
 Open access Book Chapter DOI:10.1007/978-3-030-84252-9_12

Thinking Outside the Superbox — Source link

Nicolas Bordes, Joan Daemen, Daniël Kuijsters, Gilles Van Assche

Institutions: University of Grenoble, Radboud University Nijmegen, STMicroelectronics

Published on: 16 Aug 2021 - International Cryptology Conference

Topics: Block cipher and Byte

Related papers:

 A Vector Space Framework for Parallel Stable Permutations

 On Boolean Functions, Unitary Transforms, and Recursions

 Design of Highly Nonlinear Substitution Boxes Based on I-Ching Operators

 A Search Strategy to Optimize the Affine Variant Properties of S-boxes

 Probabilistic reasoning and learning on permutations: exploiting structural decompositions of the symmetric group

Share this paper:

View more about this paper here: https://typeset.io/papers/thinking-outside-the-superbox-
3xqu6dwb0o

https://typeset.io/
https://www.doi.org/10.1007/978-3-030-84252-9_12
https://typeset.io/papers/thinking-outside-the-superbox-3xqu6dwb0o
https://typeset.io/authors/nicolas-bordes-3enjcedt3r
https://typeset.io/authors/joan-daemen-3ex4onqyzx
https://typeset.io/authors/daniel-kuijsters-5ch05sesw5
https://typeset.io/authors/gilles-van-assche-eay2xgdkvw
https://typeset.io/institutions/university-of-grenoble-1irzuhle
https://typeset.io/institutions/radboud-university-nijmegen-1p1bp5sl
https://typeset.io/institutions/stmicroelectronics-27g14r9i
https://typeset.io/conferences/international-cryptology-conference-2zifzhcu
https://typeset.io/topics/block-cipher-lkx1hxsb
https://typeset.io/topics/byte-1ltji0au
https://typeset.io/papers/a-vector-space-framework-for-parallel-stable-permutations-2y01f3g5l3
https://typeset.io/papers/on-boolean-functions-unitary-transforms-and-recursions-dyqvgj7b2q
https://typeset.io/papers/design-of-highly-nonlinear-substitution-boxes-based-on-i-z3feufl93h
https://typeset.io/papers/a-search-strategy-to-optimize-the-affine-variant-properties-39q9gae4n0
https://typeset.io/papers/probabilistic-reasoning-and-learning-on-permutations-iiweie2to7
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/thinking-outside-the-superbox-3xqu6dwb0o
https://twitter.com/intent/tweet?text=Thinking%20Outside%20the%20Superbox&url=https://typeset.io/papers/thinking-outside-the-superbox-3xqu6dwb0o
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/thinking-outside-the-superbox-3xqu6dwb0o
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/thinking-outside-the-superbox-3xqu6dwb0o
https://typeset.io/papers/thinking-outside-the-superbox-3xqu6dwb0o

HAL Id: hal-03337690
https://hal.archives-ouvertes.fr/hal-03337690

Submitted on 8 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Thinking Outside the Superbox
Nicolas Bordes, Joan Daemen, Daniël Kuijsters, Gilles van Assche

To cite this version:
Nicolas Bordes, Joan Daemen, Daniël Kuijsters, Gilles van Assche. Thinking Outside the Superbox.
Annual International Cryptology Conference - CRYPTO 2021, Aug 2021, Virtual, United States.
pp.337-367, ฀10.1007/978-3-030-84252-9_12฀. ฀hal-03337690฀

https://hal.archives-ouvertes.fr/hal-03337690
https://hal.archives-ouvertes.fr

Thinking Outside the Superbox

Nicolas Bordes1, Joan Daemen2, Daniël Kuijsters2, and Gilles Van Assche3

1 Université Grenoble Alpes, France
2 Radboud University, The Netherlands

3 STMicroelectronics, Belgium
nicolas.bordes@univ-grenoble-alpes.fr, joan.daemen@ru.nl,

Daniel.Kuijsters@ru.nl, gilles-iacr@noekeon.org

Abstract. Designing a block cipher or cryptographic permutation can
be approached in many different ways. One such approach, popularized
by AES, consists in grouping the bits along the S-box boundaries, e.g., in
bytes, and in consistently processing them in these groups. This aligned
approach leads to hierarchical structures like superboxes that make it
possible to reason about the differential and linear propagation proper-
ties using combinatorial arguments. In contrast, an unaligned approach
avoids any such grouping in the design of transformations. However,
without hierarchical structure, sophisticated computer programs are re-
quired to investigate the differential and linear propagation properties of
the primitive. In this paper, we formalize this notion of alignment and
study four primitives that are exponents of different design strategies.
We propose a way to analyze the interactions between the linear and the
nonlinear layers w.r.t. the differential and linear propagation, and we use
it to systematically compare the four primitives using non-trivial com-
puter experiments. We show that alignment naturally leads to different
forms of clustering, e.g., of active bits in boxes, of two-round trails in
activity patterns, and of trails in differentials and linear approximations.

Keywords: symmetric cryptography, permutations, block ciphers, round
functions

1 Introduction

Modern block ciphers and cryptographic permutations consist of the iteration
of a round function. In many cases this round function consists of a layer of
nonlinear S-boxes, a mixing layer, a shuffle layer (AKA a bit transposition or bit
permutation), and the addition of a round key (in block ciphers) or constant (in
cryptographic permutations).

Many papers investigate S-boxes and try to find a good compromise between
implementation cost and propagation properties or provide a classification of all
invertible S-boxes of a given width, see, e.g., [27, 34]. Similarly, there is a rich
literature on certain types of mixing layers. In particular, there have been many
papers written about finding maximum-distance separable (MDS) mappings or
near-MDS mappings with minimum implementation cost according to some met-
ric, see, e.g., [28,37]. Building a good cipher starts with taking a good S-box and

mixing layer and the rich cryptographic literature on these components provides
us with ample choice. However, how these building blocks are combined in a
round function and the resulting propagation properties has received much less
systematic attention.

A standard way for designing a good round function from an S-box and
an MDS mapping is the one followed in the Advanced Encryption Standard
(AES) [32] and is known as the wide trail strategy [14, 20]. This strategy gives
criteria for the shuffle layer and comes with easy-to-verify bounds for the differen-
tial probability (DP) of differential trails (also known as characteristics) and the
linear potential (LP) of linear trails. These bounds and its simplicity have made
it one of the most applied design strategies, and AES has inspired a plethora of
primitive designs, including lightweight ones. By adopting 4-bit S-boxes instead
of 8-bit ones and modern lightweight MDS layers in a smart structure, multi-
ple lightweight ciphers have been constructed. Many lessons were learned and
this line of design has culminated in the block cipher of the NIST lightweight
competition candidate Saturnin [12], a truly modern version of AES.

Naturally, there are alternative design approaches. A popular design ap-
proach is the one underlying the 64-bit lightweight block cipher Present [10].
Its round function has no MDS layer and simply consists of an S-box layer, a
bit shuffle, and a key addition. It gets its diffusion from the combination of a
smart choice of the bit shuffle and specific propagation criteria from its well-
chosen S-box and doing many rounds. The Present line of design has also been
refined in the form of the Gift (64- and 128-bit) block ciphers [1] and the cryp-
tographic permutations of the Spongent lightweight hash function [9] that is
used in Elephant [7].

Another distinctive design approach is that of the cryptographic permutation
of the SHA-3 standard [33],Keccak-f . Unlike Present, its round function does
have a mixing layer, and it actually has all ingredients that AES has. Specifically,
in their rationale, the designers also refer to the wide trail design strategy [6].
However, this wide-trail flavor does not appear to come with the simple bounds
as in the case of AES, and designers have to resort to tedious and time-consuming
programming efforts to obtain similar bounds. This is related to the fact that
AES operates on bytes and Keccak-f on bits. The Keccak-f designers have
discussed the difference between these two design approaches in [18]. In that
paper, they have coined the term alignment to characterize this difference and
supported it with some propagation experiments on Keccak-f . The Keccak-f
line of design has also been refined and led to the 384-bit permutation that is used
in Xoodyak [15], namely Xoodoo [16], a truly modern version of Keccak-f .

This treatment is not exhaustive and other distinctive design strategies exist.
Some of them do not even use S-boxes or mixing layers, but they are based on
alternating Additions with Rotations and XOR (ARX) such as Salsa [3], or
they iterate very simple round functions many times such as Simon [2].

In this paper we systematically analyze the impact of alignment on the differ-
ential and linear propagation properties of ciphers. We show that certain design
choices regarding how the S-box and mixing layers are combined have a pro-

2

found impact on the propagation properties. We identify and name a number
of effects that are relevant in this context. Furthermore, we believe that this
makes it possible to give a meaningful and non-ambiguous definition of the term
alignment.

To illustrate this, we study the four primitivesRijndael-256 [22], Saturnin,
Spongent-384, and Xoodoo. They have comparable width and all have a non-
linear layer consisting of equally-sized S-boxes that have the lowest known max-
imum DP and LP for their dimensions, see Section 2. They represent the three
different design strategies, where we include both Rijndael-256 and Saturnin

to illustrate the progress made in the last twenty years. We investigate their
difference propagation and correlation properties, where for multiple rounds we
adopt a fixed-key perspective. This, combined with the choice of relatively wide
primitives, is geared towards their usage in permutation-based cryptography, but
most findings are also relevant for the key-alternating block cipher case.

1.1 Outline and Contributions

After discussing notation and conventions, we review the notions of differential
and linear cryptanalysis in Section 2. In Section 3 we show how the nonlinear
layer defines a so-called box partition, and we present a non-ambiguous definition
of alignment. In Section 4 we present our four ciphers from the perspective of
alignment and compare the costs of their round functions. Surprisingly, Spon-
gent, despite being specified at bit level like Keccak-f , turns out to be aligned.

In Section 5 we recall the notions of bit and box weight as a measure of
the mixing power of a linear layer. We report on this mixing power by means
of histograms of states by their weight before and after the linear layer, rather
than the usual branch number criterion. For all ciphers we observe a decay in
mixing power from bit to box weight and describe and name the effect that causes
this: huddling. This effect is more pronounced in aligned ciphers. This translates
directly to the two-round differential and linear trail weight distributions, and we
list them for all four ciphers. For the two most competitive proposals, we include
histograms for three-round trails and a comparison for four rounds. Remarkably,
despite the fact that Saturnin has a more expensive S-box layer and a mixing
layer with better bit-level mixing power, Xoodoo has better differential and
linear trail histograms for more than two rounds.

In Section 6, we show that trails that cluster necessarily share the same
activity pattern, and we introduce the cluster histogram as a quantitative tool
for the relation between the linear layer and the clustering of two-round trails in
ciphers. We see that there is more clustering in the aligned than in the unaligned
ciphers. We present the cluster histogram of the four primitives and, for three
of them, we also analyze their two-round trail weight histograms. We conclude
with a discussion on the clustering of trails in two and three rounds, and show
that, at least up to weight 50, differentials over three rounds of Xoodoo admit
only one trail, hence they do not cluster.

3

Finally, in Section 7 we study the independence of round differentials in
trails. We show that, again at least up to weight 50, three-round differentials of
Xoodoo are independent.

The generation of our histograms was non-trivial and the computation meth-
ods could be considered a contribution in themselves. Due to space restrictions
we could not treat them in the paper but we have added their description in
the supplementary material A after the paper. The related software is avail-
able at https://github.com/ongetekend/ThinkingOutsideTheSuperbox un-
der the CC0 license (public domain).

1.2 Notation and Conventions

In this paper, we use the following conventions and notation. We write Z≥0 for
the nonnegative integers and Z>0 for the positive integers. We write k with k ∈
Z≥0 for nonnegative integer variables. In other words, k is used as a placeholder
for any nonnegative integer value.

Whenever we use indices, they always begin at 0. We define [0, k− 1] = {i ∈
Z≥0 : 0 ≤ i ≤ k−1}. Given a set S and an equivalence relation ∼ on S, we write
[a]∼ for the equivalence class of a ∈ S. We denote the cardinality of S by #S.

We study permutations f : Fb
2 → F

b
2. Any block cipher is transformed into a

permutation by fixing the key, e.g., we fix all of its bits to 0.
We use the term state for a vector of b bits. It is either a vector that the

permutation is applied to, a difference, or a linear mask (See Section 2). Given a
state a ∈ F

b
2, we refer to its ith component as ai. In this paper, we consider index

sets Bi ⊆ [0, b− 1] that form an ordered partition. We write Pi(a) : F
b
2 → F

#Bi

2

for the projection onto the bits of a indexed by Bi.
We write eki for the ith standard basis vector in F

k
2 , i.e., for j ∈ [0, k− 1] we

have that ekij = 1 if i = j and 0 otherwise. We write + for vector addition in F
k
2 .

