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ABSTRACT. A comprehensive study of the complexes A4[U(NCS)8] (A = Cs, Et4N, nBu4N) and 

A3[UO2(NCS)5] (A = Cs, Et4N) is described, with the crystal structures of 

[nBu4N]4[U(NCS)8].2MeCN and Cs3[UO2(NCS)5].O0.5 reported. The magnetic properties of 

square antiprismatic Cs4[U(NCS)8] and cubic [Et4N]4[U(NCS)8] have been probed by SQUID 

magnetometry. The geometry has an important impact on the low temperature magnetic 

moments: at 2K, µeff = 1.21 B.M and 0.53 B.M., respectively. The electronic absorption and 

photoluminescence spectra of the uranium(IV) compounds have been measured. The redox 

chemistry of [Et4N]4[U(NCS)8] has been explored using IR and UV-Vis spectroelectrochemical 

methods.  Reversible 1 electron oxidation of one of the coordinated thiocyanate ligands occurs at 

+0.22 V vs Fc/Fc+, followed by an irreversible oxidation to form  dithiocyanogen (NCS)2 which 

upon back reduction regenerates thiocyanate anions coordinating to UO2
2+.  NBO calculations 

agree with the experimental spectra, suggesting that the initial electron loss of [U(NCS)8]4- is 

delocalized over all NCS- ligands. The reduction of the uranyl(VI) complex [Et4N]3[UO2(NCS)5] 

to uranyl(V) is accompanied by immediate disproportionation and has only been studied by DFT 

methods. The bonding in [An(NCS)8]4- (An = Th, U) and [UO2(NCS)5]3- has been explored by a 

combination of DFT and QTAIM analysis and the U-N bonds are predominantly ionic, with the 

uranyl(V) species more ionic that the uranyl(VI) ion. Additionally the U(IV)-NCS ion is more 

ionic than what was found for U(IV)-Cl complexes. 

 KEYWORDS Uranium, Magnetic properties, Photoluminescence, DFT, 

Spectroelectrochemistry. 
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Introduction 

The coordination and organometallic chemistry of the actinides (An) is undergoing a 

resurgence in interest and new reactivity patterns, most notably in molecular uranium chemistry, 

are being uncovered that challenge understanding of how the 5f and 6d orbitals are involved in 

bonding to ligands.1 Uranium(III) compounds have been extensively explored since new 

precursors for this oxidation state have been developed,2 and the small molecule activation of 

compounds in this oxidation state has been nothing short of outstanding.3 Uranyl(V)4 and 

uranyl(VI)5 chemistry, [UO2]n+, has also developed at an unprecedented rate and new chemistry 

is being reported that enhances our knowledge of these species. Arguably the most impressive 

recent results are the synthesis of uranium(II) complexes from the Evans6 and Meyer7 groups  or 

the successful isolation of elusive terminal nitrides of uranium(V)8 and uranium(VI)9 which 

illustrates the vibrancy of the field of actinide science. 

 

The evidence for enhanced covalency in an An‒L bond compared to the corresponding Ln‒L 

(Ln = lanthanides) bond has the potential to form the basis for advanced nuclear fuel cycles.10 Of 

the methods currently under investigation, ionic liquids appear to hold particular promise.11 This 

topic has been intensively explored using a plethora of experimental and theoretical methods as 

the chemistry underpinning this separation science is essential to elucidate. One experimental 

technique that shows promise for elucidation of the electronic structure of an actinide ion is 

photoluminescence spectroscopy;12 although, this is not as well developed as for lanthanide ions. 

Uranyl(VI) emission is the most studied and the green emission is due to de-excitation of  

formally triplet ligand-to-metal charge-transfer (3Πu) excited states. Recent results indicate that 

this can be used to study the structural and electronic features of air- and moisture-sensitive 
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coordination complexes.13 In certain laboratories, Am(III) and Cm(III) time-resolved laser 

induced emission spectroscopy has been used to conveniently characterize low concentrations of 

these highly radioactive isotopes.12a,14 We have recently reported on the use of 

photoluminescence spectroscopy to fingerprint the U(IV) oxidation state.15 From our studies, and 

the reported photoluminescence spectra of the hydrated U(IV) ion,16  we can suggest that de-

excitation occurs from a charge-transfer band (the 5f1 6d1 charge-transfer excited-state manifold 

in simple uranium halide complexes) or the highest energy 1S0 Russell-Saunders coupled state 

(in the hydrated ion) to lower-lying 5f2 spin-orbit coupled levels. Computational studies on the 

hydrated ion indicate that when the highest energy term is corrected for a large Stokes shift (i.e., 

solvation effects), the assignment of the emission bands changes considerably.17 We have 

therefore become interested in the pseudo-halide complex [U(NCS)8]4-, as the high symmetry 

will allow the influence of the geometry on the photoluminescence properties to be explored. 

The uranium(IV) thiocyanate complex [Et4N]4[U(NCS)8] was prepared in the 1960s18 and 

structurally characterized in 1971. It has a cubic geometry around the uranium metal ion,19 whilst 

the corresponding Cs+ salt is square-antiprismatic.20  However, both salts in solution show the 

same geometry, namely square anti-prismatic, based on 13C NMR and vibrational spectroscopic 

data.21 Moreover, the thiocyanate ligand can be used in liquid-liquid extractions11 or as a 

component of ionic liquids, aimed at separating the actinides from the lanthanides22 for advanced 

fuel cycles. [A336][SCN] (A336 = tricaprylmethyl ammonium) is a task-specific ionic liquid of 

sufficiently low viscosity to be used without utilizing a separate extractant, and substantial 

distribution ratio enhancements have been reported, although the mechanism is unknown.23 

Towards this goal, the spectroscopic characterization of the uranyl thiocyanate24 [UO2(NCS)5]3- 



 

5 

in ionic liquids25 has been reported and some recent structural and Raman spectroscopic data26 

have shed light on these species.  

 

In this contribution we fully explore the chemistry of uranium thiocyanates in the +4 and +6 

oxidation states using a suite of spectroscopic and computational measurements. A 

spectroelectrochemical investigation of the redox nature of [Et4N]4[U(NCS)8] will be reported 

and a comprehensive computational study allows the bonding to be analyzed in detail.  

 

Results and Discussion 

Structural and spectroscopic studies of [A]4[UIV(NCS)8] [1] (A = Et4N+; nBu4N+, Cs+). 

 

The structural studies carried out in the 1970s showed that the Et4N+ cation appeared to 

template the geometry of the [AnIV(NCS)8]4- anion (An = Th, Pa, U, Np, Pu), so that a cubic 

symmetry was favored, whilst the Cs+ salts (An = Th, U) preferred a square antiprismatic 

geometry. This was postulated to be due to the crucifix type geometry of the anion packing 

against a cubic face of the anion. The small energy difference between the two geometries must 

therefore be governed by crystal packing effects. Changing the tetraethyl ammonium counterion 

to the longer nBu4N+ might be expected to give a lower symmetry and may shed light on the 

uranium coordination in ionic liquids using long chain tetraalkyl ammonium cations. Moreover, 

as a number of our spectroscopic measurements have been conducted in the presence of tetra-n-

butyl ammonium cations, it is important to ascertain their influence on the structure. Accordingly 

we have prepared and structurally characterized [nBu4N]4[U(NCS)8], [nBu4N]4[1], as shown in 

Figure 1. The U‒N bond distances range from 2.402(4) to 2.460(4) Å with the average (2.43 Å) 
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being close to that observed for [Et4N]4[1] (2.38 Å) and Cs4[1] (2.42 Å). The average bond 

lengths for N=C and C=S being 1.167 Å and 1.628 Å, respectively, are also very close to the 

average bond lengths in [Et4N]4[1] and Cs4[1] (N=C 1.14 Å and C=S 1.61 Å for [Et4N]4[1] and 

N=C 1.145 Å and C=S 1.60 Å for Cs4[1]). The geometry around the uranium and the subsequent 

packing of the anion are different. The less rigid butyl arms wrap around the voids in the 

uranium coordination sphere, and cause the U‒N‒C angle to bend to 165° and the geometry is 

best described as a distorted square antiprism (interplane N‒U‒N angles = 73-85°). The Raman 

and infrared spectra of [nBu4N]4[1] in both the solid state and solution are identical to those of 

Cs4[1], confirming the coordination geometry.  

 

 

 

Figure 1. Solid state structure of the anion of [nBu4N]4[1].2MeCN (left); the coordination 

geometry of the uranium center (middle); the space filling diagram showing the interaction of 

one cation with the anion (right). Average bond lengths (Å): U‒N = 2.430; N=C = 1.167; C=S = 

1.628. 
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The early reports on the synthesis of these thiocyanate species stated that the compounds were 

sensitive to air and moisture, and the hydrated compound [U(NCS)4(H2O)4(18-crown-6)]27 has 

been structurally characterized. We have noted that [A]4[1] (A = Cs+, Et4N+) is stable in air as a 

solid for a number of days, and can be recrystallized from acetonitrile in air without 

decomposition. When [A]4[1] is treated with THF, in which it is almost insoluble, a slow 

reaction occurs and an orange solution is formed. Interestingly, the orange solution deposits 

orange crystals when recrystallized in daylight; in the dark, the original green crystals are 

recovered. The orange crystalline material has identical vibrational spectra to [A]4[1] and a 

single crystal X-ray structural determination for A = Et4N+ shows that this orange material has 

the same cell and metric parameters as the green [Et4N]4[1] (Tables S1-S3). This suggests that 

[A]4[1] is photochemically sensitive, so we examined the changes in the UV-vis spectrum upon 

irradiation with UV light (λex = 340 nm; Figure 2) under an inert atmosphere. The initial UV-vis 

spectrum of [Et4N]4[1] in MeCN displays one intense band centered at 233 nm, and upon 

irradiation new bands at 276 nm (ε = 7,600 M-1 cm-1) and 340 nm (ε = 1,800 M-1 cm-1) grow in 

over time; the molar extinction coefficient of the former suggests a charge transfer band. When 

this sample is allowed to stand in the dark, the original spectrum is recovered. Thermochromic 

behavior has been reported previously for [C4mim]x[UO2(NCS)y] (C4mim = 1-butyl-3-

methylimidazolium; x = 1-4, y = 3-6) in ionic liquids whereby dissociation of a thiocyanate 

ligand was postulated as an explanation,25 whilst a number of studies on the photochemical 

activation of chromium complexes such as Reinecke's salt affords some of the long lived 

(hundreds of μs) dimeric radical anion [(NCS)2]•−, formed by dissociation and identifiable by a 

characteristic maximum at 480-490 nm.28  In our system we see no evidence of dissociation by 

vibrational spectroscopy and the peak positions in the IR spectrum do not change. This 
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eliminates the possibility of linkage isomerization29 and there is no evidence for a uranyl stretch 

in the IR spectrum which excludes oxidation of the complex. In addition, no evidence of metal-

based redox reactions is observed as judged by SQUID magnetometry on “green” and “orange” 

Cs4[1] (Figure 3). The corresponding thorium(IV) complex [Et4N]4[2] also undergoes this 

photochemistry to give the same spectroscopic features. Moreover, both [Et4N]4[1] and 

[Et4N]4[2] were found to be EPR inactive after UV-irradiation. We are unsure as to the molecular 

interpretation for this reversible behavior.  
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Figure 2. Changes in the UV-Vis spectrum of [Et4N]4[1] in MeCN upon exposure to UV light 

(λex = 340 nm) measured over 3 h. 

