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Task analytic theories of graph comprehension account for the perceptual and conceptual processes
required to extract specific information from graphs. Comparatively, the processes underlying informa-
tion integration have received less attention. We propose a new framework for information integration
that highlights visual integration and cognitive integration. During visual integration, pattern recognition
processes are used to form visual clusters of information; these visual clusters are then used to reason
about the graph during cognitive integration. In 3 experiments, the processes required to extract specific
information and to integrate information were examined by collecting verbal protocol and eye movement
data. Results supported the task analytic theories for specific information extraction and the processes of
visual and cognitive integration for integrative questions. Further, the integrative processes scaled up as
graph complexity increased, highlighting the importance of these processes for integration in more
complex graphs. Finally, based on this framework, design principles to improve both visual and cognitive
integration are described.
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Imagine a health scientist attempting to contain the flu epidemic.
The scientist may study a population density graph (similar to
Figure 1) depicting the number of flu cases by county. To allocate
the limited flu vaccine, the scientist may want to know the specific
number of cases in a particular county or the general trend of
infected cases. What cognitive and perceptual processes are used
to extract these different types of information from a graph?

Specific information extraction involves searching for a specific
data point and determining the quantity represented by the data
point. Integrating information, which is required to determine the
trend in a graph, demands the extraction of multiple data points
and interpretive processes to combine this information into a

coherent representation. The goal of this article is to examine the
cognitive and perceptual processes used to extract specific infor-
mation and to integrate information, with an emphasis on the
integration process. We elaborate on existing frameworks of inte-
gration and provide guidelines to facilitate integration in graphs.

Specific Information Extraction

Most theories of graph comprehension have focused on the
cognitive and perceptual processes underlying specific information
extraction from graphs. Specifically, task analytic theories (Koss-
lyn, 1989; Lohse, 1993; Pinker, 1990) provide process description
of specific information extraction with a focus on relatively simple
graph types (i.e., bar and line graphs). These theories are remark-
ably consistent, suggesting the following stages of processing: (a)
pattern recognition occurs, whereby graph readers encode the
visual array and identify visual features of the graphical pattern;
(b) conceptual relations are determined, giving rise to the quanti-
tative meaning of the visual features; and (c) referents of the graph
are related to the encoded visual features.

Several empirical studies have provided support for the task
analytic theories’ account of specific information extraction by
examining the specific processes that comprise the general stages
outlined previously (Carpenter & Shah, 1998; Lohse, 1993;
Peebles & Cheng, 2003). First, parts of the question may be read
multiple times (Peebles & Cheng, 2003). Next, the participant
searches for the specific information on the graph (Stage 1),
shifting from the axes to the main part of the graph and back again
(Stage 2; Carpenter & Shah, 1998; Lohse, 1993; Pinker, 1990).
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Once the information is found, multiple saccades occur between
the main part of the graph and the legend to keep the information
in memory (Stage 3; Carpenter & Shah, 1998; Trafton, Marshall,
Mintz, & Trickett, 2002). Finally, the question itself is answered.

The perceptual processes underlying specific information ex-
traction have been closely examined as well. Cleveland and
McGill (1984) identified a set of elementary perceptual tasks that
are carried out when specific information is extracted from graphs.
These perceptual tasks have been empirically examined and have
resulted in a hierarchical ordering of graph types based on accu-
racy of information extraction. Following this work, Simkin and
Hastie (1987) showed an interaction between the perceptual de-
coding of the graph and the judgment task the graph reader was
attempting to accomplish. Simkin and Hastie suggested several
elementary processes (e.g., projection and anchoring), which are
used to make comparisons and proportion judgments. Thus, both
the cognitive and perceptual processes underlying specific infor-
mation extraction are accounted for by the task analytic theories
and subsequent empirical studies.

Integration of Information

Historically, task analytic theories focused on the extraction of
specific data points, thus these theories have not been applied with
much success to graph integration. For example, Carswell (1992)
evaluated the predictions of a basic task model of graphical per-
ception, primarily based on Cleveland and McGill (1984), and
found task models were more successful at accounting for specific
extraction tasks than integration tasks. In the last 15 years, there
have been three notable theories that go beyond pure information
extraction to integration.

Carpenter and Shah (1998) extended the task analytic theories to
account for integration by suggesting the same stages of process-
ing used for specific information extraction occur for integration;
however, multiple cycles of processing are required. This integra-
tive framework included a pattern recognition stage and two in-
terpretative stages. The pattern recognition stage leads to the
encoding of a visual pattern by forming a visual chunk. The
interpretive stages translate the pattern into its quantitative and
qualitative interpretation and relate this information to the refer-
ents in the graph. These processes are repeated in a cyclical fashion

for each visual chunk in the graph, with each cycle interpreting a
single chunk.

To demonstrate this cyclical process, Carpenter and Shah (1998)
examined graph readers’ transitions between regions of the graph
(e.g., the graphical pattern, axes, legend, title, etc.). Graph readers’
fixations cycled between the different regions for each of the
visual chunks represented in the graph, suggesting that graph
readers cycled between different stages of processing. As graph
complexity increased (i.e., the number of unique visual chunks),
the number of transitions between regions of the graph increased,
suggesting that a single processing cycle was required for each
chunk in the graph. Using this high-level transition analysis, Car-
penter and Shah extended the task analytic theories to account for
some integration processes.

Gillian and Lewis (1994) proposed a model of graphical per-
ception called mixed arithmetic-perceptual (MA-P). Gillian and
Lewis suggested that the processes used to interpret a graph are
task specific. MA-P has five stages of processing with several
similarities to the task analytic theories; however, MA-P contains
an explicit spatial component. For specific extraction tasks, the
processes are similar to those of the task analytic theories; how-
ever, for integration the MA-P model relies on the identification of
spatial relations (Gillian, 1995). This suggests that spatial process-
ing is also required to account for information integration.

Wickens and Carswell (1995) have proposed the proximity
compatibility principle, which suggests that information that needs
to be integrated should be close in perceptual proximity. Percep-
tual proximity can take the form of being spatially proximate as
well as being perceptually similar (e.g., sharing the same color
coding). Thus, this principle also suggests that spatial processes
may be required for integration. There are several manipulations to
increase perceptual proximity, many of which follow from Gestalt
laws of perceptual organization (for more on graphical integration,
see Wickens and Hollands, 2000). An increase in perceptual prox-
imity facilitates integration by reducing search cost and working
memory load.

