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Abstract

In this paper we name some of the advantages of

virtual laboratories; and propose that a Behaviours

Virtual Labora tory should b e useful for bo th biologists

and AI researchers, offering a new perspective for

understanding adaptive behaviour. We present our

development of a Behaviours Virtual Laboratory, which

at this stage is focused in action selection, and show

some experime nts to illustrate the properties of our

propo sal, which can b e accessed  via Internet.

1. Introduction

Over the past two decades, research in adaptive behaviour has

made clear that properties desirable in a utonomo us agents

(robots, animats, or artificial creatures) can be mapped from

properties of animal behaviour (Brooks, 1986; Maes, 1990;

Beer, 1990). Behaviour-based systems not only constitute a

useful approa ch for desig n of autonomous agents, but also an

ideal scenery for the development and testing of biological

systems theories (Beer, 1993).

Virtual laboratories have been dev eloped in  different areas,

to reproduce experiments that were made in physical

laboratories. Virtual labs are useful for pre practice and post

analysis of experiments developed in physical labs, and in some

cases they can replace the physical lab itself. Although virtual

labs may have many limitations, they have many advantages

over physical labs. For example, some physical labs have

scarcity of resource s (in equipm ent and staff ), limiting the

researche r’s performance. Virtual labs have relatively low costs,

experime nts can easily be repeated, and there are no

inconveniences in failing experiments. It is desirable that virtual

labs exploit the ad vantages of v irtual reality, multimedia, and

the Internet. Virtua l labs have b een deve loped for  different

areas, such as physics, electronics, robotics, physiology,

chemistry, eng ineering, eco nomics, and  ecology.

We believe that there should  be also development of virtual

labs in the area of eth ology. W e name these Behaviour Virtual

Laboratories (BVL). This development would benefit both

ethology and behaviour-based systems. To ethology, a virtual

lab would help reproduce with ease experimental and natural

conditions that could take even weeks to de velop in  a physical

lab. For example, some kinds of conditioning in animals take

weeks of training, while in a virtual lab, this process may be

accelerated, saved, and recovered. For artificial intelligence

researchers, a virtual lab would help design and test systems

and mechanisms o f robots or animats.

A BVL sh ould be c apable  of achieving the same conditions

that are found in  an ethology p hysical labora tory, and even

provide better development o f the experiments. A Behaviours

Virtual Laboratory would be useful to design bottom-up

autonomous agents or robots, propose and test animal

behaviour theories, reproduce behaviour patterns from

experimental data, easily  produc e lesions in  different structures

and mechanisms of the animats, amongst other q uestions.

Unlike other types o f virtual labs, BV L should  be capable of

producing unpredictable results, allowing emergent behaviours

to arise. With all these properties, a BVL should induce

researchers to “think adaptively”. This is, to easily show the

properties and characteristics of adaptive behaviour, without the

need of complex experimentations or heavy research, in an

interactive way.

Examples of works related with behaviour virtual

laboratories are the Simulated Environment developed by

Tyrrell  (Tyrrell, 1993), which tests different proposed action

selection mechanisms; and Beer’s Simulation of Cockroach

Locomotion and Escape (Beer, 1993), which allows to lesion

different neuro nal structures o f the insect.

Following these ideas, we are developing a Behaviours

Virtual Labora tory, in which animats and simple animat

societies can be simulated, having in mind two goals: Firs t, to

test and analyse the properties of the Behavioural Columns

Architecture (BeCA) action selection mechanism (González,

2000; Gershenson et. al., 2000). Second, to provide a useful

tool for biologist a nd robo ticists to experiment with the animal

behaviour properties that BeCA  is able to simulate. This paper

presents  the properties of the BVL developed so far, which at

this stage is focussed in the action selection problems, rather

than in perceptual and m otor systems.

In the next section, we present briefly BeCA action

selection mechanism. In Section 3 we present the parameters of

BeCA that can be modulated in the BVL and the effects they

have in the animats ’ behaviour. Section 4 presents briefly the



Figure 1. Behavioural Columns Architecture 

compo nents of the BVL, and in Section 5 some interesting

experime nts demonstrating capabilities of the BVL are

presented.

