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Abstract

A commonway to form scores frommultiple-item scales is to sum responses of all items. Though sum scoring is often contrasted

with factor analysis as a competing method, we review how factor analysis and sum scoring both fall under the larger umbrella of

latent variable models, with sum scoring being a constrained version of a factor analysis. Despite similarities, reporting of

psychometric properties for sum scored or factor analyzed scales are quite different. Further, if researchers use factor analysis

to validate a scale but subsequently sum score the scale, this employs a model that differs from validation model. By framing sum

scoring within a latent variable framework, our goal is to raise awareness that (a) sum scoring requires rather strict constraints, (b)

imposing these constraints requires the same type of justification as any other latent variable model, and (c) sum scoring

corresponds to a statistical model and is not a model-free arithmetic calculation. We discuss how unjustified sum scoring can

have adverse effects on validity, reliability, and qualitative classification from sum score cut-offs. We also discuss considerations

for how to use scale scores in subsequent analyses and how these choices can alter conclusions. The general goal is to encourage

researchers to more critically evaluate how they obtain, justify, and use multiple-item scale scores.

Keywords Psychometrics . Scales . Factor analysis . Scale scores

Thinking twice about sum scores

In psychological research, variables of interest frequently

are not directly measurable (e.g., Jöreskog & Sörbom,

1979). With constructs like motivation, mathematics abili-

ty, or anxiety, direct measures abate and the construct is

instead captured via a set of items from which a single

score (or small number of sub-scores) is calculated.

Because these scales are not direct measures of the attri-

bute (i.e., researchers cannot hold up a ruler to evaluate

one’s motivation), there is some ambiguity over how to

create scores from these items. Such choices are not trivial,

and the flexibility possessed by the researcher can lead to

scores that look quite different, even if scores materialize

from the same data (e.g., Steegen, Tuerlinckx, Gelman, &

Vanpaemel, 2016). Variables like scale scores often serve

as the foundational unit of statistical analyses and analyses

are only as trustworthy as the variables they contain. For

this reason, decisions about scoring have been considered

an underemphasized source of replicability issues (Flake &

Fried, 2019; Fried & Flake, 2018).

Several studies have reviewed the literature to inspect how

researchers report the psychometric properties of the scales

used in their studies and the rigor that accompanies scales

tends to be scant (Barry et al., 2014; Crutzen & Peters,

2017; Flake, Pek, & Hehman, 2017). For instance, Crutzen

and Peters (2017) report that while nearly all health psychol-

ogy studies in their review report some measure of reliability

to accompany scale scores, less than 3% of studies reported

information about the validity of their scale – whether the

scale is measuring what it was intended to measure – even

though evidence for the internal structure of the scale is often

recommended as a key component for best practices in scale

development (e.g., Gerbing & Anderson, 1988). Assessment

of internal structure is commonly done with latent variable

models like factor analysis, which explore whether treating

items as aspects of the same construct is supported empirically

(Furr, 2011; Ziegler & Hagemann, 2015). However, as noted

by Bauer and Curran (2015), it is much more common in

psychology to score scales by sum scoring whereby the re-

searchers simply adds (or averages) responses from multiple-

item scales to create scores for variables that are not directly

measurable rather than by performing a latent variable

analysis. Flake et al. (2017) quantify this claim by
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repor t ing that 21% of reviewed studies used an

established measure presented evidence of internal struc-

ture (37 out of 177 studies). Furthermore, just 2% of

author-developed scales reported evidence of internal

structure (three out of 124). Combined, only 13% of

studies provided evidence of validity based on the in-

ternal structure (40 out of 301 studies); an important

source of evidence for multi-item scales (Standards for

Educational and Psychological Assessment, 2014).

As we will cover in this paper, sum scoring should not be

considered an alternative to latent variable models but rather

that sum scoring can be represented as a latent variable

model, albeit a highly constrained version. We argue that

sum scoring and latent variable models should be reported

identically with similar evidence thresholds. We contend that

justification for sum scoring and reporting of supporting evi-

dence is often lacking because the sum scoring approach ap-

pears arithmetic and model-free when, in fact, it falls under the

umbrella of latent variable models. Our ultimate goal is to

convince researchers that scoring scales – by any method –

is a statistical procedure that requires evidence and justifica-

tion. Because variables serve as the foundational unit of sta-

tistical analyses, it is imperative that both consumers and pro-

ducers of research are able to trust that variables created from

multiple-item scales represent their intended constructs prior

to performing any statistical analyses and drawing conclu-

sions with those variables.

Outline and structure

To justify these claims, we will present evidence in seven

sections. In the first section, we start by showing how sum

scoring can be represented as a latent variable model. In the

second section, we then show how the latent variable model

corresponding to sum scoring is a constrained form of more

general psychometric models. In the third section, we discuss

how applying constraints to psychometric models when inap-

propriate can affect the reliability of scores, classification into

qualitative groups from scores, and can alter the internal struc-

ture and dimensionality of the scale. Similarly, we demon-

strate how validation studies from more general models can-

not be used to support use of the constrained model that rep-

resents sum scoring. We emphasize this last point to engage

readers who believe that using a previously validated scale

alleviates the need to use a latent variable model. After

discussing these differences, the fourth section discuss con-

texts when constraints are justified and when they may be

detrimental. The fifth section discusses considerations when

using scale scores in subsequent analyses including factor

indeterminacy, scoring methods, and simultaneous versus

multistage approaches. The sixth section includes an illustra-

tive example to show that different scoring choices can lead to

different conclusions, even when the correlation between sum

scores and factor scores is near 1. We end the manuscript with

a discussion of more nuanced practical issues that complicate

scale scoring.

These tenets may be known within the statistics and psy-

chometric communities, but examination of empirical studies

within any subfield of psychology will reveal widespread use

of sum scoring without requisite justification. This would

seem to indicate that either (a) this information has not trans-

ferred from the statistical and psychometric literature to em-

pirical researchers or (b) that this information is not driving

how analyses are conducted in empirical studies. Therefore,

the broader goal of this paper is to follow suggestions from

Sharpe (2013), which calls for an increase in papers that

bridge knowledge from the statistical and psychometric com-

munity to researchers who apply these methods to their em-

pirical data investigating psychological phenomenon. As a

result, this paper does not contain any methodological inno-

vations, but rather attempts to provide information that is use-

ful to empirical researchers while refraining from presenting

technical detail that may have previously been a barrier to

wider dissemination. As such, this paper is intended to serve

as a starting point for readers to realize the potential concerns

of unjustified sum scoring and to encourage researchers to be

more transparent when describing how scores from multiple-

item scales are created and used in empirical studies.

Putting sum scores into context

Whether sum scores are sufficient depends on context and

upon the stakes involved. If a clinician is using a scale like

the Beck’s Depression Inventory during an initial client inter-

view, then a sum score of item responses could be adequate as

a rough approximation of depression severity to aide in shap-

ing the rest of the session and to outline a therapy program. On

the other hand, researchers using the same scale to investigate

an intricate ontology of depression would unlikely be satisfied

with such an approximation and would want scores to be as

precise as possible.

This aligns with the notion of intuitive test theory from

Braun and Mislevy (2005). Their idea extends from diSessa

(1983), who discusses the concept of phenomenological

primitives using physics as an example. Most people have

a general idea about how physics work in everyday life (e.g.,

objects fall when dropped, springy objects bounce).