These different theories addressing integration illustrate several
important aspects of the integration process. Carpenter and Shah
(1998) showed that multiple cycles of forming a visual chunk and
relating this information to the referents are needed. Gillian and
Lewis (1994) and Wickens and Carswell (1995) showed the im-

Figure 1. General example of the type of graph used in Experiments 1–3; the different shades of gray were
actually different colors. The actual figure can be viewed at http://dx.doi.org/10.1037/1076-898X.14.1.36.supp.
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portance of a spatial component. This article takes these findings
as a starting point and proposes a novel process theory of integra-
tion.

We suggest that the integration process is more complex than
any of these accounts alone. Integration during graph comprehen-
sion has at least two primary components: visual integration and
cognitive integration. First, visual integration must occur between
similar data points leading to visual clusters. Similarity will usu-
ally be based on perceptual features (e.g., color) but may also be
based on semantic or knowledge-level features (e.g., areas that are
semantically related), spatial features (e.g., proximity), or other
salient features. These individual data points will be visually
integrated to form higher order clusters of information. These
visual clusters are similar to Liu and Wickens’ (1992) concept of
visual chunks of information. Second, once aggregate visual clus-
ters have been formed through pattern recognition processes and
related to the referents, integration must occur between visual
clusters that are different in some way via a comparison–contrast
mechanism. Thus, visual integration results in objectlike visual
clusters that can be directly compared to form a coherent repre-
sentation. This process of visual and cognitive integration is iter-
ative and scales with the complexity of the graph: As graph
complexity increases, more cycles of visual cluster formation and
comparison are required.

This model of integration combines and further specifies the
previous models substantially. The visual integration component,
which focuses on explicit pattern recognition processes, provides
detail at a lower level than Carpenter and Shah (1998). The
cognitive integration component is a novel process of direct com-
parisons of visual clusters and differs from Carpenter and Shah’s
model. This model also describes the spatial component of inte-
gration more explicitly than Gillian and Lewis (1994) and Wickens
and Carswell (1995) and further illustrates the importance of
spatial processing, as other authors have claimed (Trafton et al.,
2000; Trickett & Trafton, 2006).

Current Study

We examined graph readers’ cognitive and perceptual processes
as they answered specific information extraction and integration
questions. We expect to find general support for the task analytic
theories’ account of how graph readers extract specific informa-
tion. For integration questions, we expect to find general support
for the multiple cycles of processing suggested by Carpenter and
Shah (1998). In addition to this cyclical process, we expect to find
evidence for visual cluster formation and comparison, and these
processes should correspond to performance on the task.

Specifically, the visual integration process should manifest itself
as explicit fixations defining distinct visual clusters of information.
These visual clusters can then be explicitly compared to each other
to develop a coherent representation of the graph. This cognitive
integration can be shown in many ways; in this study we opera-
tionally define this process as comparisons (verbal or perceptual)
between visual clusters. Visual and cognitive integration should
scale up with complexity: More complex graphs (i.e., a greater
number of distinct visual clusters) should elicit more explicit
cluster formation and explicit comparisons of these clusters.

To explicitly examine the visual and cognitive integration pro-
cesses, choropleth graphs were used (see Figure 1). These graphs

use color or shading of regions to represent magnitude (Lewan-
dowsky & Behrens, 1999) and are representative of a class of
spatial color-coded graphs including meteorological and geologi-
cal graphs as well as visualizations used in oceanography and
several other scientific domains. Choropleth graphs were used
because of the large graphical pattern with several distinct regions,
which makes them conducive to examining the perceptual pro-
cesses underlying visual and cognitive integration. Further, these
graphs are more complex than traditional graphs used in graph
comprehension studies, representing between 10 and 70 data
points as compared to the 3 to 6 data points of most studies (Lohse,
1993; Pinker, 1990).

In Experiment 1, we examined graph readers’ verbal protocols
as they answered specific extraction and integration questions; the
focus was on the pattern of processes at the verbal level.

In Experiment 2, the perceptual processes underlying specific
information extraction and integration were examined. Experiment
3 focused solely on integration questions. Finally, in the General
Discussion section, guidelines for designing graphs to facilitate
integration are described.

Experiment 1

In Experiment 1, participants performed a verbal protocol as
they were asked specific extraction and integration questions; the
focus was on the pattern of processes as they answered these
questions. We first sought to find evidence for the single cycle and
multiple cycle processes for specific information extraction and
integration, respectively. It is possible that the cyclical pattern of
integration as suggested by Carpenter and Shah (1998) is limited to
certain graph types; there have not been many empirical studies
examining this multiple cycle process.

When extracting specific information, we expected to find the
single cycle process of searching, extracting information, and
finally answering the question. This should be apparent in the
utterances from the verbal protocol data. Several empirical papers
have shown support for these processes (Guthrie, Weber, & Kim-
merly, 1993; Kosslyn, 1989; Lohse, 1993; Pinker, 1990; Shah &
Hoeffner, 2002); we expect to find support as well.

In contrast, information integration (e.g., determining the trend)
should elicit a different pattern of processes. The verbal protocol
data should provide evidence for multiple cycles of processing as
suggested by Carpenter and Shah (1998): Graph readers should
form visual clusters (i.e., refer to different spatial regions of the
graph), interpret these clusters in relation to the referents, and build
a representation by cycling through these stages multiple times.
Further, we sought evidence for a cognitive integration compo-
nent; graph readers should explicitly compare different visual
clusters (spatial regions) in the graph.

Method

Participants. Ten George Mason University undergraduate
psychology students (six women and four men) participated for
course credit.

Materials. Four sets of choropleth graphs were created, each
contained 3 to 10 conceptually related graphs. For example, one
set contained three graphs showing the population for the years
1990, 1995, and 2000. Two sets of graphs were complex, each
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containing 53 counties (see Figure 1), and two sets of graphs were
less complex containing nine counties.

Four types of questions were generated for each set of graphs:
describe questions (asked for a general description of what the
graph represented), integration questions (required general trends
to be identified), specific extraction questions (required single
extractions from the graph), and multiple search questions (mul-
tiple specific extraction questions). Because the focus of this study
is on specific extraction and integration, we do not discuss the
multiple search questions.

Design. A counterbalanced within-participants design was
used. Participants first received the describe question to orient
them with the graph (these data were not analyzed). Half of the
participants then received the integration questions followed by
specific extraction questions and the other half of the participants
received the reverse order.

Procedure. Each graph was presented on a single sheet of
paper with the questions written below the graph. Participants were
instructed to answer every question at their own pace and were
permitted to look back at any of the graphs as needed. Each
participant provided a talk-aloud protocol (Ericsson & Simon,
1993) as they examined the graphs and answered the questions.
The participants’ verbal protocols and the graphs they examined
were videotaped.