 

Recent interest in uranium chemistry has come from the magnetic properties,30 in particular as 

a number of compounds show Single Molecule Magnetic (SMM) behavior. For example, the 

U(III) species [U(Ph2BPz2)3],31 [U(H2BPz2)3],32 [U(Tp)3],33 [U(Tp*)2I],34 [U(Tp*)2(bipy)]I,35 
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[(U(BIPMTMSH)(I))2(µ-η6:η6-PhMe)],36 and [UVO2]+ complex [{[UO2(salen)]2Mn(Py)3}6]37 all 

show SMM behavior (Py = pyridine; Pz = pyrazolyl; Tp = tris(pyrazolyl)borate; Tp* = hydrotris-

(3,5-dimethylpyrazolyl)borate; BIPMTHSH = HC(PPh2NSiMe3)2; salenH2 = N,N′-

ethylenebis(salicylimine)). Most interestingly it appears that the SMM behavior is an intrinsic 

property of U(III).38 Uranyl(V) single ion magnets39 and Uranyl(V)-Mn(II)40 single chain 

magnets have also been reported. A recent computational study41 has suggested that also U(IV) 

compounds could show unusual magnetic behavior, particularly in tetragonal or trigonal 

prismatic geometries with the ground states MJ =  ± 3 or MJ =  ± 4 respectively. We have 

explored the magnetic properties of Cs4[1] and [Et4N]4[1] as shown in Figure 3. Variable 

temperature magnetic susceptibility of [Et4N]4[1] is typical of U(IV) within a region of 

Temperature Independent Paramagnetism (µeff at 300 K = 2.23 BM) followed by a precipitous 

drop at low temperatures (µeff at 2 K = 0.53 BM), consistent with a singlet ground state. 

However, there is a striking difference to the magnetic profile of [Cs]4[1] at low temperatures 

(µeff at 2 K = 1.21 BM). Variable field (Figure S1) and AC susceptibility measurements (Figure 

S2) corroborate the +4 oxidation state so we believe this difference must be due to the change in 

geometry, as the solid state structures show no evidence of close contacts between uranium 

molecules. The AC susceptibility shows no unusual behavior, suggesting that in our examples at 

least, the ground state is not conducive for the SMM behavior. It is worth noting that this is the 

first study on the geometry dependence upon the magnetic susceptibility with the same ligand 

set. From these results it is clear that small changes in geometry can have a drastic change in the 

ground state configuration; we are exploring this in more detail and will report on our results in 

due course. 
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Figure 3. Magnetic susceptibility measurements, collected at 0.1 T for [Et4N]4[1] (empty 

bullets); ‘green’ Cs4[1] (green) and ‘orange’ Cs4[1] (red). 

 

Photoluminescence Spectroscopy 

 

Our interest in [A]4[1] was initially to explore the photoluminescence properties of these 

complexes. In order to understand the photoluminescence spectra, we first sought to fully assign 

the electronic absorption spectrum. The open shell nature of these compounds makes the 

assignment of absorption and emission bands challenging; although analysis based upon the 

Russell-Saunders coupling scheme can be used as a good approximation.14b The electronic 

absorption spectrum of [Et4N]4[1] in MeCN is shown in Figure 4; that of the corresponding 

Cs4[1] is identical. There is one intense band in the UV region (λmax = 230 nm, ε = 13,700 M-1 
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cm-1) that can be assigned to ligand-based n-π* bands, as they are also observed in the thorium 

analogue, [Et4N]4[2] and in Na[NCS]. Interestingly the f-d transition is not observed in this case 

so the excited state must lie higher than 45,450 cm-1 above the ground state; in 

[Li(THF)4][UCl5(THF)] the corresponding transition was found at 36,100 cm-1.15 The weak 

bands in the visible and near infrared regions are assigned to intra-configurational f-f transitions, 

and the low molar absorption coefficients (ε = 20-200 M-1 cm-1) are likely due to the high 

symmetry of this complex. We have recently shown that the local geometry and crystal field 

effects are rather unimportant in the energy of the f-f transitions,15 so we have assigned the 

spectrum of [Et4N]4[1] based upon published theoretical treatment of [U(H2O)8]4+ using 

CASPT2 techniques.17 The assignments shown in Figure 4 are the transitions from the Russell-

Saunders coupled 3H4 ground state to the states of higher energy; the transition to the highest 

energy 1S0 state is presumably buried under the intense ligand based bands in the UV region. 

Interestingly, in comparison to [Et4N][U(NCS)5(bipy)2] and [Li(THF)4][UCl5(THF)] there is 

little difference in the position of these bands (Table S4). 
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Figure 4. UV (left) and vis-NIR (right) absorption spectrum of [Et4N]4[1] in MeCN.  
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Attempts to obtain a photoluminescence spectrum of [Et4N]4[1] by excitation into any of the 

absorption bands in MeCN gave no detectable signal. This may be due to the high symmetry, 

which means the oscillator strengths of the bands are small. However, repeating the 

measurements in CD3CN does give a photoluminescence spectrum, which is shown in Figure 5a. 

A broad, weak band centered at 410 nm is consistent with our observations on the uranium 

halide complexes, and the measured lifetime is 10 ns. Using the absorption spectra we can 

postulate that excitation into the ligand chromophore is followed by inefficient electron transfer 

and subsequent de-excitation through the f-orbital manifold; this is similar to our recent studies 

on [UX5(THF)]- whereby excitation occurred into the d-orbitals. As the emission profile is broad 

it is likely that the observed emission terminates in an envelope of energy levels. Essentially we 

are using an ‘antenna’ effect to sensitize the emission of the U(IV) complex, which is 

reminiscent of lanthanide photoluminescence spectroscopy. We were unable to measure the 

quantum yield for [Et4N]4[1] as the emission is weak, but the emission intensity is comparable to 

that of the Raman bands in this solvent. In order to eliminate the possibility of observing a uranyl 

impurity we conducted two additional experiments. Firstly, an authentic sample of 

[Et4N]3[UVIO2(NCS)5] was prepared (the electronic absorption spectra can be found in Figure 

S3)26 and measured in both CH3CN and CD3CN, which gave vibronically coupled bands 

centered at 520 nm (E0-0 = 20,040 cm-1) with a lifetime of 1.4  µs in CD3CN (Figure 5b); the 

vibronic progressions that correspond to the ν1 and ν2 vibrational modes (890 cm-1) match 

reasonably well with those determined from the Raman spectra (850 cm-1). This spectrum is 

essentially identical to that observed of this anion in ionic liquids.25 Second, [Et4N]4[1] was 

exposed to air and the emission monitored over time. The decay in intensity of the band at 400 

nm and the increase in intensity of the vibronically coupled bands centered at 500 nm prove 
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conclusively the observation of U(IV) (Figure 5c). Further evidence for the involvement of f-

orbitals in the emission is that no emission was seen from the corresponding thorium complex, 

[Et4N]4[2], with the f-orbitals lying much higher in energy,42 or Na[NCS] under identical 

conditions. 

 

Figure 5. Excitation (black) and emission (red) spectra of (a) [Et4N]4[1] (λex = 340 nm; λem = 

420 nm); (b) [Et4N]3[UO2(NCS)5] (λex = 340 nm and λem = 520 nm); and (c) emission spectra of 

[Et4N]4[1] exposed to air (λex = 340 nm), all at 298 K in CD3CN. 

 

Most U(IV) compounds contain ligands that have low-lying charge transfer absorptions that 

can mask f-f transitions and allow different decay processes to occur upon excitation. This is 

exemplified by the reports of the metallocene ketimide system [Cp*
2U{N=C(Ph)(CH2Ph)}2] 

(Cp* = C5Me5), where no 5f-centered emission was observed following photoexcitation. Decay 

from the ligand centered singlet state proceeds directly through the 5f-electron manifold, 

resulting in efficient quenching of the emission and lifetimes of picosecond order.43 Therefore on 

the basis of our studies we can postulate that uranium(IV) compounds that do not have ligand 

centered CT bands in the visible region of the spectra may show photoluminescent behavior. We 

are currently exploring this thesis in detail.  
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DFT Studies on the Bonding in [1]4- 

 

In order to gain further insight into the electronic structure of the studied compounds, 

especially the degree of covalency of the U‒N bonds, which may be important in Ln/An 

differentiation in ionic liquids, we turn to density functional theory (DFT) that is increasingly 

being utilized in this field.44 Geometry optimization of triplet [U(NCS)8]4- using both pure 

(BP86) and hybrid (B3LYP) functionals with a TZVPP basis set resulted in square antiprismatic 

geometry, with the point group D4d, confirmed as an energy minimum by harmonic frequency 

calculation. A comparison between the calculated and experimentally determined bond lengths 

and angles for the square antiprismatic Cs4[1] is reported in Table 1. The DFT geometries 

generally reproduce the solid-state geometry well; however, geometry optimization of isolated 

tetraanion [1]4- results in exactly linear NCS groups, supporting the observation that the non-

linearity of these groups in the solid-state is due to crystal packing forces. 