However, advanced physics applications in fields like engi-

neering require rigor and precision. So, phenomenological

primitives may be sufficient for effectively building a bird-

house, but more rigorous understanding is needed to effec-

tively build a bridge.

Braun and Mislevy (2005) apply the same principle to psy-

chometrics – rough approximations from tests (e.g., sum
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scores, face validity) can be useful for broad purposes, but

advanced applications of psychometrics require more preci-

sion. They describe how psychometric phenomenological

primitives (like sum scoring, p. 494) are stopping points for

non-experts but that rigorous applications of psychometrics

must delve deeper to develop a full set of evidence necessary

for serious inquiries. So, phenomenological primitives like

sum scoring might be useful to determine who passed a class-

room quiz based on the previous night’s assigned reading but

advanced approaches are required to measure intricate psy-

chological constructs like depression or motivation for re-

search purposes.

In the following sections, we build an argument for why

sum scores are often too imprecise for use in rigorous research

applications and explore sum scores in the context of broader

psychometric models that can be used to evaluate the tenabil-

ity of sum scoring.

Sum scoring as a parallel factor model

Structural equation modeling is considered a unifying statisti-

cal framework and an umbrella term under which other statis-

tical methods fall (Bollen, 1989). For instance, classical

methods like t tests, ANOVA, or regression can all be repre-

sented as a structural equation model (e.g., Bagozzi & Yi,

1989; Graham, 2008). Similarly, structural equation modeling

can serve as a unifying framework for methods used to score

multiple-item scales, subsuming both sum scoring and factor

models. This section shows how sum scoring can be repre-

sented within a structural equation modeling framework.

Consider six items from a cognitive ability assessment

from the classic Holzinger and Swineford (1939) data (N =

301), which are publicly available from the lavaan R package

(Rosseel, 2012) [all data, results, and analysis code are avail-

able on the Open Science Framework, https://osf.io/cahtb/].

The item scores range from 0 to 10; some of the original

items contain decimals, but we have rounded all items to the

nearest integer to limit sum scores to integer values. Table 1

shows a brief description of each of these items along with

basic descriptive statistics.

To sum score these six items, the scores of each itemwould

simply be added together,

SumScore ¼ Item1þ Item2þ Item 3þ Item 4þ Item 5

þ Item 6 ð1Þ

Sum scores unit-weight each item (Wainer & Thissen,

1976), meaning that we could equivalently write Eq. (1) with

a “1” coefficient (or any other arbitrary value so long as it is

constant) in front of each item,

SumScore ¼ 1� Item1þ 1� Item2þ 1� Item 3þ 1

� Item 4þ 1� Item 5þ 1� Item 6 ð2Þ

Unit-weighting implies that each item contributes an equal

amount of information to the construct being measured.

Similarly, creating a mean score by summing items and divid-

ing by the number of items would be classified as unit-

weighting since all items are given equal weight (i.e., mean

scoring is a linear transformation of sum scores, so whenever

we mention “sum scores”, “mean score” could be substituted

without loss of generality).

Unit-weighting can be specified by a factor model in the

latent variable framework by constraining all standardized load-

ings to the same value. In psychometric terms, this is referred to

as a parallel model such that the unstandardized loadings and

error variances are assumed identical across items (Graham,

2006). In the factor model context, the true score of the con-

struct under investigation is modeled as a latent variable, which

explains each of the observed item scores.1 This maps onto the

classical test theory definition such that an observed score is

equal to the true score plus error, often stylized succinctly as

X = T +E. Essentially, the factor model is a multivariate regres-

sion where the observed item scores are the outcomes and the

latent true score is the predictor.

The path diagram for a parallel model is shown in Fig. 1:

the latent true score is represented by a circle at the top of the

diagram, the observed item scores are represented by squares,

Table 1. Item descriptions and item descriptive statistics

Item Description Mean Std. Dev Min Max

1 Paragraph comprehension 3.09 1.17 0 6

2 Sentence completion 4.46 1.33 1 7

3 Word definitions 2.20 1.13 0 6

4 Speeded addition 4.20 1.15 1 7

5 Speeded dot counting 5.56 1.03 3 10

6 Discrimination between

curved and straight letters

5.37 1.08 3 9

1
There is a deep literature on the differences between reflective latent vari-

ables and formative latent variables (e.g., Bollen, 2002; Bollen & Lennox,

1991; Borsboom, Mellenbergh, & van Heerden, 2003; Edwards & Bagozzi,

2000). The sum score formulation in Eq. (1) might be more closely viewed as

formative latent variable where the observed item scores are the predictors and

the latent variable is the outcome, rather than the reflective model shown in

Fig. 1 where the observed items scores are the outcome and the latent variable

is the predictor. We concede these nuances but note that the two different

specifications often lead to the same results, practically (e.g., Goldberg and

Digman, 1994; Fava & Velicer, 1992; Reise, Waller, & Comrey, 2000).

Furthermore, Widaman (2018) notes that principal components analysis (a

popular formative latent variable technique) is a data reduction technique,

not a model, and should not be applied when there is thought to be an theo-

retical construct underlying the items, which is often the intention when sum

scores are calculated.

2289Behav Res (2020) 52:2287–2305

https://doi.org/https://osf.io/cahtb/


the latent errors are represented by circles at the bottom of the

diagram, variances are represented by double-head arrows,

and loadings are represented by single-headed arrows. The

1.0s on the factor loadings indicate that the loadings are

constrained to be equal and the θ value on each of the error

variance indicate that these values are all constrained to be

equal. The loadings need not be constrained to 1.0 necessarily,

but they all need to be constrained to the same value. Not

shown are the estimated item intercepts for each item; estimat-

ing the intercept for each item results in a saturated mean

structure so that the item means are just equal to the descrip-

tive means of each item (assuming no missing data). The

mean of the latent true score is constrained to 0 as a result.

We fit this parallel model from Fig. 1 to these six cogni-

tive ability items in Mplus Version 8.2 with maximum like-

lihood estimation and saved the estimated parallel model

scores for each person (lavaan code is also provided for all

analyses on the OSF page for this paper).2 We then com-

pared the parallel model scores to scores based on an un-

weighted sum of the item scores. The scatterplot with a fitted

regression line for this comparison is shown in Fig. 2.

Notably, the R2 for the regression of the parallel model

scores on the sum scores is exactly 1.00 (meaning that the

correlation between the two is also 1.00). Depending on how

the model is parameterized, the scores from the parallel mod-

el with not be exactly equal to the sum scores; however,

there will necessarily be a perfect linear transformation from

parallel model scores to sum scores under any parameteriza-

tion of the parallel model. The Appendix shows the con-

straints necessary to yield scores from a latent variable model

that are identical to the sum scores. Given the complexity

required to achieve equivalence of the scale for sum scores

and factor scores, we proceed with the simpler approach that

yields a perfect linear transformation but not the exact sum

score, which remains sufficient for our arguments.

An alternative to the parallel model:
The congeneric model

Whereas sum scoring can be expressed (through a linear

transformation) as a parallel model, optimal weighting of

items with a congeneric model is a more general approach.

The basic idea of a congeneric model is that every item is

differentially related to the construct of interest and every

item has a unique error variance (Graham, 2006). So, if

Item 1 is more closely related to the construct being mea-

sured that Item 4, Item 1 receives a higher loading than

Item 4. Conceptually, this would be like having different

coefficients in front of each item in Eq. (2) so that each

item is allowed to correspond more strongly or more weak-

ly to the construct of interest. In the factor model, this

would mean that the each loading could be estimated as a

different value (i.e., the weights need not be known a

Fig. 1 Path diagram of a parallel factor model that unit weights items.