2. Behaviourial Columns Architecture

The Behaviourial Columns Architecture is implemented in a

distributed blackbo ard-node  architecture (González and

Negrete, 1997; Negrete and Gonzá lez, 1998 ). It consists  of two

blackboard-no des: the cognitive node and the motivational

node. The cognitive node receives signals from the perceptual

system and sends to the motor system which action should be

taken, while the motivational node receives signals from the

internal medium, and combines the internal and externa l signals

(González et. al., 2000). A diagram of BeCA can be appreciated

in Figure 1.

The basic idea of the functioning of BeCA is the following:

Each internal behaviour, which is a  set of elemental behaviours

(or production rules), ope rates in the different blac kboard  levels

of each node. Each internal behaviour is specified in a

particular goal, and all the internal behaviours working together

can obtain a solu tion of the action selection problem.

“Behavioural columns” are formed as elemental behaviours of

different internal beha viours crea te solution elem ents in

different blackbo ard levels that are associated to the same

external behaviour.

The structure of an elem ental behav iour has three  basic

elements: a parameters list, a condition part, and an action part.

The parameters list specifies which are the condition elements,

the action elements, and the coupling strengths related with the

elemental behaviour. The condition part generally reads from

blackboard levels, with the exceptions of the exteroceptors  and

the interoceptors , which receive signals from the perceptual

system and the internal medium, respectively. The condition

part gives importance to the read signals multiplying them by



the coupling strengths (in a similar way as the weights of an

artificial neuron). If the condition part is satisfied, then the

action part will be executed. T he action p art will generally

inscribe values in a blackboard level, with the exception of the

actuators , which send signals to the motor system.

BeCA presents ma ny prope rties, such as mo tivated

behaviour, reactive behaviour, reactive response inhibition, pre

activation of internal behaviours, and associative learning. It

also presents many emergent properties, such as: goal-directed

behaviour, non indecision in the action selection, stability in the

selection and persiste nce in the exe cution of the external

behaviours,  regulated sp ontaneity, satiation , changes in

responsiveness,  and varying a ttention. At f irst sight the

architecture of BeCA  might seem complicated, but for all the

properties it presents, it is fairly simple. Other characteristic of

BeCA is that it is “context-free”. This is, that it can easily be

translated into different problem domains, and that it is

independent of the environment (because it is independent of

the motor and perceptual systems and of the internal medium).

A detailed description of B eCA, its properties, and a

comparison with other AS Ms can b e found in  (González, 2000).

3. Parameters of BeCA modifiable

through the BVL 

We have defined parameters that allow to modify and test the

properties and behaviours of BeCA. All parameters have values

between zero and one.

The main role of the perceptual persistence internal

behaviour is to represen t in the Percep tual Persistents

blackboard level the signals that are  in the External Perceptions

level. Among all the perceptual persistence elemental

behaviours a competition takes place to determine which

elemental behaviou rs will keep represented for more time the

specified signal in its action part. This internal behaviour

simulates a short time memory, necessary for the learning

processes that take place in BeCA. The time during which this

signal will be active in the Percep tual Persistents le vel will

depend of the value of the parameter 6, which is a decay factor,

in expression (1):

         (1)

where O i
T is the strength of the previous signal of the Perceptual

Persistents  level, Faii
S is the coupling strength related to the

signal O i
S of the External Perceptions level, Faii

I is the coupling

strength of the signal O i
I of the Drive/Perception C ongruents

level, and Faij
T is the negative coupling strength with which the

signal O j
T laterally inhibits the signal O i

T. The final activation

level A i
T is calculated by hyperbolically converging the

activation level Atmpi
T to a value Maxi

T using expression (2):

        (2)

The role of attention to preferences internal beha viour is

the combina tion of signals  registered on Percep tual Persistents

and Consum matory Pr eferents  levels of the cognitive node. The

elemental behaviou rs that comp ose this internal behaviour

function as AND or OR operators, depending of value of ( in

expression (3):

                   (3)

where O i
I is the value to be inscribed in the Drive/Perception

Congrue nts level; O i
T is the signal from the Perceptual

Persitents  level and Fai
T its corresponding coupling strength;

O j
C is the signal from the Consummatory Preferents level and

Faj
C its corresponding coupling strength; and ( and N modulate

the reactivity deg ree in the ob served be haviour of the  agent.