 

Previous DFT studies of actinide complexes reported significant differences in the description 

of metal‒ligand bonding between pure and hybrid DFT methods. Table 1 indicates that BP86 

reproduces the X-ray U‒N and C‒S bond lengths within an experimental error but significantly 

overestimates the N‒C length. In contrast, B3LYP overestimates the U‒N and N‒C bond 

lengths. Given the apparent importance of crystal packing, it is not possible to deduce from this 

data whether one method gives a better description of bonding. Instead, the vibrational modes of 

the NCS group, especially the N‒C stretching modes, allow a more reliable test of the 

performance of these methods. Not only is this mode easily observed in IR and Raman spectra, 
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but it should also be sensitive to the electronic character of the U‒N bonding. Table 1 clearly 

shows that BP86 yields a much better description of this mode than does B3LYP.45 Two bands 

due to IR-active modes are found within 20 cm-1 of the experimental value, while the most 

intense Raman bands are centered at 2060 cm-1, again slightly above the experimental value, 

with a less intense peak close to the experimental band at 2093 cm-1. In contrast, B3LYP 

overestimates the energy of these bands by as much as 100 cm-1. 

 

Table 1. DFT geometry and vibrational modes using BP86 and B3LYP basis set and 

experimental values for Cs4[1] and [Et4N]4[2]. 

 
Bond Lengths (Å) N‒C stretch (cm-1) C‒S stretch (cm-1) 

U‒N N‒C C‒S IR Raman IR Raman 

[1]4- 

Expt 
2.38(3) 

2.46(3) 

1.15(4) 

1.14(4) 

1.63(4) 

1.61(3) 
2047 2045 783 823 

    2090 2055 786 810 

     2090   

BP86 2.469 1.185 1.644 2067 (b2) 2057 (e2) 797 805 

    2071 (e1) 2060 (e3)   

     2099 (a1)   

B3LYP 2.485 1.171 1.644 2151 (b2) 2139 (e2) 803 811 

    2154 (e1) 2144 (e3)   

     2191 (a1)   

[2]4- 

Expta 2.47(2) 1.15(2) 1.59(2)     

BP86 2.538 1.185 1.644 2072 2107 800 809 

a For [Et4N]4[Th(NCS)8] 
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Since BP86 gave the most appropriate fit to the experiment, we have utilized this method to 

examine the bonding in [1]4- and related compounds. This method has found that the HOMO is 

ligand-based and the LUMO is of the 5f-orbital character (Figure 6). The calculated HOMO-

LUMO gap is 17,905 cm-1 (17,018 cm-1 for the β-spin) and the d-orbitals are ~ 44,000 cm-1 

higher in energy than the ground state; experimentally the d-orbitals are higher than 50,000 cm-1. 

Natural bond order (NBO) analysis finds a single bonding orbital for each U‒N bond (Figure 7), 

made up of 10.9% U and 89.1% N character, of which the U orbital contribution is 12.34% s, 

34.14% p, 38.01% d and 15.51% f. This can be compared to the U‒Cl bond in [UCl5(THF)]- 

(17% U and 83 % Cl; 20 % s, 26 % p, 41% d and 14% f).15 This analysis also locates one σ and 

two π bonding orbitals in N‒C, and a single σ C‒S bond, suggesting that the most appropriate 

resonance form of the coordinated thiocyanate ligand is [N≡C‒S]- with lone pairs of electrons on 

the sulfur, which may be accessible for bonding to soft transitional metals. NBO indicates a 

charge on U in [1]4- of just +0.26, much less than the formal charge of +4, with corresponding 

charges of ‒0.18, +0.07 and ‒0.16 on N, C and S, respectively. For comparison, data for [2]4- 

indicates slightly longer Th‒N bonds than in the U complex but identical N‒C and C‒S metric 

parameters and vibrational data, the charge of +1.20 on Th pointing to a much higher 

contribution of ionic bonding in this complex. It should be noted that experimental bond lengths 

for Cs4[2] are unavailable. However, the cubic [Et4N]4[2] has been structurally characterized 

and, despite the different geometry, it follows the same trend as for Cs4[1]. All complexes of this 

family have the same resonance structure of one U/Th‒N, three N‒C and one C‒S bonding 

orbitals. 
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Figure 6. Spin density (left), HOMO (middle) and LUMO (right) of [1]4- at the BP86 level of 

theory. 

 

Figure 7. NBO analysis for [1]4-: (a) U‒N σ NBO; (b) N‒C σ NBO; (c) and (d) degenerate N‒C 

π NBO; (e)  C‒S σ NBO. 

 

Electrochemical and Spectroelectrochemical Studies 
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 To corroborate the nature of the ligand-based HOMO (Figure 6), we measured the cyclic 

voltammogram of [Et4N]4[1], and [Et4N]4[2] (Figure 8).  

-2.0 -1.6 -1.2 -0.8 -0.4 0.0 0.4 0.8

V
-1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4

V

 

Figure 8. CV of complexes [Et4N]4[1] (left) and [Et4N]4[2] (right) vs Fc/Fc+ in THF at 293 K, 

with ~0.1M [Bu4N][BPh4] as a supporting electrolyte (scan rate = 0.1 V s-1).  

 

For [Et4N]4[1] there is a broad irreversible cathodic wave at Ep,c = -1.80 V which may be 

ascribed to a U(III)/U(IV) couple, in line with other examples in the literature (Table 2). Further, 

there is a reversible oxidation at E1/2 = +0.22 V that could be assigned formally as a U(IV)/U(V) 

redox couple or, as predicted by DFT, as a ligand based couple. In the cyclic voltammogram  of 

[Et4N]4[1] measured in MeCN (Figure S4) the reversible oxidation at E1/2 = +0.22 V is 

electrochemically quasi-reversible, possibly due to surprisingly slow electron transfer kinetics as 

the internal standard was not influenced, and there is appearance of second, irreversible 

oxidation at Ep,a = +0.52 V. It is known that oxidation of ionic liquids with [NCS]- counterions 

has a limited anodic window due to the irreversible oxidation of [NCS]- to thiocyanogen, 

NCS‒SCN (Ep,a = +0.42 V vs. Fc/Fc+),46 but this does not correspond with the redox couple in 

[Et4N]4[1]. In order to fully assign these anodic waves we first also explored the electrochemistry 

of the thorium analogue, [Et4N]4[2], which would not have an accessible metal-based oxidation. 

The cyclic voltammogram of this complex (Figure 8) shows no reduction wave within our 
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experimentally accessible window, but again the same oxidation wave at E1/2 = +0.22 V, 

confirming the DFT results that the HOMO is ligand-based.  

 

Table 2. Selected redox couples for uranium(IV) and thorium(IV) complexes.  

Complex E/V vs Fc/Fc+ Ref. 

An(IV)/An(III) An(IV)/An(V) 

[Et4N]4[1] -1.8 +0.22(ligand based) This work 

[Et4N]4[2]  +0.22 (ligand based) 

(C5Me5)2UCl2 -1.85  47 

(C5Me5)2U(CH3)2 -2.41  48 

(C5Me5)2U(η2(N,N’) 
CH3NN=CPh2)(SO3CF3) 

-2.01 

 

+0.18  
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(C5Me5)2U[η2(N,N’)-
CH3NN=CPh2]2 

-2.78 -0.68 

(C5Me5)2U[‒N=C(Ph)2]2  -2.50 -0.48 

(C5Me5)2Th[η2(N,N’)-
PhNN=CPh2]2 

-3.0  

(C5Me5)2Th[‒N=C(Ph)2]2  -2.8  

 

 The redox events in [Et4N]4[1] were further probed with spectroelectrochemistry (SEC) 

measurements50 as an ideal tool for this type of systems where the ν(N=C) and ν(C=S) 

frequencies of the thiocyanate ligand in the infrared spectrum and ligand based n-π* transition in 

the electronic absorption spectrum act as sensitive indicators. In addition, the f-f transitions in the 

uranium ion can also be used to monitor changes in its oxidation state, although due to the high 

orbital symmetry these bands are rather weak. The spectroelectrochemistry measurements were 
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carried out using controlled potential electrolysis in anhydrous acetonitrile containing ca. 0.1 M 

[nBu4N][PF6] at 293 K in an optically transparent thin layer electrochemical (OTTLE) cell. 

Changes in the IR active ν(C=N) and ν(C=S) modes in the infrared spectral profile upon 

application of the anodic  potential of +0.22 V were examined and are shown in Figure 9. A shift 

of the ν(N=C) absorption band from 2047 cm-1 (shown in the black line) to 2031 cm-1 (shown in 

the red line) was observed, whilst the ν(C=S) band at 786 cm-1 remained unchanged by this 1e- 

oxidation process. The reversibility of the initial 1e- oxidation was confirmed by the in parallel 

recorded thin-layer cyclic voltammogram and the parent IR spectrum reproduced upon back 

reduction (blue line). The corresponding UV-Vis spectral changes were also examined. The 1e‒ 

oxidation of [1]4- results in a slight wavelength shift and small decrease in the intensity of the f-f 

transitions (Figure S5), suggesting that the oxidation state of U(IV) in [1]3- remained unchanged. 

This spectroelectrochemical result has thus confirmed that the reversible anodic wave observed 

in the conventional and thin-layer cyclic voltammograms at +0.22 V is ligand-based. The 

presence of a single band in the IR spectrum shifted by only 15 cm-1 for this oxidized product 

suggests that the spin density is delocalized over all the thiocyanate ligands; in the largely metal-

localized 1e- oxidation of a Mo(II)(NCS) complex, a shift from 2085 to 2034 cm-1 was observed 

(i.e. the M=N=C=S resonance contribution increases).51  
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Figure 9. IR spectral changes in the ν(C=N) region (left) and the ν(C=S) region (right), 

accompanying the reversible 1e‒ oxidation of [1]4- to stable [1]3- in acetonitrile/ [nBu4N][PF6] at 

293 K within an OTTLE cell. Spectra: black – before oxidation; red – after oxidation at +0.22 V; 

blue – after reversible back reduction. 