The error variance is estimated but constrained to be equal for all items.

Each of the loadings are constrained to 1 for all items. The latent variable

variance is estimated. Intercepts for each item are included but are not

shown. The latent variable intercept is constrained to 0

2
Factor scores inMplus are calculated with the maximum a posteriori method,

for which the regression method is a special case when all the items are treated

as continuous. These factor scores are not interchangeable with the true score

values, but rather are predictions for the true score values. We cover factor

indeterminacy and different approaches to factor scoring in the discussion,

where we unpack these nuances in more detail.
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priori) and that each error variance would be uniquely es-

timated as well (i.e., the latent variable accounts for a dif-

ferent amount of variance in each item).

Figure 3 shows the path diagram of a congeneric model

for the same data used in Fig. 1. The major difference is

that the loadings from the latent true score to each ob-

served item score are now uniquely estimated for each

item, as are the error variances for each item (noted by

the subscripts on the parameter labels represented by

Greek letters). In order to uniquely estimate the loadings

for each item, the variance of the latent true score is

constrained to a specific value (1.0 is a popular value to

give this latent variable a standardized metric).

We fit the congeneric model from Fig. 3 to the six

cognitive ability items in Mplus version 8.2 with max-

imum likelihood estimation and saved the estimated

congeneric model scores for each person. The standard-

ized loadings, unstandardized loadings, and error vari-

ances from this model are shown in Table 2. Of note

is that the standardized loadings are quite different

across the items in Table 2, suggesting that the latent

true score relates differently to each item and that it

would be inappropriate to constrain the model and

unit-weight the items.

Figure 4 shows the scatterplot and fitted regression line for

sum scores against the congenic model scores. Notably, the R2

value is 0.76 and the two scoring methods are far from iden-

tical, unlike the relation between sum scores and parallel mod-

el scores shown in Fig. 2. This means that two people with an

identical sum score could have potentially different congener-

ic model scores because they reached their particular sum

score by endorsing different items. Because the congeneric

model weights items differently, each item contributes differ-

ently to the congeneric model score, which is not true for sum

scores. Congeneric model scores are considering not just how

an individual responded to each item, but also for which items

these responses occur.

Fig. 2 Jittered scatter plot of sum scores with parallel model scores from

the model in Fig. 1 with a fitted regression line. N =301

Fig. 3 Path diagram of a congeneric factor model. The error variance is

uniquely estimated for each item, as are the loadings for each item. The

latent variable is given scale by constraining its variance to 1.0. If the

latent variable variance were of interest, scale could alternatively be

assigned by constraining one of the loadings to 1. Intercepts for each

item are included but are not shown. The latent variable intercept is

constrained to 0
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Importance for psychometrics: Reliability
coefficients

Though the isomorphism between sum scores and parallel

model scores may seem little more than a statistical sleight

of hand, the equivalence can be important for judging psy-

chometric properties of multiple-item scales. Reliability is

the most frequently reported psychometric property in psy-

chology (e.g., Dima, 2018). By far, the most popular metric

for reliability is coefficient alpha (a.k.a. Cronbach’s alpha;

Hogan, Benjamin, & Brezinski, 2000). However, as meth-

odologists have noted (e.g., Dunn, Baguley, & Brunsden,

2014; Green & Yang, 2009; McNeish, 2018; Zinbarg,

Yovel, Rvelle, & McDonald, 2006), coefficient alpha is

appropriate for unit-weighted scales but was not intended

for optimally weighted scales.

When scales are optimally weighted, different measures of

reliability tend to be more appropriate (Peters, 2014;

McNeish, 2018; Revelle & Zinbarg, 2009; Sijtsma, 2009)

such as coefficient H developed for scores that are optimally

weighted (Hancock & Mueller, 2001). This pattern can be

seen with the Holzinger and Swineford (1939) cognitive abil-

ity data. If assuming that the scale is unit-weighted, the coef-

ficient alpha estimate of reliability is 0.72. If using a conge-

neric model and concluding that the scale should be optimal-

weighted, the estimate of reliability from coefficientH is 0.87.

Because the standardized loadings for the different items vary

considerably in this data (range .17 to .85), there is a sizeable

difference between the different reliability estimates given the

difference in their intended applications.

Granted, the difference in reliability coefficients tends to be

smaller than the discrepancy in this example because most

scales are restricted to items with loadings that are at least

moderate in magnitude (e.g., usually above .40, Matsunaga,

2010), meaning that the range of standardized loadings is

narrower than in this example (the wide range is indicative

of another issue, which we discuss shortly). Nonetheless,

Armor (1973) notes that reliability from optimally weighted

scores is guaranteed to be equal or greater than the reliability

of sum scores (p. 33) and reliability coefficients designed for

optimally weighted scales tend to be about 5–10% higher than

coefficient alpha for unit-weighted scales for scales common-

ly used in empirical studies (e.g., McNeish, 2018). Therefore,

sum scoring items ignores possible differences in the relation

between the latent true score and each item, which could lead

to researchers creating scores that are less reliable than could

be achieved if the scale were scored differently.

Importance for psychometrics: Classification

In some areas of psychology, cut-offs are applied to quantita-

tive scales to create meaningful, qualitatively distinct groups.

This is especially common in clinical psychology with scales

like Beck’s Depression Inventory (BDI), the PTSD Checklist

(PCL-5), the Hamilton Depression Rating Scale, and the

State-Trait Anxiety Inventory, among others. Each of these

scales can be scored using a sum score, which can subsequent-

ly be used to classify participants into clinical groups. For

example, depression is classified from the BDI as “Minimal”

for sum scores below 14, “Mild” for scores from 14 to 19,

“Moderate” for scores from 20 and 28, and “Severe” for

scores from 29 to 63 (Beck, Steer, & Brown, 1996).

Though we recognize the helpful role of sum scores in

clinical settings as a quick approximation, such a use is harder

to defend in rigorous research studies (e.g., when the scales

are used as outcome measures to determine the efficacy of

treatment). With clinical scales that include many items

(e.g., the BDI contains 21 items), the sum scoring assumption

that all items are equally related to the construct becomes less

plausible. If all items do not contribute equally to the con-

struct, then it matters which items are strongly endorsed, not

necessarily how many items were strongly endorsed as is the

Table 2. Model estimates from congeneric model in Fig. 3

Item Description Std.

loading

Unstd.

loading

Error

variance

1 Paragraph comprehension 0.82 0.96 0.44

2 Sentence completion 0.85 1.12 0.50

3 Word definitions 0.79 0.89 0.47

4 Speeded addition 0.17 0.20 1.28

5 Speeded dot counting 0.18 0.19 1.02

6 Discrimination between

curved and straight letters

0.26 0.28 0.11

Fig. 4 Jittered scatter plot of sum scores with congeneric factor scores

from the model in Fig. 3 with a fitted regression line. N =301

2292 Behav Res (2020) 52:2287–2305



criterion considered with sum scores. For example, the item

about suicidality on the BDI might warrant more attention

than the item about fatigue, but this information is not cap-

tured with a sum scoring model that constrains all items to be

related equally to the construct.