Coding scheme. Transcriptions of the verbal protocols were
coded prior to data analysis. The protocols were segmented into
individual utterances. Utterances were defined as a complete
thought, and utterances that were not germane to the task were
eliminated from further analysis (see Trickett and Trafton, 2007,
for a full description of this process). Each remaining utterance
was then coded in the following ways: qualitative extraction
(extracting general conceptual information from the graph), quan-
titative extraction (extracting specific quantitative information
from the graph), explicit search (looking for a specific object or
county), reasoning (constructing a “story” of what was happening
in the graph or making inferences that went beyond the data), or
cognitive integration (making comparisons or forming relation-
ships with the information extracted from the graph). A second
independent coder coded 25% of the protocol data. Interrater
reliability was calculated using Cohen’s kappa, � � .91, p � .001,
with interrater agreement at 93.1%. See Appendix A for coding
details.

Results and Discussion

Types of extractions. Raw frequencies were normalized by
dividing the number of each extraction type by the number of

questions that were asked (see Table 1). A repeated measures
analysis of variance (ANOVA) was used to examine question type
(specific extraction, integration) and extraction type (quantitative,
qualitative). The main effect of question type was significant, F(1,
9) � 8.7, MSE � .14, p � .05, �2 � .5, suggesting that participants
extracted different types of information for specific questions as
compared to integration questions. The main effect for type of
extraction was marginal, F(1, 9) � 3.9, MSE � .05, p � .08, �2 �
.3. The interaction between question type and extraction type was
significant, F(1, 9) � 211.6, MSE � .05, p � .001, �2 � .96. To
explore this interaction, we performed multiple Tukey’s honestly
significant difference (HSD) post hoc analyses. A greater number
of quantitative extractions were made when specific extraction
questions were answered (M � 1.10, SD � 0.05) as compared to
integration questions (M � 0.1, SD � 0.2), p � .01. A greater
number of qualitative extractions were made when integration
questions were answered (M � 1.5, SD � 0.5) as compared to
specific extraction questions (M � 0.3, SD � 0.3), p � .01. This
clearly shows that graph readers extracted different types of infor-
mation depending on the question type.

Transition diagrams. To examine the cycles of processes that
occurred during specific information extraction and integration, we
calculated transition probabilities and created one deep transition
diagram for each question type. To do this, we looked at the
sequence of utterances in the verbal protocols and coded each pair
of utterances (1st utterance to 2nd utterance, 2nd utterance to 3rd
utterance, and so on) by the type of utterance each pair represented
(e.g., search followed by search, or search followed by quantitative
extraction). A percent of each type of transition was then calcu-
lated by taking the proportion of each transition type relative to all
transitions. Diagrams were constructed to illustrate these transition

Quantitative 
Extraction 

Search 

77%

7% 7%

  4% 

Specific
Extraction 
Question 

Figure 2. Transition diagrams for specific extraction questions.

Integration 
Question Qualitative 

Extraction 

Cognitive 
Integration 

7%

 14% 

 8% 

13%

 21% 

8%

Figure 3. Transition diagram for integration questions.

Table 1
Frequency (Percentages in Parentheses) of Each Utterance Type
by Question Type

Utterance category Specific questions Integration questions

Qualitative extraction 6 (1.8) 158 (47.3)
Quantitative extraction 283 (86.3) 34 (10.2)
Search 39 (11.9) 0
Reasoning 0 33 (9.9)
Cognitive integration 0 109 (32.6)
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probabilities; only those links that occurred 4% or more of the time
are represented.

When graph readers extracted specific information, there was
evidence of the single cycle process, as Figure 2 shows. The
pattern of processes is in agreement with the task analytic theories;
most of the time graph readers read the question and directly
extracted quantitative information in one cycle. Occasionally they
verbalized the search process and then extracted the information
directly. Notice that search was the only repetitive process: Par-
ticipants would occasionally make multiple utterances about the
status of their search for the target.

In contrast, as shown in Figure 3, several cycles of processing
were needed to answer the integration questions. This cyclical
nature of processing was evident in several ways. First, cognitive
integration utterances frequently followed other cognitive integra-
tion utterances. Second, cognitive integration and qualitative ex-
traction cycled between each other. Finally, qualitative extractions
frequently followed other qualitative extractions. When integrating
information, the pattern of processes included cognitive integra-
tion: Graph readers made explicit comparisons between different
areas of the graph as opposed to strictly making qualitative ex-
tractions. Statistical comparisons of the pattern of processes in
Figures 2 and 3 were not performed, because the specific processes
that occurred for each question type were entirely different from
each other . Nonetheless, a visual comparison of Figures 2 and 3
clearly shows differences that will be explored in later analyses.

Although Experiment 2 illustrated multiple cycles of processing
with cognitive integration for integration questions, the specific
perceptual processes remain unclear. In particular, how were graph
readers extracting qualitative information when answering integra-
tion questions and what perceptual processes underlie the process
of cognitive integration? The overarching goal of Experiment 2
was to understand the perceptual processes that underlie the dif-
ferences in specific information extraction and integration with a
focus on the integration process.

Experiment 2

In Experiment 2, we collected eye movement and verbal proto-
col data as participants answered specific extraction and integra-
tion questions. First, we directly compared the perceptual pro-
cesses during the pattern recognition stage as participants
answered these questions. Second, we focused on the integration
process and sought to tie the eye movement data to graph readers’
verbal responses to understand how visual integration and cogni-
tive integration give rise to a coherent representation of the graph.

Perceptual Processes During the Pattern Recognition
Stage

To understand the perceptual processes underlying the differ-
ences in the type of information extracted by question type found
in Experiment 1, we examined the location of graph readers’
fixations on the graphical pattern. For specific information extrac-
tion, researchers have shown that graph readers examine specific
locations to find the target and extract the value associated with
that target point (Trafton et al., 2002). Thus, we expect graph
readers’ fixations to be concentrated on the inside of counties,
reflecting a read and search process.

The perceptual processes underlying information integration are
not as clear. Graph readers may focus on specific counties, just as
with specific information extraction, and mentally combine this
information in an aggregate manner resulting in qualitative re-
sponses. Alternatively, visual integration may be used during the
pattern recognition stage. Visual integration involves the explicit
formation of visual clusters of information. In the choropleth
graphs used here, groups of same-colored counties may constitute
a visual cluster (Brewer & Pickle, 2002; Herrmann & Pickle, 1996;
Lewandowsky et al., 1993). Even though graph readers may form
visual clusters in several ways, there is some evidence that fixating
on distinguishable boundaries allows for segmentation into unitary
objects (Bravo & Farid, 2002; Schyns & Oliva, 1994). Thus, we
have used the explicit fixation to the boundaries of groups of
same-colored counties as a measure of visual cluster formation.