Permutations are typically built by composing a number of lightweight round
functions, i.e., f = Rr−1 ◦ · · · ◦ R1 ◦ R0 for some r ∈ Z>0. We write f [r] =
Rr−1◦· · ·◦R0 and define f [0] = id with id the identity function. A round function
is composed of step functions, i.e., Ri = ιi ◦Li ◦Ni, where Ni is a nonlinear map,
Li is a linear map, and ιi is addition of a round constant. Apart from the round
constant addition, these round functions are often, but not always, identical.
For this reason, we will often simply write N or L, without reference to an index
if the context allows for this, and we call N the nonlinear layer of f and L the
linear layer of f . We write n for the number of S-boxes of N and denote their
size by m. In this context, we suppose that Bj = {jm, . . . , (j + 1)m− 1}.

Permutations of the index space are written as τ : [0, b− 1] → [0, b− 1]. By
shuffle (layer), we mean a linear transformation π : Fb

2 → F
b
2 given by π(a) =

Pτ a, where Pτ is the permutation matrix associated with some τ , i.e., obtained
by permuting the columns of the (b× b) identity matrix according to τ .

Given a linear transformation L: Fb
2 → F

b
2, there exists a matrix M ∈ F

b×b
2

such that L(a) = M a. We define its transpose L⊤ : Fb
2 → F

b
2 by L⊤(a) = M⊤ a

and we denote the inverse of L⊤, when it exists, by L−⊤.

4

https://github.com/ongetekend/ThinkingOutsideTheSuperbox

2 Differential and Linear Cryptanalysis

A major motivation behind the tools developed in this paper is better under-
standing of the interplay between the linear and nonlinear layer in relation to
differential and linear cryptanalysis. We want to be able to use the associated
language freely when discussing these tools. Therefore, in this section, we go over
the basic notions to make sure they are on hand when needed.

2.1 Differential Cryptanalysis

Differential cryptanalysis [8] is a chosen-plaintext attack that exploits the non-
uniformity of the distribution of differences at the output of a permutation when
it is applied to pairs of inputs with a fixed difference. We call an ordered pair of
an input and output difference (∆in, ∆out) ∈ (Fb

2)
2 a differential.

Definition 1. Let f : Fb
2 → F

b
2 be a permutation and define Uf (∆in, ∆out) =

{x ∈ F
b
2 : f(x) + f(x+∆in) = ∆out}. We call Uf (∆in, ∆out) the solution set of

the differential (∆in, ∆out).

Definition 2. The differential probability (DP) of a differential (∆in, ∆out)

over the permutation f : Fb
2 → F

b
2 is defined as DPf (∆in, ∆out) =

#Uf (∆in,∆out)
2b

.

If there exists an ordered pair (x, x + ∆in) with x ∈ Uf (∆in, ∆out), then it is
said to follow the differential (∆in, ∆out). In this case, we say that the input
difference ∆in is compatible with the output difference ∆out through f and call
(∆in, ∆out) a valid differential.

Definition 3. A sequence Q = (q(0), q(1), . . . , q(k)) ∈
(
F
b
2

)k+1
that satisfies

DPRi
(q(i), q(i+1)) > 0 for 0 ≤ i ≤ k − 1 is called a k-round differential trail.

Sometimes we specify a trail as Q = (b−1, a0, b0, . . . , ak, bk) by giving the
intermediate differences between Ni and Li as well, where bi = Li(ai) = qi+1.
We write DT(∆in, ∆out) for the set of all differential trails in the differential
(∆in, ∆out), so with q(0) = ∆in and q(k) = ∆out. We call (∆in, ∆out) the envelop-
ing differential of the trails in DT(∆in, ∆out). If #DT(∆in, ∆out) > 1, then we
say that trails cluster together in the differential (∆in, ∆out).

By deleting the initial difference ∆in and final difference ∆out of a differential
trail (∆in, q

(1), . . . , q(k−1), ∆out) we are left with a differential trail core. A differ-
ential trail core obtained in this way is said to be in the differential (∆in, ∆out).
Note that a differential trail core actually defines a set of differential trails with
the same inner differences.

We now define the DP of a differential trail. Each round differential (q(i), q(i+1))
has a solution set URi

(q(i), q(i+1)). Consider the transformed set of points Ui =
f [i]−1(URi

(q(i), q(i+1))) at the input of f . For an ordered pair (x, x+ q(0)) to fol-

low the differential trail, it is required that x ∈ Uf (Q) =
⋂k−1

i=0 Ui. The fraction
of states x that satisfy this equation is the DP of the trail.

5

Definition 4. The DP of a differential trail is defined as DPf (Q) =
#Uf (Q)

2b
.

Definition 5. The round differentials are said to be independent if

DPf (Q) =

k−1∏

i=0

DPRi
(q(i), q(i+1)) .

Any given ordered pair (x, x + ∆in) follows exactly one differential trail.
Hence, the DP of the differential (∆in, ∆out) is the sum of the DPs of all differ-
ential trails with initial difference ∆in and final difference ∆out.

DPf (∆in, ∆out) =
∑

Q∈DT(∆in,∆out)

DPf (Q) .

Given any differential (∆in, ∆out) over a round function R, it is easy to com-
pute its DP value. By specifying the intermediate differences we obtain a differ-
ential trail (∆in, b, c,∆out). Thanks to the linearity of L, we have c = L(b) and
due to the fact that a difference is invariant under addition of a constant, all
valid such differential trails are of the form (∆in,L

−1(∆out), ∆out, ∆out). There-
fore, the differential (∆in, ∆out) contains only a single trail and its DP is the DP
of the differential (∆in,L

−1(∆out)) over the S-box layer:

DPR(∆in, ∆out) =
∏

0≤j<n

DPSj
(Pj(∆in), Pj(L

−1(∆out))) .

Hence, the DP of a round differential is the product of the DP values of its
S-box differentials.

Definition 6. The restriction weight of a differential (∆in, ∆out) that satisfies
DPf (∆in, ∆out) > 0 is defined as wr(∆in, ∆out) = − log2 DPf (∆in, ∆out).

For a differential trail, we sum the weights of the round differentials.

Definition 7. The restriction weight of a differential trail Q = (q(0), q(1), . . . , q(k))
is defined as

wr(Q) =
k−1∑

i=0

wr(q
(i), q(i+1)) .

If the round differentials are independent in the sense of Definition 5, then
we have that DPf (Q) = 2−wr(Q).

2.2 Linear Cryptanalysis

Linear cryptanalysis [29] is a known-plaintext attack. It exploits large correla-
tions (in absolute value) between linear combinations of input bits and linear
combinations of output bits of a permutation.

6

Definition 8. The (signed) correlation between the linear mask u ∈ F
b
2 at the

input and the linear mask v ∈ F
b
2 at the output of a function f : Fb

2 → F
b
2 is

defined as

Cf (u, v) =
1

2b

∑

x∈F
b
2

(−1)u
⊤x+v⊤f(x) .

If Cf (u, v) 6= 0, then we say that u is compatible with v. We call the ordered
pair of linear masks (u, v) a linear approximation. We note that in the literature
(e.g., in the linear cryptanalysis attack by Matsui [29]) the term linear approx-
imation has several meanings. It should not be confused with what we call a
linear trail.

Definition 9. A sequence Q = (q(0), q(1), . . . , q(k)) ∈
(
F
b
2

)k+1
that satisfies

CRi
(q(i), q(i+1)) 6= 0 for 0 ≤ i ≤ k − 1 is called a linear trail.

We write LT(u, v) for the set of all linear trails in the linear approximation
(u, v), so with q(0) = u and q(k) = v. We call (u, v) the enveloping linear ap-
proximation of the trails in LT(u, v). If #LT(u, v) > 1, then we say that trails
cluster together in the linear approximation (u, v).

By deleting the initial linear mask u and final linear mask v of a linear
trail (u, q(1), . . . , q(k−1), v) we are left with a linear trail core. A linear trail core
obtained in this way is said to be in the linear approximation (u, v). Note that a
linear trail core actually defines a set of linear trails with the same inner linear
masks.

Definition 10. The correlation contribution of a linear trail Q over f equals

Cf (Q) =

k−1∏

i=0

CRi
(q(i), q(i+1)) .

From the theory of correlation matrices [14], it follows that

Cf (u, v) =
∑

Q∈LT(u,v)

Cf (Q) .

Given any linear approximation (u, v) over a round function R, it is easy to
compute its correlation. By specifying the intermediate linear masks we obtain
a linear trail (u, b, c, v). Thanks to the linearity of L, we have b = L⊤(c) and due
to the fact that a linear mask is invariant under addition of a constant, all valid
such linear trails are of the form (u,L⊤(v), v, v). Hence the linear approximation
(u, v) contains only a single trail and its correlation contribution is the correlation
of the linear approximation (u,L⊤(v)) over the S-box layer, where the round
constant addition affects the sign:

CR(u, v) = (−1)v
⊤ι(0)

∏

0≤j<n

CSj
(Pj(u), Pj(L

⊤(v)) .

7

Definition 11. The linear potential (LP) of a linear approximation (u, v) is
defined as LPf (u, v) = Cf (u, v)

2.

Analogous to the differential cryptanalysis case, we define a weight metric.

Definition 12. The correlation weight of a linear approximation (u, v) with
LPf (u, v) 6= 0 is given by wc(u, v) = − log2 LPf (u, v).

Definition 13. The correlation weight of a linear trail Q = (q(0), q(1), . . . , q(k))
is defined as

wc(Q) =

k−1∑

i=0

wc(q
(i), q(i+1)) .

3 Box Partitioning and Alignment

In this section, we consider the partition of the index space defined by the non-
linear layer N. The alignment properties of the other step functions with respect
to this partition have an important impact on the propagation properties of the
round function.

The nonlinear layer N consists of the parallel application of n S-boxes of size
m to disjoint parts of the state, indexed by Bi. Formally, this means that we can
write N as S0 × · · · × Sn−1 and that it is characterized by

Pi ◦ (S0 × · · · × Sn−1) = Si ◦Pi for 0 ≤ i ≤ n− 1 .

Hence, N defines a unique ordered partition ΠN = (B0, . . . ,Bn−1) of the index
space [0, b− 1]. We call ΠN the box partition defined by N and the Bi N-boxes.
If there is no ambiguity, we call the box partition Π and its members boxes.

Besides the box partition, it is clearly possible to define other partitions of
the index space as well. We call a partition non-trivial if it has at least two
members. Between any two partitions of the index space there may be a relation
that we denote as refinement.

Definition 14. We call Π a refinement of Π ′ and write Π ≤ Π ′ if for every
(i,Bi) ∈ Π there exists a (j,B′

j) ∈ Π ′ such that Bi ⊆ B′
j.

Let Π be a partition of the index space consisting of k boxes, each of size l.
We call a shuffle layer a Π-shuffle if the associated permutation matrix can be
partitioned into k identity matrices of dimension (l× l). If this is the case, then
bit index permutation can be specified as a box index permutation.

Definition 15. We call φ : Fb
2 → F

b
2 aligned to Π if we can decompose it as

φ0 × · · · × φk−1 :
k−1

×
i=0

F
l
2 →

k−1

×
i=0

F
l
2 ,

In this case, we call the φi box functions.

8

Definition 16. Given a round function that is composed of the parallel appli-
cation N of equally-sized S-boxes, a linear layer L, and the addition ι of a round
constant, we say it is aligned if it is possible to decompose the linear layer L as
L = π ◦M in such a way that

– π is a ΠN-shuffle;
– M is aligned to a non-trivial partition ΠM that satisfies ΠN ≤ ΠM.

We assume that the split between the linear and nonlinear layer is chosen so as
to maximize the number of S-boxes in N.

Note that ι does not play a role in the alignment properties. If all of the
round functions of a primitive are aligned, then we call the primitive aligned. If
the primitive is not aligned, then we call it unaligned.

Any aligned primitive has a superbox structure [35], that is helpful when
investigating distributions and bounds on the DP of two-round differentials and
the LP of two-round trails. We explain what this means. Consider a two-round
structure: π ◦M ◦N ◦π ◦M ◦N. The final two linear steps π and M have no effect
on the distributions, so we can simplify this expression to N ◦π ◦M ◦N. Clearly,
N ◦π = π ◦N′, with N′ := π−1 ◦N ◦π. Hence, this is equivalent to π ◦N′ ◦M ◦N.
Discarding the shuffle layer at the end gives N′ ◦M ◦N. Since ΠN′ = ΠN ≤ ΠM,
we can view this as the parallel application of a number of superboxes. We call
this a superbox layer. In a sequence of two rounds, N′ ◦M ◦N is a (composite)
nonlinear layer and π ◦M ◦π is a (composite) linear layer. If the latter is aligned
to a non-trivial partition Π such that ΠM ≤ Π, then we call this two-round
structure aligned to ΠM.