 

In order to further probe the initial anodic process, DFT calculations were carried out on the 

putative one-electron-oxidized product, [U(NCS)8]3-. Despite not having formal D4d symmetry, 

this complex retains approximate square-antiprismatic coordination, with U‒N bond lengths 

between 2.365 and 2.385 Å, i.e., revealing substantial shortening on loss of an electron.52 DFT 

also reproduces the red shift in the IR-active N=C stretching frequency (2044 and 2048 cm-1 vs 

2031 cm-1) observed in Figure 9, whilst the infrared active C=S stretching frequency does shift 

only slightly (831 cm-1). NBO analysis supports the assignment of the 1e- oxidation as being 

ligand-based, indicating a loss of 0.18 electrons from each NCS- ligand, primarily from S, and 

not from the metal. This is in agreement with the SEC data suggesting a delocalization of the 

spin density over each NCS- ligand (vide supra). 

 

The subsequent one-electron oxidation of [Et4N]3[1] in acetonitrile at +0.52 V was also 

investigated spectroelectrochemically (Figures 10 and 11). In the IR spectra (Figure 10) the 

ν(C=N) band at 2031 cm-1 (shown in pink) decreased in intensity and a new weak band ν(C=N) 

grew in at 2160 cm-1 (green spectrum), which matches the wavenumber reported for 

dithiocyanogen, NCS‒SCN.53 The electronic absorption near 320 nm most likely also belongs to 

this product (cf. Figure S7). Back reduction of dithiocyanogen at ca. +0.30 V (corresponding to a 

well-defined cathodic wave in the thin-layer CV) did not recover parent [Et4N]3[1] , in line with 
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the irreversible nature of the CV response. Instead, it resulted in the appearance of a new sharp 

ν(C=N) band at 2063 cm-1 (Figure 10, black line). This could be due to the formation of free 

[NCS]¯ (the S‒S bond is known to be weak54), decomposition to form [CN]¯55 or the formation 

of the relatively long lived [NCS]2
•‾. The UV-Vis spectrum (Figure 11) shows no evidence of 

[NCS]2
•‾ that features a characteristic absorbance at 480 nm.28  The disappearance of the f-f 

transitions reflects a decomposition of the parent U(IV) complex.  Moreover, the product UV-vis 

spectrum closely matches that of [Et4N]3[UO2(NCS)5] (= [Et4N]3[3]; Figure S3), and this also 

applies for the IR ν(C=N) band shape and wavenumber of [Et4N]3[3] (Figure S9) that closely 

resemble the ν(C=N) signature of the main product of the back reduction path of dithiocyanogen 

(Figure 10). It cannot be excluded, though, that a small amount of free [NCS]- (ν(C=N) at 

2059/2067 cm-1, Figure S6) is also produced, in line with the stoichiometry of parent [1]4- and 

resulting [3]3-. Remnants of moisture in the solvent or electrolyte probably supplied oxygen for 

the UO2
2+ ion in the latter complex in the course of the intriguing irreversible oxidation of the 

U(IV) species [1]3-. 
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Figure 10. IR spectral changes in the ν(C=N) region accompanying the subsequent irreversible 

oxidation of [Et4N]3[1] at +0.52 V vs Fc/Fc+ in acetonitrile/[nBu4N][PF6] at 293 K within an 
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OTTLE cell. Inset is expanded view of the small absorption band forming at 2160 cm-1. Left 

shows the spectral changes upon the irreversible oxidation and right shows the spectrum 

recorded after the back reduction of [NCS]2 resulting in the formation of [Et4N]3[UO2(NCS)5]. 
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Figure 11. UV-Vis spectral changes accompanying the subsequent irreversible oxidation of 

[Et4N]3[1] at +0.52 V vs Fc/Fc+ recorded at 293 K in dry MeCN containing [nBu4N][PF6] within 

an OTTLE cell. Spectra: Red – parent [1]3-, green – after the irreversible oxidation to producing 

(among others) (NCS)2 (λmax = 320 nm); black – after the back reduction of (NCS)2 producing 

mainly [Et4N]3[3]). 

 

From the combined SEC measurements we can postulate that the 1e- oxidation of [Et4N]4[1] at 

+0.22 V is a reversible ligand-based oxidation process forming a ligand-centered radical species 

that is presumably delocalized over all NCS ligands.56 The second 1e- oxidation process at +0.52 

V is irreversible and results in the formation of the dithiocyanogen, NCS‒SCN. Upon back 
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reduction the only species identifiable with certainty is the secondary uranyl product, [Et4N]3[3]. 

This is illustrated in Scheme 1. 

[U(NCS)[U(NCS)88]]4-4-
- - ee

-
-

[U(NCS)[U(NCS)88]]3-3- NCSNCS SCNSCN

νν(N=C) (N=C) = = 2047 2047 cmcm-1-1 νν(N=C) (N=C) = = 2031 2031 cmcm-1-1 νν(N=C) (N=C) = = 2160 2160 cmcm-1-1 νν(N=C) (N=C) = = 2063 2063 cmcm-1-1

- - ee
-
-

[UO[UO22(NCS)(NCS)55]]3-3-

 

Scheme 1. The anodic and back reduction paths and respective IR ν(N=C) wavenumbers of the 

spectroelectrochemical study of [Et4N]4[1]. 

 

Structure and Spectroscopic Study of Uranyl Thiocyanate Complexes, A3[UO2(NCS)5] 

Given their potential for ionic liquid extractions, we also have examined the spectroscopic 

properties of the uranyl(VI) thiocyanate complexes. [Et4N]3[UO2(NCS)5] (= [Et4N]3[3]), was 

prepared via the literature procedure,26 whilst oxidation of Cs4[1] in air allowed the preparation 

of Cs3[UO2(NCS)5]O0.5, [4]; the oxygen comes from the air. The crystal structure is shown in 

Figure 12 and this consists of a coordination polymer whereby each [NCS]- ion shows 

interactions with a Cs+ ion via the S atom. Additionally, the uranyl oxygen atoms participate in 

Cation-Cation Interactions (CCI) with two Cs+ ions to add a further dimension to polymer. CCI’s 

have been noted previously, although there are only three other examples in the literature that 

display CCI’s to a Cs+ ion and the metric parameters are similar to those reported. The Cs+ 

cations form long contacts with the uranyl oxygen with an average distance of 3.342 Å, agreeing 

reasonably well with similar Cs+…O=U=O compounds.57 The average U=O bond length is 1.768 

Å whilst the average U-N (2.438 Å), N=C (1.161Å) and C=S (1.625Å) are identical to that found 

in [Et4N]3[3]. One manifestation of the CCI’s is a reduction in the U=O bond stretching 

frequencies in the Raman and infrared spectra (Figure S8); there is little shift compared to 
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[Et4N]3[3], suggesting that these interactions are very weak. In solution the vibrational data are 

identical to [Et4N]3[3], indicating that the coordination polymer is not stable.   

 

 
 
 

Figure 12. Solid state structure of [4] showing the packing structure (left) and the uranyl 

coordination sphere (right) (U = green; N = blue; C = grey; S = yellow; Cs = purple; O = red). 

 

Spectroelectrochemical studies of [Et4N]3[3] 

 

Given the facile ligand based 1e- oxidation of [Et4N]4[1], we were motivated to explore the 

redox chemistry of the uranyl thiocyanate species [Et4N]3[3]. Under the same SEC conditions as 

described above, cyclic voltammetry of a solution of [Et4N]3[3] in acetonitrile containing 0.1 M 

[nBu4N][BF6] (Figure 13) shows an irreversible oxidation at +0.30 V vs. (Fc/Fc+) and an 

irreversible one-electron reduction at -1.45 V ascribed to the unstable [UO2]2+/[UO2]+ redox 

couple, in line with known formal redox potentials of U(IV)/U(V) reduction (Table 3). What is 
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striking from this voltammogram is the anodic and cathodic peak currents differ substantially; 

the internal standard redox couple is not affected. Obviously, the NCS--based (Figure 14) 

oxidation of [Et4N]3[3] triggers a substantial decomposition, in contrast to [Et4N]4[1] (vide 

supra) and we have been unable to conclusively follow this process using 

spectroelectrochemistry. However, formation of dithiocyanogen was not observed.  

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0

E / V

*

 

Figure 13. Cyclic voltammogram of [Et4N]3[3] in anhydrous acetonitrile/[nBu4N][PF6] at 298 K. 

The redox couple marked with the asterisk is due to the Cp2Fe internal standard. 

 

Table 3. Formal redox half potentials (vs. Fc+/Fc) for the U(VI)/U(V) couple of selected uranyl 

complexes; (salmnt(Et2N)2 = 2,3-bis[(4-diethylamino-2-hydroxobenzylidene)amino]but-2-

enedinitrile; salen = (N,N’-disalicylidene-1,2-ethylenediaminate) and salophen = (N,N’-

disalicylidene-1,2-phenylenediaminate). 
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Complex E/V vs [(C5H5)2Fe]+/0 

 

Ref. 

[Et4N]3[3] -1.45 This work 

[UO2(OH)5]3- -1.11 58 

[UO2Cl4]2- -0.24 58 

[UO2(salmnt(Et2N)2)(Py)] -1.81 59 

[UO2(salen(Py)] -1.67 60 

[UO2(salophen)(Py)] -1.63 60 

 

 

The 1e- reduced uranyl(V) species [Et4N]4[UO2(NCS)5] would be predicted to be quite 

unstable as it is now quite well established that good π-donors and/or sterically bulky groups in 

the equatorial plane are required for stabilization of this unusual oxidation state;59,61 although, 

there is evidence for the kinetic stabilization of the [UO2]+ ion in ionic liquids.62 Any instability 

would manifest itself in an irreversible reduction, and the IR and UV spectra of the reduced 

product in the SEC measurements show only evidence of decomposition. Remarkably, the 

ultimate secondary reduction product identified by the IR and UV-Vis absorption signatures is 

the U(IV) complex [Et4N]4[1] (Figure S9). The mechanism of the uranyl(V) disproportionation 

path was not studied in detail.  