These different hypotheses about integration lead to two diverg-
ing predictions in regard to the location of fixations. If graph
readers are paying attention to individual counties, there should be
no difference in fixation locations between specific extraction and
integration questions. However, if visual integration is used, there
should be a greater number of fixations to the boundaries of groups
of same-colored counties; we term these fixations cluster-
boundary fixations. Further, there should be a pattern to these
cluster-boundary fixations such that they are in service of forming
a quantifiable number of visual clusters.

Visual Clusters and Cognitive Integration

Next, we focused on tying the pattern recognition processes to
cognitive integration. Our model of integration suggests two crit-
ical processes: (a) visual clusters are formed during the pattern
recognition stage (visual integration); and (b) these visual clusters,
in addition to being related to their referents, are directly compared
to each other (cognitive integration). As graphs increase in com-
plexity, the visual and cognitive integration processes should scale
up as well. Although Experiment 1 provided some support for
these processes, in Experiment 2 eye movement and verbal pro-
tocol data were collected to provide additional support for visual
and cognitive integration by focusing on three critical points.

First, if the visual clusters formed during visual integration are
used to reason about the graph during cognitive integration, the
number of visual clusters found from eye tracking should relate to
the number of verbal clusters in the verbal data. Second, after
forming visual clusters, graph readers should relate these clusters
not only to the referents of the graph but also to other visual
clusters. Finally, if integration depends on comparing visual clus-
ters to each other, then performance on the task, measured by
quality of answer, should relate to these comparisons.

Method

Participants. Seventeen George Mason University undergrad-
uate psychology students (10 women and 7 men) participated in
Experiment 2 for course credit.

Materials. Choropleth graphs that displayed the populations
of 32 counties were used in Experiment 2; each county was
marked by a single unique letter or number positioned in the center
of the county to allow for more accurate eye tracking. Each county
differed in size; the smallest county subtended 2.4° of visual angle,
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whereas the largest county subtended 3° of visual angle. A total of
14 different maps were generated; each map was 30 � 34 cm.
Seven of the maps had three clusters, and seven of the maps had
seven clusters. The coding scheme on the legend was in color and
was the same for all of the graphs; this scheme did not follow any
logical order. For each graph, participants were asked a specific
extraction and integration question. The specific extraction ques-
tion changed for every graph; the integration question remained
the same and always asked the participant to determine the trend in
the graph. The maps and questions were randomized for each
participant. Eye movement data were collected using an LC Tech-
nologies Eyegaze Analysis System (LC Technologies, McLean,
VA) heads-free eye tracker operating at 60 Hz (16.7 samples/s)
with gaze position accuracy of less than 0.5° of error. The eye
tracker used corneal reflection to record eye movements; a chin
rest was used to reduce recalibration. The eye tracker was run from
a single desktop personal computer running Windows 2000.

Design. The complexity of the graph (three cluster vs. seven
cluster) and the type of question being asked (specific extraction
vs. integration) were examined in Experiment 2 using a within-
participants design. Each participant answered a specific extraction
and integration question for each graph on independent trials.
Thus, each participant viewed a total of 28 graphs and answered 14
questions of each type. The order of graph presentation was
randomized.

Procedure. Participants were seated approximately 46 cm
from the monitor and placed their chin on a chin rest for added
head stability; the eye tracker was then calibrated. Each participant
was instructed to read each question out loud and answer each
question out loud as they examined each graph; the eye track data
and the verbal responses occurred concurrently. Pilot testing
showed that verbal responses did not disrupt the recording of eye

movements; this was determined by having pilot participants look
at predefined locations while talking and measuring their deviation
from the predefined locations. Each question was displayed in the
middle of a blank screen. The participant used the mouse to move
on to the next screen, which displayed the graph and legend. The
experiment was self-paced, and the participant could not return to
view the screen that displayed the question for each particular
graph; thus the participant had to remember the question for each
graph (cf. Peebles & Cheng, 2003).

Coding scheme. A fixation was defined as a minimum of five
eye samples (�100 ms) within 10 pixels (approx 2° of visual
angle) of each other, calculated in Euclidian distance. The center
of gravity of the fixation was based on taking the average of the
Cartesian coordinates of all included eye samples. The location of
each fixation was coded relative to the actual clusters of same-
colored counties in the graph and was coded as either a cluster-
boundary fixation or an inner fixation (see Figure 4). A cluster-
boundary fixation was directed to the boundary between clusters of
different colored counties. An inner fixation was completely in one
color region, thus an inner fixation may have been to the junction
of two same-colored counties or completely within a single county.
Cluster-boundary and inner fixations were coded to test the hy-
pothesis that visual clusters were formed by fixating on the bound-
aries of clusters as opposed to being formed by fixating on indi-
vidual counties within the clusters. Each of the specific areas of the
graph was defined as an area of interest to analyze the eye track
data.

We also implemented a coding scheme to calculate the actual
number of visual clusters formed in each graph. A sequence of
fixations was defined as forming a visual cluster if it met one of
two criteria. First, a consecutive sequence of at least two fixations
to opposite edges of boundaries of a single cluster of same-colored

Figure 4. Examples of coded fixations in Experiments 2 and 3; the different shades of gray were actually
different colors. The actual figure can be viewed at http://dx.doi.org/10.1037/1076-898X.14.1.36.supp.
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counties qualified as a visual cluster (a group of same-colored
counties in the graph is referred to as a cluster; the actual forma-
tion of the cluster with explicit fixations is referred to as a visual
cluster). Second, if a consecutive sequence of fixations was to at
least two edges of opposite boundaries of a single cluster plus the
center of the cluster, this was coded as a visual cluster. A second
independent coder coded 25% of all the eye track data. Interrater
reliability was calculated using Cohen’s kappa, � � .965, p �
.001, with interrater agreement at 97.3%.

Performance measures. Participant responses were graded to
measure performance. For specific extraction questions, the re-
sponses were graded as correct or incorrect depending on whether
they identified the specific value associated with the target county
in question. For integration questions, responses were graded on a
1–5 scale depending on how well the information in the graph was
synthesized. A score of 1 was assigned to responses that simply
identified areas in the graph, whereas a score of 5 was assigned to
responses that identified several different areas in the graph and
synthesized this information to form a coherent representation. The
details of this grading system can be found in Appendix B.

