
Thinking About Thinking: The Discovery of the LMS Algorithm

IEEE SIGNAL PROCESSING MAGAZINE [100] JANUARY 2005

[dsp HISTORY]
Bernard Widrow

I
t was the summer of 1956. I was at
the Massachusetts Institute of
Technology (MIT) and had just fin-
ished my doctoral thesis on the theo-
ry of quantization noise, in the field

of digital signal processing. During the
past academic year, I had been working
very hard on my thesis and teaching
courses in the fields of radar, digital signal
processing, and digital controls. The sum-

mer was a pleasant time, much more
relaxed. I was looking forward to the fall
semester, when I would join the MIT fac-
ulty as an assistant professor of electrical
engineering. A colleague in our laborato-
ry, Ken Shoulders, told me about an
ongoing seminar that summer at
Dartmouth College on the subject of arti-
ficial intelligence (AI). He planned to go to
Dartmouth to learn about AI and about

the progress that had been made in the
field. I agreed to go with him. The
Dartmouth seminar was really the begin-
ning of the field of AI. The founders and
pioneers were there. The discussions were
highly stimulating and inspirational. We
joined the seminar for one week and then
tore ourselves away and returned to MIT.

Some people at the Dartmouth AI meet-
ing were seriously considering building
an artificial brain. I was so taken by this
that I never got over it. I spent the next
six months thinking about thinking. I
forgot all about digital signal processing
and the theory of quantization noise.

I began to see a connection between
problem solving and game playing, and I
began to contemplate building a prob-
lem-solving machine that could perform
simple reasoning. I concluded, however,
that it would take about 25 years to do
this, given the state of electronics at that
time. Ken Shoulders was working on
some basic ideas for integrated circuits,
but they were years away. Being interest-
ed in teaching and academic research, I
realized that a 25-year time horizon for
practical realization was too far out, and
with the “publish or perish” system, I
couldn’t work on this subject and suc-
ceed as an academic. I was lucky to have
realized this at an early stage. I dropped
out of AI, but I never lost my interest in
it. Almost 50 years have gone by since
then, and we are not even close to build-
ing an artificial brain. Maybe we will be
able to do it during the next 50 years.

After working on AI for six months, I
was very anxious to get back to some-
thing with a more near-term payoff. I
returned to the field of digital signal
processing. I was familiar with Wiener
filter theory in both its continuous and
discrete forms. To design a Wiener filter,
you need to know the autocorrelation

IEEE SIGNAL PROCESSING MAGAZINE [100] JANUARY 2005

In this issue, our guest is Dr. Bernard Widrow. Born during the winter holiday season
of 1929 in a small town in Connecticut, Dr. Widrow gladly remembers the advice
received in his youth to have the courage to apply to the Massachusetts Institute of
Technology (MIT), even though he didn’t know a soul. Bernard Widrow applied to
MIT, was admitted, and then completed his S.B. (1951), S.M. (1953), and Sc.D. (1956)
degrees, all in electrical engineering. After spending a few more years at MIT as a fac-
ulty member, he joined Stanford University in 1959 and later became a professor of
electrical engineering there.

Over the past half century, Dr. Widrow’s work has focused on numerous aspects of
adaptive digital signal processing: noise canceling, antennas, inverse control, and non-
linear filtering. He coauthored the books Adaptive Signal Processing (1985), Adaptive
Control (1996), and Quantization Noise (to appear). Bernard Widrow has been award-
ed prestigious distinctions, including the IEEE Centennial Medal (1984), the IEEE
Alexander Graham Bell Medal (1986), the IEEE Neural Networks Pioneer Medal (1991),
and the IEEE Millennium Medal (2000). He was also inducted into the National
Academy of Engineering (1995) and the Silicon Valley Engineering Council Hall of
Fame (1999).

Nicknamed “Doc” by his students, Bernie Widrow values a “can do” attitude in his
collaborators and appreciates their faith in him. He confesses that getting a major
new idea approximately every five years stimulates him greatly, whereas the times
when a new idea doesn’t work keep him grounded. Between research, decade-long
collaborations (such as that with John McCool on adaptive filtering and applications),
and teaching, he finds balance by enjoying opera, symphony, and ballet; collecting art;
going to museums; and watching movies. For the curious journalist, “Doc” admits that
his artistic interests may be partly inherited, as he is related to the famous painter
Marc Chagall, who was his grandmother’s cousin. Needless to say, sharing impressions
with Bernard Widrow on the daunting Chagall exhibition held at the San Francisco
Museum of Modern Art (2003) is a delight. “Doc” also likes traveling, visiting his chil-
dren and grandchildren, and going out for walks. We invite you to join him as he is
“thinking about thinking” and recalling the events related to the discovery of the LMS
algorithm.

