
1

Thinking Penguin: Multi-modal Brain-Computer

Interface Control of a VR Game
Robert Leeb, Member, IEEE, Marcel Lancelle, Vera Kaiser, Dieter W. Fellner, Gert Pfurtscheller

Abstract— We describe a multi-modal brain-computer inter-
face (BCI) experiment, situated in a highly immersive CAVE.
A subject sitting in the virtual environment controls the main
character of a virtual reality game: a penguin that slides down
a snowy mountain slope. While the subject can trigger a jump
action via the BCI, additional steering with a game controller
as a secondary task was tested. Our experiment profits from the
game as an attractive task where the subject is motivated to get
a higher score with a better BCI performance. A BCI based
on the so-called brain-switch was applied, which allows discrete
asynchronous actions. Fourteen subjects participated, of which
50 % achieved the required performance to test the penguin
game. Comparing the BCI performance during the training and
the game showed that a transfer of skills is possible, in spite of the
changes in visual complexity and task demand. Finally and most
importantly, our results showed that the use of a secondary motor
task, in our case the joystick control, did not deteriorate the
BCI performance during the game. Through these findings, we
conclude that our chosen approach is a suitable multi-modal or
hybrid BCI implementation, in which the user can even perform
other tasks in parallel.

Index Terms— Brain-Computer Interfaces (BCI), virtual real-
ity (VR), game, multi-tasking, hybrid BCI, multi-modal, brain-
switch

I. INTRODUCTION

For a long time, Brain-Computer Interfaces (BCI) for Vir-

tual Environments (VE) have been the subject of many science

fiction stories. Often, a complete immersion and a direct

mapping of thoughts to actions in Virtual Reality (VR) are

described or dreamed of, but in reality, the possibilities are

still quite limited. Nevertheless, the promising potential of

this BCI-VR combination is visible at two levels. On one

hand, BCI is seen by the VR community as a new input

device that may completely change the way to interact with

VEs [20]. On the other hand, VR technologies also appear as
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Fig. 1. The left side displays a subject in the virtual environment during the
penguin racer experiment. The penguin should jump up to collect the fish.
This is triggered by the user with the Brain-Computer Interface, whereby an
exemplary output is shown on the right side.

useful tools for BCI research. VEs can indeed provide a richer

and more motivating feedback for BCI users than traditional

feedbacks that are usually in the form of a simple 2D bar

displayed on screen. Therefore, a VR feedback could enhance

the learnability of the system, i.e. reduce the amount of time

needed to learn the BCI skill, as well as increase the mental

state classification performance [22], [39]. VEs can also be

used as a safe, cost-effective and flexible training and testing

ground for prototypes of BCI applications. For instance, it

could be used to train a patient to control a wheelchair with a

BCI [21] and to test various designs for the wheelchair control,

all of this without any physical risk and at a greatly reduced

cost. As such, VR can be used as an intermediary step before

using BCI applications in real-life.

Most BCIs are based on the real-time analysis of non-

invasively recorded electro-physiological brain signals, by

means of the electroencephalogram (EEG). Control parameters

are extracted from this activity, which can be used by disabled

or healthy people to establish a new communication channel

between the human brain and a computer. Generally, two dif-

ferent neurophysiological phenomena of the EEG can be used

as input to a BCI: either (i) event-related potentials (ERPs)

which are time-locked responses to an external event, or (ii)

event-related oscillatory changes, which are internally induced

modulations in the ongoing EEG. In particular, the mental

imagination of movements is a very popular and widely used

mental strategy [51]. It is described as the mental rehearsal of a

motor act, without any overt motor output [4] and results in an

amplitude suppression or enhancement of Rolandic mu rhythm

(7–13 Hz) and the central beta rhythm (13–30 Hz) recorded

over the sensorimotor cortex of the participant [32], [34].

It is broadly accepted that mental imagination of movement

involves similar brain regions to those which are used for

programming and preparing such movements [5], [13]. During
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the operation of the BCI, the user’s task is to intentionally

“produce” certain brain states (i. e. EEG patterns) that can

be detected by the system. Before being able to use a BCI,

the subjects have to learn to voluntarily modulate the EEG

oscillatory rhythms by performing the imagery tasks and the

BCI system has to learn what the subject-specific patterns are.

Therefore several training sessions are necessary before a BCI

can be used for reliable control purposes. The duration of the

training varies widely from subject to subject and can last

from several hours to many months [30], [9]. Furthermore,

the temporal dynamics and the accuracy of a BCI controlled

channel cannot be compared with a normal manual control.

First, brain patterns need time to evolve (in case of oscillatory

activities some seconds); second, the signal-to-noise ratio of

the EEG is not so high, therefore the BCI accumulates the ev-

idence (integration, averaging. . . ) before delivering decisions;

third, brain patterns vary slightly each time the mental task

is performed; and fourth, the number of tasks or imagination

to be differentiated is limited and therefore the information-

transfer rate or bandwidth is relatively low [51].

Important points in realizing a practical and usable motor-

imagery BCI are: (i) to have stable EEG features for detection

and control, (ii) to need only a short training time and (iii) to

use only a small number of EEG derivations. All these points

are fulfilled when the beta-rebound, a short-lasting event re-

lated synchronization (ERS), is used for classification [35]. For

this purpose the EEG signals are recorded during imagination

of brisk dorsi-flexions of the feet. Offline simulation of an

asynchronous BCI showed that it is suitable for realizing an

asynchronous brain-switch [45].

Furthermore, BCIs have recently been extended and com-

bined with assistive technologies or other brain and body

signals to develop more reliable and practical systems, which

are called hybrid BCIs [27], [28]. Various types of hybrid BCIs

exist, since such a system might use several input channels

either sequentially by switching between them [15], or together

by fusing various inputs [24], or multiple in parallel to increase

the number of control channels. In [29] the basic requirements

are described, which are: (i) it must provide volitional control,

(ii) it must rely on brain signals, (iii) it must provide feedback,

and (iv) it must work online.