 

DFT calculations 
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  Using the same functional and basis sets as for the study of [1]4-, DFT data for three uranyl 

compounds were calculated (Table 4), with the HOMO and LUMO of [3] 3- shown in Figure 14. 

NBO analysis gives σ- and π-U=O NBO’s in addition to the NCS fragments as for [1]4-; these 

are shown in Figure S10. Agreement between experiment and theory for the uranyl(VI) complex 

is again reasonably good for both geometry and vibrational frequencies. Bond lengths and 

vibrational frequencies associated with thiocyanate are generally very similar to [1]4-, while U=O 

data are comparable to those in previous reports. Geometric and vibrational data for the one 

electron oxidation of [3]3- are included in Table 4. From the calculations it is clear that the 

electron is lost from the S termini. Atoms-in-Molecules analysis gives 4 charges on S of -0.684 

(very similar to parent complex) and one +0.354, i.e., localized electron loss. In contrast, NBO 

analysis suggests a delocalized electron loss, with each S losing about 0.2 electrons being 

consistent with the delocalized nature of the HOMO. Table 4 also contains DFT predictions for 

the result of one-electron reduction to the uranyl(V) species. This finds significantly longer (by 

more than 0.2 Å) U‒N bonds as well as slightly longer U=O and C‒S bonds, while N‒C bonds 

are almost unaffected by the reduction. NBO analysis sheds light on these changes: charges in 

the uranyl(VI) and reduced complexes on U are +1.02 and +1.35, on O -0.47 and -0.65, and on 

NCS -0.62 and -0.82, respectively. Thus, the added electron resides mainly on O and NCS, 

particularly S, rather than on the metal, despite the LUMO lying on U. Moreover, the uranyl(VI) 

complex contains 3 U=O, 1 U‒N, 3 N‒C and 1 C‒S bonding orbitals, which fall to 3, 0, 3 and 1 

in the reduced complex, reflecting an increased ionic character in the reduced complex. 

 

Table 4. Calculated and experimental bond lengths and vibrational frequencies in [3]3-, and in its 

1e- oxidized and (calculated) reduced form. 
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Bond Lengths 

(Å) 

U=O vibration 

(cm-1) 

N-C vibration 

(cm-1) 

C-S vibration 

(cm-1) 

U=O U‒N N‒C C‒S IR Raman IR Raman IR Raman 

[3]3- 

Expt 1.770 2.448 1.1526 1.618 924 849 2063 

2088 

2058 

2044 

781 807 

BP86 1.800 2.497 1.184 1.646 887 811 2076 2099 795 790 

[UO2(NCS)5]2- 

BP86 1.796 2.471 1.186 1.632 897 804 2034 2031 812 829 

[UVO2(NCS)5]4- 

BP86 1.836 2.702 1.181 1.669 812 761 2091 2101 738 739 

 

 

 

Figure 14. HOMO (left) and LUMO (right) of [3]3- at the BP86 level of theory. 

 

Atoms in Molecules Analysis 
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Atoms in molecules (AIM) analysis concentrates on the topology of the electron density, 

giving complementary information to that from NBO, and is increasingly utilized for actinide 

compounds.63 AIM analysis looks for bond critical points (BCP) between two atoms, and the 

chemical bonding can be characterized by the properties of these BCPs. Table 5 reports 

properties evaluated at bond critical points for An‒N and the ligand N=C and C=S bonds in a 

series of compounds. It is worth noting that the N=C and C=S data provide a good internal check 

of our calculations as they are essentially covalent. These data indicate that all compounds 

studied feature predominantly ionic U‒N bonds, as deduced from low values of ρ, positive ∇2ρ 

and energy density, H, close to zero. In contrast, U=O bonds have significant covalent character, 

while the expected covalency in the NCS- ligand is reproduced, with values consistent with the 

resonance form found with NBO analysis. The effects of the oxidation or reduction are also 

evident in AIM data, for instance in weakening U=O and U‒N bonds in the uranyl species, or 

strengthening U‒N bonds on oxidation of [1]4-. Moreover, a comparison between [1]4- and [2]4- 

shows that the bonding is essentially identical, in contrast to that obtained by NBO analysis. This 

data also shows that a UIV‒NCS bond is more ionic than a UIV‒Cl, whilst for U(VI) the bonding 

is essentially identical. 

 

Table 5. Bond critical point properties for selected compounds (values in au).a 

Compound Bond ρ ∇2ρ ε H Bond 
order Ref. 

[3]3- 
U‒O 0.317 0.616 0.000 -0.302 1.893 

This work 
U‒N 0.047 0.188 0.066 -0.002 0.243 
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N‒C 0.453 -0.497 0.006 -0.780 2.458 

C‒S 0.211 -0.260 0.004 -0.248 1.077 

[UO2Cl4]2- 

 

U‒O 0.31 0.32 n.r. n.r. 1.92 
64 

U‒Cl 0.05 0.12 n.r. n.r. 0.53 

[UO2(NCS)5]4- 

U‒O 0.286 0.484 0.000 -0.252 1.848 

This work 
U‒N 0.028 0.116 0.226 0.001 0.175 

N‒C 0.457 -0.424 0.000 -0.794 2.436 

C‒S 0.205 -0.372 0.003 -0.227 1.086 

[UO2(NCS)5]2- 

U‒O 0.287 0.653 0.000 -0.243 1.948 

This work 
U‒N 0.052 0.206 0.052 -0.004 0.265 

N‒C 0.438 -0.550 0.017 -0.737 2.516 

C‒S 0.218 -0.278 0.021 -0.256 1.091 
1.053 

[1]4- 

U‒N 0.047 0.200 0.320 -0.007 0.219 

This work N‒C 0.445 -0.204 0.006 -0.757 2.401 

C‒S 0.215 -0.405 0.033 -0.245 1.082 

[U(NCS)8]3- 
U‒N 0.068 0.226 0.277 -0.010 0.426 

This work 
N‒C 0.434 -0.586 0.010 -0.730 2.516 
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C‒S 0.219 -0.268 0.014 -0.260 1.094 

[2]4- 

Th‒N 0.048 0.166 0.019 -0.002 0.243 

This work N‒C 0.444 -0.672 0.006 -0.749 2.486 

C‒S 0.216 -0.388 0.058 -0.249 1.083 

[UCl5(THF)]- U‒Cl 0.072 0.165 0.090 -0.019 0.75 15 

ThCl4 Th‒Cl 0.081 0.157 0.011 -0.024 n.r. 63i 

a – n.r. = not reported 

 

Conclusions 

The properties of the uranium(IV) thiocyanate complexes [A]4[U(NCS)8] have been thoroughly 

elucidated by a number of spectroscopic and spectroelectrochemical techniques and DFT 

calculations. SQUID magnetic data show that the local coordination geometry can have an 

influence on the low temperature magnetic susceptibility. We have presented a further example 

of photoluminescence spectroscopy of U(IV) compounds that suggests this technique could be a 

valuable probe for the electronic structure of U(IV) compounds, but the geometry of the metal 

center is clearly important and high symmetry reduces the emission. Cyclic voltammetry studies 

show that the HOMO is ligand based and this has been corroborated by DFT studies and 

spectroelectrochemical measurements. Oxidation of Cs4[U(NCS)8] in air has allowed the 

isolation of an unusual coordination polymer, Cs3[UO2(NCS)5]O0.5, featuring weak cation-cation 

interactions between the uranyl and Cs+ cations.  [Et4N]3[UO2(NCS)5] has also been studied by 

electrochemical and DFT methods. The oxidation and reduction couples in the CV 
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voltammogram of this species were not studied in detail as significant decomposition occurred. 

However DFT studies on the putative uranyl(V) compound have been conducted and there is a 

weakening of the U-N and U=O bonds upon reduction. AIM analysis concludes that the U-N 

bond in all the species studied is essentially ionic but a U(IV)-Cl bond is less ionic than a U(IV)-

N bond. 

 

Experimental 

Caution! Natural uranium was used during the course of the experimental work. As well as the 

radiological hazards, uranium is a toxic metal and care should be taken with all manipulations. 

Experiments using uranium materials were carried out using pre–set radiological safety 

precautions in accordance with the local rules of Trinity College Dublin and the University of 

Reading. 

 

All manipulations were carried out using standard Schlenk and glove box techniques under an 

atmosphere of a high purity dry argon. IR spectra were recorded on a Perkin Elmer Spectrum 

One spectrometer with attenuated total reflectance (ATR) accessory. Raman spectra were 

obtained using 785-nm excitation on a Renishaw 1000 micro-Raman system in sealed capillaries. 

Thermal and field scans of DC and AC magnetization were carried out using a 5T Quantum 

Design MPMS XL SQUID magnetometer from 2 to 300 K. Powdered samples were fixed by 

eicosane and mounted in gel caps, which have a temperature–independent diamagnetic 

susceptibility, in a glove box and the gel caps were placed in sample straws for the measurement. 