For a value of N equal to on e, the integral value of the

signals from the mo tivational nod e is taken, making the external

behaviour motivated. As N decreases, less importanc e is given

to the signal from the motivational node, making the external

behaviour less motivated . If N is equal to zero, there will be no

flow of signals from the motivational node, and the agent will

not have any kno wledge of its inter nal needs. T herefore, with

N we can produce a kind of lesion in the mechanism.

For a value of ( greater than zero, greater imp ortance is

given to the external stimuli, represented by the signals o f the

Perceptual Persistents level, than to the signals from the

motivational node, fo und in the Consummatory Pr eferents level.

This  makes that yet in the absence of motivation for an external

behaviou r, this might be ex ecuted rea ctively.

The role of the intero/extero/drive congruence internal

behaviour is to combine signals from the Internal P erceptions,

External Perceptions, and Drive levels of the motivational node

blackboard. The model for combination of internal and external

signals is given by expression (4):

        (4)

where A i
C is the new activation level correspondent to the

Intero/Extero/Drive Congruents level of the motivational node;

O i
E is the signal from the Internal Perceptions level and Fai

E its

coupling strength; O j
S is the signal from the External

Perceptions level and Faij
S its coupling strength; O i

D is the signal

from the Drive level and Fai
D its coupling strength; and "

regulates the combination o f the internal and external signals.

This  combination model is discussed in  detail in (González

et. al., 2000).



For a value of " equal to ze ro, the internal signal and

external signals interact in a m ultiplicative way.  This makes that

if one of the signals (internal or external) is very small, it

lessens the importance of the other signal. In this w ay, external

signals that contribute to weak motivations, will make the

correspondent external behaviour to have little chance to be

selected. The sam e happe ns with small exter nal signals  for

strong motivations.

If we consider a value  of " greater than zero, then the

internal state will have more importance than the external

signal. In this way, external signals that contribute to strong

motivations, will make the correspondent external behaviou r to

have strong chance to be selected, even in the total absence of

external signals. This makes the external behaviour to be

motivated.

BeCA models associative learning (primary and secondary

classical conditio nings) adjusting the coupling strengths of

certain internal behaviours. The rule that is used for this

adjustment is given by expression (5):

        (5)

where O j
in is the value of the signal specified in the condition of

the elemental b ehaviour; O i
out is the value of the signal specified

in the action of the elemental behaviour; and $, 8, and : are

parameters to mod ulate the learning processes.

$ determines the proportion that is kept from the previous

coupling strength in a conditioning stage.

8 regulates the speed of the conditioning. For greater values

of 8, fewer presentations will be needed to achieve a

conditioning.

: determines the speed of the extinction of the

conditioning. If : is equal to zero, there will be no extinction of

the conditioning.

4. The Behaviours Virtual Laboratory

Our approximation to a BVL at this stage of development is

focussed to the action selection. We b uilt a virtual environment

where the user can create different kinds of external stimuli

(such as food sources, water sources, walls, etc.) and animats

(predators or preys) through a friendly interface. We developed

experime nts using one animat to test the properties of BeCA

(Gershenson et. al., 2000; González, 2000), and now it  supports

several animats. At th is stage, the BVL can’t be expanded by

the user (in defining new behaviours and stimuli), so it does not

propo rtionate  all the characteristics d esirable in a B VL. Th is

BVL can be accessed and/or downloaded via Internet in the

URL: http://132.248.11.4/~carlos/asia/bvl

4.1. The animats

We developed animats of two kinds: predators and p reys.

Predators chase and eat preys, and preys run away from the

predators.  Our initial intention was not to reproduce the

behaviour of specific species of animals, but to model general

properties found in animal behaviour.

The internal structure  of each anim at can be de scribed in

terms of four basic components: the perceptual system, the

internal medium, the action selection me chanism (BeCA), and

the motor system.