BCI and recently hybrid BCI have been used to con-

trol game-like environments. In the beginning, simple games

like the basket game [14] or Pacman [16], or later flight-

simulators [26], 3-D games [17] or ego-shooters [36] were

used, whereby in all examples the BCI was exclusively

replacing the normal control modality. Lately, multi-modal

interactions (MMI) and hybrid principles were applied for

controlling games in healthy persons in VR [37], [41]. More

information about the mutual benefits between MMI and BCI

is given in [10].

Nevertheless, the influence of secondary tasks (of multi-

tasking) on such BCIs or hybrid BCIs have not been thor-

oughly investigated up to now. Especially if we want to move

BCI control out of laboratory conditions towards real-world

applications, the BCI user will start performing other tasks in

parallel to the BCI control. These secondary tasks require part

of the participant’s attention, which has to be shared, and of

course can involve similar or correlated brain areas. Recently,

Tavella et al. [48] demonstrated that healthy subjects can men-

tally control a non-invasive BCI-controlled neuroprosthesis for

the restoration of grasping while performing a handwriting

task. Tonin et al. [49] showed how users and Carlson et al. [2]

how patients can mentally control a telepresence robot via

the BCI to perform a navigation task in daily environments.

All experiments give a short glimpse of the idea that users can

successfully perform BCI control, which can be superimposed

on a secondary task.

In this work we show a multi-modal approach of using

an asynchronous BCI in parallel with a manual joystick

control signal, while playing a game in VR (see Figure 1).

In particular, we want to demonstrate that we can quickly set

up such a BCI control, can transfer the BCI performance to

the hybrid application, while showing that the secondary task

does not influence our BCI performance.

II. METHODS

In this section the choice of participants and the data

acquisition of the various bio-signals are described. The initial

BCI screening, feature extraction, classifier setup and the

online test in the laboratory environment are explained, which

were all performed on the first day (session 1). On another

day (session 2) the VR game experiment (penguin racer)

was performed, therefore, we describe the adaptation of the

game, the game play itself and the four tested experimental

conditions. The time between the two sessions for each subject

was within 6–16 weeks.

A. Participants and Bio-signal Data Acquisition

Fourteen healthy subjects (12 male and 2 female, age 27± 2

years) participated in this experiment. The subjects were right

handed, had normal or corrected to normal vision and were

paid for attending the experiments. The study was approved

by the local ethics committee and was in line with the

declaration of Helsinki. In both experiments, each volunteer

was comfortably seated in a chair in front of the screen, once

about 1.5m in front of a normal monitor for the training

experiment and once in the center of a DAVE (Definitely

Affordable Virtual Environment, [7]), a cubicle with 3.3m
wide walls, while wearing shutter-glasses (see Figure 1 for

the VR experiment).

An electrode cap (Easycap, Germany) was fitted to the

subject’s head, and the EEG electrodes (Ag/AgCl electrodes)

were placed according to the extended 10/20-system [12]

(see Figure 2). One Laplacian channel was recorded over

the foot representation area (Cz and the four orthogonal

positions 2.5 cm to Cz), by removing the weighted average

of the surrounding four electrodes from Cz [11]. Such a setup

was shown to be suitable for recording brain patterns during

the imagination of brisk foot dorsi-flexion [45], [35]. The

reference was placed at the left mastoid and ground at the

right mastoid. The EEG recordings had a dynamic range of

±100µV. The signals were analog band pass filtered (0.5Hz
to 100Hz) and notch filtered at 50Hz. The impedances of all

channels were below 5 kΩ.
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Furthermore, one electromyogram (EMG) channel was

recorded bipolarly from the leg, whereby the electrodes were

placed over the musculus tibialis anterior of the right leg (see

Figure 2). The EMG was amplified, band-pass filtered between

1 and 1000Hz, base-line-corrected, full-wave rectified, and

integrated with a 100ms time constant by a custom-made

amplifier (TU-Graz, Austria) to extract the envelope before

the digitization. All bio-signals were sampled in parallel with

a sampling frequency of fs = 250Hz.

The recording system consisted of one 16-channel bio-

signal amplifier (g.tec, Guger Technologies OEG, Graz, Aus-

tria) for the EEG, one data acquisition card (DAQ-6024E, E-

Series, National Instruments Corporation, Austin, USA) to dig-

itize all the signals and a standard personal computer running

the Windows XP operating system (Microsoft Corporation,

Redmond, USA). The recording was handled by rtsBCI [40],

based on MATLAB 7.0.4 (MathWorks, Inc., Natick, USA) in

combination with Simulink 6.2, Real-Time Workshop 6.2 and

the open source package BIOSIG [43]. The EEG and bio-

signal recordings were saved into the gdf-format (General Data

Format for biomedical signals, [42]).

Fig. 2. Location of the EEG electrodes, viewing the head from above. The
Laplacian channel over Cz was used for control. Dark red circles mark the
positive and light blue circles mark the negative electrodes for the Laplacian
derivation. The distance between the electrodes was 2.5 cm. The reference
electrode was on the left and the ground on the right mastoid. On the right
side, the location of the EMG electrodes on the right leg placed over the
musculus tibialis anterior is shown.

B. Initial Screening without Feedback

Before the actual VR experiment, an initial screening was

performed on a separate day (session 1) with the following

paradigm: A cue on the screen lasting for 1.25 s instructed

the subjects to imagine a brisk foot movement. Subjects were

expected to imagine a brisk dorsiflexion of both feet, which

should last less than 1 s. A green cross in the middle of

the screen lasting from 2 s before until 1.25 s after the cue,

informed the subjects about the start and end of each trial.

Afterwards, a blank screen was shown for a random duration

between 3.5 s and 9.5 s (see Figure 3 for more timing details).

They were asked to keep their arms, hands and feet relaxed

and to avoid eye movements during the experiment. Three

runs were performed containing 30 trials each, whereby the

duration of one run was approximately 5.5min.