—Adriana Dumitras and George Moschytz
“DSP History” column editors

adrianad@ieee.org,
moschytz@isi.ee.ethz.ch

1053-5888/05/$20.00©2005IEEE

IEEE SIGNAL PROCESSING MAGAZINE [101] JANUARY 2005IEEE SIGNAL PROCESSING MAGAZINE [101] JANUARY 2005

function of the input signal and the
cross-correlation function between the
input and desired response signals. This
is fine when you are doing homework
exercises, but what can you do in prac-
tice when no one gives you the input
statistics? All you have are input signals.

I puzzled over this and then developed
a simple idea: Let the input signal flow
into a finite impulse response (FIR) digital
filter. By sensing an error signal and esti-
mating its mean squared error, the coeffi-
cients of the filter (the filter weights)
could be adjusted to minimize the mean
squared error. Thus, the filter would learn
the Wiener solution (i.e., the optimal
impulse response). The result would be an
adaptive Wiener filter. A simple learning
process could therefore be used to make a
self-optimizing filter. This would be a lot
easier than making an artificial brain that
learns. My idea was to use filter perform-
ance to control the impulse response. I
called this performance feedback.

I first applied an adaptive FIR filter to
the problem of Wiener prediction. The
objective was to predict a random input
signal, � time samples into the future.
The weights of the adaptive filter were
adjusted to minimize the mean squared
of the prediction error. The overall result
was a best least squares linear predictor
that learned from its input data.

The structure of the FIR adaptive fil-
ter used in the Wiener predictor consist-
ed of a tapped delay line with variable
weights connected to the taps. The out-
put was a weighted sum of present and
past input samples. The impulse response
of this filter was equal to the sequence of
weight values. The error was the differ-
ence between the desired response and
the actual output response and was used
by the adaptive algorithm to adjust the
weights. The adaptive algorithm con-
trolled the impulse response of the filter.

The basic adaptive element used in the
FIR filter was a linear combiner with vari-
able weights. I was able to analyze the lin-
ear combiner and to show that the mean
squared error was a quadratic function of
the weights. If there were only two
weights, w1 and w2, the mean squared
error could be pictured as a paraboloid.
With more weights, this would be a hyper-

paraboloid. The optimal operating point
was at the bottom of the paraboloidal
bowl, and this was the Wiener solution.

Initially, one would not know where
the bottom of the bowl was, so the starting
point would be an initial guess. To find the
bottom of the bowl, I used the method of
steepest descent (i.e., following the gradi-
ent with a series of steps). It was possible
to model the steepest descent as a feed-
back process for controlling the weights.
The gradient was an error vector in a mul-
tivariable feedback system. Because the
mean squared error was a quadratic func-
tion of the weights, its derivative (the gra-
dient) was a linear function of the weights.
Therefore, the feedback was linear and
could be analyzed. I found that the relax-
ation toward the Wiener solution was of
exponential nature, like transients in lin-
ear systems. All this was worked out and
verified by simulation in 1957–1958.

To effect learning, each component of
the gradient was estimated (one compo-
nent at a time) by incrementing the cor-
responding weight and measuring the
mean squared error, decrementing the
weight and measuring the mean squared
error, and then finding the difference in
the mean squared errors and dividing by
the total weight change. By simulation,
it was possible to verify theoretically
derived learning rates and to verify the
mean squared error performance of the
adaptive predicting filter and the adap-
tive linear combiner.

In 1958, Richard L. Mattson, a new
master’s student, approached me about
conducting research on a neural element
that turned out to be the linear combiner
followed by a two-level output quantizer.
The neuron output was binary, and
Mattson made the inputs binary. Since
all the inputs were binary and the output
was binary, the neural element was a
logic device whose logic function
depended on the weight values. We had a
novel logic device that could be varied by
an adaptive process. Only certain logic
functions were realizable with this single
neuron, however, and they were called
the linearly separable logic functions.
Mattson did an M.S. thesis on this sub-
ject and was the one who started me
thinking about artificial neural elements.

I continued to work on adaptive fil-
ters and adaptive Wiener predictors. In
the autumn of 1959, I left MIT to join the
electrical engineering faculty at
Stanford. This was a great change for me,
not only because Palo Alto was a lot
smaller and prettier than Cambridge and
the weather a lot nicer, but also because
Stanford was in a growth mode, stealing
people left and right from MIT, Harvard,
Bell Labs, and other East Coast institu-
tions. Stanford was highly receptive to
new ideas that could lead to break-
through technologies. I came with my
head full of ideas about adaptive and
learning systems, and this was well
received. Prof. Hugh Skilling was chair
of the Electrical Engineering Depart-
ment, and Prof. John Linvill was his clos-
est advisor, particularly regarding the
acquisition of new faculty and the devel-
opment of new research areas. John’s
twin brother Bill was my thesis advisor at
MIT, and that was the connection that
brought me to Stanford.