Consider again the case of the Holzinger and Swineford

(1939) data. In this data, the loadings of the items are quite

different, so students with the same sum scores can end up

with different congeneric model scores depending on the re-

sponse pattern than yielded the sum score. For instance, con-

sider Student A whose six item responses for Item 1 through

Item 6 (respectively) were (5, 6, 4, 3, 5, 5) and Student B

whose respective responses were (2, 3, 1, 5, 10, 7). Figure 5

presents the data from Fig. 4 but highlights Student A and

Student B’s data. The sum score of both students is 28 but

the congeneric model scores are markedly different because

the loadings of Items 4 through 6 were low, indicating that

these items are weakly related to the cognitive ability con-

struct. Because Student B scored poorly on the most mean-

ingful items (Items 1 through 3), their congeneric model factor

score was estimated to be – 0.88 (the factor score is on a Z-

scale given that the factor variance is constrained to 1, so a –

0.88 score is well below average). Conversely, the Student A’s

congeneric model factor score was estimated to be 1.43 (a

score that is well above average) given that they were near

the sample maximum score for the first three items.

Even though sum scores would consider these students to

have the same cognitive ability, the congeneric model factor

scores indicate that their cognitive ability is quite disparate.

The congeneric factor model was parameterized such that the

factor scores were from a standard normal distribution, mean-

ing a sum score of 28 covers about 74% of the distribution of

congeneric scores (the area between a Z-score of – .88 and a Z-

score of 1.43), an expansive range showing the potential im-

precision of unit-weighting when it is inappropriate.

As a secondary issue, also recall from Table 1 that the

range of the six items is also not equal across items as

Items 4 through 6 have higher minimum and maximum

values than Items 1 through 3. When items have different

ranges or standard deviations, there are additional implica-

tions to sum scoring in that the resulting scores effectively

overweight scores with large ranges or large standard de-

viations. This can be seen directly in this example as

Student B achieved the same sum score as Student A pri-

marily by achieving high scores on items with larger max-

imums, an issue that is not present when factor scoring. An

example of the issue of different item ranges can be found

in the popular the Cattell Culture Fair intelligence test

(Cattell, 1973) which is commonly scored by taking a

sum of different subscales (e.g., Brydges et al., 2012), each

of which have a different number of questions and thus

different ranges. The result is that the overall sum score

inadvertently overweights particular subscales in the over-

all score.

Importantly, the large discrepancy in classification in Fig. 5

occurred from factor scores and sum scores that have a

Pearson correlation of 0.87. Though a correlation of this mag-

nitude would be seen as evidence of essential equality in em-

pirical variables, competing statistical methods need to have

correlations exceedingly close to 1 in order to yield results

without notable discrepancies in the estimated quantities. If

sum scores and factor scores are correlated at .87, about 1

− .872 = 24.3% of the variability in scores differs between

sum scoring and factor scoring. This results in large variability

within each sum score seen in Fig. 5. Even with a correlation

of .95 between sum scores and factor scores, 1 − .952 = 9.8%

of the variability is attributable to extraneous factors. Though

sum scoring is often justified by noting high correlations with

factor scores, the variability of factor scores within a sum

score would remain notable until the correlation exceeds about

0.99. We return to this idea later on in this paper.

Importance for psychometrics: Validity via
internal structure

When multiple items are summed to form a single score, it is

difficult and therefore uncommon to report on the internal

structure of the scale (Crutzen & Peters, 2017). However, as

mentioned earlier, sum scores are a perfect linear transforma-

tion of factor scores from a parallel model. By representing

sum scoring through a parallel model in a latent variable

framework, researchers can more easily obtain and present

evidence from fit measures developed in this framework in

order to determine whether unit-weighting is reasonable.

Though arguments continue in the statistical literature about

Fig. 5 Data from Fig. 4 highlighting two students who have the same

sum score (28) but who have very different factor scores (1.43 for Student

A, – 0.88 for Student B)
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the best way to assess fit of latent variables models (e.g.,

Barrett, 2007; Millsap, 2007; Mulaik, 2007), popular options

include fit statistics (e.g., the TML statistic; a.k.a. the χ
2 test) or

approximate goodness of fit indices (e.g., SRMR, RMSEA, or

CFI).

For the parallel model fit to the Holzinger and Swineford

(1939) data in Fig. 1, model fit is quite poor by essentially any

metric.

1. The CFI value is 0.45 whereas values at or above 0.95 are

considered to indicate good fit (e.g., Hu & Bentler, 1999).

2. The SRMR is 0.24 which does not compare favorably to

suggested cut-off of 0.08 or lower.

3. The RMSEAvalue is 0.23 (90% CI = [0.21, 0.25]), which

similarly exceeds the recommendation for good fit of 0.06

or lower.

4. The maximum likelihood test statistic (TML) is also sig-

nificant, χ2(19) = 5361.86, p < .001 which suggests that

the model-implied structures differ from structures obtain-

ed from the observed data.

Taken together, these tests of model fit clearly show that the

parallel model with constraints to yield a unit-weighted score

is not supported empirically. This would call the appropriate-

ness of sum scoring for this data into question. Next, we test

the fit of the congeneric model from Fig. 3. The fit of this

model is not great either – CFI = 0.81, SRMR = 0.11,

RMSEA = 0.20 [90% CI = (0.17, 0.23)], andχ2(9) = 115.37,

p < .001. Although the fit improved, the values are still not in

the acceptable range for any of the measures here.

Seeing the poor fit of the one-factor congeneric model and

the disparate loadings in Table 2, it seems like there may but

multiple subscales present. When inspecting the items, it ap-

pears that the first three items are more related to verbal skills

whereas the second set of three items are more related to

speeded tasks. Therefore, we fit a two-factor model where

Items 1 through 3 load on one factor and Items 4 through 6

load on a second factor, with the factors being allowed to

covary. The path diagram with estimated standardized load-

ings and the estimated factor correlation is shown in Fig. 6.

The fit of this model is much improved –CFI = 0.99, SRMR=

0.03, RMSEA = 0.05 [90% CI = (0.00, 0.10)], andχ2(8) =

14.74, p = .07, providing empirical support for the internal

structure of the scale being two factors.

This example shows a benefit of considering scales in the

latent variable model framework: by recognizing that sum

scores can be represented by a unit-weighting parallel factor

model, we performed a test of dimensionality with the factor

model and evaluated the strength of the item loadings. In

doing so, the multidimensional structure of these items for

cognitive ability became apparent. The assumption of unidi-

mensionality is easy to overlook with sum scores, which is

especially true when researchers adopt the common “sum-

and-alpha” approach to scale development and scoring.

Flake et al. (2017) note that many researcher-developed scales

subscribe to this approach, only considering coefficient alpha

Fig. 6 Path diagram of two-factor congeneric model with standardized factor loading estimates, estimated factor correlation, and standardized error

variances. Intercepts for each item are included but are not shown. The latent variable intercepts are constrained to 0 for each factor
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to assess reliability and relying on face validity for evidence

that the items are appropriate for measuring the construct of

interest. As seen in this data, reliability of the unidimensional

sum scores as measured through coefficient alpha was reason-

able at 0.72. A common misconception of coefficient alpha

(along with many other reliability coefficients) is that it pro-

vides information about unidimensionality of scales (Green,

Lissitz, &Muliak, 1977); however, the alpha estimate being in

the “reasonable” range provides no information about whether

these six items are measuring the same construct (Schmitt,

1996). To arrive at this information, the internal structure or

dimensionality of the scale must be inspected. So while re-

searchers may intuitively know that is it inappropriate to sum

items across different subscales, the common sum-and-alpha

approach overlooks internal structure and makes it difficult to

discern the boundaries of subscales or which items are reason-

able to sum. Specifying a parallel model in a latent variable

context facilitates rigorous inspection of aspects of validity in

addition to reliability.