Besides the runs with motor imagery (MI), also one run with

motor execution (ME) of the same brisk dorsiflexion of both

feet was recorded, to compare the brain patterns. The only

difference in the timing was that the random time between the

trials was reduced to a duration between 1.5 s and 3.5 s.

Fig. 3. Timing of a BCI trial with motor imagery (MI) for screening and
self-paced feedback recordings. The cue was displayed at second 0 together
with a beep. The subjects were instructed to perform the brisk foot movement
as fast as possible. Afterwards there was a pause with a fixed duration of 3.5 s
(solid box) plus a variable duration of up to 6 s (dashed box). In case of online
trials, a discrete feedback event was displayed for 2 seconds on the screen,
whenever the classifier detected the pattern (e.g. here at second 3). The time
period in which such a detection was counted as a correct one (TP) was 4
seconds long, marked in green as TP period, otherwise it was counted as
a wrong detection (FP), marked in red as FP period. For runs with motor
execution (ME), the pause time was reduced to a duration between 1.5 s and
3.5 s.

C. ERD/S Maps and Feature Extraction

Time-frequency maps [8] were calculated of the Laplacian

channel for convenient data inspection. The map displays

significant (p < 0.05, t-percentile bootstrap algorithm) band

power changes within a frequency range of 6–40Hz with

a frequency resolution of 1Hz and overlapping frequency

bands of 2Hz. The red color in each map marks a significant

power (amplitude) decrease or event-related desynchronization

(ERD) and the blue color a significant power (amplitude)

increase or event-related synchronization (ERS) of the cor-

responding frequency component [31]. An example for such

an ERD/S map is illustrated in Figure 6.a. We expect to

find a short peri-imagery ERD during the imagination of a

brisk movement [31] and a strong post-imagery ERS (beta-

rebound, [33]) afterwards.

For the selection of the most informative features

the Distinction Sensitive Learning Vector Quantization

(DSLVQ, [38]), an extended version of Kohonen’s Learning

Vector Quantization algorithm was used. Very briefly, in this

approach the DSLVQ uses a number of codebook vectors

(labeled reference vectors) with a weighted distance function

to approximate the optimal Bayesian decision borders between

different classes. During the learning process, the influences of

features that contribute to misclassification are discarded and

most informative features are boosted. Finally, each sample

is identified to the label of its closest codebook vector (for

details see [38]). The major advantage of DSLVQ is that

it neither requires expertise, nor any a priori knowledge or

assumption about the distribution of the data. Furthermore,

not only relevant features, but also feature combinations are

identified.

Logarithmic band power features (logBP) of 17 non-

overlapping frequency components between 6 and 40Hz with

a bandwidth of 2Hz were computed by digitally bandpass

filtering the EEG signal, squaring and averaging the samples

in the analyzed 0.25 s time window. The DSLVQ was trained



4

with these logBP features of the MI class over the whole

trial time (from −2 s to 6 s, in steps of 0.5 s) compared to

the baseline period (−2 to 0 s). In order to obtain reliable

values for the feature relevance [38], the DSLVQ method

was repeated 100 times. In each repetition 50 % of the logBP

features were randomly selected for training and the remaining

50 % were used for testing. The DSLVQ used a type C training

with 10 000 iterations, while the learning rate α decreased

from 0.05 to 0. For the DSLVQ relevance values a learning

rate of α′(t) = α(t)/10) was taken. Finally, the most relevant

features were selected by evaluating the feature relevance

from the DSLVQ analysis, where a high value represents an

important feature.

D. Classifier Setup and Post Processing

For each subject one selected frequency band for the post-

imagery ERS (FBERS) and one band for the peri-imagery

ERD (FBERD) were used to train a linear discriminant analysis

(LDA), whereby adjacent features were combined to one large

feature (e.g. in case of subject S8 bands 26–28 Hz, 28–30 Hz,

30–32 Hz and 32–34 Hz were combined to 26–34 Hz). The

ERD feature for the LDA classifier was delayed by a subject-

specific time tdel ERD extracted from the DSLVQ map, to be

aligned with the ERS feature. Fisher’s LDA [1] uses a linear

hyper-plane to discriminate between the different classes (in

our case, samples from the baseline and the ERS period, which

time interval was taken from the DSLVQ and ERD maps).

The post processing generated a control signal only when

the LDA output of the MI exceeded a selected threshold (Th)

for a selected dwell time (tdwell, between 0.5 s and 1.5 s) [50].

The threshold was defined for each subject as the mean plus

one standard deviation of the classifier output during the time

of the fixation cross and the dwell time was selected as half

of the time over this threshold during the imagery period. The

detected events were transferred into control commands for

the feedback. After every event a refractory period of 4 s was

applied during which event detection was disabled.

E. Cue-based Imagery with Self-paced Feedback

For the online feedback experiments we used the same

timing as in the screening runs. The only difference was that

we continuously analyzed the EEG (asynchronous BCI). If the

classifier detected the movement pattern, a discrete feedback

event was displayed on the screen for 2 seconds, see Figure 3.

We want to point out that the classification and the feedback

could happen at any time, meaning inside a trial period or

outside. Generally the subjects were instructed by the cue to

perform the brisk foot motor imagery. In case the movement

was detected inside the 4 seconds long period, it counted as

a true positive detection (TP). If the detection was outside

this time, either too late or within the pause time, it counted

as false positive (FP). Trials in which no detection occurred

during the feedback time were counted as false negative (FN).

Three runs, each with 30 cues, were recorded on the same day

as the screening (session 1).

The true positive rate (TPR), false positive rate (FPR) and

the positive predictive value (PPV) were calculated according

to [6] as

TPR =
TP

TP + FN
· 100 [%]

FPR =
FP

TN+ FP
· 100 [%]

PPV =
TP

TP + FP
· 100 [%].