Results and Discussion

The coded eye fixation data were analyzed in relation to the total
number of fixations to the graph; thus a percent of fixations
relative to the location of all fixations to the graph was calculated.
Performance on the specific questions was very accurate (greater
than 98%) with no difference between simple and complex graphs
( p � .9); this performance measure will not be discussed further.
Performance on the integration questions is discussed later in this
section.

Location of fixations and pattern recognition processes. We
first examined the number of inner fixations by graph complexity
and question type. The main effect of question type was signifi-
cant: Specific questions elicited more inner fixations as compared
to integration questions, F(1, 16) � 65.6, MSE � 87, p � .001,
�2 � .8. The main effect of complexity was significant as well:
The complex graphs elicited fewer inner fixations as compared to
simple graphs, F(1, 16) � 81.5, MSE � 26, p � .001, �2 � .84.
The interaction of question type and complexity was significant,
F(1, 16) � 10.3, MSE � 12.3, p � .01, �2 � .39. The interaction
was driven by the few inner fixations in the complex graph when
integration questions were answered, as shown in Figure 5.

Next, we examined the number of cluster-boundary fixations by
graph complexity and question type. The main effect of question
type was significant: Integration questions elicited more cluster-
boundary fixations than specific questions, F(1, 16) � 74.5,
MSE � 52.7, p � .001, �2 � .82, as Figure 6 shows. The main
effect of complexity was significant: The complex graphs elicited
more cluster-boundary fixations than the simple graphs, F(1,
16) � 82.5, MSE � 25.9, p � .001, �2 � .84. The interaction was
significant, F(1, 16) � 19.2, MSE � 14.3, p � .001, �2 � .55. The
interaction was driven by the large number of cluster-boundary
fixations in the complex graphs when integration questions were
answered.

Together, these results clearly show that different perceptual
processes occurred during the pattern recognition stage when
specific and integration questions were answered. Specific ques-
tions elicited primarily inner fixations reflecting the process of

searching for the specific county of interest. Integration questions
elicited more cluster-boundary fixations and fewer inner fixations
as compared to the specific questions. The increased number of
cluster-boundary fixations supports the visual integration hypoth-
esis; graph readers looked to the cluster boundaries to form visual
clusters. One thing to note is there were still a large number of
inner fixations when integrating information. This issue was fur-
ther explored in Experiment 3.

Evidence of forming visual clusters. Next, we examined
whether the cluster- boundary fixations were in service of forming
visual clusters. There was no evidence of visual cluster formation
when specific extraction questions were answered. When answer-
ing integration questions, graph readers formed significantly more
clusters in the complex graphs (M � 4.8, SD � .2) than the simple
graphs (M � 2.1, SD � .1), F(1, 16) � 61.33, MSE � 1.07, p �
.001, �2 � .78. These results show that, at the perceptual level,
visual clusters were being formed when integration questions (but
not extraction questions) were answered. When graph readers
integrate information, the pattern of visual cluster formation mir-
rors the cluster-boundary fixation data as well. More complex
graphs elicited more cluster-boundary fixations and more visual
clusters. Next, we attempt to relate visual cluster formation to
cognitive processes.

Connecting visual integration and cognitive integration. To
tie visual integration during the pattern recognition stage to cog-
nitive integration, we sought to examine the relationship between
the eye movement data and what participants actually said (the
verbal data). First, we compared the number of visual clusters
formed at the perceptual level to the number of qualitative extrac-
tions at the verbal level; a paired sample t test demonstrated that
they were not significantly different, t(16) � .68, p � .51. Further,
we ran a standard multiple regression predicting the number of
qualitative extractions at the verbal level from cluster- boundary
and inner fixations. The overall regression equation was signifi-
cant, F(2, 31) � 38.62, p � .001, and accounted for 71% of the

Figure 5. Inner fixations by question type and complexity.
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variance in qualitative areas discussed at the verbal level; cluster-
boundary fixations loaded significantly, t(31) � 4.47, p � .001,
whereas inner fixations did not load significantly, t(31) � 1.14,
p � .26. The regression equation is as follows:

Qualitative verbal extractions � 1.34

� (.12 � cluster boundary fixations) � ε

An additional regression analysis was conducted with the inner
fixations that were not directly on county labels (i.e., nonreading
fixations) to determine whether these fixations played a role in
predicting qualitative verbal extractions. In this regression, quali-
tative extractions were being predicted from cluster-boundary and
nonreading fixations. The results of the regression equation did not
change; cluster-boundary fixations were the only significant pre-
dictor. These analyses are important for two reasons. First, they
show that cluster- boundary fixations, not inner fixations, are
critical to integration. Second, they show that these visual integra-
tion processes are tightly linked to cognitive integration. These
analyses support the hypothesis that visual clusters formed during
pattern recognition are then used to reason about the graph using
cognitive integration. Next, we look for explicit evidence of cog-
nitive integration and the direct comparison of visual clusters to
each other.

Perceptual transitions and cognitive integration. To deter-
mine how graph readers performed integration at the cognitive
level, we examined the transitional patterns in the eye movement
data. We focused on the action immediately following the forma-
tion of a visual cluster. If cognitive integration was used, graph
readers should have transitioned from one cluster to another as
opposed to just relating the visual cluster to the referent (the
legend). The percentage of cluster-to-cluster and cluster-to-legend
transitions are displayed in Figure 7. The main effect of complex-
ity was not significant, F(1, 16) � 1.17, MSE � 86.31, p � .3,
�2 � .13. The main effect of transition type was significant; there

were more cluster-to-legend transitions as compared to cluster-to-
cluster transitions, F(1, 16) � 36.17, MSE � 498.31, p � .001,
�2 � .63. The interaction was significant, F(1, 16) � 16.41,
MSE � 160.37, p � .001, �2 � .45. Tukey’s HSD post hoc
comparisons reveal this interaction was driven by no statistical
difference in cluster-to-legend transitions between simple (M �
50.41, SD � 15.4) and complex graphs (M � 40.41 SD � 10.2);
however, there were significantly more cluster-to-cluster transi-
tions in the complex graphs (M � 20.29, SD � 4.8) as compared
to the simple graphs (M � 5.41, SD � 1.1), p � .001.