Importance to psychometrics: Previously
validated scales

Scales that are widely used in practice are often accompa-

nied by a citation to a validation study providing evidence

for the internal structure and the reliability of the scale. In

many cases, these validation studies are performed using

some type of congeneric factor model. However, when

many of these validated scales are used in practice, scores

are derived by summing the items, despite the fact that

validation studies routinely fit congeneric models with dif-

ferent loadings for each of the items (see, e.g., Corbisiero,

Mörstedt, Bitto, & Stieglitz, 2017; Moller, Apputhurai, &

Knowles (2019). Furthermore, psychological scales that

are scored using a sum score and did not undergo a thor-

ough psychometric evaluation before becoming main-

stream (such as the Hamilton Depression Rating Scale)

continue to receive widespread use despite poor psycho-

metric properties that would likely prohibit use of the scale

(Bagby, Ryder, Schuller, & Marshall, 2004).

Alluding to our previous point, the issue here is that

sum scoring can be represented by a factor model, but it is

not the same factor model that was used to validate the

scale. Validation studies provide evidence of the internal

structure under a congeneric model, but if the scoring

model then reverts to a sum score, the validation study

is no longer applicable as evidence. In this scenario, the

model used for validation (a congeneric model) and the

model used for scoring (a parallel model) are incongruent

and new evidence would be required to empirically vali-

date sum scoring. This practice is a sort of bait-and-switch

whereby a more complex model is cited for support but

then a different, simpler, and unvalidated model produces

scores. Evidence from models cannot be mixed and

matched: just like the R2 from one regression model can-

not support a different regression model, validity evidence

from a congeneric scoring model cannot be applied to

sum scoring.

As a quick example, we revisit two scales discussed earlier:

The Beck Depression Inventory (BDI) and the PTSD

Checklist (PCL-5). The BDI can be a high stakes assessment

since it is often used as an outcome metric in clinical depres-

sion trials (Santor, Gregus, & Welch, 2009). As mentioned

earlier, the BDI is scored using the sum of all items (per the

BDI manual; Beck, Steer, & Brown, 1996) and participants

are classified into qualitatively meaningful groups using cut

scores. The PCL-5 can be scored three ways: (a) by summing

all items, (b) by summing items within a cluster, or (c) by

counting the number of times items have been endorsed with-

in each cluster (Weathers, et al., 2013). There are different cut

scores associated with each scoring method.

The primary BDI validation paper (Beck, Steer, &

Carbin, 1988) has been cited 12,000+ times according to

Google Scholar and the primary PCL-5 validation paper

(Blevins, et al., 2015) has been cited 700+ times on

Google Scholar at the time of this writing. In these papers,

the BDI was validated as a two-factor congeneric model

while the PCL-5 was validated as either a four-factor or

six-factor congeneric model. Notably, neither of these val-

idated psychometric models align with the model that

corresponds to the recommended scoring methods; the

scales are scored using a completely different model

(i.e., summing across all items implies the use of a unidi-

mensional parallel model) compared to the model used for

validation (i.e., a multidimensional congeneric model). In

other words, in their current uses, the BDI and the PCL-5

have not demonstrated psychometric evidence of validity

based on the internal structure (at least, within their re-

spective top cited validation publications) despite many

empirical studies suggesting otherwise. Again, we are

not criticizing summing items in clinical settings where

speed matters and rough approximations can suffice, but

scoring models used in research studies that deviate so

markedly from the validation model used to support the

scale is difficult to justify.

Our intention is not to single out these two scales as sum

scoring is a common practice whose correspondence to highly

constrained latent variable models is not always appreciated.

However, as noted by Fried and Nesse (2015), creating unidi-

mensional sum scores for multi-dimensional constructs may ob-

fuscate findings in psychological research. When assessments

are scored differently, utilize cut scores, and do not alignwith the

validatedmodel, it can be difficult to findmeaningful, consistent

results across studies or to even be confident that the score

accurately reflects the construct it is purportedly measuring.
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Statistical justification for sum scores

To this point in the paper, we have mainly focused on short-

comings of sum scores or unit-weighting assumptions and

how they can lead to undesirable outcomes. However, there

are circumstances where sum scores are practically indistin-

guishable from factor scores and may be perfectly legitimate.

Consider the two-factor congeneric model from the Holzinger

and Swineford (1939) data presented earlier. We noted that the

scale far more plausibly represented two distinct constructs

(Verbal Cognition and Speeded Cognition) based on the mod-

el fit assessment from a factor model. Recall from Fig. 6 that

the standardized factor loadings were very close for the Verbal

Cognition factor (.83, .85, .79) and the standardized loadings

were reasonably close for the Speeded Cognition factor (.58,

.71, .56). This may indicate that assumption violations of the

parallel model may be minimal. Essentially, a congeneric

model with nearly equal standardized loadings may be reason-

ably approximated by a parallel model.

We fit a two-factor parallel model to these data in Mplus

8.2. The loadings for all items were constrained to 1.0 and the

error variances were constrained to be equal across all items

within each subscale but were uniquely estimated across sub-

scales. The latent true score variances were also uniquely es-

timated but factors were not allowed to covary in order to

retain isomorphism between the parallel model scores and

summing items within each subscale. If the covariance is in-

cluded, path tracing rules would allow the items on the Verbal

Cognition subscale to be connected to the items on the

Speeded Cognition subscale. However, subscale sum scores

would be calculated independently: the items from the Verbal

Cognition subscale would added independently of items on

the Speeded Cognition subscale, then items on Speeded

Cognition subscale would be added independently of items

on the Verbal Cognition subscale. Omitting the factor covari-

ance is required to maintain the property that factor scores are

a perfect linear transformation of scores. If a factor covariance

were included, to the extent that its magnitude deviates from 0,

the correlation between factor scores and sum scores will de-

viate from 1. The path diagram for this two-factor parallel

model is shown in Fig. 7.

First, Fig. 8 shows the correlation between the two-factor

parallel model scores and the sum scores. As shown above

and as expected, the parallel model yields scores that are a

perfect linear transformation of the sum scores and the cor-

relation is exactly 1.00. Second, we inspected the fit of the

parallel model: CFI = 0.93, SRMR = 0.14, RMSEA = 0.09

[90% CI = (0.06, 0.11)], andχ2(17) = 55.54, p < .01. The fit

of the model is not great, but might be interpreted to show

some marginal indications of good fit (e.g., a CFI above .90

is sometimes considered sufficient, the 90% CI of RMSEA

contains .06). A likelihood ratio test comparing the two-

factor parallel model to the two-factor congeneric model

from Fig. 6 shows that the congeneric model fits significant-

ly better, χ2(9) = 40.80, p < .01.

If the sum scores are compared to the factor scores from the

congeneric model, the R2 values are quite high: 0.99 for the

Verbal Cognition factor and 0.96 for the Speeded Cognition

Fig. 7 Path diagram of two-factor parallel model. The loadings are

constrained to 1 for all items, the error variances are unique across factors

but are constrained within factors. Factor variances are uniquely

estimated and there is no factor covariance. Intercepts for each item are

included but are not shown. The latent variable intercepts are constrained

to 0 for each factor
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factor (keep in mind that there only three items per factor in

this example; the inclusion of additional items gives more

opportunity for loadings to vary across items). These relations

are plotted in Fig. 9. The extremely close standardized load-

ings for the Verbal Cognition subscale led to sum scores that

are almost identical to the congeneric scores. The standardized

loadings for the Speeded Cognition factor are more discrep-

ant, so the differences are easier to detect. Note that even at a

R2 of .96 (derived from a correlation of .98), the range of

congeneric factor scores within each sum score remains about

half a standard deviation on the factor score scale, which could

be problematic in a high-stakes contexts.