The TPR indicates the ratio between correctly detected

commands by the BCI and all commands intended by the

subject, specified via the cues. The FPR indicates the ratio

between the wrongly detected commands by the BCI and the

maximum possible commands delivered outside the intended

period which is computed by dividing the maximum duration

by the dwell time and refractory period. The PPV indicates the

ratio between correctly detected commands and all commands

detected. All values are between 0% and 100%, where a

TPR of 100% implies that all intentions of the participant

were detected successfully, while a PPV of 100% means that

all detected commands were intentionally delivered by the

participant. In contrast, an FPR of 0% indicates that the BCI

did not wrongly detect any intention.

F. Virtual Reality Setup

The DAVE [18] is a four sided CAVE [3], a projection

room with front, left and right rear-projection walls as well as

a floor projection from above. Compared to a normal monitor

or projection, the user has a much wider field of view. The

3D projectors show the images for the left and right eyes

in quick succession and the user wears shutter glasses for

stereoscopic separation. In addition, the head position and

orientation are measured with an optical tracking system,

allowing the estimation of the user’s eye positions and to show

a perspectively correct image. This enables a user e.g. to see

objects from different sides by walking around them within

the DAVE. This parallax effect often remarkably increases

immersion. However, in our experiment the subjects could

hardly profit from the head tracking, as they sat on a chair

and were requested not to move their head too much in order

to avoid motion artifacts in the EEG signals. We used shutter

glasses for stereoscopic separation and optical tracking for

perspectively correct viewing.

Most of the DAVE hardware consists of off-the-shelf com-

ponents, allowing the costs to be kept low and the system to

be kept up to date by replacing the graphics hardware and the

PCs every few years. For maximum performance, each left

and right image of each projector is computed by a dedicated

PC. These eight PCs are controlled by an additional server

that handles user input and synchronizes the application state

to the rendering clients [18], [19].

G. Adaptation of the Game to the Virtual Environment

Creating rich virtual environments with models and textures

requires a lot of skill and time, especially since the participants

are biased with their expectations towards the up-to-date high-

end graphics of computer games. To save work, we chose

to modify the existing open source game PPRacer [47], a
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successor of Tux Racer, where a penguin slides down a snowy

track while collecting fish (see Figures 1 and 4.a). It has

already been modified by us to run in the DAVE and was

presented as an example for intuitive navigation in [46]. We

use the Davelib [19] for necessary changes for the DAVE,

mainly for network synchronization and correct view setup

including head tracking. The same program is started on a

master and every rendering client. The game is controlled only

on the master that sends the few necessary state variables to

the clients, like the new position of the penguin.

For a correct stereoscopic rendering, the skybox of the

game had to be modified. It was originally very small and

painted as background, resulting in an irritating wrong depth

perception in a stereoscopic setup. The 2D overlay headup

displays, initially visible on each screen, were removed. The

game menu structure is skipped to immediately start the game.

The interface to the BCI computer is realized via UDP

messages, where the BCI computer sends commands to the

DAVE master PC. This includes commands to trigger a jump,

to control the speed and to reset the game. To later analyze

the results together with the BCI data, we also added a log file

with time stamps to regularly record the penguin position, BCI

commands and information about whether a fish was collected

or not.

H. The Penguin Racer Experiment

Instead of looking from the point of view of the penguin, the

subject observes the scene from a point higher above ground,

following the penguin. This gives a better overview and allows

for an easier control, as the orientation of the character is

directly visible (see Figure 4.a).

Fig. 4. (a) The subject observes the scene from a point following the penguin.
(b) Intended flight path of penguin. It is necessary to trigger the jump well
in advance, otherwise the penguin will not catch the fish.

For the experiment, the fish were moved up, to a couple

of meters above the ground, so they could only be collected

when the penguin jumped. By delivering a command with

the BCI, the penguin jumped and flew in a vertically curved

path continuing into the direction of the last movement on

the ground (see Figure 4.b). The fish could only be collected

when the penguin hit it. The flight curve and speed of the

penguin were tuned so that it was possible to fulfill the task.

Note that false positives lead to accidental jumps that are

penalized by the game in a natural way: a new jump can only

be started after landing, and turning is not possible during the

jump. Each run lasted approximately 3 min and consisted of 12

fish with an inter-fish distance between 11.1 to 18.6 seconds

(mean ± standard deviation (SD) = 13.7 ± 2.4 s). The number

of collected fish was counted as the true positives (TP), the

number of missed fish as the false negatives (FN) and the

wrongly performed jumps as the false positives (FP). With

wrongly performed jumps we mean the jumps which either

collected no fish (e.g. jumped too early, too late or to one

side) or whenever a jump was triggered without even a fish

around. Furthermore, we define the task performance as the

ratio of the number of successfully collected fish over the total

amount of available fish.

We performed the experiment in two navigation modalities

(Table I): first the participant played the game while pressing

a push-button to trigger the jumps. In the second modality

they used the brisk foot motor imagery detected by the BCI

to trigger the jump. We applied the same dwell time and

refractory period for the push-button condition as in the BCI

one, to be able to compare the results.

Furthermore, two levels of difficulty were created and the

fish were placed appropriately (Table I). In the first level, all

fish are placed in a straight line and can be collected without

steering the penguin. In the second level, steering with the

joystick is necessary in parallel to the jump to be able to collect

all the fish (see Figure 5). We used the original steering of the

game. Note that this steering is not direct but instead, the

maximum direction angle change rate is rather limited. This

constraint was implemented in the original game to make it

more challenging.

Fig. 5. Maps of each level showing the placement of the 12 fish with an
“x”. The penguin slides from left to right. The top level shows the fish placed
in a straight line, where no steering is required (conditions MS and BS). At
the bottom level the subject needs to use an additional joystick in order to
catch the fish (conditions MC and BC). A possible good path is indicated by
the red dots.