4 The Ciphers We Investigate

In this section we describe the round functions of the ciphers we investigate in
this paper, their alignment properties, and compare their implementation cost.

4.1 Rijndael

Rijndael [22] is a block cipher family supporting all block and key lengths of
b = 32k bits, with 4 ≤ k ≤ 8, i.e., ranging from 128 up to and including 256 bits.
The case b = 128 is of great importance as Rijndael with that block length is
the ubiquitous AES [32]. In this paper we investigateRijndael-256, the instance
with b = 256, a width closer to those of the other ciphers we investigate. In the
remainder of this paper we will write Rijndael for Rijndael-256.

TheRijndael round function consists of four steps: a nonlinear layer SubBytes,
a box shuffle ShiftRows, a mixing layer MixColumns, and round key addition
AddRoundKey. As its name suggest, ΠSubBytes partitions the state in bytes and
ShiftRows is a ΠSubBytes-shuffle. The mixing layer, MixColumns, is aligned to
a non-trivial partition ΠMixColumns that corresponds to the 8 columns, each con-
taining 4 bytes, and we have ΠSubBytes ≤ ΠMixColumns. It follows that Rijndael

is aligned. Figure 1 shows Rijndael-128 that is is easier to draw due to its
dimensions, but the alignment properties for Rijndael-256 are the same.

9

ΠMixColumns

ΠSubBytes

S S S S S S S S S S S S S S S S

MixColumns MixColumns MixColumns MixColumns

...
...

...
...

Fig. 1: Alignment properties of Rijndael.

4.2 Saturnin

The Saturnin [12] block cipher has a 256-bit key and block length. The state has
several representations: three-dimensional, two-dimensional, and flat. In three
dimensions, the 256-bit state is represented as a 4× 4× 4 cube of 4-bit nibbles.
Nibbles in the cube are indexed by triples (x, y, z). A slice is a subset of the
nibbles with z constant. A sheet is a subset of the nibbles with x constant. A
column is a subset of the nibbles with x and z constant.

The Saturnin permutation is composed of a number of so-called super-
rounds and a super-round consists of two consecutive rounds with indices 2r
and 2r + 1. Round 2r is composed as MC ◦ S, where MC is a mixing layer and
S is a nonlinear layer. There are two different rounds with odd indices. Round
4r+ 1 is composed as follows: RC ◦RK ◦ SR−1

slice ◦MC ◦ SRslice ◦ S. Round 4r+ 3
consists of RC ◦RK ◦ SR−1

sheet ◦MC ◦ SRsheet ◦ S. Here, RC denotes addition of a
round constant, RK denotes addition of a round key, and SRslice and SRsheet

shuffle nibbles. The partition ΠS divides the state into 64 nibbles. The shuffles
SRslice and SRsheet are ΠS-shuffles. The mixing layer MC is aligned to a non-
trivial partition ΠMC that divides the state into 16 columns, each consisting of
4 nibbles, and that satisfies ΠS ≤ ΠMC. It follows that Saturnin is aligned.
In a super-round we identify the sequence S ◦MC ◦ S as a superbox layer with
partition ΠMC and the linear layer of such a round is SR−1

slice ◦MC ◦ SRslice. This
is a mixing layer that is aligned to a non-trivial partition Πslice that divides
the state into 4 slices, each containing 4 columns, and we have ΠMC ≤ Πslice.
Similarly, for the other type of super-round, the mixing layer is aligned to a
non-trivial partition Πsheet that divides the state into 4 sheets, and we have
ΠMC ≤ Πsheet. It follows that the super-rounds of Saturnin are aligned and
hence have their own superboxes. These have width 64 bits and we call them
hyperboxes. Figure 2 shows the alignment properties of the steps.

4.3 Spongent

Spongent [9] is a sponge-based hash function family that uses a Present-like
permutation. The permutation is defined for any b that is a multiple of 4. In this
paper, we only consider the case b = 384, to match the state size of the largest
of the other permutations that we investigate, Xoodoo. The round function of
Spongent consists of three steps: a round constant addition lCounter, a 4-bit
S-box layer sBoxLayer, and a bit shuffle pLayer.

10

ΠMC · · ·

ΠS

S S S S S S S S S S S S S S S S

MC MC MC MC

S S S S S S S S S S S S S S S S

SRslice

MC MC MC MC

SR−1

slice

S S S S S S S S S S S S S S S S

MC MC MC MC

S S S S S S S S S S S S S S S S

SRsheet · · ·

MC MC MC MC

SR−1

sheet
· · ·

S S S S S S S S S S S S S S S S

MC MC MC MC

S S S S S S S S S S S S S S S S

...
...

...
...

Fig. 2: Alignment properties of Saturnin.

The index permutation of the bit shuffle pLayer is:

pLayer(j) =

{
96j mod 383, if j ∈ [0, 382]

383, if j = 383

As indicated by the Spongent designers in [9], we can decompose it into a mixing
layer, followed by a box shuffle:

1. SpongentMixLayer applies the same mixing function SpongentMix in par-
allel to the 24 subgroups (following the terminology of [9]). It is a bit shuffle
associated with the index permutation τ subgroup : [0, 15] → [0, 15]:

τ subgroup(j) =

{
4j mod 15, if j ∈ [0, 14]

15, if j = 15

2. SpongentBoxShuffle is a box shuffle that is associated with the box index
permutation τbox : [0, 95] → [0, 95] defined by:

τbox(j) =

⌊
j

4

⌋
+ 24(j mod 4) .

The sBoxLayer defines a box partition ΠsBoxLayer corresponding to the 96 4-
bit boxes. The box shuffle SpongentBoxShuffle is a ΠsBoxLayer-shuffle. The bit
shuffle SpongentMixLayer is aligned to a non-trivial partition ΠSpongentMixLayer

that divides the state into 96 16-bit subgroups, each grouping four consecutive
boxes, and we have ΠsBoxLayer ≤ ΠSpongentMixLayer. It follows that Spongent is
aligned. Figure 3 shows these steps and their alignment properties.

11

ΠSpongentMix · · ·

ΠsBoxLayer

S S S S S S S S S S S S S S S S

SpongentMix SpongentMix SpongentMix SpongentMix

SpongentBoxShuffle · · ·

S S S S S S S S S S S S S S S S

...
...

...
...

Fig. 3: Alignment properties of Spongent.

Πχ Πρeast

Fig. 4: Alignment properties of Xoodoo.

4.4 Xoodoo

Xoodoo [16] is a permutation with b = 384. The state consists of 3 equally sized
horizontal planes, each one consisting of 4 parallel 32-bit lanes. Alternatively, the
state can be seen as a set of 128 columns of 3 bits, arranged in a 4× 32 array.

The round function of Xoodoo consists of the following five steps: a mixing
layer θ, a bit shuffle ρeast, round constant addition ι, a nonlinear layer χ, and a
bit shuffle ρwest. The χ step applies the same 3-bit S-box to the columns of the
state. The nonlinear layer χ defines a box partition Πχ that corresponds to the
128 columns. The bit shuffles ρeast and ρwest perform translations of planes and
are not aligned to Πχ. The mixing layer θ defines no non-trivial box partition at
all. Due to the properties of the ρ steps and θ it is impossible to split the linear
layer in a column shuffle and a mixing layer that is aligned to a partition that Πχ

is a refinement of. In other words, Xoodoo is unaligned. See Section E of the
supplementary material for a more formal proof. Figure 4 shows the alignment
properties of the steps.

4.5 Round Cost

In this section, we compare the implementation complexity of the round func-
tions of the four ciphers. This depends on the platform and the requirements.
Platforms may range from low-end 8-bit CPUs to multi-core high-end work-
station CPUs, FPGAs, and even dedicated hardware. Requirements include
throughput, latency, usage of resources such as power and energy consump-
tion, area in hardware, and RAM/ROM usage in software. Moreover, protection
against fault attacks and/or side channel attacks may be required.

In our comparison of the round functions we let their three layers guide us:
the S-box layer, the mixing layer (if any), and the shuffle layer. We also discuss
the presence of key addition in block ciphers and its relative cost.

12

Table 1: S-box computational cost comparison.

operations in F2 2-layer nand circuit
max # operations # nand gates per # inputs totals

cipher DP/LP ref. xor and/or not 2-in 3-in 4-in 5-in 6-in 7-in gates inp.

Rijndael 2−6 [11, 36] 81 32 4 ?
Saturnin 2−2 [12] 6 6 - 4 5 6 1 - - 16 52
Spongent 2−2 ? - 6 8 - 3 1 18 75
Xoodoo 2−2 [16] 3 3 3 3 6 - - - - 9 24

S-box Layer Given that our ciphers have invertible S-boxes with lowest known
maximum DP and LP values that can be achieved for their width, their imple-
mentation cost increases with width.

We report on the implementations with minimum number of binary XOR,
binary AND/OR, and unary NOT operations that we found in the literature.
For Spongent we found no such numbers. We have also determined a mini-
mal sum-of-products (SOP) form in Boolean algebra of the S-boxes using the
Espresso algorithm [30] for two-level logic optimization. For Rijndael, finding
the minimal SOP was infeasible. We refer to Section B of the supplementary
material for the SOP expressions. Using De Morgan’s laws, the SOP form can
be implemented by two layers of nand gates. Table 1 lists the number of nand
gates per bit for each of the S-boxes.

We can see in Table 1 that the cost of the Saturnin and Spongent S-boxes
is comparable. The cost of the Xoodoo S-box is roughly half of that, but is
only 3 bits wide instead of 4. The Rijndael S-box is a roughly a factor 10 more
costly than that of Saturnin and Spongent, a very high price for its better
max DP/LP value. These numbers give an indication for the size of a hardware
circuit and the number of cycles in bit-sliced software implementations. The
number of and/or operations is related to the cost of masking countermeasures.

Mixing Layer Spongent has no mixing layer, so there is no cost. Xoodoo-θ
requires 2 binary xor operations per bit, while Saturnin’s MC can be imple-
mented with 2.25 binary xor operations per bit [12]. The circuit depth for these
computations is in both cases 4 xor gates. Despite the difference in design phi-
losophy, their computational costs are almost the same.

A simple implementation of Rijndael’s MixColumns takes 3.875 binary xor
operations per bit and has a circuit depth of 3 xor gates. This was reduced to
97/32 ≈ 3 additions per bit [25] at the expense of a higher circuit depth. Despite
the fact that both MixColumns and Saturnin’s MC implement an MDS mapping
operating on 5 boxes, their costs diverge. The main difference between the two
is that MixColumns operates on bytes while MC operates on nibbles. However,
this is not the reason for the higher cost per bit of MixColumns. The reason is

13

Table 2: The cost of a round in cycles per byte on the ARM Cortex-M4.

Cipher # cycles/byte

Rijndael [38] 10.0
Saturnin [13] 2.7
Spongent ?
Xoodoo [5] 1.1

that there have been significant advances in building efficient MDS mappings
and MC reaps the benefits of that.

Shuffle Layer Rijndael, Spongent, and Xoodoo consist of the iteration of a
single round function. In a hardware architecture that implements the full round
in combinatorial logic, a bit shuffle consists of wiring between gates. Saturnin
has three different rounds, so this is more complex in a hardware architecture in
which a single round is implemented in combinatorial logic. However, in a combi-
natorial block that implements a sequence of four rounds, the shuffle operations
do correspond to wiring.

We compare software implementation on a particular platform: the ARM
Cortex-M4 processor. We choose this because it is a popular lightweight platform
for benchmarks and for three of our ciphers there is assembly code available. On
this platform, it is difficult to assess the cost of the shuffle layer in isolation due to
the barrel shifter. This feature of the ARM architecture allows applying (cyclic)
shift operations to one of the two operands in arithmetic and bitwise Boolean
instructions at no additional cost. To compare, we measure the number of cycles
of the entire round function, revealing the marginal cost of the shuffle layer.
Table 2 lists the performance of the round functions of our four ciphers expressed
in number of cycles per byte as measured on a Cortex-M4 processor. In addition,
it includes references to the bit-sliced implementations that we have used in
order to measure the cycle counts. In Rijndael and Saturnin we removed
any operations related to the key addition to make a fair comparison possible
and in Saturnin we measured the number of cycles for 4 rounds and divided
that by 4. We have not included Spongent because we do not have access to
any (optimized) assembly code. However, considering that it was designed with
hardware in mind, we do not believe it is competitive in software.