Multiple measurements were taken to ensure reproducibility. Diamagnetic corrections were 

made using Pascal’s constants.65  Cyclic voltammetric measurements were undertaken with an 
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AUTOLAB PGSTAT12 potentiostat/galvanostat using a platinum disc electrode with a reaction 

surface of 1 mm2 as working electrode. A platinum rod electrode (together with internal 

referencing versus Fc/Fc+) was used as a reference electrode and a platinum knob electrode as 

auxiliary electrode. All measurements took place in a glove box under an atmosphere of high 

purity nitrogen, [nBu4N][BPh4] (10-1 M) was used as electrolyte. Alternatively, in Reading, the 

cyclic voltammetric measurements were conducted with a Metrohm Autolab PGSTAT302N 

potentiostat, in an air-tight three electrode cell connected to a Schlenk line, with a Pt microdisc 

(0.14 mm2) working electrode, Pt coil counter electrode, Ag coil p-reference electrode; the 

[nBu4N][PF6] electrolyte was recrystallized twice from absolute ethanol and dried under vacuum 

at 80 ºC  overnight. Controlled-potential electrolyses within the room-temperature OTTLE cell66 

were carried out using a PA4 potentiostat (Laboratory Devices, Polná, Czech Republic). IR and 

UV/Vis spectral monitoring of the redox reactions was carried out with a Bruker Vertex 70v FT-

IR spectrometer and a Scinco S3100 diode array spectrophotometer, respectively. The different 

redox steps were localized with the aid of contemporarily recorded thin-layer cyclic 

voltammograms. X-ray crystallography data were measured on a Rikagu Saturn and on a Bruker 

Apex diffractometer. The structures were solved by direct methods and refined on F2 by full 

matrix least squares (SHELX97) using all unique data. Crystal data, details of data collections 

and refinement are given in the supporting information. UV-vis/NIR measurements were made 

on either a Perkin Elmer Lambda 1050 spectrophotometer over the range 300–1300 nm, using 

fused silica cells with a path length of 1 cm. Steady-state photoluminescence spectra were 

recorded on a Horiba-Jobin-Yvon Fluorolog-3 spectrofluorimeter.  Luminescence lifetime data 

were recorded following 375-nm and 405-nm excitation, using time-correlated single-photon 

counting (a PCS900 plug-in PC card for fast photon counting). Lifetimes were obtained by tail fit 
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on the data obtained, and the quality of fit was judged by minimization of reduced chi-squared 

and residuals squared.   

THF was distilled over potassium or Na/benzophenone whilst acetonitrile and CD3CN were 

distilled over CaH2 or P2O5, and degassed immediately prior to use. Spectroscopic measurements 

used spectroscopic-grade solvents which were purchased from commercial sources, dried over 

molecular sieves and thoroughly degassed before use. [Et4N]4[U(NCS)8], [Et4N]4[Th(NCS)8]18b  

and [Et4N]3[UO2(NCS)5]26  were made via the literature procedures whilst all other reagents 

were obtained from commercial sources.  

 

Synthesis of [Bu4N]4[U(NCS)8].2MeCN 

To a suspension of UCl4 (100 mg, 0.25 mmol) in acetonitrile (20 cm3) was added Na[NCS] 

(170.75 mg, 2.11 mmol) and nBu4NCl (291.82 mg, 1.05 mmol). The mixture was stirred at room 

temperature for 30 min. The resulting green solution was filtered and the solvent was reduced in 

volume. Placement at -20 °C overnight yielded dark green crystals suitable for X-ray diffraction 

(240 mg, 0.16 mmol, 64%). IR (cm-1): 2047, 2090 ν(CN), 783 ν(CS). RAMAN   (cm-1) 2090, 

2056 and 2045 ν(CN), 796 ν(CS), UV-Vis-NIR (ε mol dm-3 cm-1): (MeCN, ~10-4M) 230 nm 

(12833.4), 475 nm (33.8), 505 nm (87.8), 573 nm (32.5), 691 nm (214), 933 nm (35), 1168 nm 

(127), 1584 nm (65), 1994nm (25).  

 

Synthesis of Cs3[UO2(NCS)5].O0.5  

A solution of Cs4[U(NCS)8] in acetonitrile was left to stand in air at room temperature. After 

two weeks dark yellow crystals suitable for X-ray diffractions were collected. IR (cm-1): 2104, 
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2020 ν(CN), 900 ν(UO), 798 ν(CS); Raman (cm-1): 2095, 2060, 2040 ν(CN), 849 ν(UO), 821 

ν(CS); Anal. Found: C, 6.13; N, 7.27. Calcd for Cs3UO2.5N5C5S5: C,6.21; N, 7.24. 

 

Computational Details 

 

DFT geometry optimization was performed on single molecules, extracted from the crystal 

structure, at the unrestricted BP86/def2-TZVP67,68 level using Turbomole69 initially without 

symmetry constraints, but subsequently in D4d or D5h point groups, as appropriate. Scalar 

relativistic effects in uranium were included through use of effective core potentials, as defined 

for this basis set. Spin contamination was not significant, with values of S2 within 1% of the 

anticipated value of 2.00. Further single-point DFT calculations were performed in Gaussian0970 

using the BP86 and B3LYP71 functionals. The (27 s 24p 18d 14f 6 g)/[8s 7p 5d 3f 1g] all-

electron ANO-RCC basis sets of DZP quality were used for uranium,72 with 6-31+G(d,p) on C, 

O, H and Cl.73 Scalar relativistic effects were included via the second-order Douglas-Kroll-Hess 

Hamiltonian.74 Natural bond orbital (NBO) analysis75 was performed using Gaussian09; Atoms-

in-Molecules (AIM) analysis used AIMAll.76 Topological analysis of the electronic density (ρ) is 

based upon those points where the gradient of the density, ∇ρ, vanishes77. In this work we 

consider points where one curvature (in the inter-nuclear direction) is positive and two 

(perpendicular to the bond direction) are negative, termed (3, -1) or bond critical points. 

Properties evaluated at such points characterize the bonding interactions present. The second 

derivative of ρ or Laplacian, ∇2ρ, and the bond ellipticity, the ratio of the two negative 

curvatures, are reported, as is the local energy density, H, defined as the sum of the kinetic and 

potential energy densities. An electron density (ρ) of 0.2 a.u. or greater typically signifies a 
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covalent bond and less than 0.1 a.u. indicates closed shell (ionic, Van der Waals etc.). The 

Laplacian of this function (∇2ρ) is typically significantly negative for covalent bonding and 

positive for closed shell interactions. The ellipticity, ε, measures the shape of the electron density 

distribution in a plane through the BCP and thus determines the degree of cylindrical symmetry 

in a bond. H is the total energy density (kinetic + potential energies) and is typically negative for 

covalent bonds.  This reveals whether accumulation of electronic density is stabilizing (E<0) or 

destabilizing (E>0). Integrated properties of atoms were checked for numerical accuracy via the 

basin integral of the Laplacian, which should vanish for properly defined atomic basins (all 

values 10-4 or less), and also by comparison of the sum of all atomic integrals with directly 

calculated molecular values. Integration of the overlap matrix over atomic basins can be used to 

derive covalent bond order, as set out by Angyan et al.78 

 

ASSOCIATED CONTENT 

Supporting Information. Structural data for orange [Et4N][U(NCS)8], Variable field and AC 

susceptibility plots for Cs4[1] and [Et4N]4[1], UV-Vis absorption spectrum and 

spectroelectrochemical study of [Et4N]3[3], CV of [Et4N]4[1] in acetonitrile, Raman spectra of 

[4], IR/UV-Vis spectroelectrochemical study of Na[NCS] in acetonitrile and further 

computational details. CCDC 988009-988010 contains the supplementary crystallographic data 

for this paper. These data can be obtained free of charge from The Cambridge Crystallographic 

Data Centre via www.ccdc.cam.ac.uk/data_request/cif. This material is available free of charge 

via the Internet at http://pubs.acs.org.  

AUTHOR INFORMATION 

http://www.ccdc.cam.ac.uk/data_request/cif


 

38 

Corresponding Author 

*Bakerrj@tcd.ie, Tel: +353-1-8963501; Fax: +353-1-6712826 

Author Contributions 

The manuscript was written through contributions of all authors. All authors have given approval 

to the final version of the manuscript.  

ACKNOWLEDGMENT 

We thank TCD (RJB and EH) for funding this work. JAP is grateful to UK National Service 

for Computational Chemistry Software. FH thanks the University of Reading (SCFP) for logistic 

support of the Spectroelectrochemistry Laboratory. ME and GL thank MINECO (MAT2012-

38318-C03). We thank Prof. Damien Murphy (Cardiff University) for the EPR measurements. 

mailto:*Bakerrj@tcd.ie


 

39 

FOR TOC ONLY 

TOC Synopsis. Uranium thiocyanate complexes in different oxidation states have been studied 

by SQUID magnetometry, photoluminescence spectroscopy and spectroelectrochemistry. The 

magnetic properties of [U(NCS)8]4- have been studied with respect to the geometry around the 

uranium ion. The thiocyanate ligands in this complex have been found to undergo unusual 

anodic reactivity. 

 

TOC Graphic 

 

 



 

40 

REFERENCES 

                                                 

(1) (a) Hayton, T. W. Chem. Commun. 2013, 49, 2956; (b) La Pierre, H. S.; Meyer, K. Inorg. 

Chem. 2013, 52, 529; (c) Jones, M. B.; Gaunt, A. J. Chem. Rev. 2013, 113, 1137; (d) Hayton, T. 

W. Dalton Trans. 2010, 39, 1145-1158; (e) Liddle, S. T.; Mills, D. P. Dalton Trans. 2009, 5592; 

(e) Liddle, S. T. Proc. R. Soc. A 2009, 465, 1673; (f) Castro-Rodríguez, I.; Meyer, K. Chem. 

Commun. 2006, 1353; (g) Ephritikhine, M. Dalton Trans. 2006, 2501. 

(2) (a) La Pierre, H. S.; Heinemann, F. W.; Meyer, K. Chem. Commun. 2014, 50, 3962; (b) 

Baker, R. J. Coord. Chem. Rev. 2012, 256, 2843. 

(3) Gardner, B. M.; Liddle, S. T. Eur. J. Inorg. Chem. 2013, 3753. 

(4) For reviews see: (a) Graves, C. R.; Kiplinger, J. L. Chem. Commun. 2009, 3831; (b) 

Arnold, P. L.; Love, J. B.; Patel, D. Coord. Chem. Rev. 2009, 253, 1973. 

(5) Baker, R. J. Chem. Eur. J. 2012, 18, 16258. 

(6) MacDonald, M. R.; Fieser, M. E.; Bates, J. E.; Ziller, J. W.; Furche, F.; Evans, W. J. J. Am. 

Chem. Soc. 2013, 135, 13310. 

(7)  La Pierre, H. S.; Scheurer, A.; Heinemann, F. W.; Hieringer, W.; Meyer, K. Angew. Chem. 

Int. Ed. 2014, DOI: 10.1002/anie.201402050. 

(8)  King, D. M.; Tuna, F.; McInnes, E. J. L.; McMaster, J.; Lewis, W.; Blake, A. J.; Liddle, S. 