When the standardized loadings are nearly identical for

items that load on the same factor, there will be less detectable

differences between sum scores and congeneric factor scores.

In general, the larger the differences are in the standardized

loadings are for items that load on the same factor, the larger

the differences will be between sum scores and congeneric

model factor scores (Wainer, 1976). It is worth noting that

enough psychometric work must be conducted to realize the

number of subscales and that one unidimensional sum score

across both subscales would muddy the interpretation of an

individual’s cognitive ability.

The difference between reliability of optimally weighted

and unit-weighted scores also is related to the differences in

the standardized loadings (Armor, 1973), so there is not much

difference in the reliability of the scale based on the scoring

method. Coefficient alpha calculated on the sum scores was

.86 for the Verbal Cognition factor and .64 for the Speeded

Cognition factor whereas CoefficientHwas .87 for the Verbal

Cognition congeneric factor and .66 for the Speeded

Cognition congeneric factor, so a unit-weighted approach is

not adversely affecting the reliability of the scores. In this case,

one could construct an argument for sum scoring each sub-

scale (i.e., items on each factor) in this data if there is some

preferable interpretation based upon sum scores, understand-

ing possible risks associated with cut-scores if used in high-

stakes contexts (i.e., incorrectly classifying persons or evalu-

ating treatment efficacy in clinical studies). To be clear, we

would contend that the congeneric model would still be pre-

ferred even in this situation; however, we are noting that evi-

dence of this type would be needed to make reasonable claims

about the suitability of sum scores.

Using scores in subsequent analyses

When using scores in subsequent analysis like regression, path

analysis, or ANOVA; there are two general approaches that

can be implemented: multistage and simultaneous. Multistage

Fig. 8 Jittered scatter plot of sum scores with parallel model factor scores from the model in Fig. 7, with a fitted regression line. Verbal Cognition is

shown in the left panel and Speeded Cognition is shown in the right panel. N =301

Fig. 9 Jittered scatter plot of sum scores with congeneric factor scores from themodel in Fig. 6, with a fitted regression line. Verbal Cognition is shown in

the left panel and Speeded Cognition is shown in the right panel. N =301
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factor score regression has historically been more common

(e.g., Bollen & Lennox, 1991; Lu & Thomas, 2008;

Skrondal & Laake, 2001) and continues to be recommended

as a practical approach (e.g., Hayes & Usami, 2020a; Hoshino

&Bentler, 2013). In factor score regression, factor scores from

ameasurement model are created for each construct separately

and saved in one step. In a second step, the factor scores are

then treated as observed data in a subsequent statistical anal-

ysis (e.g., regression, ANOVA, path analysis).

With a multistage approach, there are multiple methods by

which factor scores can be computed in the first step due to

factor indeterminacy, which essentially posits that there are

many equally plausible sets of factor scores that are consistent

with a particular set of parameters (e.g., Brown, 2006; Grice,

2001; Steiger & Schönemann, 1978). In previous examples in

this paper, we use the maximum a posteriori method as im-

plemented by Mplus (MAP; also known as the regression

method when the items are continuous; Thomson, 1934;

Thurstone, 1935). With the MAP method, the covariance ma-

trix of the factor scores will not be identical to the covariance

matrix of the latent variables (Croon, 2002), so corrections are

needed to accurately estimate parameters and model fit

(Devlieger & Rosseel, 2017; Devlieger, Talloen, & Rosseel,

2019). Alternatively, Skrondal and Laake (2001) show that

MAP factor scores are better when the latent variable is

intended as a predictor, but that the Bartlett scoring method

(Bartlett, 1937; Thomson, 1938) is preferable when the latent

variable is intended as an outcome and suggest that different

scoring methods be used for different factors, depending on

their role in the analysis in the second stage. In lavaan, there is

an option that users can specify to select their factor scoring

method and the experimental fsr function can apply Croon’s

correction to factor scores. In Mplus, factor scores are current-

ly saved with MAP scoring when items are treated as

continuous.

The second approach is a simultaneous approach. Factor

indeterminacy is only problematic when tangible scores for

each person need to be computed. The issue of different factor

scoring methods can be avoided if the measurement model for

the multiple-item scale is directly embedded into a larger mod-

el with a structural equation model to estimate all aspects of

the model simultaneously (Devlieger, Mayer, & Rosseel,

2016). So rather than specifying a measurement model for

the latent construct, saving scores, and using those scores in

a subsequent analysis; the measurement model and the subse-

quent statistical model are directly modeled within a single

structural equation model. In this way, the latent true score

itself is used in the analysis rather than a tangible factor score

(Brown, 2006), which tends to produce the least biased esti-

mates in ideal situations (e.g., large sample sizes, no model

misspecifications) because there is no error or truncated vari-

ability that can arise when tangible factor scores are computed

(Devleiger & Rosseel, 2017).

Though the simultaneous approach holds a major ad-

vantage in that it is purer by virtue of working directly

with the true latent scores, there are two potential disad-

vantages of such an approach. First, the strength that the

measurement model and statistical model are combined

together is double-edged sword that also serves as a

weakness – any misspecifications in one part of the mod-

el permeates into the other (Hoshino & Bentler, 2013).

So, if there is a misspecification in the subsequent statis-

tical model, it will affect the measurement model and

how items are scored. Second, a simultaneous approach

can make specification tricky for some models and lead

to interpretational confounding (Bollen, 2007; Burt,

1976). For instance, if the latent variable is used as a

predictor of an observed variable, the outcome is theoret-

ically indistinguishable from the indictors of the latent

variable. An example of interpretational confounding is

shown in Fig. 10. Imagine that the Verbal Cognition sub-

scale from the Holzinger and Swineford (1939) data are

used to predict an observed variable like number of

words recalled from a list. The left panel shows the path

diagram as if Words Recalled were an outcome variable

and the right panel shows the path diagram as if Words

Recalled were an indicator of the Verbal Cognition factor.

Though the models have different intended interpreta-

tions, model equations and standard estimation proce-

dures would not distinguish between them. Levy (2017)

provides a comprehensive introduction to issues with in-

terpretational confounding and a comparison of possible

estimation remedies.

Thoughmultistage approaches contain more sources of error

because they pass scores across stages, Devlieger et al. (2016)

have shown that the performance of a multistage approach with

corrections to parameter estimates and standard errors very

closely approximate the performance of the simultaneous ap-

proach. Multistage approaches possess the added benefit that

the measurement model is estimated in a separate first stage,

meaning that misspecifications do not permeate across different

parts of the model (Hayes & Usami, 2020b) and that estimation

is more stable with smaller sample sizes (Rosseel, 2020). The

multistage approach has recently been extended to fit measures

(Devlieger et al., 2019), path analysis (Devlieger & Rosseel,

2017), and multilevel settings (Devlieger & Rosseel, 2019),

giving advantages to multistage approaches broader coverage

and narrowing the gap between their performance and the per-

formance of the simultaneous approach.