5 Huddling

In this section, we describe a phenomenon that we call huddling. We present
the bit and box weight histograms as natural extensions of the bit and box
branch numbers, respectively. Using these histograms, we analyze the huddling
properties of the ciphers described in Section 4. We see that these properties

14

are more pronounced in ciphers that are aligned. Finally, we look at the relation
between huddling and the distribution of trail weights.

5.1 Definitions of Bit Weight, Box Weight and their Histograms

The weight of a two-round trail (qin, a, b, qout) over N ◦L ◦N can be bounded
from below by the sum of the number of active boxes at the input and output
of L. This number is fully determined by a as b = L(a) in differential trails and
a = L⊤(b) in linear trails. The distribution of states a according to this number
determines the mixing power of the linear layer with respect to ΠN.

First, we formally define what it means for a box to be active. To this end,
we define an indicator function 1i : F

b
2 → F2 with respect to a box partition Π

by 1i(a) = 0 if Pi(a) = 0 and 1i(a) = 1 otherwise. We call the box Bi active
in the difference or linear mask a ∈ F

b
2 if 1i(a) = 1 and passive otherwise. The

natural metric associated with box activity is the box weight of a, defined by
wΠ(a) = #{i ∈ [0, n− 1] : 1i(a) 6= 0}. Clearly, a box is active in a difference or
linear mask if at least one of the bits in that box is non-zero. We call the bit i
active in a if ai = 1 and passive otherwise. The number of active bits is given by
the bit weight of a, i.e., w2(a) = #{i ∈ [0, b− 1] : ai 6= 0}. The activity pattern

of a is defined by rΠ(a) =
∑n−1

i=0 1Bi
(a)eni . It is the vector whose ith component

is one if box Bi is active and zero otherwise.

In order to quantify the mixing power of a linear transformation L, we con-
sider the weight distribution of (a,L(a)) over all differences or linear masks
a ∈ F

b
2 and embed it in a histogram. This is a well-known concept in coding

theory, where weight distributions are embedded in so-called weight enumerator
polynomials that classify the code [23].

Definition 17. The weight histogram of a linear transformation L: Fb
2 → F

b
2

is a function N·,L : Z≥0 → Z≥0 given by

N·,L(k) = #{a ∈ F
b
2 : w·(a) + w·(L(a)) = k} .

The cumulative version on the same domain and codomain is given by

C·,L(k) =
∑

l≤k

NL(l) .

Here, · denotes either 2 or Π.

The tail of the histogram consists of the left-most values that correspond to low
weight.

If the primitive is aligned, then π is a box shuffle and this implies that the box
weight histograms of L = M ◦π and M are the same. The superbox structure
of an aligned primitive makes it possible to use a divide-and-conquer approach
to compute the weight histograms. Indeed, let S(w) = {v ∈ Z

s
≥0 :

∑s−1
i=0 vi = w}

15

0 2 4 6 8 10 12 14 16 18 20 22 24 26
Bit Weight

0

10

20

30

40

50

60

70

80

Lo
g2

(N
um

be
r o

f S
ta

te
s)

Saturnin
Spongent
Rijndael
Xoodoo
Identity

0 2 4 6 8 10 12 14 16 18 20 22 24 26
Box Weight

0

10

20

30

40

50

60

70

80

Lo
g2

(N
um

be
r o

f S
ta

te
s)

Saturnin
Spongent
Rijndael
Xoodoo
Identity (4-bit boxes)

Fig. 5: Cumulative bit weight and box weight histograms.

with s the number of superboxes. Then we can compute the weight histograms
of M by convolving the weight histograms of its box functions:

N·,M(w) =
∑

v∈S(w)

s−1∏

i=0

N·,Mi
(vi) . (1)

We note that the differential branch number [14] is simply the smallest non-
zero entry of this histogram, i.e., min{w > 0 : N·,L(w) > 0}. The linear branch

number is the smallest non-zero entry in the corresponding histogram of L⊤

and can be different from its differential counterpart. This is not the case for
the mappings in this paper and we will omit the qualifier in the remainder.
A higher branch number typically implies higher mixing power. However, the
weight histogram is more informative than just the branch number. The number
of differences or linear masks meeting the branch number is valuable information
as well. In general, the weight histogram allows a more nuanced comparison of
mixing layers than the branch number.

The box weight histogram is the relevant histogram in the context of the wide
trail design strategy [20]. A linear layer that systematically has lower values in
the tail of its box weight histogram than the other does typically has fewer
two-round trails with low weight, given equal nonlinear layers.

5.2 Bit and Box Weight Histograms

We discuss the cumulative bit and box weight histograms for the linear layers
of our four ciphers, given in Figure 5. We include the histogram for the identity
function, assuming 4-bit S-boxes for the box weight to allow for comparison with
Spongent and Saturnin.

The bit weight histogram for Spongent coincides with that of the identity
permutation. This is because its linear layer is a bit shuffle. As the identity
permutation maps inputs to identical outputs, it has only non-zero entries for

16

even bit weights. Its bit branch number is 2. In conclusion, its mixing power is
the lowest possible.

The bit branch number of the mixing layer of Rijndael, MixColumns, is 6,
that of Saturnin-MC is 5, and that of Xoodoo-θ is 4.

Similar to Spongent, the bit weight histograms of Rijndael and Xoodoo

have only non-zero entries at even bit weights. This is because both Xoodoo-θ
and Rijndael-MixColumns can be modeled as a 7→ (I+M)a for some matrix
M ∈ F

b×b
2 with the property that the bit weight of M a is even for all a ∈ F

b
2.

Saturnin-MC cannot be modeled in that way and does have non-zero entries
at odd bit weights.

The bit weight histograms of Rijndael and Saturnin are very close and
that of Xoodoo is somewhat higher. The ranking per bit weight histogram
reflects the computational resources invested in the mixing layer: Rijndael uses
3.5 additions per bit, Saturnin 2.25, Xoodoo 2, and Spongent 0.

In the box weight histograms we see the following. For Spongent the box
branch number is 2, the same as the bit branch number. However, the box weight
histogram of Spongent has a lower tail than the identity permutation. What it
shows is the mixing power of SpongentMixLayer in our factorization of pLayer,
operating on 4-box superboxes.

The box branch number of the linear layers of Rijndael, MixColumns, and
of Saturnin-MC are both 5, while for Xoodoo it is 4.

The discrepancy between the bit and box weight histogram brings us to the
notion of bit huddling : many active bits huddle together in few active boxes. We
say that the bit huddling in a linear layer is high if the concentration is high and
we say that the bit huddling is low otherwise.

Huddling has an effect on the contribution of states a to the histogram, i.e.,
by definition we have that wΠ(a)+wΠ(L(a)) ≤ w2(a)+w2(L(a)). In words, from
bit to box weight, huddling moves states to the left in the histogram, thereby
raising the tail. Huddling therefore results in the decay of mixing power at box
level as compared to bit level. In the absence of huddling, the bit and box weight
histogram would be equal. However, huddling cannot be avoided altogether as
states do exist with multiple active bits in a box (note that m ≥ 2).

We see Rijndael has high bit huddling. In moving from bit weights to box
weights, the branch number decreases from 6 to 5 and the tail rises from being
the lowest of the four to the highest. This is a direct consequence of the large
width of the Rijndael S-boxes, namely 8, and the byte alignment. Indeed,
MixColumns only mixes bits within the 32-bit columns. We call this the superbox
huddling effect. Of course, there is a reason for these large S-boxes: they have low
maximum DP/LP values. They were part of a design approach assuming table-
lookup implementations where the main impact of the S-box size is the size
of the lookup tables. Unfortunately table-lookups are expensive in dedicated
hardware and on modern CPUs lookup tables are kept in cache making such
implementations susceptible to cache-timing attacks [4].

Saturnin, with its Rijndael-like structure also exhibits the superbox hud-
dling effect, though less pronounced than Rijndael. From bits to boxes the

17

branch number does not decrease and the tail rises less than for Rijndael.
Clearly, its smaller S-box size, namely 4, allows for less bit huddling. Due to its
alignment, Spongent exhibits the superbox huddling effect, but less so than
Saturnin. The reason for this is the already high tail in the bit weight his-
togram, due to the absence of bit-level diffusion in the mixing layer.

Finally, Xoodoo has the lowest bit huddling of the four primitives studied.
This is the consequence of two design choices: having very small S-boxes (3-bit)
and the absence of alignment, avoiding the superbox huddling effect altogether.

5.3 Two-round Trail Weight Histograms

We define the trail weight histogram analogous to Definition 17 with the change
that N·(k) = # {trails Q : w·(Q) = k}, where · is either r for differential trails
or c for linear trails. Like for the other diagrams, the lower the tail, the lower
the number of states with small weights, the better.

Figure 6 reports on the distribution of the weight of two-round differential
and linear trails of our four ciphers. To compute the trail weight histograms of
the aligned ciphers, we convolved the histograms of the superbox structures (See
Equation 1). The distribution of the linear trails for Rijndael is an approxima-
tion that was obtained by first taking the integer part of the correlation weights
of its S-box to allow for integer arithmetic. The other distributions are exact.

While Rijndael performed the worst with respect to the box weight metric,
we see that it performs the best with respect to the trail weights. The reasons
are the low maximum DP/LP value of its S-box and its high branch number.
However, as seen in Section 4.5, one pays a price in terms of the implementation
cost. The relative ranking of the other ciphers does not change in moving from
box weight to trail weights. Still, Xoodoo loses some terrain due to its more
lightweight S-box layer.

Despite the difference in design approach,Xoodoo and Saturnin have quite
similar two-round trail weight histograms. It is therefore interesting how the trail
weight histograms compare for three and four rounds.

5.4 Three-round Trail Weight Histograms

We have computed the three-round differential and linear trail weight histograms
for Saturnin and Xoodoo and give them in Figure 7. We did not do it for
Rijndael due to the prohibitively high cost of its round function and neither
for Spongent due to its non-competitive bounds for multiple-round trails as
reported in [9]. Hence, we focus on Saturnin and Xoodoo as exponents of the
aligned and unaligned wide-trail design approaches. Computing the three-round
Saturnin trail histograms turned out to be very computationally intensive for
higher weights (see Subsection A.3 for more details) and we were forced to stop
at weight 36. Still, the diagrams show the big difference in histograms between
Saturnin and Xoodoo.

Despite the fact that the box branch number of Xoodoo is 4 and that
of Saturnin is 5, we see that for three-round trails, Xoodoo performs much

18

0 5 10 15 20 25 30 35 40 45 50
Differential Trail Weight

0

20

40

60

80

100

120

140

Lo
g2

(N
um

be
r o

f T
ra

ils
)

Saturnin
Spongent
Rijndael
Xoodoo

0 5 10 15 20 25 30 35 40 45 50
Linear Trail Weight

0

20

40

60

80

100

120

140

Lo
g2

(N
um

be
r o

f T
ra

ils
)

Saturnin
Spongent
Rijndael
Xoodoo

Fig. 6: Two rounds: cumulative differential and linear trail weight histograms.

0 5 10 15 20 25 30 35 40 45 50
Differential Trail Weight

0

10

20

30

40

50

60

Lo
g2

(N
um

be
r o

f T
ra

ils
)

Saturnin
Xoodoo

0 5 10 15 20 25 30 35 40 45 50
Linear Trail Weight

0

10

20

30

40

50

60

Lo
g2

(N
um

be
r o

f T
ra

ils
)

Saturnin
Xoodoo

Fig. 7: Three rounds: cumulative differential and linear trail weight histograms.

better than Saturnin. In particular, Xoodoo has no trails with weight below
36, whereas Saturnin has about 243 linear trails with weight below 36, starting
from weight 18. Moreover, it has about 247 differential trails with weight below
36, starting from weight 19. This confirms the idea that branch number alone
does not paint the whole picture and that these histograms prove to be very
useful in comparing the different design approaches.

5.5 Four Rounds and Beyond

We did not conduct experiments for four or more rounds, but can make use of
available information. According to [15], there exist no differential or linear trails
over four rounds of Xoodoo with weight below 74. In contrast, Saturnin has
roughly 282 four-round differential trails with 25 active S-boxes and it has more
than 294.5 such linear trails. See Section C for a derivation of this estimate. Since
each S-box has a weight of 2 or 3, this implies many four-round differential trails
with weights in the range [50, 75]. The linear trails have weights in the range
[50, 100] due to the fact that active S-boxes have weight 2 or 4. Naturally, in
both cases there are also trails with 26, 27, . . . active S-boxes and their number

19

grows quickly with the box weight due to the additional degrees of freedom in
building them. It follows that the trend we see in three-round trails persists for
four-round trails: unaligned Xoodoo has a significantly lower tail than aligned
Saturnin, despite its lighter round function and lower branch number.