The perceptual system first registers stimuli that are in the

perceptual region (Rp) found in the plane (z, x) of the space (x,

y, z) defined by the half-circle of expression (6):

        (6)

where (za, xa) is the position o f the animat, 2 its orientation in

radians, and rp is the radius of the  half-circle. After this, th e

perceptual system eliminates the stimuli that are found behind

obstacles, as shown in Figure 2, determining the “perceived

scenario”. The stimuli found in the perceived scenario are

pondered as a ratio between the magnitude of the stimulus and

its distance from the animat. If a stimulus leaves the perceived

scenario, then the pon dered va lue (Fe) de creases in  terms of the

parameter !, as shown in expression (7):

        (7)

Figure 2. Perceived scenario of an animat.



Expression (7) simulates a short-medium time memory. The

“remembered” stimuli conform the animat’s “remembered

scenario”. All the stimuli found in the perceived and

remembered scenarios are registered in BeCA by the

exteroceptors .

The animat’s movement is commanded by angular steps "
and $, with a centre in th e extremes of the diameter of the

projection of the sphere  of the animat i n the plane (z, x), as

shown in Figure 3.

Figure 3. A ngular steps o f the animat.

The motor system  receives signa ls from BeCA through the

actuators , and can execute the nex t behaviours: wander,

explore, approa ch (to different stimuli), eat, drink, rest, runaway

(from different stimuli), and the reflex behaviour avoid obstacle .

The internal medium is d efined by a  set of variables which

can take values b etween zero  and one, re presenting str ength,

lucidity, safety, fatigue, thirst, and hunger. The size of the

angular steps of the animat is pro portional to  his strength, while

its radius of perception is proportional to his lucidity.  The safety

value does not change in time; but fatigue, thirst and hunger are

increased in time (or decreased if a proper consummatory

behaviour is executed) . The interna l medium of the animat is

perceived by the interoceptors  of BeCA.

4.2. The Virtual Environment

The virtual environment is defined by a plane (z, x), limited by

a frame, of a  space (x, y, z). In the area defined by this frame

different objects can be crea ted. This objects represent the

external stimuli food (green spheres), water (blue circles), grass

(texturized green circles), fixed obstacles  (brown

parallelepipeds), blobs (black ellipsoids), and other kinds of

stimuli that initially have no specific mea ning for the entity  (red

and yellow circles). T he frame that delimits the plane  (z, x) is

also considered as a fixed obstacle. The animats perceive these

stimuli, and act upon them. Figure 4 shows an aerial view of the

simulated en vironmen t. 

Figure 4. Virtual environment

4.3. The Interface

The interface of the BVL allow s to perform a wide variety of

simulations and experiments. It consists of one window

containing the general co ntrols of the BVL and one window for

each animat created in the BVL, as the ones shown in Figures

5 and 6.

The general controls allow the user to save, load, and reset

animats, environmen ts, and simulatio ns. Animats ar e saved wit h

all their properties (internal states, learning states, parameters,

and attributes). Simulations handle animats and enviro nments

as one. This allows to save initial, partial, or final states of

experime nts easily. In this window, the user can add and

remove external stimuli, randomly or with specific positions

and magnitudes; pause  and resum e the simulation ; and set a

delay for each simulation interval in milliseconds.

Figure 5.  General controls window.



In the animat co ntrols, the user can set the name of the

animat,  its position and orientation, its radius of perception, and

its type (predator or prey). The animat also can be set as

immortal.  The internal states of the animat are adjusted and

shown in the same d isplay, which is a se t of scrollbars. The

animat can leave a trail, which colour can be also selected  to: a

specific colour, the animat’s colour, or the RGB colour of the

magnitudes of fatigue, thirst, and hunger mapped to red, blue,

and green, respe ctively. The param eters ", $, (, 6, 8, and : of

BeCA; and ! of the perceptual system, can be modified

through this interface.

Figure 6.  Animat controls window.

Both  controls hav e a display to in form of the sta tes of the

simulation, environment, or animat. The animat controls can

display the actual state of the blackboard levels, and of the

coupling strengths involved in the learning p rocesses.

All the presented properties of the BVL allow a wide

variety of situations in order to produce experiments and

simulations.

