data is presented to
both TIDNet as well as the reference designs in this
work is the normalization of trials between −1 and
1 rather than by z-score normalization or like vari-
ants [2, 3]. Early in our experimentation we noticed
a slight performance improvement when using our
normalization scheme over z-scoring. Given the sens-
itivities that neural networks have to the explod-
ing and vanishing gradient problem as a result of
the distribution of incoming data (whether at the
input, or within the network) [34, 54], we suspec-
ted that incoming values were poorly distributed,
potentially undermining the theory grounding things
like weight-initialization schemes that are meant to
prevent exploding or vanishing gradients [30, 54].
Our concern was specifically that maximum values
where toowidely distributed. Figure 5 plots the distri-
bution of absolute maximum trial values after z-score

normalization of the IV-2a dataset. Notice that there
was quite a skewed distribution, far from the sorts of
normally distributed activations that neural networks
theory prefers [54] to consider. While these represent
all the absolute maximums, and thus are not a direct
parallel to activations or generally inputs as such, we
decided that our strict confinement of these extremes
to two values should mitigate this possible concern,
while leaving the distribution of internal activations
to be addressed by batch normalization [34]. While
this calls to question whether z-scoring (along chan-
nels) is an appropriate input normalization for raw
BCI-trial DNN classifiers, it is far from conclusive.
Future work would do well to consider this problem
more directly and whether alternative normalization
schemes would further improve results.

Above, we ultimately ignored any provided EOG
channels rather than use them to perform any ocu-
lar signal removal. It is well known that these sig-
nals obfuscate the underlying neural signals, and are
an undesirable feature of classification of exclusively
neural signals. While this is known, we were unaware
of any previous work that investigated the effects of
EOG channels/ocular artifact rejection and shallow
DNN variants like EEGNet and SCN in particular.
In an effort to characterize how these signals affected
TIDNet and our shallow references, we have appen-
ded a short ablation study in Appendix B, which
found that even when including EOG channels, or
when simple ocular artifact rejection (via highly cor-
related independent component analysis (ICA) com-
ponents to EOG channels), a similar trend emerged as
in the main body of this work, where TIDNet excelled
when augmentedwith EA andmixup.We suggest that
this is due to a higher reliance on signals that originate
from neural sources but do not confirm this, feeling
it was out of the scope of this work. While we feel the
black box nature of DNNs is overstated when com-
pared to the sometimes spurious collection of fea-
tures that enable ‘classical’ classifiers to work, DNNs
remain a very obfuscated tool nonetheless. It is there-
fore hard to say what exactly the DNNs are leveraging
to make decisions. Here, we relied on the fact that
performance carried over to completely unseen sub-
jects to justify the applicability of TIDNet as a clas-
sifier for BCI. We do however believe that the use
of ‘explainable AI’ (XAI) techniques will be crucial
using DNN classifiers in BCI moving forward, if only
for its potentially unique ability for hypothesis through
data-mining [55], where even potentially new hypo-
theses might be developed by considering the oper-
ations learned by DNNs, rather than simply endeav-
ouring to show that DNNs pick up on what are con-
sidered to be known features.

Strangely, a few of the shallow reference config-
urations, when paired with EA, failed to score above
chance. It is hard to say what exactly caused this,
but we suggest that a possible explanation might
be the inability of the shallow classifier to separate
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Figure 5. Histogram of absolute maximum trial values for dataset IV-2a. It has a difficult to characterize distribution with a
noticeably heavy right tail, which implies at the very least that points are not consistently within a certain range, which has likely
detrimental effects on the backpropagated gradients.

trials when they are better distributed. Consider that
when the distributions are sufficiently disparate, an
ensemble of simple internal classifiers (one for each
disparate grouping) might discover rules for each
cluster. When the clusters are more aligned, the com-
plexity of the arrangement may have been too diffi-
cult to overcome without greater degrees of freedom.
This may also explain a few other observations: in fig-
ure 4, EEGNet+EA is consistently the poorest per-
forming when only a handful of subjects are available,
and also why in Appendix B, when ocular/EOG com-
ponents were increasingly controlled for, the aug-
mented shallow models were more strongly negat-
ively affected. This latter point would be consistent
with the ocular/EOG signals serving as a high signal-
to-noise-ratio feature that could be used to, in some
sense, select for the appropriate internalmodel. This is
highly speculative to say the least, and even XAI tech-
niques may serve simply to obscure the truth in the
matter, but notably, we never noticed a case where
TIDNet in conjunction with EA was similarly incap-
able of scoring above chance.