Even though there were more cluster-to-legend transitions than
cluster-to- cluster transitions overall, there were still a substantial
number of cluster-to-cluster transitions in the complex graphs
(approximately 20%). Thus, there is some support for cognitive
integration. At one level, the small number of cluster-to-cluster
transitions in the simple graphs is not very surprising. Because
there were only three actual clusters in the simple graph, there are
likely to be a small number of cluster-to-cluster transitions.

Cognitive integration and quality of response. To determine
whether cognitive integration was related to how well graph read-
ers were able to answer the integration questions, we examined the
correlations between the perceptual transitions and the quality of
answer ratings. There was no difference in the quality of response
for simple (M � 3.51, SD � .98) and complex graphs (M � 3.53,
SD � .94), F(1, 16) � .03, MSE � .15, p � .9, �2 � .002, thus,
we collapsed across complexity. Overall, cluster-to-cluster transi-
tions significantly correlated to the quality of answer ratings (N �
17), r � .55, p � .05. The cluster-to-legend transitions did not
significantly correlate (N � 17), r � 	.12, p � .6. The significant
correlation between the cluster- to-cluster transitions and the qual-
ity of answer suggests that cognitive integration is an important
component of the integration process. Explicit visual cluster com-
parisons seem to be important to integration, whereas cluster-to-
legend transitions do not seem to be as relevant.Figure 6. Cluster boundary fixations by question type and complexity.

Figure 7. Perceptual transitions for integration questions.

43THINKING GRAPHICALLY



Summary. We first focused on differences in pattern recogni-
tion processes based on question type. Specific extraction ques-
tions elicited inner fixations reflecting the search process, while
integration elicited cluster-boundary fixations suggesting visual
cluster formation. Focusing on the integration process, the cluster-
boundary fixations were shown to be in service of explicit visual
cluster formation. Further, these perceptual processes (specifically
the cluster-boundary fixations) predicted the number of qualitative
extractions at the verbal level connecting visual and cognitive
integration. Finally, the perceptual transition analysis showed that
cluster-to-cluster transitions were part of integration and signifi-
cantly correlated to the quality of answer.

With the combination of these analyses, we illustrated the inte-
grative process of explicitly forming visual clusters, using visual
integration, and then reasoning with these clusters by directly
comparing them, using cognitive integration. There are, however,
a few issues that are unclear. First, the number of inner fixations
observed when answering integration questions was relatively
high; second, we expected more evidence of cognitive integration.
One possible reason for both of these concerns is that graph
readers could have been attracted to reading the county names on
the graphs (MacLeod, 1991; Stroop, 1935) despite the fact that this
information was not used to answer the integration questions. This
would account for the large number of inner fixations. The tran-
sition analysis, which hinged on the very next action after forming
a cluster, may have been affected as well; a distraction caused by
reading county labels would greatly impact this analysis. In Ex-
periment 3, we removed the county labels to further examine the
visual and cognitive integration processes.

Experiment 3

Experiment 3 focused solely on integration questions; the main
purpose was to remove county names from the choropleth graphs
(a) to determine whether inner fixations were a necessary part of
visual integration and the formation of visual clusters and (b) to
examine whether we could find stronger evidence of the cognitive
integration process. Removing county labels also allowed us to
create even more complex choropleth graphs (i.e., greater number
of actual clusters in the graph). Thus, we could examine how
visual and cognitive integration were influenced by this greater
complexity as well.

Integration questions may elicit some inner fixations in service
of referencing and determining the size of visual clusters. How-
ever, we believe that the large number of inner fixations in Ex-
periment 2 may have been artificially high due to reading and that
these fixations were not a necessary part of integration. Based on
the literature on object segmentation, graph readers should be
fixating on cluster boundaries (Bravo & Farid, 2002; Schyns &
Oliva, 1994). Thus, in Experiment 3, we do not expect many inner
fixations.

Method

Participants. Sixteen George Mason undergraduate psychol-
ogy students (nine women and seven men) participated in Exper-
iment 3 for course credit.

Materials. Each of the graphs displayed the population of 70
counties; the counties did not have any labels to distinguish be-
tween counties (see Figure 8). The size of the counties differed,

Figure 8. Example of a graph used in Experiment 3; the different shades of gray were actually different colors.
The figure can be viewed at http://dx.doi.org/10.1037/1076-898X.14.1.36.supp.
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with the smallest county subtending .85° of visual angle and the
largest subtending 1.2°. The sizes of the graphs were the same as
in Experiment 2. A total of 20 different graphs were generated: 10
graphs had four clusters (simple graphs) and 10 had eight clusters
(complex graphs). The graphs were displayed in the center of the
computer screen, and the same eye tracker used in Experiment 2
was used in Experiment 3.

Design. Graph complexity was examined in a within-
participants design. Participants answered an integration question
for the 10 simple and 10 complex graphs.

Procedure. The procedure was the same as in Experiment 2.
Coding scheme. The eye data were coded just as they were in

Experiment 2. A second independent coder coded 25% of the eye
data. Interrater reliability was calculated using Cohen’s kappa, � �
.958, p � .001, with interrater agreement at 97.6%.

Performance measures. The performance measures were the
same as in Experiment 2.

Results and Discussion

The eye fixation data were analyzed in relation to the total
number of fixations to the graph; a percent of fixations (inner or
cluster boundary) relative to the location of all other fixations to
the graph was calculated.

Location of fixations. There were more cluster boundary fix-
ations than inner fixations, F(1, 15) � 38.57, MSE � 27.64, p �
.001, �2 � .72. The complex graphs elicited more cluster-
boundary fixations than simple graphs, F(1, 15) � 33.71, MSE �
22.30, p � .001, �2 � .69. The interaction of fixation location and
complexity was significant, F(1, 15) � 34.082, MSE � 7.41, p �
.001, �2 � .69, as Figure 9 shows. This was driven by the large
number of cluster-boundary fixations in the complex graphs.

Removing the county names from the graphs had an effect on
the way graph readers integrated information. These results show
that graph readers made many more cluster-boundary fixations

than inner fixations when they integrated information; this was
particularly true in the complex graphs. Thus, the large number of
inner fixations in Experiment 2 was likely due to the existence of
county names (presumably a Stroop-like effect) and may not have
been necessary for information integration.

Connecting visual integration and cognitive integration. We
sought to tie the visual integration and cognitive integration pro-
cesses by using eye movement data to predict the quality of the
verbal responses. The regression equation predicting qualitative
responses from inner and cluster-boundary fixations formulated in
Experiment 2 was applied to the eye movement data in Experiment
3. The predicted number of qualitative extractions derived from
this equation was correlated to the actual number of qualitative
extractions; the predicted and actual qualitative extractions corre-
lated at r � .71, p � .01. The cluster-boundary fixations accounted
for 50% of the variance in qualitative extractions discussed at the
verbal level.