5. Experiments

In this section we’ll  describe two series of experiments that try

to show some of the capabilities of BeCA and the BVL. In the

first series of experiments, we’ll observe wha t changes in the

external behaviour of an animat are produced by changing the

parameters that modulate motivation and reactiveness. In the

second series, we’ll show th e role of short-time memories in the

learning processes; and how these affect the chances of survival

of animats.

5.1 Motivated and reactive behaviours

In these experiments,  we modified the values of the parameters

", (, and N; in order to observe how motivated or reactive is an

animat behaviour de pending on these pa rameters.

We used for all experiments an initial state as the one

shown in Figure 7. The animat has little fatigue, much thirst,

and some hunger. There are food sources near him, but the

water sources are distant and the animat can’t perceive them at

this stage. The  BVL’s in terface allows  to easily load this initial

state for each e xperimen t.

Figure 7. Initial state of the experiments of Section 5.1

First, we took va lues of "=0.8, (=0.0, and N=1.0. These

are the default valu es used in the BVL. The behaviours

executed by the animat can be appreciated in Figure 8. Since

the animat had some hunger, he approached first to the food

source nearest to him , and ate  until the hunger was reduced (but

not totally). Then he began to e xplore in sea rch of water, in

order to satisfy his thirst. Once he perceived it, he approached

to it, and beg an to drink. These  behaviours were motivated by

the internal states o f the animat.

Figure 8. Behaviours executed with "=0.8, (=0.0, and N=1.0.

For the next experiment, we took values of "=0.0, (=0.0,

and N=1.0. Since the internal and ex ternal signals are being

combined multiplicatively (as can be seen in expression (4)),

the animat will need  to perceive the water before the respective



behavioural column may win the competence in the

motivational node. So, since the animat was perceiving food

and was hungry,  he approached it and ate until his hunger was

satiated. After this, he wan dered un til he finally perceived the

water source, approached it, and satisfied his  thirst by drinking

it; as shown in Figure 9. These behaviours are less motivated,

since the animat can’t execute the explore behaviour, and any

small internal need  may fire its behav iour only if a

correspondent external stimulus is perce ived. This  also affects

the animat’s surviva l performa nce, beca use he will need more

time to find a stimulu s to satiate a need than for higher values

of " (González et. al., 2000).

Figure 9. Behaviours executed with "=0.0, (=0.0, and N=1.0.

For the following experimen t, we used valu es of "=0.8,

(=0.0, and N=0.0. Since N=0 causes that no signal from the

motivational node reaches the cognitive node, the animat has no

awareness of his internal need s. Because  of this, he will wander

independ ently of his percep tions or needs (except for reflex

behaviours); as shown in Figure 10, until his death.

Figure 10. Behaviours executed with "=0.8, (=0.0, and N=0.0.

For values of "=0.0, (=0.0, and N=0.0 we had similar

results. If there is no flow of signals from the motivational node,

the value of " will not affect the external behaviour of the

animat.

Next,  we used va lues of "=0.8, (=0.1, and N=1.0. (
greater than zero in expression (3) allows a behaviour to be

reactively  executed, even in the absence of an internal need for

it. Figure 11 shows the behaviours that the animat executed:

First, he perceived food , approa ched it, and a te it complete ly,

even when he had no more hunger. Then, he tried to approach

another food source, until he perceived the water source,

approached it, and dran k it complete ly. Since he had  little

fatigue, he beg an to explo re in search o f a grass where  to rest.

Figure 11. Behaviours executed with "=0.8, (=0.1, and N=1.0.

With  values of "=0.0, (=0.1, and N=1.0 we had the same

results.

Figure 12 shows the last experiment, where we first took

values of "=0.8, (=0.1, and N=0.0. In this case, the animat has

no awareness of his internal state, but he acts reactively since (
is greater than zero. So he had a similar behaviour as the one

shown in the previous experim ent, only that after d rinking all

the water, he wanders because o f his unawaren ess. In this

situation, the animat wo uld only survive  if he would find

casually external stimuli for the needs he is having in a precise

momen t. If he would not run into an appropriate external

stimulus, he wo uld die unkn owingly.