We originally hypothesized that combining EA
and mixup would imbue performance increases akin
to added data scale in a naturally complimentary
way. Our empirical results are clear that using both
consistently increases performance but, in terms of
magnitude of increase, EA alone is many times better
performing. Currently, using mixup alone without
first aligning the data is never particularly helpful,
which is consistent with the idea that many trials are

proximate after alignment, but are not sufficiently
nearby before alignment to take advantage of a vicinal
prior. This was true for our baseline models as well,
andwewould therefore recommend their use in other
LO/MSO situations, whether TIDNet is used or not.
Furthermore, it should be noted that we narrow our
focus of potential DG approaches to domain invari-
ant features and data augmentation (EA and mixup,
respectively), but there are other possible avenues of
DG,MDL, and TL that have developed in recent years
from the DNN research community [38, 56, 57].

We elected to compute possibly multiple align-
ments for each subject by performing EAwith respect
to each recorded file (no file had more than one per-
son’s data). This had the potential benefit of also
addressing variations between sessions (in these data-
sets files and sessions are synonymous), which are an
additional source of domain shift, but a large num-
ber of sessions, with less data to leverage per session
may contribute to a poorer R̄. In this vein we note
that the relatively poorer performances of the N2PC
and P300 datasets correlated with the extremes of this
process: a single alignment procedure and up to 20
separate alignments respectively. It may be necessary
to consider this trade-off in future work, but further
study is required.

These results show a consistent performance
gain using DG/MDL, most consistently prominent
with the deeper TIDNet model, for offline public
datasets—a step that is crucial for establishing a com-
parable benchmark to other work. Perhaps the most
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important next step is determining how exactly these
techniques are applied to practical settings. It should
be kept in mind that even awareness of established
performance benchmarks serves as a sort of data
over-fitting, and performance is likely exaggerated
over novel settings. That said, LOSO/LMSO models
(without EA) have a clear path to practical classific-
ation of new subjects with data collected from sim-
ilar hardware and settings: offline global models serve
as ready-to-use classifiers for new subjects. Slightly
more challenging is how MDL could be leveraged in
practice. The simplest answer seems to be to develop
continually adaptive classifiers that would not other-
wise be practical by fine-tuning. An ‘online’ paradigm
where a single model could be constantly optimized
by re-training with additional incoming data from
new subjects. Given our results from section 4.1, this
is preferable to fine-tuning as the target perform-
ance is both higher and less (if at all) destructive
towards non-target subject accuracy. A single model
then remains nearly universal, despite the addition
of small sets of novel subject data (that is appropri-
ately over-sampled as we do above). For example,
starting from an original model M0 trained with the
original data pool D0, a new target session is recor-
ded: D1. During this session, M0 can be used for an
already functional BCI, but during or prior to sub-
sequent sessions for data Dn+ 1, new models Mn are
trained using

∪n
i=0Di. This discussion however is yet

to consider EA, which presents a slight challenge to
this approach, particularly for the first session, as it
requires a mean covariance matrix of trials. It relies
on at least some representative domain data to align
subsequent data, and so far these are notably trials,
not simply resting data (although it is possible this
may work as well). While we did not model the num-
ber of trials needed to successfully reap the benefits
of EA, we explored the worst-case scenario of classi-
fying completely unaligned trials (that is, raw trials)
with a model previously trained with aligned data.
Looking at non-target MDL performance (the same
procedures as 4.1) for the 3- and 4-way MMI tasks
(2-way performance was maximized without EA),
and the ERN task, we find mean (completely unseen
subject) performance drops to 69.07%, 56.14%, and
0.649 AUROC respectively. Interestingly, the MMI
performance drops to very similar levels as successful
prior work; i.e. Dose et al achieved LMSO accuracies
of 69.82% and 58.58% respectively [15]. On the other
hand, the ERN performance fared worse, scoring
0.035 lower than a non-augmented EEGNet, but these
decreases in performance were much less dramatic
than we expected, and indicate that EA could likely
still be used in an online-bootstrapping fashion as we
describe.

Another natural extension of this work is to use
similarDG/MDL techniques to improve performance
for similar tasks recorded in different recording con-
texts, e.g. different recording equipment with their

own number of channels, sampling frequencies, and
analog-to-digital conversions. While prior work has
learned like-tasks embeddings, creating a projection
to a common task subspace for later classification
[19], integrating more explicit DG methodology or a
MDL approach may further improve their perform-
ance. We hope to develop this idea further and invite
others to consider integrating these approaches.

The large improvement in performance we
observed when expanding our trial window to 6 s
in section 4.1, and the relatively little improvement
over prior work we saw with the N2PC dataset (eight
channels) would make it unsurprising if TIDNet was
not well suited to data collected with a limited num-
ber of electrodes. In general, it appeared to us that
our approach is best used with long sequences and
increased electrode densities and when no particu-
lar bands of import have been selected for. Part of
our goal is to develop classifiers that are successful
without the need for dataset-specific pre-processing,
and greater performance using longer sequences and
many electrodes suits this nicely.