For this reason, Hayes and Usami (2020a) note that the

pendulum of best practice has recently swung back to-

wards favoring multistage approaches (p. 6), but method-

ological debates about how to best use scores from latent

variables in subsequent analyses. The important point here

is that although factor scores are proxies of the true latent

score, sum scores are a naïve proxy for factor scores from
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heavily constrained models – they are a proxy of a proxy.

So, although there are still lingering questions about the

best approach for using scores in subsequent analyses (i.e.,

a multistage approach with corrections vs. a simultaneous

approach), the answer to these questions will definitively

not be “sum scores”.

The next section provides an example to demonstrate

how the choice of scoring method can affect conclusions

when the point of obtaining scores is to use them in a

subsequent analysis.

How scoring approaches can change
conclusions

The Holzinger and Swineford (1939) data contained students

who attended two different schools: 145 students attend the

Grant-White school (48%) and 156 students attended the

Pasteur school (52%). Imagine that the motivation for scoring

the six cognitive items was to assess the question that there

were differences in scores between these schools. The ultimate

model of interest is a general linear model: the scale score(s)

are the outcome and School Membership is the grouping var-

iable (i.e., a two-group test).

We will treat the scoring of the six cognitive items in

four different ways to represent different levels of rigor

in order to show how the conclusions could change.

Because some methods yield multiple subscales, we es-

timate models with a structural equation model using

robust maximum likelihood estimation to fit both out-

comes into a single multivariate regression model. The

four methods we use are listed below. The factor score

regression method with Croon’s correction in Method 3

has a dedicated function in lavaan and is easier to per-

form than in Mplus, so we perform all analyses in lavaan

for consistency.

1. First, we treat the scale as if it were a researcher-created

scale by which the common “alpha-and-sum” approach

was applied and for which evidence of internal structure is

rarely assessed (e.g., Flake et al., 2017). As noted earlier,

coefficient alpha of all six cognition items together is 0.72

which is above the traditional 0.70 cut-off and the items

are consequently summed to create a single score. This

single score is used as the outcome in a univariate general

linear model with School Membership as the predictor.

2. Second, the next level of rigor is to perform basic psycho-

metric modeling to assess the internal structure but then

sum score each subscale. As noted earlier, the two-factor

model in Fig. 6 fit well and contained a Verbal Cognition

subscale and a Speeded Cognition subscale. Sum scores

are created for each subscale and are then used as ob-

served outcomes in a multivariate general linear model

with School Membership as a predictor.

3. Third, we use the same two-factor model from Fig. 6 but

apply a multistage factor score regression. In the first

stage, we Bartlett score the subscales because the latent

variables are the outcome of interest, in accordance with

recommendations from Skrondal and Laake (2001).

Then, we apply Croon’s correction to these factor scores

and use the factor scores as observed outcomes in a mul-

tivariate general linear model with School Membership as

a predictor in the second-stage model.

4. Fourth, we use a simultaneous approach to fit the

multivariate general linear with School Membership

as a predictor and the latent variables from the two-

Fig. 10 Illustration of interpretation confounding when using a

simultaneous approach. The path diagram on the left shows Words

Recalled intended as outcome, the path diagram on the right shows

Words Recalled intended as an indicator variable. These two models

are mathematically indistinguishable despite theoretical differences

between them
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factor model in Fig. 6 directly as the outcome vari-

able such that no tangible scores are produced. This

combines the measurement model and the general

linear model into one large model.

Results

Here, we report the coefficients for the School Membership

difference across methods. Because sum scores and factor

scores are on different scales, we report both the unstandard-

ized coefficient (B) and Cohen’s d for each effect. The first

method of summing all six items yields a significant effect of

School Membership (B = .99, d = .22, p = .05 ) with the con-

clusion that Pasteur scored higher than Grant-White (Pasteur

is coded as 1 in the data, so positive coefficients indicate

better performance in Pasteur). With the second method of

sum scoring each subscale, the result is that Pasteur scored

higher on the Verbal Cognition subscale (B = 1.68, d = .52,

p < .01) but Grant-White scored higher on the Speeded

Cognition subscale (B = − .69, d = − .28, p = .02). The third

method used Croon-corrected Bartlett factor scores in a mul-

tistage factor score regression and yielded the result that

Pasteur scored higher on Verbal Cognition (B = .54, d = .56,

p < .01) and that there was no difference on Speeded

Cognition (B = − .17, d = − .26, p = .07). Lastly, the fourth

method is the simultaneous approach that directly uses the

latent variable in the model and yielded the same result as

the third method such that Pasteur scored higher on Verbal

Cognition (B = .54, d = .56, p < .01) and that there was no

significant difference on Speeded Cognition (B = − .25,

d = − .34, p = .09).

Notably, sum scoring gives different conclusions compared

to more rigorous methods that have been shown in the meth-

odological literature to provide more accurate estimates. Sum

scoring leads to a conclusion that Pasteur scores higher in

general or that there is a dichotomy whereby Pasteur is signif-

icantly higher on Verbal Cognition and Grant-White is signif-

icantly higher on Speeded Cognition. Factor score regression

and the simultaneous approach both indicate that Pasteur is

higher on Verbal Cognition and there is no difference on

Speeded Cognition. Essentially, the test result changes both

in direction and significance depending on how the scale is

scored. Furthermore, note that these different conclusions re-

garding Speeded Cognition between sum scores and more

rigorous approaches was observed even though the correlation

between Speeded Cognition sum scores and Bartlett factor

scores was 0.985. At this correlation, the R2 between sum

scores and factor scores is 0.970, but the 3% of the variability

between different scoring methods that is attributable to

extraneous factors is sufficient to change the conclusion be-

tween scoring methods.

Moreover, even with a simple model that boils down to a

multivariate two-group test, the ultimate inferential conclu-

sions could change strictly based on the scoring method.

The statistical models that are used in empirical studies are

often vastly more complex, so results from multilevel models,

growth models, or multiple regression based on sum scores

may be more adversely affected by imprecision when scoring

of multiple scales is necessary. Statistical methodology con-

tinues to develop at a rapid pace with methods like network

models, growth mixture models, and machine learning

becoming more mainstream. However, despite the exciting

new research questions that can be addressed with these

methods, fidelity of conclusions from these methods

remains restricted by the quality of the scales and the

variables analyzed from them. As one recent example,

Jacobucci and Grimm (2020) note how the effectiveness of

machine learning algorithms is vastly reduced in the face of

imprecise measurement. This work aligns with our thesis –

regardless of model complexity, the variable remains the

foundational unit to which these methods are applied and

complex methodology cannot solve fundamental issues asso-

ciated with imprecise measures that researchers often over-

look or ignore.

Discussion and limitations

Given the nature of the topics under investigation in psy-

chology, many research studies rely on multiple-item

scales to tap constructs that are not directly measurable

with physical instruments. These constructs are typically

complex, contextual, and multi-dimensional, rendering

psychological measurement inherently more challenging

than physical measurement (Michell, 2012). Variables

created from scoring these scales often play a central role

in subsequent analyses, either as predictor variables or as

the outcome of interest. However, when justification for

the scoring of scales is relegated to secondary status as is

often the case when sum scores are created, it can lead to

hidden ambiguity in research conclusions about the in-

trinsic meaning represented by the variable.