Figure 12. Behaviours executed with "=0.8, (=0.1, and N=0.0.



With  values of "=0.0, (=0.1, and N=0.0 we had similar

results.

5.2. The Role of Short-time Memory in the

Learning Processes

In these experiments, we lesioned the short time memories: the

one simulated by the perceptual persistence internal behaviour,

and the one simulated by the perceptual system. These were

altered by modifying the param eters 6 and !, respectively.

First, we used a prey animat A, with the default values

6=0.25 and !=0.1. He leaves a black trail, while he is

approaching a closed zone whe re a satiated predator wan ders,

leaving a white trail. We  put a neutral stimulus (a red spot) near

the entrance to the zone where the predator roams. Since we

wanted the animat to a ssociate  the red spo ts with predators, we

used a value of 8=1.0. With these values, the animats executed

the behaviours shown in Figure 13: Prey a nimat A was  thirsty,

and exploring in search of water. He perceived the red spot

before he perceived the predator, and he ran away; but he

already associated the red spot with the predator, because of the

high value of 8. We saved this conditioned prey animat A for

further experimentation.

Figure 13. Prey animat running away from wandering predator, after

perceiving a neutral stimulus.

Next,  we used a p rey animat B, in the same conditions as

prey animat A; only that we set the values 6=1.0 and !=1.0.

This means that a sig nal won’t reverberate in the Perceptual

Persistence level, due to the value of 6 in expression (1); and

that the remembered scenario  will be “forgotten” almost

immedia tely, due to the va lue of ! in expressio n (7). W e

observed the same behaviours as in the previou s experime nt in

the prey anima t A. Only that, even for a value of 8=1.0, the red

spot couldn’t be associated with the predator. We saved prey

animat B for further experimentation.

For the next expe riment,  we loaded two prey anim ats A in

the environm ent, and set them  in a position so that they would

approach the zone where now two hungry predators roamed.

Since we successfully conditioned prey animats A, when the

preys perceived the red spot, they ran away, without the need of

perceiving a predator (and allowing him to perceive them).

These  behaviours can be apprecia ted in Figure 1 4. Prey anim ats

are leaving a black trail, while predators ar e leaving a wh ite

one.

Figure 14. Prey animats A running away from a red spot previously

associated with presence of predators.

For our last experiment, we loaded prey animat B, in a

situation such that he would approach the zone with two hungry

predators.  Since the red spot acquired no meaning for him, he

naively entered into the predators’ zone, which now were

hungry and exploring in search of p reys. As soon as these

perceived him, they began to chase him. Since the animat had

no memory, as soon as he began to run away from a predator,

he forgot that he was being chased. He then perceived the other

predator, and ran away in the other direction. Finally the

predators easily caught him and satiated their  hunger, as shown

in Figure 15.

Figure 15. Prey animat B chased and captured by predators.



Conclusions

We presented our approximation to a Behaviours Virtual

Laboratory.  It still lacks many properties desirable in a

Behaviours Virtual Laboratory, but at this stage it would be

already useful for biologists and AI researche rs. We prop ose

that a BVL would be helpful not only in experimentation and

design, but also an instrument to think with the understanding

of adaptive behaviour.

We believe that a BVL like the one we are developing

would also help to divulge in the scientific comm unity mode ls

or experime nts that in many cases are developed in simulations

that only the developers can a ccess to. This would also produce

valuable feedback a mong researchers o f different areas.

Our future work is dire cted to evo lving the BV L with

feedback of researchers in the areas of ethology, artificial

intelligence, life sciences, and complex systems.  As a short term

goal, we intend that parameters of BeCA are learned depending

on the animat’s experience. Also, we intend to implement

instrumental conditioning and le arning at a co gnitive level in

BeCA. As a medium term goal, we intend to study the role of

emotions (Gershenson, 1999 ) in the action selection process;

and also develop communication methods between  the animats,

to simulate more complex social behaviours. As a long term

goal, we intend to include evolutive processes in a complex

animat society. An Evolution Virtual Laboratory would be

extremely  useful for proposing and testing theories of evolution

of life, societies, and cultures.
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