This cross-validation makes two important points. First, it
stresses the importance of cluster-boundary fixations to the visual
and cognitive integration processes. The reduced number of inner
fixations in Experiment 3 did not influence the visual integration
processes. Second, it illustrates the robustness of the visual clus-
ters. Even though the test set was based on less complex graphs
that contained county labels, the equation accounted for a large
percent of the variance in qualitative extractions in Experiment 3.
This suggests that the visual and cognitive integration processes
established in Experiment 2 have scaled up for the more complex
graphs. Next, we examined cognitive integration by focusing on
perceptual transitions.

Perceptual transition analysis. The percent of visual cluster-
to-visual cluster transitions and visual cluster-to-legend transitions
were examined. The main effect of complexity was not significant,
F(1, 15) � 1.65, MSE � 19.21, p � .22, �2 � .1. The main effect
of transition type was significant, F(1, 15) � 6.47, MSE � 675.82,
p � .05, �2 � .3; graph readers made significantly more cluster-
to-legend transitions than cluster-to-cluster transitions. As Figure
10 shows, the interaction was significant, F(1, 15) � 62.04,
MSE � 53.06, p � .001, �2 � .81. Tukey’s HSD post hoc
comparisons reveal that this interaction was driven by significantly
more visual cluster-to-visual cluster transitions in the complex
graphs (M � 35.88, SD � 7.8) as compared to the simple graphs
(M � 22.94, SD � 5.2), p � .01, and fewer visual cluster-to-
legend transitions in the complex graphs (M � 38.06, SD � 7.9)
than the simple graphs (M � 53.81, SD � 10.4), p � .01. There
was no statistical difference between the number of visual cluster-
to-visual cluster transitions and visual cluster-to-legend transitions
in the complex graphs.

The complex graphs elicited more cluster-to-cluster transitions
than the simple graphs, suggesting that as graphs became more
complex more synthesis using cognitive integration was required.
Thus, in the complex graphs, graph readers formed more visual
clusters and made more comparisons among these clusters to
integrate information. Next, we examined whether the quality of
response was related to the cognitive integration process.

Performance and cognitive integration. There was no differ-
ence in the quality of answer ratings between simple (M � 3.8,
SD � .8) and complex graphs (M � 3.9, SD � .9), F(1, 15) � .34,
MSE � .08, p � .6, �2 � .02; thus, we collapsed across complex-
ity. The number of cluster-to-cluster transitions significantly cor-Figure 9. Location of fixations to the graph.
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related to the performance ratings (N � 16), r � .56, p � .05. The
number of cluster-to-legend transitions did not correlate to the
performance ratings (N � 16), r � 	.43, p � .1. This finding
replicates the findings from Experiment 2 and shows that the
quality of response is closely tied to the amount of cognitive
integration. When graph readers made more explicit comparisons,
the quality of answer was more integrative.

Summary. The location of fixations analysis and the regression
equation analysis suggest inner fixations were not a necessary part
of integration; it is the cluster-boundary fixations that are impor-
tant. The perceptual transition analysis showed strong evidence of
cognitive integration, especially in the complex graphs. Finally,
the correlation between visual cluster-to-visual cluster transitions
and graph performance suggests that visual clusters are a core
component of early graph comprehension. These analyses together
clearly illustrate the integration process: Graph readers formed
visual clusters by examining cluster boundaries and then compared
these visual clusters to formulate a coherent representation of the
graph.

General Discussion

The goal of this article was to closely examine the perceptual
and conceptual processes underlying specific information extrac-
tion and integration. For specific information extraction, our ex-
periments confirmed the task analytic theories’ account. For inte-
gration questions, our theoretical framework introduced two
components that are needed to form a coherent representation of
the graph: visual and cognitive integration. Verbal protocols and
eye movement data provided strong support for both of these
components. Visual integration involved the explicit formation of
visual clusters of information. Cognitive integration involved the
explicit comparison of these visual clusters to the referents and
critically to other visual clusters to form a coherent representation.
Thus, the visual clusters formed during visual integration served as

objectlike units that could then be used to reason about the graph
during cognitive integration.

Further, as graph complexity increased, more visual clusters
were formed and explicitly compared to synthesize the information
in the graph.

Theoretical Implications

Previous theories of integration have suggested two major pro-
cesses that are different from the processes used to extract specific
information. Carpenter and Shah (1998) suggested that multiple
cycles of processing are required to integrate information, and
Gillian and Lewis (1994) and Wickens and Carswell (1995)
stressed the importance of spatial processes. The visual and cog-
nitive integration components that have been highlighted in this
article can be unified with these other theories.

The focus of the Carpenter and Shah (1998) framework was on
illustrating multiple cycles of processing through pattern recogni-
tion and interpretation stages. Our results support the multiple
cycles as evidenced by the verbal protocols from Experiment 1.
Further, the visual integration processes that were explicitly ex-
amined in this article are a detailed description of the processes
that occur during pattern recognition. The cognitive integration
process of directly comparing visual clusters is a novel process that
can be added to the interpretation stages of the Carpenter and Shah
framework. In addition to relating visual clusters to the referents,
we have shown that visual clusters are explicitly related to each
other within the cycles of processing. The process of explicitly
comparing visual clusters is a critical component of integration.

Gillian and Lewis’ (1994) model and the proximity compatibil-
ity principle (Wickens & Carswell, 1995) stress the importance of
a spatial component for integration. Our framework suggests that
spatial processing is required for both visual and cognitive inte-
gration. Specifically, during visual integration graph readers must
spatially cluster data points to form coherent objects, and during
cognitive integration these clusters must be spatially compared to
each other. Further, the spatial demands increase with complexity
of the graph.

Together, the previous theories and our framework provide a
general process model for integration in graphs. This general
process model can be applied to graph types other than choropleth
graphs; however, the specific perceptual processes underlying
these general mechanisms are likely to be different. The general
process model contains three steps. First, during a pattern recog-
nition stage, visual integration occurs: Groups or clusters of infor-
mation are explicitly formed. Second, during the interpretive stage,
cognitive integration occurs: The visual clusters formed during
visual integration are related to their referents and are compared to
each other to form a coherent representation. Finally, this process
is cyclical, and the number of iterations is heavily dependent on the
complexity of the graph. More complex graphs will require more
cycles of visual and cognitive integration; thus, there is more
interleaving between the visual and cognitive components.

