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THINNEST PACKING OF CUBES WITH A GIVEN 
NUMBER OF NEIGHBOURS 

BY 
L. FEJES TÔTH AND N. SAUER 

As a contribution to various investigations [1-11] about packing of convex 
bodies with certain conditions imposed on the number of neighbours of each 
body, V. Chvâtal [12] recently proved the following theorem: If in a packing of 
translates of a square each square has at least six neighbours then the density 
of the packing is at least 11/15. 

Let us recall the definitions of the terms occurring in this theorem. A set of 
convex bodies is said to form a packing if no two of them have interior points 
in common. Two bodies are called neighbours if they have a boundary point in 
common. The density is defined in the usual way [13, 14] as a limiting value 
which can be interpreted as the total volume of the bodies divided by the total 
volume of the space. 

The constant 11/15 in the above theorem is best possible. An extremal 
packing is exhibited in Fig. 1. The proof of the theorem implies that in a 
certain sense this packing is unique. 

The problem solved by the theorem of Chvâtal can be generalized in various 
directions. In this paper we are concerned with the analogous problem in 
n -space taking into consideration besides direct neighbours also more distant 
neighbours. 

We say that in a packing of bodies each body is a 0-neighbour of itself. A 
body B is a k-neighbour of the body A if B is a neighbour of some 
(k - l)-neighbour of A other than a /-neighbour of A with 0 < / < k. 

In a packing of translates of a unit n-cube all /-neighbours of a cube A with 
0 < / < k are contained in a concentric, homothetic cube with edge-length 
2k + 1, showing that the number of such neighbours is at most (2fc + l)n . This 
number is attained in a grid of cubes, i.e. in a packing of cubes joining along 
whole cells and filling the n -space completely. 

Let p be the plane of an (n — 1)-dimensional cell of a cube. Let p' be a plane 
parallel to p having a distance fc + 1 of p. The cubes of the grid lying between 
p and p' form a packing in which each cube has (fc + l)(2fc + l ) n _ 1 /-neighbours 
with 0 < / < fc. The density of this packing is equal to zero. On the other hand, 
we shall prove the following. 
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Figure 1 

THEOREM. If in a packing of translates of a cube each cube has more than 
(fc + l)(2/c + l ) n _ 1 j-neighbours with 0 < / < f c then the cubes have a positive 
density. 

This theorem can be considered as the first approach to the problem of 
getting more information about the density d£(m) of the thinnest packing of 
translates of n-cubes each having at least m /-neighbours with 0 ^ / < k. As we 
have seen, for 0 < m < (fe + l)(2fc + l ) n _ 1 we have d^(m) - 0. According to our 
theorem, for (fc + l)(2fc + l ) n _ 1 < m<(2fc + l ) n we have d£(m)>0 . For m = 
(2k 4- l ) n we obviously have d£(ra) = 1 with equality only for the cubical grid. It 
is not difficult to show that for m = (2k + l ) n - 1 we have d£(m) = 1 - (fc + l)~n. 
Going from ra = (2fc + l ) n - l successively down to m = (fc + l)(2fc + l ) n _ 1 + l 
the problem of determining the value of d£(m) becomes more and more 
difficult. The theorem of Chvâtal claims that d\(l) = 11/15. 

Figures 2-9 show thin packings of translates of a square having altogether at 
least m = 16 or 17 or . . . 23 0-, 1- and .2-neighbours. These configurations 
show that d | (16)< 69/121 = 0 . 5 7 0 . . . , <f|(17) < 2/3 = 0.666 . . . , df(18)< 
7/10 = 0.7, d!(19) < 3/4 = 0.75, dl(20) < 19/24 = 0.791 . . . , d!(21) < 5/6 = 
0 . 8 3 3 . . . , d!(22)< 7/8 = 0.875, d | (23)< 11/12 = 0.916 . . . . We conjecture 
that at least some of these packings are extremal. For m = 17 and 20 two 
different equally good packings are exhibited, showing that in general unicity 
cannot be expected. 