I. Experimental Conditions

The final experiment (session 2) consisted of the following

four conditions (see also Table I):

1) Condition MS: A jump of the penguin is triggered by

pressing the manual push-button, but no parallel use of

the joystick control is necessary (because all fish are

aligned in a straight line).

2) Condition BS: A jump of the penguin is triggered with

the BCI, but no parallel use of the joystick control is

necessary (because all fish are aligned in a straight line).

3) Condition MC: A jump of the penguin is triggered

by pressing the manual push-button, and an additional

joystick control is necessary to reach all the fish (because

all fish are aligned in a curved path).
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TABLE I

FOUR EXPERIMENTAL CONDITIONS WERE TESTED: CONSISTING OF TWO

NAVIGATION MODALITIES EITHER WITH OR WITHOUT JOYSTICK CONTROL

BY HAVING THE FISH ALIGNED STRAIGHT OR CURVED, AND TWO

CONTROL MODALITIES FOR TRIGGERING THE JUMPS EITHER VIA MANUAL

PUSH BUTTON OR BCI CONTROL.

navigation modality
straight curved

(no secondary task) (parallel joystick use)

manual manual straight manual curved
jump button MS MC

triggered
BCI

BCI straight BCI curved
BS BC

4) Condition BC: A jump of the penguin is triggered with

the BCI, and an additional joystick control is necessary

to reach all the fish (because all fish are aligned in a

curved path).

In the conditions MC and BC the participants used their right

hand to control the joystick. In the conditions MS and MC the

push-button was pressed with their left hand. In the conditions

BS and BC the brisk foot motor imagery was used. We want to

emphasize that it was possible to steer the penguin and jump

at the same time, meaning that BCI and manual control were

processed in parallel. However, in the conditions MC and BC,

steering had no effect during the flight (penguin in the air),

so that the penguin continued to travel in the direction of the

last movement on ground.

We recorded three runs with manual control (MS and MC)

and six runs with the BCI control (BS and BC). We first

performed the experiment with no parallel control (MS and

BS) and after a ten minute break with the joystick in parallel

(MC and BC). Inside each block we interleaved the BCI and

manual runs in the following order: 1×manual run, 3×BCI,

1×manual, 3×BCI and the final 1×manual run.

On the day of the VR experiment (session 2), we started

to record 1×ME and 1×MI run to compare with the initial

data and to check if the threshold should be adapted (see

section II-D and Table II). Afterwards, we familiarized the

subject with the penguin racer and gave them the possibility

to explore the VR environment and to try the different navi-

gation conditions (push-button, joystick, BCI), before the four

experimental conditions were recorded. The whole experiment

lasted approximately two hours per subject.

J. Post-experimental Questionnaire

After completing the VR experiments in the DAVE, the

participants were asked to fill in a modified SUS (Slater-Usoh-

Steed) presence questionnaire [44] containing 30 items, and

were encouraged to give additional comments. The purpose of

these 30 items was to get a subjective rating of several topics

concerning presence (e. g.: overall sense of presence, sense

of being there in the landscape; sometimes the landscape was

reality for me. . . ), environmental conditions (e. g.: I was aware

of background sounds from the laboratory. . . ), familiarity with

PC and games (e. g.: usage of a PC in daily life. . . ), preference

for the conditions (BCI and push-button; straight or curved

game; mental demand), questions concerning subject’s success

and suggestions for improvements. For 23 items they had to

rate their subjective feelings on a 6-point scale. Seven items

were designed as open questions.

III. RESULTS

In this section, first the subject-specific feature selection

and the results of the cue-based training are presented. Next,

the outcomes of the penguin racer experiment are described,

before the statistical analysis is performed. Then, some offline

simulations and optimizations are carried out to compare the

results. At the end, the EMG data and the questionnaires are

analyzed.

A. Feature extraction and classifier setup

The subject-specific frequency bands for the post-imagery

ERS and peri-imagery ERD features are given for all subjects

in Table II, together with the delay for the ERD band and the

classifier threshold and dwell time. Not all subjects showed

the ideal brain patterns, so we were not always able to find

corresponding frequency bands. In subjects S3 and S6 we did

not find any beta-rebound (ERS), just an imagery ERD, which

was valid in case for the ME data. Subject S11 showed only

an ERS in the execution run, but nothing in the MI ones.

Finally, the recordings from subject S12 had a very bad signal

quality and we could not find any discriminative brain patterns.

These subjects were not selected to perform any online runs

(session 2).

Figure 6.a shows the ERD/S map of one representative

subject. Subject S8 is chosen because the performance and

delay for the ERD feature are close to the mean of all

subjects. The bands selected by the DSLVQ algorithm are

marked (14–24Hz for the ERS and 26–34Hz for the ERD, see

Table II). On the top right the evolutions of the ERD and ERS

features over time are displayed (Figure 6.b). As mentioned

in section II-D, the ERD band values were subject-specifically

delayed (for this subject by 1.7 s; see all values in Table II)

to be aligned with the ERS feature. The resulting output of

the LDA classifier with dwell time and threshold is given in

Figure 6.c.

Fig. 6. (a) ERD/S map for subject S8. The bands selected by the DSLVQ
algorithm are 14-24 Hz for the ERS and 26-34 Hz for the ERD. The cue is at
second 0. (b) The evolution of the two selected features over time, the ERD
band values are delayed by tdel ERD = 1.7 s to be aligned with the ERS ones.
(c) The output of the remaining LDA classifier with dwell time (tdwell) and
threshold (Th) results in a detection (TP) at second 2.7.
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TABLE II

SELECTED FREQUENCY (FB) BANDS FOR ERS AND ERD BY THE

DSLVQ. THE ERD FEATURE WAS DELAYED BY TDEL ERD FOR THE LDA

CLASSIFIER. DWELL TIME (TDWELL ) AND DECISION THRESHOLD (TH) FOR

ASYNCHRONOUS DETECTION. A “—” SIGN MEANS THAT NO FEATURE OR

THRESHOLD COULD BE IDENTIFIED. IF THE DECISION THRESHOLD WAS

ADAPTED AT THE BEGINNING OF SESSION 2 (PENGUIN GAME) THE NEW

VALUE IS GIVEN IN THE LAST COLUMN (THP ). SUBJECT S12 HAD A VERY

BAD SIGNAL QUALITY.