Guidelines for Facilitating Integration in Graphs

Several articles provide recommendations for improving graph
design (Bertin, 1983; Carpenter & Shah, 1998; Gillian, Wickens,
Hollands, & Carswell, 1998; Kosslyn, 1989; Shah & Carpenter,

Figure 10. Perceptual transitions.
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1995; Shah & Hoeffner, 1992; Shah, Mayer, & Hegarty, 1999;
Pinker, 1990). Our framework can also be used to provide specific
guidelines for improving integration processes in graphs; specifi-
cally, we focus on recommendations for complex visualizations
(primarily color-coded graphs) where several data points need to
be represented. The overarching goal in designing graphs for
efficient integration should be to reduce the number of cycles of
processing required to interpret the graph.

To facilitate visual integration, graphs should be designed such
that visual clusters of information can be easily formulated. Based
on our framework, we suggest three ways of doing this. First, the
boundaries of clusters of data should be highlighted such that they
are easily identifiable. Fixating on these boundaries to form objects
(which are later used in cognitive integration) is a critical compo-
nent of visual integration, and these boundaries should be highly
salient to facilitate this process. A straightforward way of doing
this is bolding the boundaries. Second, the color schemes used to
code the data should allow easily distinguishable visual clusters.
Perceptually linear palettes (Spence, Kutlesa, & Rose, 1999) where
color is varied in a single dimension (e.g., varying shades of gray)
should not be used to code data, because they can make unique
visual clusters harder to identify. Rather, spectral color palettes
(e.g., rainbow colors) that allow for easy differentiation between
colors should be used. Finally, unnecessary labels or markings
should be removed, because they can impact the process of form-
ing visual clusters. These labels can increase the number of fixa-
tions required to form explicit clusters and thus increase the
amount of time and processing required.

To facilitate cognitive integration, graphs should be designed to
reduce the amount of processing needed to reason with the visual
clusters formed during visual integration. There are at least two
straightforward ways to do this. First, the association between the
color-coded data and the legend should be intuitive to reduce the
number of cluster-to-legend transitions. Empirically, the experi-
ments presented here show that graph readers spend a fair amount
of time looking to the legend after forming visual clusters. If graph
readers can intuitively associate a quantitative value with a visual
cluster without having to look to the legend, this can reduce
processing requirements. Second, the number of uniquely coded
variables in the graphical display should be reduced (e.g., do not
have too many color codes). Our framework suggests that when
there are more clusters in the graph the cycles of processing scale
with complexity; more cluster-to-cluster transitions and cluster-to-
legend transitions are required. Thus, if the number of coded
variables can be reduced by having more general categories of
data, graph readers can form a select number of visual clusters and
synthesize this information more easily.
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Appendix A

Coding Scheme Used in Experiment 1

Quantitative Extractions

Any specific quantitative information extracted from the graphs
was coded as a quantitative extraction. This could be a specific
numerical value or a range of values. Examples:

The population of Victorville County is 30,457.

The population of Janis County ranges from 21,549 to 37,457.

The populations of the counties in the northwest corner are 52,337.

Qualitative Extractions

The extraction of general conceptual information from the graph
was coded as a qualitative extraction. Common instances of graph
readers extracting qualitative information was when graph readers
assign low, medium, or high descriptors to a certain area of the graph
or when they simply refer to the color of a general area of the graph
without relating the color to the specific legend value. Examples:

The cluster of counties in the center has a medium population value.

There is a large area of blue and a small area of orange.

Victorville County has a medium low population range.

Search

The process of search was coded for if the graph reader made
explicit references to the search process. There must be clear evidence
that the graph reader is actually searching. Thus, there must explicit
statements like “I don’t see it” or “I am looking for. . .” Examples:

Victorville, Victorville, Victorville, I don’t see Victorville.

Let’s see. I am looking for Janis County. Where is Janis County?

Reasoning

Any inference that was made that went beyond the basic data
that was displayed in the graph was coded as reasoning. The data
presented in the graph were relatively context free, thus references
to city or country areas in relation to population values are making
inferences about the graph. Reasoning involves making statements
that clearly go beyond the basic concepts that are represented in
the graph. Examples:

Since the outside seems to be the country area, the center will grow.

The most populated area is probably the city center, and the surround-
ing less populated areas are likely to be the suburbs that will grow.

Cognitive Integration

Explicit comparisons or relationships formed with the informa-
tion that was presented in the graph was coded as cognitive
integration. These comparisons must be explicit; thus the statement
there is a largely populated area in the west and an area of medium
population in the north is not cognitive integration. These are two
qualitative extractions. To be coded as cognitive integration, the
information must be linked by conceptual relation. Examples:

The highly populated area in the center is much larger than the highly
populated area in the upper left.

The cluster of counties on the left are nearly double the size of the
counties in the lower right corner.

Appendix B

Performance Rating System for Integration Questions in
Experiments 2 and 3

Integration questions were rated on a 1–5 scale based on how
well the information in the graph was synthesized. Descriptions of
the grading system with examples from the actual protocols given
by participants are listed.

Score � 1

A few regions of the graph were identified with no synthesis at
all. Example:

In this map the most populated area is in the southwest corner; the
middle section is the least populated.

Score � 2

A few regions of the graph were identified and some statement
about the relative size of the regions was made or there was some
comparison process. Example:

The largest population is in the northwest corner and it occupies about
a quarter of the graph; there is a small group of counties in the south
that are the least populated.
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Score � 3

Several regions of the graph were identified with clear evidence
of some synthesis among the areas identified including some
reference to relative sizes of the areas. Example:

The center of the graph is the least populated, but the size of this
region is substantially larger than the most densely populated area in
the northwest.

Score � 4

Several regions of the graph were identified and synthesized
with explicit comparisons and relations. The relative sizes of most
of these regions were identified as well. Example:

In the northernmost area is a large group with the lowest population,
but going south a little bit is the densest area, which is small. Just
below that is a medium-sized group that is the secondmost dense and
this extends west and almost covers the length of the map.

Score � 5

There was overwhelming evidence that the graph reader had
formed a coherent representation of the graph. Several areas of the
graph were identified and the synthesis of this information in-
cluded direct comparisons and information about the sizes of the
regions identified. Example:

OK, the small group in the northwest is a very low population, but
next to it is a very densely populated group that is twice the size. To
the east of that is another group of the lowest population; this is a very
small group. Directly below this, adjacent to the border, is a. . . the
large group in the map that is orange, which is the middle population
density range. The large area extends almost half the length of the map
and occupies the most space.
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