For trails over five rounds and more we report on the known lower bounds
on weight in Table 6 in Section D of the supplementary material. We see that
up to 6 rounds Xoodoo remains ahead of Saturnin. For higher weights the
trail scan programs in Xoodoo reach their computational limit and Saturnin

overtakes Xoodoo. Advances in trail scanning are likely to improve the bounds
for Xoodoo while for Saturnin the currently known bounds are much more
tight. For the whole range Rijndael is well ahead and Spongent is invisible
with its weight of 28 for 6 rounds.

6 Clustering

In this section, we investigate clustering of differential trails and of linear trails.
The occurrence of such clustering in two-round differentials and linear approx-
imations requires certain conditions to be satisfied. In particular, we define an
equivalence relation of states with respect to a linear layer and an S-box partition
that partitions the state space in candidate two-round trail cores and the size of
its equivalence classes upper bounds the amount of possible trail clustering. This
is the so-called cluster partition. We present the partitions of our four ciphers
by means of their cluster histograms. For all four ciphers, we report on two-
round trail clustering and for Xoodoo in particular we look at the three-round
case. With its unaligned structure, we found little clustering in Xoodoo. How-
ever, the effects of clustering are apparent in the aligned primitives Rijndael,
Saturnin, and Spongent, with them being most noticeable in Rijndael.

6.1 The Cluster Histogram

To define the cluster histogram we need to define two equivalence classes.

Definition 18. Two states are box-activity equivalent if they have the same ac-
tivity pattern with respect to a box partition Π:

a∼ a′ if and only if rΠ(a) = rΠ(a′) .

We denote the set of states that are box-activity equivalent with a by [a]∼ and
call it the box-activity class of a.

Box-activity equivalence has an application in the relation between trail cores
and differentials and linear approximations.

Lemma 1. Two trail cores (a0, b0 . . . , ar−2, br−2) and (a∗0, b
∗
0 . . . a

∗
r−2, b

∗
r−2) over

a function f = Nr−1 ◦Lr−2 ◦Nr−2 ◦ · · · ◦L0 ◦N0 that are in the same differential
(or linear approximation) satisfy a0 ∼ a∗0 and br−2 ∼ b∗r−2.

20

[L(a)]∼[a]∼

L

L

[a]≈

L

Fig. 8: Partitions of Fb
2 defined by ∼ and ≈.

Proof. Let (∆in, ∆out) be the differential over f that the trail cores are in. Since
N0 and Nr−2 preserve activity patterns, we have that ∆in ∼ a0, and ∆in ∼ a∗0,
and ∆out ∼ br−2, and ∆out ∼ b∗r−2. From the symmetry and transitivity of ∼ it
follows that a0 ∼ a∗0 and br−2 ∼ b∗r−2. ⊓⊔

Considering the case r = 2 in Lemma 1 immediately gives rise to a refinement
of box-activity equivalence.

Definition 19. Two states are cluster-equivalent with respect to a linear map-
ping L : Fb

2 → F
b
2 and a box partition Π if they are box-activity equivalent before

L and after it (See Figure 8):

a≈ a′ if and only if a∼ a′ and L(a)∼L(a′) .

We denote the set of states that are cluster-equivalent with a by [a]≈ and call it
the cluster class of a. The partition of Fb

2 according to these cluster classes is
called the cluster partition.

Corollary 1. If two two-round trail cores (a,L(a)) and (a∗,L(a∗)) over f =
N ◦L ◦N are in the same differential, then a≈ a∗.

Proof. If we apply Lemma 1 to the case r = 2, we have a∼ a∗ and L(a)∼L(a∗).
It follows that a≈ a∗. ⊓⊔

Corollary 1 shows that the defining differences of any two-round trail cores
that cluster together are in the same cluster class. It follows that if these cluster
classes are small, then there is little clustering.

For all a′ ∈ [a]≈ the box weight wΠ(a′) + wΠ(L(a′)) is the same. We denote
this weight by w̃([a]≈).

Definition 20. Let L : Fb
2 → F

b
2 be a linear transformation. Let ≈ be the equiva-

lence relation given in Definition 19. The cluster histogram NΠ,L : Z≥0×Z≥0 →
Z≥0 of L with respect to the box partition Π is given by

NΠ,L(k, c) = #{[a]≈ ∈ F
b
2/≈ : w̃([a]≈) = k ∧ #[a]≈ = c} .

For a fixed box weight, the cluster histogram shows the distribution of the sizes
of the cluster classes with that box weight. Ideally, for small box weights, the
cluster classes are all very small. Large cluster classes of small weight may lead
to two-round trails with a large DP or LP.

21

Table 3: The cluster histograms of Rijndael and Saturnin.

w̃
N × Cm,n

Rijndael superbox Saturnin superbox Saturnin hyperbox
m = 8, n = 4 m = 4, n = 4 m = 16, n = 4

5 (56× 255) (56× 15) (56× 65535)
6 (28× 64005)) (28× 165) (28× 4294574085)
7 (8× 16323825) (8× 2625) (8× 281444913315825)
8 (1× 4162570275) (1× 39075) (1× 18444492394151280675)

Table 4: The cluster histogram of
SpongentMix of Spongent.
w̃ N × C

2 (16× 1)
3 (48× 1)
4 (32× 1) (36× 7)
5 (8× 1) (48× 25)
6 (12× 79) (16× 265)
7 (8× 2161)
8 (1× 41503)

Table 5: Partial cluster histogram (up
to translation equivalence) of Xoodoo.
w̃ N × C

4 (3× 1)
7 (24× 1)
8 (600× 1)
9 (2× 1)
10 (442× 1)
11 (10062× 1)
12 (80218× 1)
13 (11676× 1)
14 (228531× 1) (3× 2)
15 (2107864× 1) (90× 2)
16 (8447176× 1) (702× 2)
...

...

6.2 The Cluster Histograms of Our Ciphers

Next, we present the cluster histograms of the superboxes of Rijndael, Sat-
urnin, and Spongent and of the Saturnin hyperbox. Moreover, we present a
partial cluster histogram of Xoodoo. The results for Rijndael and Saturnin

are found in Table 3, for Spongent in Table 4, and for Xoodoo in Table 5.
In these tables, C denotes the cardinality of a cluster class and N denotes the
number of cluster classes with that cardinality. For instance, an expression such
as (32× 1) (36× 7) means that there are 32 cluster classes of cardinality 1 and
36 classes of cardinality 7. Looking at w̃ = 8 across the three tables, we see that
Rijndael, Saturnin, and Spongent have only a single cluster class containing
all the states with wΠ(a) + wΠ(L(a)) = 8. In contrast, for Xoodoo, each state
a sits in its own cluster class. This means that L(a) is in a different box activity
class than L(b) for any b ∈ [a]∼ and b 6= a.

Thanks to the fact that the mixing layers of Rijndael and Saturnin have
the MDS property, the entries of their cluster histograms are combinatorial ex-
pressions of m, the box size, and n, the number of boxes. We describe these
methods in detail in Subsection A.2 of the supplementary material.

Table 4 gives the cluster histogram of Spongent’s superbox. For weights
above 4 we see large cluster equivalence classes.

22

Now, consider the cluster histogram of Xoodoo in Table 5. We see that up
to and including box weight 13, we have #[a]≈ = 1. For box weight 14, 15,
and 16, we see that #[a]≈ ≤ 2. Due to its unaligned structure, it is less likely
that equal activity patterns are propagated to equal activity patterns. Therefore,
many cluster classes contain only a single state.

6.3 Two-round Trail Clustering

Two-round trail clustering in the keyed Rijndael superbox was investigated
in [19]. In that paper the expected DP values of trails and differentials are studied,
where expected means averaged over all keys. We see considerable clustering in
differentials with 5 active S-boxes. For these, the maximum expected DP of
differentials is more than a factor 3 higher than the maximum expected DP of
2-round trails, with differentials containing up to 75 trails. For more active S-
boxes the number of trails per differential is much higher and hence clustering is
worse, but their individual contributions to the expected DP are much smaller
and all differentials have expected DP very close to 2−32. For fixed keys or in an
unkeyed superbox these differentials and trails have a DP that is a multiple of
2−31. For trails this effect was studied in [21].

In this section we report on our experiments on the other three of our ciphers
where we compare two-round differentials with differential trails and linear ap-
proximations with linear trails. Figure 9 shows the number of differentials and
differential trails up to a given weight of the Saturnin and the Spongent su-
perboxes. In both cases, we see that for low weight the histograms are close and
as the weight grows, these histograms diverge. For Saturnin there are roughly
50 times more differentials with weight 15 or less than differential trails with
weight 15 or less. For Spongent this ratio is roughly 20. This divergence is due
to two reasons: clustering and what we call clipping. Due to the large number of
differential trails and the limited width of the superbox, the trails cluster. This
effect is especially strong for trails with almost all S-boxes active and would give
rise to many differentials with DP close to 2−16 as the superbox has width 16.
What we observe is a majority of differentials with DP equal to 2−15. This is
the result of the fact that any differential over a superbox has an even number
of ordered pairs and hence the minimum DP is 2−15, yielding weight 15. We call
this effect clipping: the weight of differentials cannot be strictly greater than 15.
A trail over a k-bit superbox with weight w > k − 1 cannot have a DP = 2−w

as this would imply a fractional number of pairs. This effect has been studied in
AES and we refer to Section 7 for a discussion.

Figure 10 shows the weight histograms for two-round differentials and linear
approximations. The full-state correlation weight histogram of Saturnin was
obtained from that of any of its columns by first rounding the correlation weights
to the nearest integer to make integer arithmetic possible. The full-state corre-
lation weight histogram of Spongent was obtained in a similar manner. The
remainder of the histograms is exact. Table 5 shows that in Xoodoo almost all
differentials contain only a single trail. This means that the clustering is negli-
gible. Therefore, there is no difference between Figures 6 and 10 for Xoodoo.

23

0 2 4 6 8 10 12 14 16 18 20 22
Weight

0

5

10

15

20

25

30

35

40

Lo
g2

(C
ou

nt
)

Saturnin
Differentials
Differential Trails

0 2 4 6 8 10 12 14 16 18 20 22
Weight

0

5

10

15

20

25

30

35

40

Lo
g2

(C
ou

nt
)

Spongent
Differentials
Differential Trails

Fig. 9: Differentials and differential trails in the superboxes of Saturnin and
Spongent.

0 5 10 15 20 25 30 35
Differential Weight

0

10

20

30

40

50

60

70

80

Lo
g2

(N
um

be
r o

f D
iff

er
en

tia
ls)

Saturnin
Spongent
Xoodoo

0 5 10 15 20 25 30 35
Linear Approximation Weight

0

10

20

30

40

50

60

70

80

Lo
g2

(N
um

be
r o

f L
in

ea
r A

pp
ro

xi
m

at
io

ns
)

Saturnin
Spongent
Xoodoo

Fig. 10: Two rounds: cumulative restriction and correlation weight histograms.

For Saturnin the clustering is the most striking. For linear trails we observe
a similar effect. For Spongent the clustering is less outspoken due to the fact
that the trail weight histogram is quite bad to start with.

The effect of clustering in four-round (or two super-round) Saturnin is in-
teresting. Four-round Saturnin consists of the parallel application of four 64-bit
hyperboxes. The consequence is that for a fixed key, the roughly 2127 ·4 differen-
tials that are active in a single hyperbox and have non-zero DP, all have weight
below 63. When computing expected DP values averaging the DP over all round
keys, this is closer to 64.

The cluster classes also determine the applicability of the very powerful trun-
cated differential attacks [24]. These attacks exploit sets of differentials that share
the same box activity pattern in their input difference and the same box activity
pattern in their output difference. Despite the fact that the individual trails in
these truncated differentials may have very low DP, the joint probability can be
significant due to the massive numbers. For two-round differentials the cluster
classes are exactly the trail cores in a given truncated differential. In Table 3 we

24

see that the cluster classes for the Rijndael superbox and Saturnin hyperbox
are very large. This clustering leads to powerful distinguishers for e.g., 4-round
AES and 8-round Saturnin. The latter can be modeled as 4 hyperboxes fol-
lowed by an MDS mixing layer followed by 4 hyperboxes and an input difference
with a single active hyperbox will have 4 active hyperboxes after 8 rounds, with
probability 1. In contrast, if the cluster classes are small, as in the case of the
unaligned Xoodoo permutation, it is very unlikely that truncated differential
attacks would have an advantage over ordinary differential attacks.

6.4 Three-round Trail Clustering in Xoodoo

Recall that forXoodoo, no 4-round trails exist with weight below 74 and Table 5
showed that trail clustering in two-round differentials in Xoodoo is negligible,
as expected because of its unaligned design. We investigate the conjecture that
it is also the case for three rounds.