ID FBERS FBERD tdel ERD tdwell Th ThP

[Hz] [Hz] [s] [s]

S1 20-26 08-10 1.5 1.0 0.5 0.1
S2 25-32 28-35 2.3 0.8 0.4
S3 — 20-24 1.0 1.0 0.7
S4 20-26 24-28 2.0 0.8 0.7 1.0
S5 24-32 28-30 1.7 0.5 0.7 0.3
S6 — 18-26 2.2 — —
S7 32-34 16-20 1.8 0.8 0.4
S8 14-24 26-34 1.7 1.0 1.5
S9 22-26 26-30 2.0 0.8 0.5 0.1
S10 27-30 17-19 1.0 0.7 0.2
S11 20-30 — — — —
S12 — — — — —
S13 28-32 12-14 1.3 1.3 -0.2
S14 34-38 18-26 2.2 1.0 0.5

TABLE III

TPR, FPR AND PPV OF THE CUE-BASED IMAGERY RUNS WITH

SELF-PACED FEEDBACK (SESSION 1).

ID TPR [%] FPR [%] PPV [%]

S1 50.0 4.1 87.5
S2 71.3 4.1 90.5
S3 — — —
S4 78.8 19.3 70.8
S5 52.5 11.0 73.7
S6 — — —
S7 51.3 16.8 63.1
S8 43.8 7.7 77.8
S9 42.5 24.8 50.0
S10 30.0 20.3 47.1
S11 — — —
S12 — — —
S13 30.0 6.9 75.0
S14 23.8 25.6 35.8

B. Cue-based Imagery with Self-paced Feedback

The TPR, FPR and PPV values of the online run of session 1

are given in Table III. Five subjects achieved TPR values above

50% with FPR below 20%, two even with FPR below 4% or

TPR above 70%. Two subjects had a PPV of close or equal

to 90%, six had PPV values above 70% and two subjects

were better than 50%. The mean values were 47.4 ± 17.6%,

14.0 ± 8.3% and 67.1 ± 17.9% for TPR, FPR and PPV,

respectively. All subjects with a TPR above 40% and PPV

above 50% (see Table III) were allowed to participate in the

follow-up VR experiment. Unfortunately, subject S8 did not

have time to participate any longer, therefore, only subjects

S1, S2, S4, S5, S7 and S9 continued with session 2.

C. Task Performance of the Penguin Racer Experiment

The task performance in the penguin game in session 2

can be calculated as the ratio of successfully collected fish

to the possible maximum, which is given in Figure 7. The

performance in the manual push-button conditions (mean of

97.22% (MS) and 93.52% (MC)) are much better than in the

BCI conditions (mean of 44.68% (BS) and 47.69% (BC)),

statistically significant (p < 0.005, Kruskal-Wallis test) within

each navigation condition. The result that manual control is

better than BCI control is obvious and was expected from the

beginning.

More interesting are the results within the same navigation

condition (push-button or BCI), showing that the usage of the

joystick did not interfere with the jump control. Results of the

Kruskal-Wallis tests were not significant (p > 0.5 for both).

Nevertheless, it is worth remarking that in the BCI conditions,

a better performance could be achieved with (BC) compared to

without joystick (BS). Although, each subject had a different

performance level (varying between 33.3 % and 62.5 %, mean

44.7 %), each subject performed better or equal in condition

BC (improvement between 0 % and 8.3 %, mean 3.0 %). These

results are contradictory to the normally expected behavior,

which would be 100% performance for push-button alone

(MS), close to 100% in case of push-button with joystick in

parallel (MC), because a slight distraction is assumed triggered

by the more complex task. Moreover, we would have expected

a strongly reduced performance in case of the BCI condition

(BS), depending on the individual BCI performance and an

even more decreased performance in case of BCI and joystick

(BC), since the motor imagery to trigger the jump and the

motor execution to control the joystick are conflicting with

each other. However, this was not the case.

Taking a closer look at the task performance during BCI

control, a slight improvement of the performance over the

runs is visible, which is assumed to be a learning effect (see

Figure 8). In both conditions the subjects adapted to the game

requirements and (i) learned the timing when to deliver a

Fig. 7. Task performance of session 2 in percent: ratio of collected fish over
the possible maximum. The bars correspond to the mean values (± standard
deviation) of the four conditions (push-button (MS) / push-button and joystick
(MC) / BCI (BS) / BCI and joystick (BC)). From left to right the conditions
become more and more challenging.



8

TABLE IV

TPR, FPR AND PPV OF THE PENGUIN EXPERIMENT FOR THE FOUR

CONDITIONS SEPARATELY AND MERGED FOR MANUAL AND BCI CONTROL

(SESSION 2).

condition TPR [%] FPR [%] PPV [%]

MS 97.2 1.0 97.2
MC 93.5 2.4 93.3
BS 44.7 18.7 50.9
BC 47.7 19.1 50.9

Manual 95.4 1.8 95.3
BCI 46.2 18.9 50.9

correct BCI jump command and (ii) to align the penguin with

joystick correctly in front of the fish before triggering the jump

so that the flight curve reached the fish. But no difference

in the dynamics between the two conditions could be found,

although all runs of condition BC were performed after BS.

Between the runs of conditions MS and MC no difference

and therefore learning could be found, because the participants

already performed perfectly, after the familiarization before the

experiment.

The mean values for TPR, FPR and PPV for each of the four

conditions are given in Table IV. Interestingly, the TPR and

FPR values from the merged BCI condition and from BS and

BC individually are in a similar range and only slightly worse

than (no statistical significant difference, p > 0.05, Kruskal-

Wallis test) during the cue-based online session with self-paced

feedback condition (session 1; compare to Table III; remember

the mean TPR for the subset of 6 participants was 57.7 % and

FPR was 13.4 %, and for all subjects TPR was 47.4 % and

FPR was 14.0 %).