The scores from multiple-item scales are treated serious-

ly by producers and consumers of research but the process

by which those scores are obtained often is not. There are

countless modeling decisions that one can make that lead to

the creation of these scores – are the items treated as con-

tinuous or discrete? Do any response categories need to be

collapsed or reverse coded? Are there subscales present in

the scale? Whenever responses from multiple items are
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combined by some method, there is a model corresponding

to that method. Although summing item responses may

seem like a simple arithmetic operation, it is a simple linear

transformation of a heavily constrained parallel factor mod-

el. Treating the sum scoring as a psychometric model rather

than an arithmetic calculation obliges researchers to engage

with model constraints they are imposing (perhaps unknow-

ingly) and test the assumptions associated with such

constraints.

Our point is that any method advanced by researchers

for scoring scales needs evidence to support its use, and

considering sum scores as a factor model demands such

evidence. Neither the physical nor social sciences would

endorse conclusions without evidence, so why does psy-

chology so readily accept conclusions derived from anal-

yses based on sum scores created without any accompa-

nying evidence? Such v-hacking and v-ignorance (where

v is shorthand for validity; Hussey & Hughes, 2019) may

be contributors of replication and measurement issues in

psychology; if scales are scored using untested psycho-

metric models with unknown or questionable properties,

it is difficult to replicate findings or infer meaning.

Our main point is that any scoring method corresponds

to a model and any choice should be accompanied by ev-

idence. Sum scoring is not a particularly complex model,

but it is still a model nonetheless and it is possible that its

assumptions could be satisfied. Several types of evidence

need to be reported to support that decision: Is there suffi-

cient unidimensionality of the scale or of each subscale? Is

the internal structure supported? Are loadings sufficiently

similar such that each of the items contribute about equally

to what is being measured? Are there changes in reliability

of the scores with different scoring methods? Perhaps there

are some instances where sum scores are justified; the

problem permeating throughout psychology is employing

methods without any justification. We implore researchers

to take psychometrics as seriously as other statistical pro-

cedures and provide justification for whichever scoring

method they choose. After all, variables are the founda-

tional unit of any statistical analyses: if the variables are

not trustworthy or do not represent the constructs as

intended, any results are dead-on-arrival as other modeling

choices are ill-equipped to overcome deficiencies in the

meaning of the variables.

Limitations

Model fit assessment Cut-offs for model fit measures for

factor models are imprecise and are used pragmatically

rather than dogmatically. The commonly referenced Hu

and Bentler (1999) cut-offs are based on empirical simula-

tion rather than analytic derivation and therefore are limit-

ed by the conditions included in the simulation design.

Several studies have noted that the cut-offs for many pop-

ular indices – including CFI, RMSEA, and SRMR that we

use in this paper – vary with the size of the loadings

(Hancock & Mueller, 2011; McNeish, An, & Hancock,

2018), size of error variances (Heene, Hilbert, Draxler,

Ziegler, & Buhner, 2011), model type (Fan & Sivo,

2005), model size (Shi, Lee, & Terry, 2018), degree of

misspecification (Marsh, Hau, & Wen, 2004), and missing

data percentage (Fi tzgerald , Estabrook, Mart in ,

Brandmaier, & von Oertzen, 2018). We openly acknowl-

edge the lack of firm recommendations on how to adjudi-

cate what constitutes a “good” fitting model, but ultimately

believe that imprecise metrics are an improvement over no

metrics at all.

Multiple types of validity In our examples, we focus upon

one common type of evidence of validity evidence (i.e.,

internal structure) and one quantitative method that could

be used to provide such evidence (i.e., factor analysis).

The Standards for Educational and Psychological

Assessment name five types of evidence, none of which

are inherently more important than the other. There is an

extensive literature on the theory of measurement itself;

for example, Maul (2017) demonstrates that good fitting

models are not inherently evidence of good theory;

Borsboom, Mellenbergh, & van Heerden (2004) discredit

the nomological network and argue that validity is simply

the causal relationship between variation in the attribute

and variation in the response; while Michell (2012) argues

that measurement is not possible in the social sciences as

social scientists have not established evidence of

quantitivity in the attributes they claim to measure. For

this reason, we focused on classic, widely reported quan-

titative methods such as coefficient alpha and factor anal-

ysis. Variables are the foundation of any statistical analy-

sis, and methodological principles devised to combat data

analytic issues are irrelevant if the foundational unit to

which they are applied is questionably reflective of the

intended construct. We offer this paper as a starting point

to hopefully bridge readers from reflexively sum scoring

to the more nuanced literature on scales and psychological

measurement.

Take-home points

1. Sum scoring falls under the same umbrella as factor anal-

ysis, though it is rarely presented as such. Researchers

2301Behav Res (2020) 52:2287–2305



need to be more diligent in providing support for sum

scores (or an alternative scoring method), as they would

with any other type of statistical model.

2. Considering sum scores as a latent variable model encour-

ages researchers to evaluate the psychometric properties

of their scale.

3. If using a previously validated scale, researchers need to ver-

ify how the scalewas validated (e.g., the dimensionality of the

scale). If a congeneric model was used for validation, sum

scoring will apply a different unvalidated scoring model.

4. When using scores in subsequent analyses, the choice of

scoring method can affect the conclusions of the analysis,

even when the correlation between sum scores and factor

scores is very high.

5. There are multiple methods to calculate factor scores:

Bartlett scores are suggested when the score will be used

as an outcome, MAP scores are suggested when the score

will be used as a predictor. If saving factor scores for use

in a subsequent model, researchers should be aware of

possible corrections such as Croon’s correction needed

to yield unbiased estimates.

6. Researchers can avoid decisions about different factor

scoring by using a simultaneous approach that imbeds a

measurement model within a broader structural equation

model. This approach is considered more pure than mul-

tistage approaches, but it can result in estimation difficul-

ties, especially with large models or small samples. In

these cases, multistage approaches show similar perfor-

mance with reduced estimation difficulties. Nonetheless,

the distinction between multistage and simultaneous ap-

proaches is much finer than the distinction between either

method and sum scoring.
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Appendix

Specifying amodel to obtain factor scores that exactly
equal sum scores

In the main text, we show how scores from a parallel

model are perfectly related to the sum scores. However,

to make this equivalence more concrete, some readers

may wish to know how to specify the model so that

latent variable scores are exactly equal to the sum

scores. Rose, Wagner, Mayer, and Nagengast (2019) for-

mally showed how this can be accomplished and we

demonstrate their method with the example six-item

cognitive ability score.

In general, one variable is arbitrarily selected as a referent

item. The loading from the latent variable to the referent item

is then fixed to 1. The referent indicator is then regressed on all

other items with all coefficients constrained to – 1. All non-

referent indicators freely covary with each other and freely

covary with the latent variable. The means of all non-

referent items are also estimated, as is the variance of the latent

variable. Figure 11 shows the path diagram for the example

six item cognitive ability scale using item 6 as the referent

item; the freely estimated covariances between each non-

referent item and the latent variable are not shown in order

to keep the path diagram as interpretable as possible.

We fit this model in Mplus version 8.2 with maximum

likelihood estimation and saved the factor scores from the

model. These scores are plotted against the sum scores in

Fig. 12, showing that two scores remain a perfect linear trans-

formation but now the transformation is an identify function

such that the sum scores are equal to one times the factor

scores and vice versa.

If using this model, Rose et al. (2019) note that fit

indices cannot be calculated in traditional ways because

of the non-nestedness of the standard null model in most

software and the fact that variances and covariance of

scale items are unrestricted. Rose et al. (2019) discuss

proper calculation of fit as well as issues related to miss-

ing data.
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