First, we present a generic technique to find all trails that have an envelop-
ing differential compatible with a given three-round trail core. We apply the
technique to Xoodoo, for which it is very efficient.

Given the trail core (a∗1, b
∗
1, a

∗
2, b

∗
2), Lemma 1 shows that we can restrict our-

selves to those (a1, b1, a2, b2) with a1 ∼ a∗1 and b2 ∼ b∗2. The difference a∗1 defines
a vector space A′ of all the states in which a box is passive whenever it is passive
in a∗1. If a1 ∈ [a∗1]∼, then a1 ∈ A′. Similarly, b∗2 defines a vector space B′. If
b2 ∈ [b∗2]∼, then b2 ∈ B′. The vector space B = L(A′) contains the candidate
values for b1. Similarly, the vector space A = L−1(B′) contains candidate values
for a2. Because it preserves activity patterns, N restricts the set of candidate
values to those satisfying b1 ∼ a2. Hence, we can limit the search to those x ∈ B
and y ∈ A with x∼ y.

To find all valid trails of the form (∆in, a1, b1, a2, b2, ∆out), we first reduce
the size of the space of all trail cores (a1, b1, a2, b2) using a necessary condition.
When this space is small enough, we exhaustively search for a valid trail.

We write B for a basis of B and A for a basis of A. To reduce the dimension
of the spaces, we will apply an algorithm directly on their bases. First, we need
the notion of isolated active bit.

Definition 21. A bit i of b ∈ B is said to be an isolated active bit if bi = 1 and
b′i = 0 for all b′ ∈ B \ {b}.

A basis vector having an isolated active bit determines the box activity of
any linear combination that includes it.

Lemma 2. If b ∈ B has an isolated active bit in position i, then any vector in
the affine space b+ span(B \ {b}) has the corresponding box activated.

Proof. If b has an isolated active bit in position i, then the ith bit of any vector
in b+span(B\{b}) is active. As a result, the box containing this bit is active. ⊓⊔

Similar to how an isolated active bit always activates the corresponding box,
a box is never activated if no basis vector activates it.

25

Lemma 3. If the ith box is passive in every vector of A, then the ith box is
passive in all vectors of A. We say that box i is passive in A.

We define a condition that makes it possible to remove a basis vector from
the basis without excluding potentially valid trails.

Condition 1 (reduction condition) We say that a basis vector b ∈ B satis-
fies the reduction condition if and only if it has an isolated active bit in a box
that is passive in A. The same is true when swapping the role of B and A.

The following lemma shows that the reduction condition is sufficient to reduce
the dimension of the vector space we consider.

Lemma 4. If a basis vector b ∈ B satisfies Condition 1, then all valid differences
before the N in the middle are in span(B \{b}). The same is true when swapping
the role of B and A.

Proof. As a consequence of Lemma 2 and Lemma 3, a valid difference before the
nonlinear layer cannot be constructed from b(i) because it would contradict the
fact that the activity pattern is preserved through the nonlinear layer. ⊓⊔

The algorithm now consists in repeatedly removing basis vectors from B and
A that satisfy Condition 1 until this is no longer possible. This can be done
efficiently by searching for pivots for a Gaussian elimination among indices of
vectors from A′ (respectively B′) that correspond to never activated boxes in
B′ (respectively A′). Indeed, these pivots can be used to row-reduce the corre-
sponding basis along them, thus revealing an isolated active bit.

If the algorithm sufficiently decreased the dimensions, then we can exhaus-
tively test all pairs (b1, a2) ∈ B ×A (after reduction) according to the following
criteria:

– (b1, a2) is a valid differential over N;
– There exists a ∆in such that both (∆in, a

∗
1) and (∆in, a1) are valid differen-

tials over N;
– There exists a ∆out such that both (b∗2, ∆out) and (b2, ∆out) are valid differ-

entials over N.

Applying our method to all three-round trail cores of Xoodoo up to weight
50 [17] shows that there exists no cluster for all these trails.

7 Dependence of Round Differentials

In this section we study the dependence of round differentials in the sense of
Definition 5 in Section 2.1. It has been found in [21] that the vast majority of
trails over the Rijndael superbox have dependent round differentials. We will
investigate this for differential trails over three-round Xoodoo. We expect that
the dependence effects observed in Rijndael disappear in an unaligned cipher.
Hence, we now investigate this for differential trails over three-round Xoodoo.

26

7.1 Masks for differentials over nonlinear components

We note VN(∆in, ∆out) the set of output states that follow the differential (∆in, ∆out)
over N, i.e. VN (∆in, ∆out) = N(UN(∆in, ∆out)). From [21], we have that UN(∆in, ∆out)
and VN(∆in, ∆out) are affine if #USi

(Pi(∆in), Pi(∆out)) ≤ 4 for each S-box. Since
this assumption holds for our four ciphers, both UN(∆in, ∆out) and VN(∆in, ∆out)
are affine and can be described by a system of affine equations on the bits of the
state x. Each affine equation can be written as u⊤x + c with u a b-bit vector
called mask and c a bit.

Given a three-round differential trail Q = (∆in, a1, b1, a2, b2, ∆out), one can
define four sets of masks:

– A1, the masks that come from VN(∆in, a1);
– B1, the masks that come from UN(b1, a2);
– A2, the masks that come from VN(b1, a2);
– B2, the masks that come from UN(b2, ∆out).

These masks are said to be all independent if

#UN ◦L ◦N ◦L ◦N(Q) = 2b−(#A1+#B1+#B2) = 2b−(#A1+#A2+#B2) .

which is, per Definition 5, equivalent to the independence of round differentials.
We first present an efficient generic method for determining whether three-

round trail masks are independent. Then we apply this method to Xoodoo.
Since L is linear, A1 can be linearly propagated through it to obtain a set of
masks A′

1 at the input of the second nonlinear layer. Similarly, we can propagate
B2 through the inverse linear layer to obtain a set of masks B′

2 at the output of
the second nonlinear layer.

7.2 Independence of masks over a nonlinear layer

B1 and A′
1 form sets of masks at the input of the second nonlinear layer. If the

rank of C1 = B1 ∪ A′
1 is the sum of the ranks of B1 and A′

1, then C1 contains
independent masks. The same strategy can be used to test for dependence of
masks in C2 = A2 ∪B′

2.
As for the independence of masks of the complete trail, we need to check

for dependence between C1 and B′
2 or between A′

1 and C2. We will apply an
algorithm similar to the one we used in Section 6.4 to reduce bases. However,
here we use it to reduce the cardinalities of the mask sets.

The following lemma makes this possible.

Lemma 5. Let C1 and B′
2 be two sets of masks before and after an S-box layer.

If a mask u in C1 satisfies Condition 1, then the number of states that satisfy
the equations associated with the masks in both C1 \ {u} and B′

2 is exactly two
times the number of states before removing u. The same is true by swapping the
role of C1 and B′

2.

27

Proof. Since u satisfies Condition 1, let i be the index of the isolated bit, j be the
index of the corresponding S-Box and k the number of masks in B′

2. No mask in
B′

2 is putting a constraint on any of the m bits of the jth S-Box, thus the 2b−k

solutions can be seen as 2b−k−m groups of 2m different states that only differ in
the m bits of the jth S-box. Since the S-box is invertible, the application of the
inverse of the nonlinear layer to a whole group of 2m vectors results in a group
of 2m different states that, again, only differ on the value of the jth S-box.

We can further divide those 2b−k−m groups each into 2m−1 subgroups of
2 different states that only differ in the value of the ith bit. By definition on
an isolated bit, either both or none of the two states inside a subgroup satisfy
all equations associated with the masks in C1 \ {u}. Finally, inside a subgroup
exactly one of the two states will satisfy the equation associated with mask u.
Thus, the number of solutions by removing u is multiplied by exactly two. ⊓⊔

We first check for linear dependence inside C1 by computing its associated
rank. Then, we recursively check if some mask in either C1 or B′

2 satisfies Con-
dition 1 and if it is the case we remove them from the sets of masks.

There are three possible outcomes when applying this process to a three-
round differential trail:

– If C1 is not full rank, we can conclude that masks in B1 and A′
1 are depen-

dent;
– Else, if either set is empty, Lemma 5 applied at each step guarantees us

that the number of states satisfying the equations associated with the masks

in both C1 and B′
2 is equal to 2b−(#C1+#B′

2), that is to say the masks are
independent;

– If none of the two conditions above are met, we cannot directly conclude
about (in)dependence between remaining masks but we can apply the same
method to A1 and C2 and hope for a better outcome.

7.3 Application to Xoodoo

This process is used to check for independence in differential trails over three
rounds of Xoodoo. It has been applied to the same differential trails as pro-
cessed in Section 6.4. In all cases, the masks, and thus round differentials, were
found to be independent. This was not obtained by sampling, but instead by
counting the number of solutions, hence this independence is exact in the sense
of Definition 5. As a result, the DP of each such trail is the product of the DP
values of its round differentials, which implies that DP(Q) = 2−wr(Q).

8 Conclusion

We put forward alignment as a crucial property that characterizes the interac-
tions between linear and nonlinear layers w.r.t. the differential and linear prop-
agation properties. We conducted experiments on four S-box based primitives
that otherwise represent different design approaches. We precisely defined what

28

it means for a primitive to be aligned and showed thatRijndael, Saturnin, and
Spongent are aligned, whereas Xoodoo is unaligned. Through these examples,
we highlighted and analyzed different effects of alignment on the propagation
properties.

Acknowledgements. We thank Bart Mennink for helpful comments. Moreover, we
would like to thank the anonymous reviewers of an earlier version of this paper
for their useful feedback. Joan Daemen and Daniël Kuijsters are supported by
the European Research Council under the ERC advanced grant agreement under
grant ERC-2017-ADG Nr. 788980 ESCADA. This work is partially supported by
the French National Research Agency in the framework of the Investissements
d’avenir programme (ANR-15-IDEX-02).

References

1. Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S.M., Todo, Y.: GIFT: A small
present - towards reaching the limit of lightweight encryption. In: CHES 2017

2. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The
SIMON and SPECK families of lightweight block ciphers. IACR Cryptol. ePrint
Arch. 2013, 404 (2013)

3. Bernstein, D.J.: The Salsa20 family of stream ciphers. In: Robshaw, M.J.B., Billet,
O. (eds.) New Stream Cipher Designs - The eSTREAM Finalists

4. Bernstein, D.J.: Cache-timing attacks on AES. Tech. rep. (2005)
5. Bertoni, G., Daemen, J., Hoffert, S., Peeters, M., Van Assche, G., Van Keer, R.:

Extended Keccak code package. https://github.com/XKCP/XKCP
6. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak reference (Jan-

uary 2011)
7. Beyne, T., Chen, Y.L., Dobraunig, C., Mennink, B.: Dumbo, jumbo, and delirium:

Parallel authenticated encryption for the lightweight circus. IACR Trans. Symmet-
ric Cryptol. 2020(S1), 5–30 (2020), https://doi.org/10.13154/tosc.v2020.iS1.
5-30

8. Biham, E., Shamir, A.: Differential cryptanalysis of des-like cryptosystems. In:
CRYPTO ’90. https://doi.org/10.1007/3-540-38424-3_1

9. Bogdanov, A., Knezevic, M., Leander, G., Toz, D., Varici, K., Verbauwhede, I.:
SPONGENT: the design space of lightweight cryptographic hashing. IACR Cryp-
tol. ePrint Arch. 2011, 697 (2011)

10. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher.
In: CHES 2007

11. Boyar, J., Peralta, R.: A new combinational logic minimization technique with
applications to cryptology. In: SEA 2010

12. Canteaut, A., Duval, S., Leurent, G., Naya-Plasencia, M., Perrin, L., Pornin, T.,
Schrottenloher, A.: Saturnin: a suite of lightweight symmetric algorithms for post-
quantum security. IACR ToSC 2020(S1)

13. Canteaut, A., Duval, S., Leurent, G., Naya-Plasencia, M., Perrin, L., Pornin,
T., Schrottenloher, A.: Saturnin implementations. https://project.inria.fr/

saturnin/files/2019/05/saturnin.zip

14. Daemen, J.: Cipher and hash function design, strategies based on linear and dif-
ferential cryptanalysis, PhD Thesis. K.U.Leuven (1995)

29

https://github.com/XKCP/XKCP
https://doi.org/10.13154/tosc.v2020.iS1.5-30
https://doi.org/10.13154/tosc.v2020.iS1.5-30
https://doi.org/10.1007/3-540-38424-3_1
https://project.inria.fr/saturnin/files/2019/05/saturnin.zip
https://project.inria.fr/saturnin/files/2019/05/saturnin.zip