One day in the autumn of 1959, I
received a call from John Linvill, who
told me about one of his student advisees,
Marcian E. (“Ted’’) Hoff, Jr. Ted was a very
bright fellow who was looking for a sub-
ject for Ph.D. research. John had made
some suggestions but had the feeling that
Ted was looking for something else. He
didn’t know what this might be. He asked
me to talk to Ted and see if I could pro-
pose something that would interest him.

I met Ted for the first time on a
Friday afternoon in the fall of 1959. I was
at my office blackboard explaining adap-
tive filters and the trainable neural ele-
ment. I explained how the components
of the gradient could be obtained by
rocking each weight back and forth in
the manner of elementary calculus and
how steepest descent could be used with
a series of steps to direct the weight vec-
tor toward the Wiener solution. The next
weight vector equals the present weight
vector plus a change proportional to the
negative gradient, as follows:

Wk+1 = Wk + µ(−∇k). (1)

On the blackboard, I had written
expressions for the error and the square

[dsp HISTORY] continued

of the error for a linear combiner. In the
course of discussion, a new idea “popped
up’’ about differentiating the expression
for the error to find the gradient. The
true gradient is a vector of partial deriva-
tives of the mean squared error with
respect to the weights. The new idea
used the square of a single value of error
in place of the mean squared error. This
was differentiated and gave an approxi-
mate gradient or a gradient estimate.

Using this gradient estimate with steep-
est descent, we obtained a new adaptive
algorithm as follows:

{
Wk+1 = Wk + 2µεk Xk

εk = dk − X T
k Wk

(2)

where µ is known as the learning rate.
We didn’t have a name for this algo-

rithm. A year or so later, another one of

my Ph.D. students, James S. Koford, gave
it the name LMS algorithm for “least
mean square,” and the name stuck. The
new algorithm used a very crude form of
gradient based on a single error sample.
This gradient estimate was obtained with-
out squaring the error, taking averages,
or differentiating. All components of the
estimated gradient were obtained at once.
The gradient estimate was proportional
to the product of the instantaneous error
and the vector of the inputs. This was an
instantaneous gradient that was easily
calculated. Seeing this algorithm on the
blackboard, we knew that we had a signif-
icant discovery. But would this algorithm
with its crude gradient actually work?
Anxiety was mixed with elation. We could
hardly wait to try it.

Prof. Gene Franklin had an analog
computer that occupied a rather large
room directly across the hall from my
office. Ted was able to program its plug-
board to implement the algorithm.
Within a half hour after the discovery of
LMS, it was up and running and we had
an adaptive neuron being trained to do
simple pattern classification tasks. We
were very excited. We decided to build a
single neuron in a small box for easier
demonstration and experimentation. We
needed an aluminum chassis, poten-
tiometers, switches, batteries, a microam-
meter, etc. It was late Friday afternoon,
and the Electronics Research Lab stock-
room was already closed for the weekend.

That evening, we drew up a circuit
and made a list of parts. The next day, we
went to Zack Electronics in downtown
Palo Alto and bought the parts. By late
Sunday afternoon, the single neuron was
fabricated and working. We were training
it with all sorts of input patterns. We
gave it the name ADALINE for “adaptive
linear neuron.” Its block diagram is
shown in Figure 1, and its circuit is
shown in Figure 2. The input signals
were obtained from a set of switches
mounted in a 4 × 4 array. Each input
pixel was +1 or −1. The weights were
analog and could take positive or nega-
tive values as required. A typical training
experiment would cause the meter to

[FIG1] Block diagram of the ADALINE. When the ADALINE is trained using the LMS
algorithm, weighted sums of the input patterns Xk are computed at each iteration k (with
a bias included for each weight) to obtain the output values yk. These output values are
then compared with the desired output values dk, yielding the instantaneous errors ek
given by (2). Then, the estimate of the gradient of the error function is obtained as
follows: the gradient estimate is proportional to the product of the instantaneous error
ek and the vector of inputs. Using this gradient estimate, the new weight values for
iteration k + 1 are computed using (1) or the weight update part of (2).

[FIG2] Circuit of the first adaptive neuron.

+1, –1

+1, –1

+1, –1

ω1

ω2

ek

yk

dk

ωn

+1

–1
+1

+

+

+

–

Output
Xk

Input
Pattern
Vector

LMS
Algorithm Error

Weights

Desired
Response

Bias
Weight

(continued on page 106)

IEEE SIGNAL PROCESSING MAGAZINE [102] JANUARY 2005

[dsp TIPS&TRICKS] continued

IEEE SIGNAL PROCESSING MAGAZINE [106] JANUARY 2005IEEE SIGNAL PROCESSING MAGAZINE [106] JANUARY 2005

straints can be considered during the fil-
ter design. The result, a 12th-order IIR
filter, demonstrates the performance
shown in Figure 4. Due to forcing the
zeroes outside the unit circle, this design
was completed in 130,500 iterations
(roughly 18 minutes on a Pentium III
650-MHz PC). Despite the large number
of parameters (37), a value of NP = 30
was sufficient. We see that the DE-
designed IIR filter satisfies the stringent
group delay constraints.