D. Influence of Joystick Control on the Given Task

In this work we are particularly interested in how the

secondary task of controlling the position of the penguin via

the joystick influences the main control condition. Hence, we

subtracted the two behaviors from each other (with − without

joystick). The absolute difference for task performance, cor-

Fig. 8. Task performance (mean ± standard deviation) of condition BS in
blue and BC in green separately for each of the 6 runs. A slight learning
curve is visible in both conditions.

rect, wrong and missed jumps is given in Figure 9. The

surprisingly positive task performance value in the BCI condi-

tion imply that the participants performed more correct jumps

and missed fewer fish while performing the secondary task!

This was not the case for the manual push-button condition,

were two subjects improved (between +2.7 % and +5.5 %) but

four subjects performed worse (between -2.7 %, -5.5 % and -

19.4 %) with the secondary task. Especially subject S2 had a

drop of nearly 20 %, more or less constantly spread over all

runs.

In both conditions (push-button and BCI) generally more

incorrect jumps were performed while using the joystick

control compared to without the joystick. But this result was

expected since the subjects had to share the task between

steering the penguin and triggering the jump at the correct time

(either by BCI or push-button). Furthermore, we can remark,

that a few jumps were triggered at the correct time (not too

early or too late), but the penguin jumped physically beside the

fish. One popular reason was that the penguin was not aligned

perfectly (moving straight towards the fish) before the jump

was triggered, because during the jump (penguin in the air)

no correction of the jump direction was possible. Moreover,

some subjects aligned the penguin correctly but sometimes

missed the exact time to trigger the jump, so that the penguin

was already in the air, but still too low to collect the fish, or

already too low while coming down.

Fig. 9. The influence of the secondary task is plotted as the difference
of absolute numbers between conditions without and with joystick control
(mean ± standard deviation). The dark blue bars are from the manual push-
button conditions and the light red ones from the BCI control conditions. Each
pair of bars corresponds to the averaged run differences of task performance,
collected fish (TP), the wrongly performed jumps (FP) and the missed fish
(FN), respectively.

The number of wrongly performed jumps (either too early

or too late to collect a fish, or in the periods in-between)

in relation to the maximum amount of fish is also different

between the control modalities. The number of wrong jumps

in case of the push-button conditions were very small (2.8%
without (MS) and 6.9% with joystick (MC)) compared to

48.4% with BCI (BS) and 52.1% with BCI and joystick (BC),

The number of wrongly performed jumps increased slightly
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in both conditions with joystick, but Kruskal-Wallis tests per

modality showed no statistical influence of the secondary task.

E. Offline simulations and decision parameter optimizations

Comparing the performances of session 1 (cue-based im-

agery with self-paced feedback) and session 2 (penguin racer

experiment) is very complicated since different timings and

strategies (cue-based, self-paced) were applied. In the case of

the former, the timing is dominated by the cue instructing the

subjects to perform the MI, whereby in the latter the subjects

have to decide by their own when to start the MI to trigger

the jump. Nevertheless, both conditions apply an asynchronous

BCI, meaning that every performed MI was asynchronously

detected. Furthermore, the time between the cues is different

between the sessions; in session 1 11.21± 1.8 s (maximum of

14 s) were between the cues and in session 2 13.7± 2.4 s (max-

imum of 18.6 s) between the fish (which are the corresponding

cues). Therefore, many more FPs can occur in session 2.

One way to compare the performances is to simulate the

timing of one experiment and apply it to the data of the

other one. We therefore extracted the subject induced timing

variations of the two BCI conditions of session 2 (penguin ex-

periment) and applied it to the timing of session 1, while using

the original data (EEG, classifier and thresholds) of session 1.

The resulting TPR, FPR and PPV values are 57.5 %, 14.7 %

and 70.9 %, respectively, which are very close to 57.7 %,

13.3 % and 72.6 % achieved in session 1 (from Table III).

Furthermore, the reverse condition was tested, by taking the

timing of session 1 and applying it to session 2, while using

the original data of session 2. The resulting TPR, FPR and

PPV values are 43.1 %, 19.9 % and 45.9 %, respectively, which

are slightly worse than 46.2 %, 18.9 % and 50.9 % achieved

in the BCI control condition of the penguin game (from

Table IV). The Kruskal-Wallis tests showed no statistical

difference between the different conditions and simulations,

meaning that the visual complexity and the more demanding

task had negligible impact on the user’s BCI performance.

Furthermore, it is very difficult to make a fair comparison

between our online results with published offline studies. The

challenge of every online experiment is that the decision

parameters are never optimal compared to offline experiments,

since they were optimized on data from earlier sessions. In

particular, if the recordings are performed on different days,

these parameters may not be optimal any longer. Therefore,

an offline simulation of the BCI controlled penguin game

is performed to find the optimal dwell time and decision

threshold, but keeping the classifier (features, ERD feature

delay, LDA weights) constant. If the same FPR ratio as in

session 1 should be achieved, the mean TPR rate increases

from 44.7 % to 60.4 % in condition BS and from 47.7 % to

64.8 % in condition BC, which is an improvement up to 44 %

in BS and up to 132 % in BC for single subjects.

F. EMG Analysis

The EMG has been used in an offline simulation to identify

which jumps could have been triggered by muscular activity.

A subject specific threshold was defined as the mean plus

one standard deviation of the whole EMG during the ME

run (which consisted of 17 % samples with activity and 83 %

without). For each subject this threshold achieved 100 %

detection of the correct periods with 0 % of wrong detections

in the ME run, and 0 % detections over the complete MI run.

Generally, in all conditions, no single jump could have

been influenced or triggered by EMG activity during the foot

imagery. Only 1 jump in condition BC in one subject (S7) was

aligned with the BCI, which is less than 1.3 % of the jumps.