T. Science 2012, 337, 717. 

(9) King, D. M.; Tuna, F.; McInnes, E. J. L.; McMaster, J.; Lewis, W.; Blake, A. J.; Liddle, S. 

T. Nat. Chem. 2013, 5, 482. 

http://pubs.rsc.org/en/journals/journal/cc


 

41 

                                                                                                                                                             

(10) For recent reviews see: (a) Kaltsoyannis, N. Inorg. Chem. 2013, 52, 3407; (b) Neidig, M. 

L.; Clark, D. L.; Martin, R. L. Coord. Chem. Rev. 2013, 257, 394. 

(11) Takao, K.; Bell, T. J.; Ikeda, Y. Inorg. Chem. 2013, 52, 3459. 

(12) (a) Natrajan, L. S. Coord. Chem. Rev. 2012, 256, 1583; (b) Billard I.; Geipel, G. in 

Springer Series on Fluorescence, 2008, 5, 465; (c) Burrows, H. D.; Miguel, M. D. G. in 

Advances in Colloid and Interface Science,  2001, 89-90, 485; (d) Baird, C. P.; Kemp, T. J. in 

Progress in Reaction Kinetics, 1997, 22, 87; (e) Denning, R. G. J. Phys. Chem. A 2007, 111, 

4125. 

(13) (a) Redmond, M. P.; Cornet, S. M.; Woodall, S. D.; Whittaker, D.; Collison, D.; Helliwell, 

M.; Natrajan, L. S. Dalton Trans. 2011, 40, 3914; (b) Hashem, E.; McCabe, T.; Schulzke, C.; 

Baker, R. J. Dalton Trans. 2014, 43, 1125. 

(14) (a) Geipel, G. Coord. Chem. Rev. 2006, 250, 844; (b) Liu G.; Beitz J. V. in The Chemistry 

of the Actinide and Transactinide Elements, L. R. Morss, N. M. Edelstein and J. Fuger (Eds), 

Springer, Dordrecht, The Netherlands, 2010; (c) Girnt, D.; Roesky, P. W.; Geist, A.; Ruff, C. M.; 

Panak, P. J.; Denecke, M. A. Inorg. Chem. 2010, 49, 9627. 

(15) (a) Hashem, E.; Swinburne, A. N.; Schulzke, C.; Evans, R. C.; Platts, J. A.; Kerridge, A.; 

Natrajan, L. S.; Baker, R. J. RSC Adv. 2013, 3, 4350; (b) Hashem, E.; Lorusso, G.; Evangelisti, 

M.; McCabe, T.; Schulzke, C.; Platts, J. A.; Baker, R. J. Dalton Trans. 2013, 42, 14677. 

(16) (a) Kirishima, A.; Kimura, T.; Tochiyama, O.; Yoshida, Z. Chem. Commun. 2003, 910; 

(b) Kirishima, A.; Kimura, T.; Nagaishi, R.; Tochiyama, O. Radiochim. Acta, 2004, 92, 705. 

http://pubs.acs.org/action/doSearch?action=search&author=Takao%2C+K&qsSearchArea=author
http://pubs.acs.org/action/doSearch?action=search&author=Bell%2C+T+J&qsSearchArea=author
http://pubs.acs.org/action/doSearch?action=search&author=Ikeda%2C+Y&qsSearchArea=author


 

42 

                                                                                                                                                             

(17) Danilo, C.; Vallet, V.; Flament, J. -P.; Wahlgren, U. Phys. Chem. Chem. Phys. 2010, 12, 

1116. 

(18) (a) Arutyunyan, E. G.; Porai-Koshits, M. A. Zh. Struk. Khim. 1963, 4, 110; (b) Bagnall, K. 

W.; Brown, D.; Colton, R. J. Chem. Soc. 1964, 2527.  

(19) (a) Countryman, R.; McDonald W. S. J. Inorg. Nucl. Chem. 1971, 33, 2213; (b) Al-

Kazzaz, Z. M. S.; Bagnall, K. W.; Brown, D.; Whittaker, B. J. Chem. Soc., Dalton Trans. 1972, 

2273. 

(20) Bombieri, G.; Moseley, P. T.; Brown, D. J. Chem. Soc., Dalton Trans. 1975, 1520. 

(21) (a) Griffith, W. P.; Mockford, M. J. J. Chem. Soc., Dalton Trans. 1986, 1057; (b) Folcher, 

G.; Marquet-Ellis, H.; Rigny, P.; Soulic, E.; Goodman, G. J. Inorg. Nucl. Chem. 1976, 38, 757; 

(c) Grey, I. E.; Smith, P. W. Aus. J. Chem. 1969, 22, 311. 

(22) (a) Borkowski, M.; Lis, S.; Siekierski, S. J. Alloys Compd. 1998, 275−277, 754; (b) 

Borkowski, M.; Krejzler, J.; Siekierski, S. Radiochim. Acta 1994, 65, 99; (c) Khopkar, P. K.; 

Mathur, J. N. J. Inorg. Nucl. Chem. 1980, 42, 109; (d) Chiarizia, R.; Danesi, P. R.; Scibona, G.; 

Magon, L. J. Inorg. Nucl. Chem. 1973, 35, 3595; (e) Moore, F. L. Anal. Chem. 1964, 36, 2158. 

(23) Srncik, M.; Kogelnig, D.; Stojanovic, A.; Korner, W.; Krachler, R.; Wallner, G. Appl. 

Radiat. Isot. 2009, 67, 2146. 

(24) (a) Alcock, N. W.; Roberts, M. M.; Brown, D. Acta Cryst. 1982, B38, 2870; (b) Bombieri, 

G.; Forsellini, E.; Graziani, R.; Pappalardo, G. C. Transition Met. Chem. 1979, 4, 70; (c) 

Vdovenko, V. M.; Skoblo, A. I.; Suglobov, D. N. Radiokhimiya 1967, 9, 119. 



 

43 

                                                                                                                                                             

(25) Aoyagi, N.; Shimojo, K.; Brooks, N. R.; Nagaishi, R.; Naganawa, H.; Van Hecke, K.; Van 

Meervelt, L.; Binnemans, K.; Kimura, T. Chem. Commun. 2011, 47, 4490. 

(26) Rowland, C. E.; Kanatzidis, M. G.; Soderholm, L. Inorg. Chem. 2012, 51, 11798. 

(27) P.Charpin, R.M.Costes, G.Folcher, P.Plurien, A.Navaza, C.de Rango, Inorg. Nucl. Chem. 

Lett. 1977, 13, 341. 

(28) (a) Michalski, R.; Sikora, A.; Adamus, J.; Marcinek A. J. Phys. Chem. A 2010, 114, 861 

(b) Mainusch, B.; Karocki, A.; Guldi, D.M.; Stasicka, Z.; Wasgestian F. Inorg. Chim. Acta 1997, 

255, 87; (c) Kirk, A. D.; Cai L.-Z. Inorg. Chem. 1995, 34, 3986; (d) Nord, G.; Pedersen, B.; 

Floryan-Løvborg, E.; Pagsberg P. Inorg Chem. 1982, 21, 2327. 

(29) Refinement of the structure with an S-bound thiocyanate ligand results in a substantial 

worsening of the R-factor and displacement factors for S. 

(30) Reinhart, J. D.; Long, J. R. Chem. Sci. 2011, 2, 2078. 

(31) Rinehart, J. D.; Long, J. R. J. Am. Chem. Soc. 2009, 131, 12558. 

(32) Rinehart, J. D.; Meihaus, K. R.; Long, J. R. J. Am. Chem. Soc. 2010, 132, 7572. 

(33) Rinehart, J. D.; Long, J. R. Dalton Trans. 2012, 41, 13572. 

(34) (a) Antunes, M. A.; Santos, I. C.; Bolvin, H.; Pereira, L. C. J.; Mazzanti, M.; Marçalo, J.; 

Almeida; M. Dalton Trans. 2013, 42, 8861; (b) Coutinho, J. T.; Antunes, M. A.; Pereira, L. C. J.; 

Bolvin, H.; Marçalo, J.; Mazzanti, M.; Almeida, M. Dalton Trans. 2012, 41, 13568. 



 

44 

                                                                                                                                                             

(35) Antunes, M. A.; Pereira, L. C. J.; Santos, I. C.; Mazzanti, M.; Marçalo J.; Almeida, M. 

Inorg. Chem. 2011, 50, 9915. 

(36) Mills, D. P.; Moro, F.; McMaster, J.; van Slageren, J.; Lewis, W.; Blake, A. J.; Liddle, S. 

T. Nat. Chem. 2011, 3, 454. 

(37) Mougel, V.; Chatelain, L.; Pecaut, J.; Caciuffo, R.; Colineau, E.; Griveau, J. –C.; 

Mazzanti, M. Nat. Chem. 2012, 4, 1011. 

(38) Moro, F.; Mills, D. P.; Liddle, S. T.; van Slageren, J. Angew. Chem. Int. Edn. 2013, 52, 

3430. 

(39) King, D. M.; Tuna, F.; McMaster, J.; Lewis, W.; Blake, A. J.; McInnes, E. J. L.; Liddle, S. 

T. Angew. Chem. Int. Edn. 2013, 52, 4921. 

(40) Mougel, V.; Chatelain, L.; Hermle, J.; Caciuffo, R.; Colineau, E.; Tuna, F.; Magnani, N.; 

de Geyer, A.; Pecaut, J.; Mazzanti, M. Angew. Chem. Int. Edn. 2014, 53, 819.  

 
(41) Baldoví, J. J.; Cardona-Serra, S.; Clemente-Juan J. M.;, Coronado, E.; Gaita-Arino, A. 

Chem. Sci. 2013, 4, 938. 

(42) Photoluminescence from [Th(PO3C6H4CO2H)F2] has been reported, but these arise from 

the ligand. Adelani, P. O.; Albrecht-Schmitt, T. E. Inorg. Chem. 2010, 49, 5701. 

(43) Hilton, D. J.; Prasankumar, R. P.; Schelter, E. J.; Thorsmolle, V. K.; Trugman, S. A.; 

Shreve, A. P.; Kiplinger, J. L.; Morris, D. E.; Taylor, A. J. J. Phys. Chem. A 2008, 112, 7840. 