15. Daemen, J., Hoffert, S., Peeters, M., Van Assche, G., Van Keer, R.: Xoodyak, a
lightweight cryptographic scheme. IACR ToSC 2020(S1)

16. Daemen, J., Hoffert, S., Van Assche, G., Van Keer, R.: The design of Xoodoo and
Xoofff. IACR Trans. Symmetric Cryptol. 2018(4), 1–38 (2018)

17. Daemen, J., Hoffert, S., Van Assche, G., Van Keer, R.: XooTools. https://github.
com/KeccakTeam/Xoodoo/tree/master/XooTools (2018)

18. Daemen, J., Peeters, M., Van Assche, G., Bertoni, G.: On alignment in Keccak.
Note (2011)

19. Daemen, J., Rijmen, V.: Understanding two-round differentials in AES. In: SCN
2006

20. Daemen, J., Rijmen, V.: The wide trail design strategy. In: Honary, B. (ed.) Cryp-
tography and Coding, Proceedings (2001)

21. Daemen, J., Rijmen, V.: Plateau characteristics. IET Information Security 1(1),
11–17 (2007)

22. Daemen, J., Rijmen, V.: The Design of Rijndael - The Advanced Encryption Stan-
dard (AES), Second Edition. Information Security and Cryptography, Springer
(2020)

23. Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge
University Press (2003)

24. Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.) FSE
1994. Lecture Notes in Computer Science, vol. 1008, pp. 196–211. Springer (1994),
https://doi.org/10.1007/3-540-60590-8_16

25. Kranz, T., Leander, G., Stoffelen, K., Wiemer, F.: Shorter linear straight-line pro-
grams for MDS matrices. IACR Trans. Symmetric Cryptol. 2017(4), 188–211 (2017)

26. Künzer, Martin, Tentler, Wahrheit: Zassenhaus-algorithmus. https://mo.

mathematik.uni-stuttgart.de/inhalt/beispiel/beispiel1105/
27. Leander, G., Poschmann, A.: On the classification of 4 bit s-boxes. In: Arithmetic

of Finite Fields, First International Workshop, WAIFI 2007, Proceedings
28. Li, C., Wang, Q.: Design of lightweight linear diffusion layers from near-mds ma-

trices. IACR Trans. Symmetric Cryptol. 2017(1), 129–155 (2017)
29. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)

Advances in Cryptology - EUROCRYPT ’93, Proceedings
30. McGeer, P.C., Sanghavi, J.V., Brayton, R.K., Sangiovanni-Vincentelli, A.L.:

ESPRESSO-SIGNATURE: a new exact minimizer for logic functions. IEEE Trans.
Very Large Scale Integr. Syst. 1(4), 432–440 (1993)

31. Mella, S., Daemen, J., Van Assche, G.: New techniques for trail bounds and appli-
cation to differential trails in Keccak. IACR ToSC 2017(1)

32. NIST: Federal information processing standard 197, advanced encryption standard
(AES) (November 2001)

33. NIST: Federal information processing standard 202, SHA-3 standard: Permutation-
based hash and extendable-output functions (August 2015)

34. Nyberg, K.: Differentially uniform mappings for cryptography. In: Helleseth, T.
(ed.) Advances in Cryptology - EUROCRYPT ’93, Proceedings

35. Park, S., Sung, S.H., Chee, S., Yoon, E., Lim, J.: On the security of rijndael-like
structures against differential and linear cryptanalysis. In: Advances in Cryptology
- ASIACRYPT 2002

36. Schwabe, P., Stoffelen, K.: All the AES you need on Cortex-M3 and M4. In: SAC
2016 - 23rd International Conference, Revised Selected Papers

37. Shamsabad, M.R.M., Dehnavi, S.M.: Dynamic MDS diffusion layers with efficient
software implementation. Int. J. Appl. Cryptogr. 4(1), 36–44 (2020)

38. Stoffelen, K.: AES implementations. https://github.com/Ko-/aes-armcortexm

30

https://github.com/KeccakTeam/Xoodoo/tree/master/XooTools
https://github.com/KeccakTeam/Xoodoo/tree/master/XooTools
https://doi.org/10.1007/3-540-60590-8_16
https://mo.mathematik.uni-stuttgart.de/inhalt/beispiel/beispiel1105/
https://mo.mathematik.uni-stuttgart.de/inhalt/beispiel/beispiel1105/
https://github.com/Ko-/aes-armcortexm

Supplementary Material

A Histogram computations

In this section, we describe methods for computing histograms. First, we de-
scribe a general method to obtain the histogram of an aligned function from the
histograms of its box functions. Second, we describe some methods to obtain the
cluster histograms of the ciphers described in Section 4.

Almost all of our computations were done to full precision. The only exception
is the case of computing the correlation weights for Rijndael, Saturnin, and
Spongent. In this case, we took the integer part of the intermediate results and
computed on those numbers.

As a rule of thumb, the most interesting part of any histogram is its left tail,
i.e., the part containing the distribution of the low weights. As a consequence of
this, we are satisfied if we are able to compute a partial histogram that includes
this tail. We see in the case of Rijndael and Xoodoo that this is frequently
all we can hope to expect.

A.1 Convolution

Let L = L0 × · · ·×Ln−1 : Fb
2 → F

b
2 be a function composed of box functions with

respect to an ordered partition Π. Computing a histogram of L exhaustively is
often computationally infeasible. However, the histograms of the box functions
Li typically are feasible to compute thanks to the small box width. Given the
histograms of the Li, it is possible to combine them to get the histogram of L
itself. This combining operation is a form of convolution and is therefore denoted
as ∗. The idea is best illustrated by an example.

Example 1. Consider Rijndael and suppose we wish to compute the convolu-
tion of the restriction weight histograms of two of its S-boxes for a fixed output
difference. We represent the histograms in two-column notation, where we list
the restriction weights in the first column, and for each one its image, i.e., the
number of input differences with the given weight, in the second column. To
make the representation finite, a necessity for performing computations on these
objects, we restrict ourselves to those weights for which the image is non-zero.



0 1
6 1
7 126


 ∗



0 1
6 1
7 126


 =




0 + 0 1 · 1
0 + 6 1 · 1
0 + 7 1 · 126
6 + 0 1 · 1
6 + 6 1 · 1
6 + 7 1 · 126
7 + 0 126 · 1
7 + 6 126 · 1
7 + 7 126 · 126




=




0 1
6 2
7 252
12 1
13 252
14 15876




31

To the end of abstracting the notion showcased in the example, suppose
that there exist t associative binary operations ⊕j : Z≥0 × Z≥0 → Z≥0 for
0 ≤ j ≤ t − 1. For our purposes, these operations are just + (regular addition)
or · (regular multiplication) and we restrict ourselves to either t = 2 or t = 3.
Furthermore, suppose that T i ⊆ Z

t
≥0 is an encoding of some histogram of Li for

0 ≤ i ≤ n− 1. We think of T i as an s× t matrix for some s ∈ Z≥0 and index its
rows as T i

j and its entries as T i
jk. We define the binary convolution operator

∗ : Zt
≥0 × Z

t
≥0 → Z

t
≥0

that combines sequences as

(l0, . . . , lt−1) ∗ (m0, . . . ,mt−1) = (l0 ⊕0 m0, . . . , lt−1 ⊕t−1 mt−1)

We note that ∗ is associative, since the ⊕j are. Using this operator, it is possible
to combine sequences from different histograms in a sensible way. Any sequence
in the histogram of L is related to the sequences in the histograms of the Li in
the following way:

(n0, . . . , nt−1) = ∗
0≤i≤n−1

j∈Ci(n0,...,nt−1)

T i
j

where

Ci(n0, . . . , nt−1) = {j ∈ Z≥0 :

n−1⊕
l

i=0

T i
jl = nl for 0 ≤ l ≤ t− 1}

A.2 Mixing Layers Based on MDS Codes

We show how to compute the box weight histogram and the cluster histogram of
a mixing layer L that is based on MDS codes. In the cipher built on top of L, we
suppose that there is an S-box layer N. Let the ordered partition Π0 be defined
by N. Moreover, we suppose that the size of the boxes of Π0 is m. Consider

L = L0 × · · · × Ls−1 :
s−1

×
i=0

F
km
2 →

s−1

×
i=0

F
km
2 .

Now, L defines an ordered partition Π1. Indeed, each of the s boxes of Π1 is the
union of k boxes of Π0 of size m. It follows that Π0 ≤ Π1, N is box-aligned with
respect to both Π0 and Π1, and L is box-aligned with respect to Π1.

Definition 22. A function f : Fk
2m → F

k
2m is called an MDS function if the set

{(x, f(x)) : x ∈ F
k
2m} ⊆ F

2k
2m

∼= F
2km
2 is an MDS code over F2m of minimum

distance d.

The minimum distance d is precisely the box branch number. Henceforth, we
make the assumption that the box functions Li, with 0 ≤ i ≤ s − 1, are MDS
functions, i.e., that have branch number d = k + 1.

First, Theorem 2 shows how to compute the box weight histogram of Li with
respect to the subset of Π0 consisting of the boxes indexed by ik, . . . , (i+1)k−1
(they form a partition of the input space of Li).

32

Theorem 2. Let C be an [2k, k, k+1] MDS code over Fq. The weight distribu-
tion of C is given by A0 = 1, Aw = 0 for 1 ≤ w < k + 1, and

Aw =

(
2k

w

)w−k−1∑

i=0

(−1)i
(
w

i

)
(qw−k−i − 1)

for k + 1 ≤ w ≤ 2k.

Proof. This is a specific case of Theorem 7.4.1 in [23]. ⊓⊔

As an example, in both MixColumns of Rijndael and MC of Saturnin we have
k = 4. Using convolution, it is now possible to obtain the box weight histogram
of L from those of the Li.

Next, we show how to compute the Li-box histogram. We put Cm,k(w) =
#[a]≈ for any a ∈ F

km
2 with wΠ(a) + wΠ(L(a)) = w. In other words, Cm,k(w)

does not depend on the box activity pattern of a, but only on its box weight.
A box activity pattern can be chosen in

(
2n
k

)
Before stating the main result, we

prove some lemmas.

Lemma 6. We have Cm,k(k + 1) = 2m − 1.

Proof. Since Li is an MDS function, there exists a k × k matrix M such that
H = (MIk) is a parity-check matrix of an MDS code of dimension k. Let S ⊆
[0, 2k − 1] with #S = k be a subset of the column index space. The columns
of H indexed by S form a k × k sub-matrix. Since H defines an MDS code,
this sub-matrix is invertible. This means that the columns of the reduced row
echelon form of H indexed by S form the identity matrix Ik. By permuting the
columns of the reduced row echelon form, we obtain a parity-check matrix of an
equivalent code, H ′ = (M ′Ik). This defines a linear map M : Fk

2m → F
k
2m given

by M(a) = M ′⊤a. Now, let a ∈ F
km
2 with wΠ(a) + wΠ(L(a)) = k + 1. Pick the

subset S in such a way that it contains the index of one active box of (a,L(a))
and such that the other indices correspond to k − 1 passive boxes. The other
k active boxes are completely determined by this single active box through M.
Hence, we have only 2m − 1 degrees of freedom. ⊓⊔

Lemma 7. We have Cm,k(k + 2) = (2m − 1)(2m − 1− k).

Proof. Let a ∈ F
km
2 with wΠ(a) + wΠ(L(a)) = k + 2. By the same argument

as given in Lemma 6, we pick S in such a way that it contains the indices of
two active boxes of a. There are (2m − 1)2 ways of choosing the vector a such
that it is active in two boxes. Then M determines the other k boxes. Clearly
k + 1 ≤ wΠ(a) + wΠ(M(a)) ≤ k + 2 (as there are only k boxes at the output
of M). We subtract the number of vectors that lead to a box weight of k + 1
According to Lemma 6, this number is 2m − 1 for a fixed position of an active
box. We can choose this position in k ways. Hence, in total, we need to subtract
k(2m − 1) inputs. The result readily follows. ⊓⊔

Theorem 3 states the main result. The Li-box histogram follows directly from
it.

33

Theorem 3. For k + 1 ≤ w ≤ 2k, the following recurrence relation holds:

Cm,k(w) = (2m − 1)w−k −
∑

1≤i≤w−k−1

(
k

i

)
Cm,k(w − i)

Moreover, Cm,k(0) = 1.