But the same EMG activity would have triggered additional

jumps in each subject and nearly each condition (which is not

observable in online recordings)! In total, over all subjects, 12

additional jumps would be created in condition BC, 6 in BS, 13

in MC and 6 in MS, with a maximum of 7 additional jumps per

subject and condition. More EMG activity was visible during

the joystick navigation modality, which could come from the

fact that steering the penguin was accompanied by moving

the participant’s body since the subject felt immersed in the

virtual scene and therefore create more foot EMG activity.

Therefore, since no EEG-triggered jump correlated with the

EMG activity, but additional jumps would be created by the

EMG, we can exclude the possibility that participants used

motor execution instead of the brisk foot motor imagery to

trigger the jump of the penguin.

G. Questionnaire and Verbal Comments

The subjects were very positive about the game character

and pleasing 3D scene, especially with the experience of

training sessions and other experiments in mind. They rated

the game on the 6-point scale (1= not at all to 6= very much) as

more fun, enjoyable and engaging compared to the normal BCI

feedback in session 1 (x = 5.33). Four subjects preferred the

BCI control condition and only 1 subject the manual button,

although the BCI condition was more demanding for them

(x = 4.67). All enjoyed the curved conditions more than the

straight ones (x = 5.50), and did not find them more stressful

(x = 3.83).

When we asked about the sensation of “presence” via the

SUS questionnaire two participants marked their sense of

being in the virtual landscape with a five and four people

with a four. Six persons even stated that they forgot almost

all the time about the laboratory when they experienced the

landscape and felt more like they were in the landscape

than in the laboratory (x = 4.33). Questions concerning the

environmental conditions showed that they were rather not

aware of background sounds from the laboratory (x = 2.33)

but a bit more aware of the experimenter (x = 2.67). On

average they were not irritated by the goggles (x = 2.17). We

asked to which extent the fact that they were sitting instead of

standing while they were sliding through the landscape was

irritating for the participants. Four of them rated this with “not

at all” (1), one rated it with a (2) and only one person marked

the (6) on the scale.

IV. DISCUSSION

This work supports our claims that: (i) a good asynchronous

BCI control of a VR game is possible with very short
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BCI training. (ii) A VE is a very good training and testing

environment for BCI applications. (iii) The use of a discrete

event is an appropriate control signal for such a game-like

environment. (iv) No performance difference between online

training sessions and sessions with the penguin could be

experienced; meaning that the visual complexity and the more

demanding task had no impact on the user’s BCI performance.

(v) Finally, and most importantly, the use of a secondary

motor task (multi-tasking with the joystick) did not deteriorate

the BCI performance at all. These findings conclude that our

chosen approach is a suitable multi-modal or hybrid BCI

implementation, in which the user can even do other tasks

in parallel.

Different to other BCI-VR setups our current approach

needed only a very short BCI training time and no classifier

adaptation was necessary while changing the visual scenes.

Despite watching movements in VE, motor imagery and its

classification in the ongoing EEG was still possible without

performance degradation. The integration of the BCI con-

trolled action into the game was more intuitive than in our

previous works, since we used the imagination of a foot

movement to jump. The triggering of the discrete action to

make the fish jump allowed us in this approach to overcome

the limitations of our previous works, where we always used

a continuous control signal [21], [23], [25]. The continuous

control approach led to frustration of the participants because

of the high FN values in combination with high FP numbers,

which did not occur with the paradigm in this experiment.

On the contrary, the participants even reported that they liked

the interaction, enjoyed the experience, found it more engag-

ing, favored the curved conditions with the secondary task

and preferred the BCI control method over the push-button

condition in such game-like environments, independently of

the level of performance. Generally in many experiments the

subject is never or hardly ever rewarded for performing well

with the BCI task. Our experiment, however, profits from the

game as an attractive task, where the subject is motivated to

get a higher score with a better BCI performance.

Especially the combination of peri-imagery ERD and post-

imagery ERS features resulted in a good and stable online con-

trol signal for discrete events (the so called brain-switch [35])

in 50 % of the participants. The offline analysis of the EMG

signal proved that only brain patterns were used for control.

A combination of ERD and ERS based on support vector ma-

chines was already successfully demonstrated in simulations

with offline data [45], where better TPR performances could be

achieved compared to our online results in session 1, but equal

to our offline results with optimized parameters. During the

penguin runs, the TPR dropped slightly because a more critical

jump timing was necessary, although the subjects did not rate

it as more stressful. Not only did the penguin have to jump just

before passing the fish, it also had to be at the correct height

at the time to collect it. Therefore, the participants had to have

the model of the game in mind, triggering the action ahead of

time. Indeed, during the experiment such cases occurred where

the penguin did jump but was still too low, which counted

therefore as a “wrong” jump. Such BCI events would have

been counted as correct detections in previous experimental

designs. Our slightly worse FPR performance can be explained

by our enlarged inter-trial pause times, leading to a period for

FP detection of 10 s in our case instead of 6.5 s in the previous

work [45].

We tried to start the experiments with simple tasks, grad-

ually getting more and more demanding for the participants,

especially since the penguin game required a more precise

timing and is more challenging than the simple screen feed-

back. A slight learning effect is visible over the different runs

with the penguin game within each condition. Nevertheless,

the subjects achieved the same performances in both steering

conditions. Furthermore, the introduction of the secondary

joystick task required a split attention between the jumping

and the steering (multi-tasking). In general, more fish were

missed in these conditions, as the alignment of the penguin to

jump in the proper direction is not always easy. Interestingly,

and not expected, is the result that the six subjects performed

slightly better (but not significantly) with the secondary task

in the BCI condition compared to without the joystick. This

was not the case for the manual push-button condition.

Summing up, we demonstrate that a hybrid BCI can be used

to control a multi-modal and multi-tasking interaction without

loss of BCI performance.
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