CONCLUSION
In this article, an alternative method for
nonstandard filter design has been
described. This method recasts the filter
design problem as a minimization prob-
lem and solves the minimization via the
DE minimizer, for which public domain
software has been made available in [7].

The advantages of this method are its
simplicity as well as the capability to
design unconventional filter types. A
great asset of this approach is that it can
be applied with minimal knowledge of
digital filter design theory.

AUTHOR
Rainer Storn earned his Ph.D. in sig-
nal processing at the “Institut für
Netzwerk- und Systemtheorie,” Univer-
sity of Stuttgart. In 1994, he was granted
a research fellowship at the International
Computer Science Institute, Berkeley,
California. He is the author of more than
30 scientific publications, including coau-
thor of Differential Evolution: A Practical
Approach To Global Optimization
(Springer-Verlag). He is now project
leader in the signal processing depart-
ment of Infineon Technologies. His

research interests are communications
theory, signal processing, and optimiza-
tion theory.

REFERENCES
[1] Digital Filter Design Software [Online]. Available:
http://www.dspguru.com/sw/tools/filtdsn2.htm

[2] GUI: Filter Design and Analysis Tool (Signal
Processing Toolbox) [Online]. Available: http://
www.mathworks.com/access/helpdesk/help/toolbox/
signal/fdtoo11a.html

[3] Filter design software [Online]. Available:
http://www.poynton.com/Poynton-dsp.html

[4] K. Price, R. Storn, and J. Lampinen, Differential
Evolution—A Practical Approach to Global
Optimization. New York: Springer-Verlag, 2005.

[5] Digital Filter Design Software Fiwiz [Online].
Available: http://www.icsi.berkeley.edu/~storn/fiwiz.
html

[6] A. Antoniou, Digital Filters—Analysis, Design,
and Applications. New York: McGraw-Hill, 1993.

[7] Differential Evolution Homepage [Online]. Available:
http://www.icsi.berkeley.edu/~storn/code. html

[8] R. Storn, “Differential evolution design of an IIR-
filter with requirements for magnitude and group
delay,” in Proc. IEEE Int. Conf. on Evolutionary
Computation ICEC 96, pp. 268–273. [SP]

[FIG4] DE-designed 12th-order IIR filter performance.

0

–10

–20

–30

–40

–50
0.0 0.1 0.2 0.3 0.4

(a)
Ω

0.0 0.1 0.2 0.3

(b)
Ω

0.0 0.1 0.2 0.3

(c)
Ω

Magnitude
Magnitude

Group Delay
0.0

–0.1

–0.2

–0.3

10.0

9.5

9.0

8.5

DSP HISTORY
(continuned from page 102)

read positive values for an X-pattern,
negative values for a T-pattern, positive
values for a C-pattern, and negative val-
ues for a J-pattern. Within two or three
iterations through those training pat-
terns, the correct responses were
learned. We began to have confidence in
the LMS algorithm.

As time went by, we began to apply the
LMS algorithm to adaptive signal process-
ing. Work was commenced on adaptive
antennas (adaptive arrays) and adaptive

noise canceling. These were very success-
ful applications. Use of the LMS algorithm
really took off after the invention of the
adaptive equalizer by R.W. Lucky and the
adaptive echo canceller by M.M. Londhi
and A.J. Presti at Bell Telephone
Laboratories in the 1960s and 1970s.
These were among the enabling technolo-
gies that made the Internet possible.
Today, 45 years after its discovery, the
LMS algorithm is still the world’s simplest
and most widely used learning algorithm.

REFERENCES
[1] B. Widrow and M.E. Hoff, Jr., “Adaptive switching
circuits,” in Proc. IRE WESCON Conf. Rec., part 4,
1960, pp. 96–104.

[2] B. Widrow and M. Lehr, “30 years of adaptive
neural networks: Perceptron, Madaline, and back-
propagation,” Proc. IEEE, vol. 78, no. 9, pp.
1415–1442, Sept. 1990.

[3] B. Widrow and S.D. Stearns, Adaptive Signal
Processing. Englewood Cliffs, NJ: Prentice-Hall, 1985.

[4] S. Haykin, Adaptive Filter Theory. Englewood
Cliffs, NJ: Prentice-Hall, 2002.

[5] S. Haykin and B. Widrow, Least-Mean Square
Adaptive Filters. New York: Wiley, 2003.

[SP]