Proof. Let a ∈ F
km
2 with wΠ(a) + wΠ(L(a)) = w. By the same argument as

given in Lemma 6, pick S such that it contains the indices of w−k active boxes.
There are (2m − 1)w−k ways of choosing the vector a such that it is active in
w−k boxes. It follows that k+1 ≤ wΠ((a,M(a))) ≤ w. We subtract the number
of vectors that lead to a box weight of k + i for 1 ≤ i ≤ w − k − 1 and obtain
the result. ⊓⊔

Again, using convolution, it is possible to obtain the cluster histogram from
the Li-box histograms.

A.3 Exhaustive Search

Cluster Histogram up to Given Box Weight Let L : Fb
2 → F

b
2 be a linear

transformation. Suppose that we want to determine the cluster histogram, but
that it is infeasible to construct the whole histogram because L is not box-aligned
nor does it have any other properties that make it easy to do so. In this case, it
is still possible to construct the cluster histogram up to a given box weight. To
this end, suppose that we have an algorithm similar to the Trail Search described
in [31] that generates a list of vectors up to a given weight.

For a given difference a ∈ F
b
2, consider the vector (a,L(a)) ∈ F

2b
2 with wΠ(a)+

wΠ(L(a)) = w. We wish to compute #[a]≈. Consider the vector space spanned
by the basis vectors that have the same box activity pattern as a:

V (a) =

〈
⋃

0≤i≤n−1
rΠ(a)i 6=0

{ebim, ebim+1, . . . , e
b
(i+1)m−1}

〉

We compute a basis for L(V (a))∩V (L(a)) using Zassenhaus algorithm [26]. Then

c = #[a]≈ = #{v ∈ L(V (a)) ∩ V (L(a)) : v ∈ [L(a)]∼ ∧ L−1(v) ∈ [a]∼}

and we increment NΠ,L(w, c) by one. Once we have considered all vectors of box
weight w, the values of NΠ,L(w, ·) are exact.

Three-round Trail Search Saturnin During the first three rounds of Sat-
urnin, all step functions are applied, in parallel, to disjoint slices. Since we are
interested in the tail of the differential or linear trail weight histogram, we may
limit our search for trails to a single slice. The cipher applies sixteen S-boxes to a
slice and we write Π for the corresponding partition. Clearly, an activity pattern

34

with respect to Π can be encoded as a vector of sixteen bits. We represent this
vector as the following 4× 4 binary matrix:




rΠ(a)3 rΠ(a)2 rΠ(a)1 rΠ(a)0
rΠ(a)6 rΠ(a)5 rΠ(a)4 rΠ(a)7
rΠ(a)9 rΠ(a)8 rΠ(a)11 rΠ(a)10
rΠ(a)12 rΠ(a)15 rΠ(a)14 rΠ(a)13




In this representation, each matrix row corresponds to the activity pattern of
differences or linear masks at the input of a single MC in the first mixing layer.
Similarly, a matrix column corresponds to the activity pattern of differences or
linear masks at the output of a single MC in the second mixing layer. This allows
us to compute candidate activity patterns for which the weight of any differential
or linear trail that contains a difference or linear mask contained in that pattern
does not exceed an upper bound on the differential or linear trail weight that we
set beforehand. Indeed, we generate all possible 4× 4 binary matrices, encoding
all possible activity patterns. Each matrix row and each matrix column has a
bit weight, which corresponds to the box weight of the differences and linear
masks at the input or output of a single MC. Since MC defines an MDS code of
minimum distance 5, the differences or linear masks associated with a matrix row
of bit weight w contribute at least 5−w to the differential or linear trail weight.
A similar argument can be given for the columns. This gives a lower bound on
the actual differential or linear trail weight of any trail comprising a difference
or linear mask contained in that activity pattern. We determine whether this
lower bound is smaller than or equal to the upper bound that we set. The result
is a collection of candidate activity patterns, the lower bound of which does not
exceed our fixed upper bound. To the end of determining the actual trail weights,
we first switch back to the following sequential representation as this makes it
easier to apply the step functions:




rΠ(a)0 rΠ(a)1 rΠ(a)2 rΠ(a)3
rΠ(a)4 rΠ(a)5 rΠ(a)6 rΠ(a)7
rΠ(a)8 rΠ(a)9 rΠ(a)10 rΠ(a)11
rΠ(a)12 rΠ(a)13 rΠ(a)14 rΠ(a)15




Using convolution and exhaustive search within the candidate activity patterns,
we are able to find all the differential and linear trails within that slice up to a
given weight.

B Minimal Sum-of-product Forms

We have used the Espresso algorithm to get a minimal sum-of-products (SOP)
form of the three ciphers below. Note that addition denotes ‘or’, multiplication
denotes ‘and’, and an overline denotes negation.

35

Xoodoo:

Y0 = X0X1 +X0X1X2 +X0X1X2

Y1 = X1X2 +X0X1X2 +X0X1X2

Y2 = X0X2 +X0X1X2 +X0X1X2

Saturnin:

Y0 = X0X1X2X3 +X0X2X3 +X0X1X2X3 +X1X2X3 +X1X2X3

Y1 = X0X1X2 +X0X1X2X3 +X1X2X3 +X0X1

Y2 = X0X1X2X3 +X0X2X3 +X0X1X2X3 +X0X1

Y3 = X0X1X2X3 +X0X1X2X3 +X2X3 +X1X2

Spongent:

Y0 = X0X1X2X3 +X0X1X2X3 +X0X1X2X3 +X0X1X2X3 +X1X2X3 +X0X1X2

Y1 = X0X1X2X3 +X0X1X2X3 +X0X1X2 +X0X1X2X3 +X0X1X2 +X1X2X3

Y2 = X0X1X2X3 +X0X1X2X3 +X0X1X2X3 +X0X2X3 +X1X2X3 +X0X1X2X3

Y3 = X0X1X2X3 +X0X1X2X3 +X0X1X2X3 +X0X1X2X3 +X0X1X2X3 +X0X2X3

+X0X1X2X3

From De Morgan’s laws, it follows that XY + ZW = XY · ZW . In other
words, the circuits of depth two that can be derived from the SOPs above,
consisting of a layer of (possibly multi-input) and gates, followed by a layer of
(possibly multi-input) or gates, can be converted into a circuit of depth two in
which each layer consists of (possibly multi-input) nand gates.

C Estimating the number of trails with 25 active S-boxes

in 4-round Saturnin

A trail over 4 rounds of Saturnin is a trail in a hyperbox that has superboxes
as S-boxes. This trail is active in 5 superboxes and has 5 active boxes in each
superbox.

There are
(
8
5

)
= 56 ways to select the 5 active superboxes from the 8 super-

boxes.
In the central mixing layer there can be x ∈ {1, 2, 3, 4} MC instances active.
In each active MC, we have one degree of freedom as the choice of a single

difference among the 5 active ones fixes the four others. This gives 15x choices
for the middle differences.

Each active superbox now has x active boxes at its input (or output), and
shall have 5−x active boxes at its output (or input). Consider the case x = 1. For

36

Table 6: Known lower bounds for weights of differential trails.

number of rounds
cipher source 1 2 3 4 5 6 7 8 12

Spongent [9] 2 4 8 12 ≥ 20 28 - - ≥ 72
AES [22] 6 30 54 150 ≥ 156 ≥ 180 ≥ 204 ≥ 300 ≥ 450
Saturnin [12] 2 10 19 ≥ 50 ≥ 58 ≥ 90 ≥ 122 250 ≥ 300
Xoodoo [15] 2 8 36 [74, 80] ≥ 94 ≥ 104 ≥ 110 ≥ 148 ≥ 222

a given choice of the middle difference, the difference at the input (or output) of
a single S-box is fixed. For differential trails, the number of compatible output
differences depends on the concrete output difference but ranges from 6 to 8
with an average of exactly 7. We think it is reasonable in this estimation to
approximate this by exactly 7. For linear trails, the number of input masks
compatible with a given output mask is always 10.

So given a choice of the intermediate difference, there are 75 differential trail
cores and 105 linear trail cores.

This gives in total 56× 15× 75 differential trail cores and 56× 15× 105 Each
of these trail cores has in total 20 active S-boxes in the outer S-box layers. Every
difference at the inside of such an active S-box has 7 compatible differences at
the outside. It follows that there are in total 56 × 15 × 75 × 720 ≈ 280 such
differential trails per hyperbox and as there are 4 hyperboxes, this totals to 282.

Every mask at the inside of such an active S-box has 10 compatible masks
at the outside. It follows that there are in total 56× 15× 105× 1020 ≤ 292.5 such
linear trails per hyperbox and as there are 4 hyperboxes, this totals to 294.5.

These are only the trails with a single active MC in the middle mixing layer.
We do not count the other classes as their analysis is more involved and the final
total number is much less. Hence this class dominates the total number.

D Known trail bounds for up to 12 rounds

In Table 6 we list the trail bounds for our four ciphers for up to 12 rounds.
For AES the numbers are based on the existence of periodic trails with period
4 where the profile of the number of active S-boxes is (1, 4, 16, 4) and the fact
that the minimum weight for the AES S-box is 6. For Saturnin the numbers
are based on the existence of periodic trails with period 8 where the profile of
the number of active S-boxes is (1, 4, 16, 4, 16, 64, 16, 4) and the fact that the
minimum weight for the Saturnin S-box is 2.

E Why Xoodoo is not aligned

In this appendix, we provide a computer-assisted proof that Xoodoo is not
aligned.

37

Let us assume that we can factor the linear layer of Xoodoo into L = π ◦M
with M operating on non-trivial superboxes. We can identify the input bits of
M that lie in the same superbox with the two following rules:

1. The output bits of L in the same box (column)depend on input bits from
the same superbox;

2. Any two output bits that depend on the same input bit must also depend
on input bits from the same superbox.

Therefore, we construct a bipartite graph with the 128 output boxes on one side
and the 384 input bits on the other side, with edges connecting an output box
to the input bits that it depends on. We explicitly constructed this graph (see
Figure 11) and checked that it is connected. This contradicts the assumption
that M operates on non-trivial superboxes.

def buildGraph ():
G = Graph ()
for x in range (4):

for z in range (32):
G.add_vertex("out -{0} -{1}".format(x, z))
for y in range (3):

G.add_vertex("in -{0} -{1} -{2}".format(x, y, z))
for x in range (4):

for z in range (32):
out = "out -{0} -{1}".format(x, z)
G.add_edge(out , "in -{0} -{1} -{2}".format(x, 0, z))
G.add_edge(out , "in -{0} -{1} -{2}".format ((x+3)%4 , 0, (z+27)%32))
G.add_edge(out , "in -{0} -{1} -{2}".format ((x+3)%4 , 0, (z+18)%32))
G.add_edge(out , "in -{0} -{1} -{2}".format ((x+3)%4 , 1, (z+26)%32))
G.add_edge(out , "in -{0} -{1} -{2}".format ((x+3)%4 , 1, (z+17)%32))
G.add_edge(out , "in -{0} -{1} -{2}".format ((x+1)%4 , 2, (z+19)%32))
G.add_edge(out , "in -{0} -{1} -{2}".format ((x+1)%4 , 2, (z+10)%32))

G.add_edge(out , "in -{0} -{1} -{2}".format ((x+3)%4 , 1, (z+31)%32))
G.add_edge(out , "in -{0} -{1} -{2}".format ((x+2)%4 , 0, (z+27)%32))
G.add_edge(out , "in -{0} -{1} -{2}".format ((x+2)%4 , 0, (z+18)%32))
G.add_edge(out , "in -{0} -{1} -{2}".format ((x+2)%4 , 1, (z+26)%32))
G.add_edge(out , "in -{0} -{1} -{2}".format ((x+2)%4 , 1, (z+17)%32))
G.add_edge(out , "in -{0} -{1} -{2}".format ((x+0)%4 , 2, (z+19)%32))
G.add_edge(out , "in -{0} -{1} -{2}".format ((x+0)%4 , 2, (z+10)%32))

G.add_edge(out , "in -{0} -{1} -{2}".format ((x+2)%4 , 2, (z+13)%32))
G.add_edge(out , "in -{0} -{1} -{2}".format ((x+3)%4 , 0, (z+16)%32))
G.add_edge(out , "in -{0} -{1} -{2}".format ((x+3)%4 , 0, (z+ 7)%32))
G.add_edge(out , "in -{0} -{1} -{2}".format ((x+3)%4 , 1, (z+15)%32))
G.add_edge(out , "in -{0} -{1} -{2}".format ((x+3)%4 , 1, (z+ 6)%32))
G.add_edge(out , "in -{0} -{1} -{2}".format ((x+1)%4 , 2, (z+ 8)%32))
G.add_edge(out , "in -{0} -{1} -{2}".format ((x+1)%4 , 2, (z+31)%32))

return G

G = buildGraph ()
G.is_connected ()

Fig. 11: Sage code to construct the graph detailed in the text and to check its
connectivity.

38