Let us now turn to the proof of our theorem. 
Let P be a packing of unit cubes considered in the theorem. We introduce a 

rectangular coordinate-system whose axes are parallel to the edges of a cube. 
We translate each cube in such a way that its center (xu . . . , xn) becomes 
([*iL • • • > [*n])- Let us record some properties of the set S of the translated 
cubes. 1. S is a packing. For two cubes of S with centers ( [ x j , . . . , [xn]) and 
([yj> • • • » [yn]) cannot overlap without coinciding. But the assumption that 
([*iL • • •, [*J) = ([yJ, • • •, [yn]) would imply that \xx - yx\ < 1 , . . . , |xn - yn| < 1, 
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in contradiction to the fact that the original cubes in P do not overlap. 2. Since 
the distance between the centers of a cube of P and its image in S has a 
uniform upper bound, namely Vn, S has the same density as P. 3. If in P two 
cubes are neighbours, so are their images in S. It follows that two /-neighbours 
in P become /-neighbours in S for some / < / . 

Because of these properties it is enough to prove the theorem for the set S, 
i.e. in the case when the cubes are elements of a grid. 

Now we associate with the cube c its Dirichlet cell (or Voronoi polyhedron) 
D defined as the set of those points of the space whose distance from the 
center of c is less than their distance from the center of any other cube of S. 
The Dirichlet cells associated with the various cubes of S fill the space without 
overlapping and without (n-dimensional) gaps. 

Our aim is to prove that the Dirichlet cell D of c is contained in some 
polyhedron. We do this by showing that not all of the /-neighbours of c can be 
on one side only of some plane containing the center of c. 

Let c be a cube of S. Let h be a closed half-space bounded by a plane p 
containing the center of c. We claim that the number N of the centers of the 
/-neighbours of c with 0 < / < fc contained in h satisfies the inequality 

(*) iV<(k + l)(2fe + l ) n - 1 . 

Obviously, the /-neighbours of c with 0 < / < fc are contained in a cube C of 
edge-length 2fc + 1 concentric with and homo the tic to c. Therefore it suffices to 
show that the number of the centers of the cubes in the grid, in short the 
number of grid-points, contained in the intersection h DC cannot exceed 
(fc + l)(2fc + l ) n - 1 . 

Let e be an edge of C not parallel to p. A plane through the center of C 
perpendicular to e intersects C in an (n — 1)-dimensional cube q. Thus q 
contains (2fc + l ) n _ 1 grid-points. Since any grid-point in p H C is a projection of 
a grid-point in g by a line parallel to e, we have for the number x of the 
grid-points contained in p f l C the inequality jc<(2fc + l ) n _ 1 . On the other 
hand, denoting the number of the grid-points contained in the interior of h Pi C 
by X, we have 2X + x = (2fc + l)n . Hence we obtain for the number X + x of the 
grid-points contained in h DC the inequality X+x =^(2k + l)2-^x + x = 
|(2fc +1) 2 -hjjc <è{(2fc + l)n + (2fc +1)""1} = (fc + l)(2fc +1)""1 , as stated. 

We continue to prove that the diameters of the Dirichlet cells have a uniform 
upper bound depending only on n and fc. Let 0 be the center of c and 
o l 5 . . . , om the centers of its /-neighbours with 0 < / < fc. D is contained in the 
intersection P of the half-spaces containing 0 which are bounded by the 
orthogonal bisectors of the segments ool7..., oom. Because of the inequality 
(*) and the assumption that m > (fc + l)(2fc + l ) n _ 1 there is no half-space having 
o as boundary point which contains the points o l 5 . . . , om. Therefore F is a 
polyhedron. Since ou...,om are grid-points contained in C, there is only a 
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Figure 2 

Figure 3 
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Figure 4 Figure 5 

Figure 6 

Figure 7 Figure 8 
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Figure 9 

finite number of such polyhedra. The greatest diameter d occurring among 
these polyhedra is an upper bound of the diameters of the Dirichlet cells. 

Let s(R) be the number of the centers of the cubes of S contained in a ball 
of radius R centered at a fixed point of the space, D(R) the total volume of the 
Dirichlet cells belonging to these cubes and V(R) the volume of the ball. Then 
we have 

V(R -d)<D(R)< V(R + d), 

whence 

r s(R) y s(R) 
l i m

 T , / ^ N = h m ———-
R^V(R) R^aoD(R) 

which shows that the lower density of the cubes is at least 1/17, where U is an 
upper bound of the volumes of the Dirichlet cells. This completes the proof of 
the theorem. 

As to the "critical" density d\ = d£((fc + l)(2fc + l ) n - 1 +1) we conjecture that 
for any fixed fc d£ has a positive lower bound. On the other hand, it seems to 
be very likely that for any n we have l im, ,^ d£ = 0. 

The first of the authors thanks members of staff of the University of 
Calgary for assistance from their National Research Council of Canada grants. 
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