Our results should help inform how TL in
BCI, and particularly with DNNs, is performed. We
showed that disambiguating DG and domain adapt-
ation has particular merit, and that leveraging them
in a more complementary fashion can be beneficial.
TIDNet’s performance was improved through both
fine-tuning (DA), and also generally through a mix-
ture of EA + mixup (DG), but the largest improve-
ments are seen through our proposed MDL frame-
work that leverages both DG and DA, where a single
model is well suited to new (i.e. target) subjects with
little training data and to completely unseen ones.
TIDNet, our proposed deeper DNN, while not neces-
sarily the strongest choice before DG, is most con-
sistently preferable after, which suggests to us that
deeper models (TIDNet or otherwise) have thus far
been prohibited by the poor empirical estimation of
P(x, y), and that deeper models may excel both with
limited data but appropriate application of DG, and
with the continued addition of more subjects (and
consequently data). In either case, this results in a
single, more universal classifier than prior conven-
tion. Our results are all empirically validated using
publicly accessible data, and the code used is available
in its entirety, which we hope will help continue this
line of research by others.
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Table A1. Listing of the hyperparameters that differed between datasets. Starting point in most cases was 20 epochs, batch size of 16, 3
epochs of exponential weight smoothing (EWMA weights) and 8.0 mixup. This remained the most common condition. ERN dataset
required the only divergence between TIDNet and reference to maintain both performances high.

Dataset IV-2a MMI P300 ERN N2PC

Epochs 100 30 20 20 20
Batch Size 60 16 16 4 16
EWMA weights 5 5 3 15 3

TIDNet

Mixup 2.0 8.0 8.0 8.0 8.0
Epochs 100 30 20 100 20

Reference Batch Size 60 16 16 32 16
(SCN or EEGNet) EWMA weights 5 5 3 15 3

Mixup 2.0 8.0 8.0 8.0 8.0

Appendix A. Hyperparameters

A.1. TIDNet

TIDNet is modifiable by several first-order hyper-
parameters that have the largest impact on its struc-
ture (aside from what has already been presented in
section 3.1). These are, and under this work have the
following values:

• Number of temporal layers: 2
• Number of temporal filters: 32
• Max temporal pooling (width and stride): 15
• Number of DenseFilters: 2
• Bottleneck factor within DenseFilter: 3
• DenseNet-style growth factor (added filters per
DenseFilter): 24

A.2. Dataset-specific

As mentioned in section 3.6, there was minimal vari-
ation in hyperparameters between datasets, the TID-
Net architecture remained fixed, as did parameters
like label smoothing, optimizer, weight decay and
more. The only points of variation in hyperparamet-
ers are listed in table A1. The optimization procedure
was entirely heuristic, beginning with a learning rate
of 0.001, batch size of 16, 20 epochs and exponen-
tial weight smoothing for the final 3 epochs. Notice
thatmost values employed remainedmostly the same.
We would recommend beginning with similar hyper-
parameters if trying with new datasets, but expect
there are potential performance gains to be made by
optimizing these, and themore specific parameters of
TIDNet, e.g. the number of layers of each stage, or the
growth rates of the densenet-like spatial stage.

Appendix B. Effect of EOG electrodes

While it is well known that EOG electrodes may
increase performance (and will confound results
to say the least), we were unaware of any previous
efforts to determine the susceptibility of common

DNN architectures (such as EEGNet or SCN) in par-
ticular to EOG signals. We performed a short abla-
tion study that compared the effects of: 1. Simply
not using EOG electrodes (the results presented
in the main body of this work), 2. Including the
EOG electrodes during training, and 3. Performing
a simple Pearson-correlation-based ICA component
artifact rejection on the three datasets that included
EOG channel recordings: IV-2a, P300 and ERN.
In particular, the ICA rejection involved decom-
posing the Nc EEG channels into ⌊Nc

2 ⌋ compon-
ents using fastica [58]. Then using the automated
(simply thresholded Pearson correlation values to
EOG channels) EOG rejection provided by the MNE
library (https://mne.tools/stable/generated/mne.
preprocessing.ICA.html?mne.preprocessing.ICA.
find_bads_eog#mne.preprocessing.ICA.find_bads_
eog), no more than 3 (most correlated) components
are rejected before translating ICA components back
into EEG channel space. Table B2 shows the differ-
ences in performance across each of these three con-
figurations across all three datasets. While the sheer
number of comparisons make statistical analysis of
all these performances difficult, we elected to include
these as an appendix to discuss the trends we believed
these data indicated.