 

45 

                                                                                                                                                             

(44) For recent reviews see (a) Wang, D.; van Gunsteren, W. F.; Chai, Z. Chem. Soc. Rev., 

2012, 41, 5836; (b) Kirker, I.; Kaltsoyannis, N. Dalton Trans. 2011, 40, 124; (c) Schreckenbach, 

G.; Shamov, G. A. Acc. Chem. Res.  2010, 43, 19; (d) Tassell, M. J.; Kaltsoyannis, N. Dalton 

Trans. 2010, 39, 6719; (e) Gagliardi, L.; Roos, B. O. Chem. Soc. Rev. 2007, 36, 893; (f) 

Kaltsoyannis, N. Chem. Soc. Rev. 2003, 32, 9. 

(45) Vibrational frequencies have not been scaled, since recommended scaling factors are not 

available for the specific combination of functional and basis set used here. However, typical 

scaling factors for basis sets of similar size to those used here with BLYP (0.995) and B3LYP 

(0.970), obtained from http://cccbdb.nist.gov/would not change the overall conclusions reached, 

and would bring BP86 data into slightly better agreement with experiment. 

(46) (a) Ohaion, T.; Kalisky, Y.; Ben-Eliyahu, Y.; Becker, J. Y.; Bettelheim, A. Eur. J. Inorg. 

Chem. 2013, 3477; (b) Vicente, J.; Diaz, M. Env. Sci. Technol. 2003, 37, 1452. 

(47) (a) Sonnenberger, D. C.; Gaudiello, J. G. Inorg. Chem. 1988, 27, 2747; (b) Finke, R. G.; 

Gaughan, G.; Voegeli, R. J. Organomet. Chem. 1982, 229, 179. 

(48) Clappe, C.; Leveugle, D.; Hauchard, D.; Durand, G. J. Electroanal. Chem. 1998, 448, 95. 

(49) Morris, D. E.; DaRe, R. E.; Jantunen, K. C.; Castro-Rodríguez, I. Organometallics 2004, 

23, 5142.  

(50) Kaim W.; Fiedler, J. Chem. Soc. Rev. 2009, 38, 3373. 

(51) Tory, J.; Gobaille-Shaw, G.; Chippindale, A. M.; Hartl, F. J. Organomet. Chem. 2014, 

760, 30. 



 

46 

                                                                                                                                                             

(52) It is worth noting that this corroborates our assessment of the orange photoproduct that 

has been structurally characterized; i.e., it is not a photo-oxidized species as the shorter bond 

lengths are not observed in the X-ray structure (Tables S1-S3). 

(53) (a) Burchell, C. J;. Kilian, P.; Slawin, A. M. Z.; Woollins J. D. Inorg. Chem. 2006, 45, 710; (b) 

Devore, T. C. J. Mol. Struct. 1987, 162, 287; (c) Vanderzee, C.E.; Quist A.S. Inorg. Chem. 1966, 5, 1238.  

(54) Jensen, J. O. J. Mol. Struct. THEOCHEM  2005, 714, 137. 

(55) Cataldo F. Polyhedron 2000, 19, 681. 

(56) Coordinated NCS radicals to transition metals have been reported: Losada, J.; Morán, M. 

J. Organom. Chem. 1984, 276, 13. 

(57) (a) Adelani, P. O.; Oliver, A. G.; Albrecht-Schmitt, T. E. Crys. Growth. Des. 2011, 11, 3072; (b) J. 

Locock, A.; Burns, P. C. J. Solid. State. Chem., 2003, 175, 372; (c) Thuéry, P.; Masci, B. Dalton Trans. 

2003, 2411. 

(58) Morris, D. E. Inorg. Chem. 2002, 41, 3542. 

(59) Hardwick, H. C.; Royal, D. S.; Helliwell, M.; Pope, S. J. A.; Ashton, L.; Goodacre R.; Sharrad, C. 

A. Dalton Trans. 2011, 40, 5939. 

(60) Kim, S.-Y.; Tomiyasu, H.; Ikeda, Y. J. Nucl. Sci. Technol. 2002, 39, 160. 

(61) Clark, D. L.; Conradson, S. D.; Donohoe, R. J.; Keogh, D. W.; Morris, D. E.; Palmer, P. 

D.; Rogers, R. D.; Tait, C. D. Inorg. Chem. 1999, 38, 1456. 

(62) For recent examples see: (a) Yaprak, D.; Spielberg, E. T.; Bäcker, T.; Richter, M.; 

Mallick, B.; Klein, A.; Mudring, A.-V. Chem. Eur. J. 2014, 20, 6482; (b)  Ogura, T.; Takao, K.; 

http://pubs.acs.org/action/doSearch?action=search&author=Ogura%2C+T&qsSearchArea=author
http://pubs.acs.org/action/doSearch?action=search&author=Takao%2C+K&qsSearchArea=author


 

47 

                                                                                                                                                             

Sasaki K.;  Arai, T.; Ikeda, Y. Inorg. Chem. 2011, 50, 10525; (c) Ikeda, Y.; Hiroe, K.; Asanuma, 

N.; Shirai, A. J. Nucl. Sci. Technol. 2009, 46, 158. 

(63) Selected examples where AIM has been extensively utilized: (a) Lu, E.; Cooper, O. J.; 

McMaster, J.; Tuna, F.; McInnes, E. J. L.; Lewis, W.; Blake, A. J.; Liddle, S. T. Angew. Chem. 

Int. Ed. 2014, 53, 6696; (b) Mountain, A. R. E.; Kaltsoyannis, N. Dalton Trans. 2013, 42, 13477; 

(c) Brown, J. L.; Fortier, S.; Wu, G.; Kaltsoyannis, N.; Hayton, T. W. J. Am. Chem. Soc. 2013, 

135, 5352; (d) Kaltsoyannis, N. Inorg. Chem. 2013, 52, 3407; (e) Mills, D. P.; Cooper, O. J.; 

Tuna, F.; McInnes, E. J. L.; Davies, E. S.; McMaster, J.; Moro, F.; Lewis, W.; Blake, A. J.; 

Liddle, S. T. J. Am. Chem. Soc. 2012, 134, 10047; (f) Gardner, B. M.; Patel, D.; Cornish, A. D.; 

McMaster, J.; Lewis, W.; Blake, A. J.; Liddle, S. T. Chem. Eur. J. 2011, 17, 11266; (g) 

Vlaisavljevich, B.; Miro, P.; Cramer, C. J.; Gagliardi, L.; Infante, I.; Liddle, S. T. Chem. Eur. J. 

2011, 17, 8424; (h) Kirker, I.; Kaltsoyannis, N. Dalton Trans. 2011, 40, 124; (i) Tassell, M. J.; 

Kaltsoyannis, N. Dalton Trans. 2010, 39, 6719; (j) Arnold, P. L.; Turner, Z. R.; Kaltsoyannis, 

N.; Pelekanaki, P.; Bellabarba, R. M.; Tooze, R. P. Chem. Eur. J. 2010, 16, 9623; (k) Petit, L.; 

Joubert, L.; Maldivi, P.; Adamo, C. J. Am. Chem. Soc. 2006, 128, 2190; (l) Clark, A. E.; 

Sonnenberg, J. L.; Hay, P. J.; Martin, R. L. J. Chem. Phys. 2004, 121, 2563. 

(64) Vallet, V.; Wahlgren, U.; Grenthe I. J. Phys. Chem. A, 2012, 116, 12373. 

 
(65) Bain, G. A.; Berry, J. F. J. Chem. Edu. 2008, 85, 532. 

(66) Krejčík, M.; Daněk, M.; Hartl, F. J. Electroanal. Chem. 1991, 317, 179. 

(67) (a) Becke, A. D. Phys. Rev. A 1988, 38, 3098; (b) Perdew, J. P. Phys. Rev. B 1986, 33, 

8822. 

http://pubs.acs.org/action/doSearch?action=search&author=Sasaki%2C+K&qsSearchArea=author
http://pubs.acs.org/action/doSearch?action=search&author=Arai%2C+T&qsSearchArea=author
http://pubs.acs.org/action/doSearch?action=search&author=Ikeda%2C+Y&qsSearchArea=author


 

48 

                                                                                                                                                             

(68)  Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297. 

(69) Turbomole v5.10 Ahlrichs, R.; Baer, M.; Haeser, M.; Horn, H.; Koelmel, C. Chem. Phys. 

Lett. 1989, 162, 165. 

(70)  Gaussian 09, Revision B.01,  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, 

M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci,  G. A. Petersson, H. 

Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. 

Sonnenberg, M. Hada,  M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, 

Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. 

Bearpark, J. J. Heyd, E. Brothers,  K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. 

Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. 

Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. 

Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. 

L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth,  P. Salvador, J. J. Dannenberg, S. 

Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, 

Gaussian, Inc., Wallingford CT, 2010. 

(71) (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648; (b) Lee, C.; Yang, W.; Parr, R. G. Phys. 

Rev. B 1988, 37, 785. 

(72) Roos, B. O.; Lindh, R.; Malmqvist, P.-Å.; Veryazov, V.; Widmark, P.-O. J. Phys. Chem. 

A 2008, 112, 11431. 



 

49 

                                                                                                                                                             

(73) (a) Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257; (b) Clark, T.; 

Chandrasekhar,  J.; Spitznagel, G.W.; Schleyer, P.V.R. J. Comp. Chem. 1983, 4, 294; (c) 

Hariharan, P. C.; Pople, J. A. Theoret. Chimica Acta 1973, 28, 213. 

(74) Jansen, G.; Hess, B. A. Phys. Rev. A 1989, 39, 6016 and references cited therein. 

(75) Reed, A. E.; Weinhold, F. J. Chem. Phys., 1985, 83, 1736. 

(76) Keith, T. AIMAll http://aim.tkgristmill.com 

(77) Bader R. F. W. "Atoms in Molecules - A Quantum Theory" Oxford University Press, 

Oxford, 1990. 

(78) Kar, T.; Angyan, J. G.; Sannigrahi, A. B. J. Phys. Chem. A 2000, 104, 9953. 