It is immediately clear from the first two blocked
rows of table B2 that the EOG electrodes and sig-
nals increased classification accuracy with the IV-2a
dataset. With a continual decrease in performance
with each measure introduced to remove EOG. In
fact, performing classification using only the three
EOG electrodes produced an average classification
accuracy of 59.51% and 61.09% accuracy for TIDNet
and SCN respectively (pairedWilcoxon test p< 0.14).
The SCN seemed to perform better with no training
augmentations, but TIDNet consistently made good
use of the training augmentations, particularly so
even when EOG correlated components were extrac-
ted (ICA-EOG rows), in which case SCN was more
catastrophically affected.

The ERN dataset on the other hand indicates
that EOG electrodes are relatively detrimental with
the +EOG condition being the worse performing in
nearly all cases, although interestingly, this effect is
somewhat mitigated with EA and EA+mixup (Both)
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Table B2. Results of short ablation study with respect to EOG/ocular signals, where the three datasets with explicitly recorded EOG
channels are included (+EOG), not included (−EOG), or used to reject correlated ICA components (ICA-EOG). Performance for all
augmentations considered for datasets IV-2a (accuracy), P300 and ERN (AUROC ∗ 100), with and without MDL.

TIDNet Reference

Dataset Signal Base Mixup EA Both Base Mixup EA Both

+EOG 70.5 68.7 72.1 73.4 71.8 68.7 71.7 70.5
−EOG 58.3 57.0 65.4 65.2 59.8 60.6 64.3 64.6

IV-2a

ICA-EOG 55.5 56.1 63.5 64.9 59.1 55.2 59.2 55.5
+EOG 77.7 75.9 83.8 84.2 77.6 74.8 80.0 76.0
−EOG 66.7 69.8 79.0 79.4 72.0 69.1 77.7 77.4

IV-2a+MDL

ICA-EOG 62.2 66.1 75.6 76.0 67.2 64.2 66.3 62.3
+EOG 83.2 82.6 83.0 82.8 81.9 81.8 82.1 81.7
−EOG 82.3 82.3 82.3 82.4 82.0 81.6 81.9 81.7

P300

ICA-EOG 81.9 81.8 81.9 82.0 81.8 81.6 81.6 81.4
+EOG 86.0 86.2 86.4 86.0 85.6 85.3 85.6 85.3
−EOG 85.6 86.0 85.6 85.6 85.7 85.5 85.7 86.4

P300+MDL

ICA-EOG 84.5 85.1 84.8 85.1 84.6 84.6 84.6 84.4
+EOG 53.5 54.9 74.8 71.7 70.7 69.6 72.1 72.0
−EOG 66.4 64.2 74.4 74.8 70.2 71.2 72.4 72.4

ERN

ICA-EOG 61.7 63.4 72.1 72.1 63.8 63.2 67.9 67.9
+EOG 69.6 73.2 76.4 74.8 68.4 65.5 73.8 73.8
−EOG 77.8 75.2 81.6 81.7 81.0 79.9 79.7 79.4

ERN+MDL

ICA-EOG 79.0 63.4 80.6 80.1 80.4 75.0 74.6 72.5

conditions. Otherwise however, we again see the ref-
erence model not benefiting as much as TIDNet from
the EA and EA+mixup (Both) conditions, with the
best performing condition for EEGNet being the Base
condition. Notably however, it performs very simil-
arly to TIDNet with augmentations. It should also be
noted, that unlike IV-2a, single digits here are a 0.01
AUROC, which is probably less of a material differ-
ence than a percentage point.

The P300 dataset shows a similar decreasing
pattern of performance, but is markedly less pro-
nounced, with the decreases for the most part uni-
form between the two architectures. It is also worth
noting that we considered the effect of simply ignor-
ing the A1 and A2 ear reference channels recorded
for the P300 dataset (at the same time, simply ignor-
ing the EOG electrodes). We do not add them here,
but interestingly its effect was largely the same as the
ICA-EOG data configuration. Again, much like the
other conditions with the P300 dataset, the effects
were small and relatively uniform between models
and training augmentations.

Our observations from these extended tests fur-
ther compound the observations in the main body,
that TIDNet excels when data is aligned, making
better use of more similarly distributed data. On
the whole, the reference implementations tended to
respond more poorly to training augmentations the
more ocular effects where removed, juxtaposed with
the fact that in 16 of the 18 data configurations in
table B2, the augmented TIDNet outperformed the
base reference. The two instances where this was not
the case, were neither statistically detectable differ-
ences, nor relatively large, with absolute differences
of 0.2 and 0.3 expressed in the metrics above. We
therefore suggest that the shallower EEGNet and SCN

models might be more susceptible to strong con-
founding signals like ocular artifacts, and augmented
TIDNet training is the safer choice in general.
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